1 /* Copyright 2008 - 2016 Freescale Semiconductor Inc.
2  * Copyright 2020 NXP
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions are met:
6  *     * Redistributions of source code must retain the above copyright
7  *	 notice, this list of conditions and the following disclaimer.
8  *     * Redistributions in binary form must reproduce the above copyright
9  *	 notice, this list of conditions and the following disclaimer in the
10  *	 documentation and/or other materials provided with the distribution.
11  *     * Neither the name of Freescale Semiconductor nor the
12  *	 names of its contributors may be used to endorse or promote products
13  *	 derived from this software without specific prior written permission.
14  *
15  * ALTERNATIVELY, this software may be distributed under the terms of the
16  * GNU General Public License ("GPL") as published by the Free Software
17  * Foundation, either version 2 of that License or (at your option) any
18  * later version.
19  *
20  * THIS SOFTWARE IS PROVIDED BY Freescale Semiconductor ``AS IS'' AND ANY
21  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
22  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
23  * DISCLAIMED. IN NO EVENT SHALL Freescale Semiconductor BE LIABLE FOR ANY
24  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
25  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
26  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
27  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
29  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30  */
31 
32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33 
34 #include <linux/init.h>
35 #include <linux/module.h>
36 #include <linux/of_platform.h>
37 #include <linux/of_mdio.h>
38 #include <linux/of_net.h>
39 #include <linux/io.h>
40 #include <linux/if_arp.h>
41 #include <linux/if_vlan.h>
42 #include <linux/icmp.h>
43 #include <linux/ip.h>
44 #include <linux/ipv6.h>
45 #include <linux/udp.h>
46 #include <linux/tcp.h>
47 #include <linux/net.h>
48 #include <linux/skbuff.h>
49 #include <linux/etherdevice.h>
50 #include <linux/if_ether.h>
51 #include <linux/highmem.h>
52 #include <linux/percpu.h>
53 #include <linux/dma-mapping.h>
54 #include <linux/sort.h>
55 #include <linux/phy_fixed.h>
56 #include <soc/fsl/bman.h>
57 #include <soc/fsl/qman.h>
58 #include "fman.h"
59 #include "fman_port.h"
60 #include "mac.h"
61 #include "dpaa_eth.h"
62 
63 /* CREATE_TRACE_POINTS only needs to be defined once. Other dpaa files
64  * using trace events only need to #include <trace/events/sched.h>
65  */
66 #define CREATE_TRACE_POINTS
67 #include "dpaa_eth_trace.h"
68 
69 static int debug = -1;
70 module_param(debug, int, 0444);
71 MODULE_PARM_DESC(debug, "Module/Driver verbosity level (0=none,...,16=all)");
72 
73 static u16 tx_timeout = 1000;
74 module_param(tx_timeout, ushort, 0444);
75 MODULE_PARM_DESC(tx_timeout, "The Tx timeout in ms");
76 
77 #define FM_FD_STAT_RX_ERRORS						\
78 	(FM_FD_ERR_DMA | FM_FD_ERR_PHYSICAL	| \
79 	 FM_FD_ERR_SIZE | FM_FD_ERR_CLS_DISCARD | \
80 	 FM_FD_ERR_EXTRACTION | FM_FD_ERR_NO_SCHEME	| \
81 	 FM_FD_ERR_PRS_TIMEOUT | FM_FD_ERR_PRS_ILL_INSTRUCT | \
82 	 FM_FD_ERR_PRS_HDR_ERR)
83 
84 #define FM_FD_STAT_TX_ERRORS \
85 	(FM_FD_ERR_UNSUPPORTED_FORMAT | \
86 	 FM_FD_ERR_LENGTH | FM_FD_ERR_DMA)
87 
88 #define DPAA_MSG_DEFAULT (NETIF_MSG_DRV | NETIF_MSG_PROBE | \
89 			  NETIF_MSG_LINK | NETIF_MSG_IFUP | \
90 			  NETIF_MSG_IFDOWN | NETIF_MSG_HW)
91 
92 #define DPAA_INGRESS_CS_THRESHOLD 0x10000000
93 /* Ingress congestion threshold on FMan ports
94  * The size in bytes of the ingress tail-drop threshold on FMan ports.
95  * Traffic piling up above this value will be rejected by QMan and discarded
96  * by FMan.
97  */
98 
99 /* Size in bytes of the FQ taildrop threshold */
100 #define DPAA_FQ_TD 0x200000
101 
102 #define DPAA_CS_THRESHOLD_1G 0x06000000
103 /* Egress congestion threshold on 1G ports, range 0x1000 .. 0x10000000
104  * The size in bytes of the egress Congestion State notification threshold on
105  * 1G ports. The 1G dTSECs can quite easily be flooded by cores doing Tx in a
106  * tight loop (e.g. by sending UDP datagrams at "while(1) speed"),
107  * and the larger the frame size, the more acute the problem.
108  * So we have to find a balance between these factors:
109  * - avoiding the device staying congested for a prolonged time (risking
110  *   the netdev watchdog to fire - see also the tx_timeout module param);
111  * - affecting performance of protocols such as TCP, which otherwise
112  *   behave well under the congestion notification mechanism;
113  * - preventing the Tx cores from tightly-looping (as if the congestion
114  *   threshold was too low to be effective);
115  * - running out of memory if the CS threshold is set too high.
116  */
117 
118 #define DPAA_CS_THRESHOLD_10G 0x10000000
119 /* The size in bytes of the egress Congestion State notification threshold on
120  * 10G ports, range 0x1000 .. 0x10000000
121  */
122 
123 /* Largest value that the FQD's OAL field can hold */
124 #define FSL_QMAN_MAX_OAL	127
125 
126 /* Default alignment for start of data in an Rx FD */
127 #ifdef CONFIG_DPAA_ERRATUM_A050385
128 /* aligning data start to 64 avoids DMA transaction splits, unless the buffer
129  * is crossing a 4k page boundary
130  */
131 #define DPAA_FD_DATA_ALIGNMENT  (fman_has_errata_a050385() ? 64 : 16)
132 /* aligning to 256 avoids DMA transaction splits caused by 4k page boundary
133  * crossings; also, all SG fragments except the last must have a size multiple
134  * of 256 to avoid DMA transaction splits
135  */
136 #define DPAA_A050385_ALIGN 256
137 #define DPAA_FD_RX_DATA_ALIGNMENT (fman_has_errata_a050385() ? \
138 				   DPAA_A050385_ALIGN : 16)
139 #else
140 #define DPAA_FD_DATA_ALIGNMENT  16
141 #define DPAA_FD_RX_DATA_ALIGNMENT DPAA_FD_DATA_ALIGNMENT
142 #endif
143 
144 /* The DPAA requires 256 bytes reserved and mapped for the SGT */
145 #define DPAA_SGT_SIZE 256
146 
147 /* Values for the L3R field of the FM Parse Results
148  */
149 /* L3 Type field: First IP Present IPv4 */
150 #define FM_L3_PARSE_RESULT_IPV4	0x8000
151 /* L3 Type field: First IP Present IPv6 */
152 #define FM_L3_PARSE_RESULT_IPV6	0x4000
153 /* Values for the L4R field of the FM Parse Results */
154 /* L4 Type field: UDP */
155 #define FM_L4_PARSE_RESULT_UDP	0x40
156 /* L4 Type field: TCP */
157 #define FM_L4_PARSE_RESULT_TCP	0x20
158 
159 /* FD status field indicating whether the FM Parser has attempted to validate
160  * the L4 csum of the frame.
161  * Note that having this bit set doesn't necessarily imply that the checksum
162  * is valid. One would have to check the parse results to find that out.
163  */
164 #define FM_FD_STAT_L4CV         0x00000004
165 
166 #define DPAA_SGT_MAX_ENTRIES 16 /* maximum number of entries in SG Table */
167 #define DPAA_BUFF_RELEASE_MAX 8 /* maximum number of buffers released at once */
168 
169 #define FSL_DPAA_BPID_INV		0xff
170 #define FSL_DPAA_ETH_MAX_BUF_COUNT	128
171 #define FSL_DPAA_ETH_REFILL_THRESHOLD	80
172 
173 #define DPAA_TX_PRIV_DATA_SIZE	16
174 #define DPAA_PARSE_RESULTS_SIZE sizeof(struct fman_prs_result)
175 #define DPAA_TIME_STAMP_SIZE 8
176 #define DPAA_HASH_RESULTS_SIZE 8
177 #define DPAA_HWA_SIZE (DPAA_PARSE_RESULTS_SIZE + DPAA_TIME_STAMP_SIZE \
178 		       + DPAA_HASH_RESULTS_SIZE)
179 #define DPAA_RX_PRIV_DATA_DEFAULT_SIZE (DPAA_TX_PRIV_DATA_SIZE + \
180 					dpaa_rx_extra_headroom)
181 #ifdef CONFIG_DPAA_ERRATUM_A050385
182 #define DPAA_RX_PRIV_DATA_A050385_SIZE (DPAA_A050385_ALIGN - DPAA_HWA_SIZE)
183 #define DPAA_RX_PRIV_DATA_SIZE (fman_has_errata_a050385() ? \
184 				DPAA_RX_PRIV_DATA_A050385_SIZE : \
185 				DPAA_RX_PRIV_DATA_DEFAULT_SIZE)
186 #else
187 #define DPAA_RX_PRIV_DATA_SIZE DPAA_RX_PRIV_DATA_DEFAULT_SIZE
188 #endif
189 
190 #define DPAA_ETH_PCD_RXQ_NUM	128
191 
192 #define DPAA_ENQUEUE_RETRIES	100000
193 
194 enum port_type {RX, TX};
195 
196 struct fm_port_fqs {
197 	struct dpaa_fq *tx_defq;
198 	struct dpaa_fq *tx_errq;
199 	struct dpaa_fq *rx_defq;
200 	struct dpaa_fq *rx_errq;
201 	struct dpaa_fq *rx_pcdq;
202 };
203 
204 /* All the dpa bps in use at any moment */
205 static struct dpaa_bp *dpaa_bp_array[BM_MAX_NUM_OF_POOLS];
206 
207 #define DPAA_BP_RAW_SIZE 4096
208 
209 #ifdef CONFIG_DPAA_ERRATUM_A050385
210 #define dpaa_bp_size(raw_size) (SKB_WITH_OVERHEAD(raw_size) & \
211 				~(DPAA_A050385_ALIGN - 1))
212 #else
213 #define dpaa_bp_size(raw_size) SKB_WITH_OVERHEAD(raw_size)
214 #endif
215 
216 static int dpaa_max_frm;
217 
218 static int dpaa_rx_extra_headroom;
219 
220 #define dpaa_get_max_mtu()	\
221 	(dpaa_max_frm - (VLAN_ETH_HLEN + ETH_FCS_LEN))
222 
223 static int dpaa_netdev_init(struct net_device *net_dev,
224 			    const struct net_device_ops *dpaa_ops,
225 			    u16 tx_timeout)
226 {
227 	struct dpaa_priv *priv = netdev_priv(net_dev);
228 	struct device *dev = net_dev->dev.parent;
229 	struct dpaa_percpu_priv *percpu_priv;
230 	const u8 *mac_addr;
231 	int i, err;
232 
233 	/* Although we access another CPU's private data here
234 	 * we do it at initialization so it is safe
235 	 */
236 	for_each_possible_cpu(i) {
237 		percpu_priv = per_cpu_ptr(priv->percpu_priv, i);
238 		percpu_priv->net_dev = net_dev;
239 	}
240 
241 	net_dev->netdev_ops = dpaa_ops;
242 	mac_addr = priv->mac_dev->addr;
243 
244 	net_dev->mem_start = priv->mac_dev->res->start;
245 	net_dev->mem_end = priv->mac_dev->res->end;
246 
247 	net_dev->min_mtu = ETH_MIN_MTU;
248 	net_dev->max_mtu = dpaa_get_max_mtu();
249 
250 	net_dev->hw_features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
251 				 NETIF_F_LLTX | NETIF_F_RXHASH);
252 
253 	net_dev->hw_features |= NETIF_F_SG | NETIF_F_HIGHDMA;
254 	/* The kernels enables GSO automatically, if we declare NETIF_F_SG.
255 	 * For conformity, we'll still declare GSO explicitly.
256 	 */
257 	net_dev->features |= NETIF_F_GSO;
258 	net_dev->features |= NETIF_F_RXCSUM;
259 
260 	net_dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
261 	/* we do not want shared skbs on TX */
262 	net_dev->priv_flags &= ~IFF_TX_SKB_SHARING;
263 
264 	net_dev->features |= net_dev->hw_features;
265 	net_dev->vlan_features = net_dev->features;
266 
267 	if (is_valid_ether_addr(mac_addr)) {
268 		memcpy(net_dev->perm_addr, mac_addr, net_dev->addr_len);
269 		memcpy(net_dev->dev_addr, mac_addr, net_dev->addr_len);
270 	} else {
271 		eth_hw_addr_random(net_dev);
272 		err = priv->mac_dev->change_addr(priv->mac_dev->fman_mac,
273 			(enet_addr_t *)net_dev->dev_addr);
274 		if (err) {
275 			dev_err(dev, "Failed to set random MAC address\n");
276 			return -EINVAL;
277 		}
278 		dev_info(dev, "Using random MAC address: %pM\n",
279 			 net_dev->dev_addr);
280 	}
281 
282 	net_dev->ethtool_ops = &dpaa_ethtool_ops;
283 
284 	net_dev->needed_headroom = priv->tx_headroom;
285 	net_dev->watchdog_timeo = msecs_to_jiffies(tx_timeout);
286 
287 	/* start without the RUNNING flag, phylib controls it later */
288 	netif_carrier_off(net_dev);
289 
290 	err = register_netdev(net_dev);
291 	if (err < 0) {
292 		dev_err(dev, "register_netdev() = %d\n", err);
293 		return err;
294 	}
295 
296 	return 0;
297 }
298 
299 static int dpaa_stop(struct net_device *net_dev)
300 {
301 	struct mac_device *mac_dev;
302 	struct dpaa_priv *priv;
303 	int i, err, error;
304 
305 	priv = netdev_priv(net_dev);
306 	mac_dev = priv->mac_dev;
307 
308 	netif_tx_stop_all_queues(net_dev);
309 	/* Allow the Fman (Tx) port to process in-flight frames before we
310 	 * try switching it off.
311 	 */
312 	msleep(200);
313 
314 	err = mac_dev->stop(mac_dev);
315 	if (err < 0)
316 		netif_err(priv, ifdown, net_dev, "mac_dev->stop() = %d\n",
317 			  err);
318 
319 	for (i = 0; i < ARRAY_SIZE(mac_dev->port); i++) {
320 		error = fman_port_disable(mac_dev->port[i]);
321 		if (error)
322 			err = error;
323 	}
324 
325 	if (net_dev->phydev)
326 		phy_disconnect(net_dev->phydev);
327 	net_dev->phydev = NULL;
328 
329 	msleep(200);
330 
331 	return err;
332 }
333 
334 static void dpaa_tx_timeout(struct net_device *net_dev, unsigned int txqueue)
335 {
336 	struct dpaa_percpu_priv *percpu_priv;
337 	const struct dpaa_priv	*priv;
338 
339 	priv = netdev_priv(net_dev);
340 	percpu_priv = this_cpu_ptr(priv->percpu_priv);
341 
342 	netif_crit(priv, timer, net_dev, "Transmit timeout latency: %u ms\n",
343 		   jiffies_to_msecs(jiffies - dev_trans_start(net_dev)));
344 
345 	percpu_priv->stats.tx_errors++;
346 }
347 
348 /* Calculates the statistics for the given device by adding the statistics
349  * collected by each CPU.
350  */
351 static void dpaa_get_stats64(struct net_device *net_dev,
352 			     struct rtnl_link_stats64 *s)
353 {
354 	int numstats = sizeof(struct rtnl_link_stats64) / sizeof(u64);
355 	struct dpaa_priv *priv = netdev_priv(net_dev);
356 	struct dpaa_percpu_priv *percpu_priv;
357 	u64 *netstats = (u64 *)s;
358 	u64 *cpustats;
359 	int i, j;
360 
361 	for_each_possible_cpu(i) {
362 		percpu_priv = per_cpu_ptr(priv->percpu_priv, i);
363 
364 		cpustats = (u64 *)&percpu_priv->stats;
365 
366 		/* add stats from all CPUs */
367 		for (j = 0; j < numstats; j++)
368 			netstats[j] += cpustats[j];
369 	}
370 }
371 
372 static int dpaa_setup_tc(struct net_device *net_dev, enum tc_setup_type type,
373 			 void *type_data)
374 {
375 	struct dpaa_priv *priv = netdev_priv(net_dev);
376 	struct tc_mqprio_qopt *mqprio = type_data;
377 	u8 num_tc;
378 	int i;
379 
380 	if (type != TC_SETUP_QDISC_MQPRIO)
381 		return -EOPNOTSUPP;
382 
383 	mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
384 	num_tc = mqprio->num_tc;
385 
386 	if (num_tc == priv->num_tc)
387 		return 0;
388 
389 	if (!num_tc) {
390 		netdev_reset_tc(net_dev);
391 		goto out;
392 	}
393 
394 	if (num_tc > DPAA_TC_NUM) {
395 		netdev_err(net_dev, "Too many traffic classes: max %d supported.\n",
396 			   DPAA_TC_NUM);
397 		return -EINVAL;
398 	}
399 
400 	netdev_set_num_tc(net_dev, num_tc);
401 
402 	for (i = 0; i < num_tc; i++)
403 		netdev_set_tc_queue(net_dev, i, DPAA_TC_TXQ_NUM,
404 				    i * DPAA_TC_TXQ_NUM);
405 
406 out:
407 	priv->num_tc = num_tc ? : 1;
408 	netif_set_real_num_tx_queues(net_dev, priv->num_tc * DPAA_TC_TXQ_NUM);
409 	return 0;
410 }
411 
412 static struct mac_device *dpaa_mac_dev_get(struct platform_device *pdev)
413 {
414 	struct dpaa_eth_data *eth_data;
415 	struct device *dpaa_dev;
416 	struct mac_device *mac_dev;
417 
418 	dpaa_dev = &pdev->dev;
419 	eth_data = dpaa_dev->platform_data;
420 	if (!eth_data) {
421 		dev_err(dpaa_dev, "eth_data missing\n");
422 		return ERR_PTR(-ENODEV);
423 	}
424 	mac_dev = eth_data->mac_dev;
425 	if (!mac_dev) {
426 		dev_err(dpaa_dev, "mac_dev missing\n");
427 		return ERR_PTR(-EINVAL);
428 	}
429 
430 	return mac_dev;
431 }
432 
433 static int dpaa_set_mac_address(struct net_device *net_dev, void *addr)
434 {
435 	const struct dpaa_priv *priv;
436 	struct mac_device *mac_dev;
437 	struct sockaddr old_addr;
438 	int err;
439 
440 	priv = netdev_priv(net_dev);
441 
442 	memcpy(old_addr.sa_data, net_dev->dev_addr,  ETH_ALEN);
443 
444 	err = eth_mac_addr(net_dev, addr);
445 	if (err < 0) {
446 		netif_err(priv, drv, net_dev, "eth_mac_addr() = %d\n", err);
447 		return err;
448 	}
449 
450 	mac_dev = priv->mac_dev;
451 
452 	err = mac_dev->change_addr(mac_dev->fman_mac,
453 				   (enet_addr_t *)net_dev->dev_addr);
454 	if (err < 0) {
455 		netif_err(priv, drv, net_dev, "mac_dev->change_addr() = %d\n",
456 			  err);
457 		/* reverting to previous address */
458 		eth_mac_addr(net_dev, &old_addr);
459 
460 		return err;
461 	}
462 
463 	return 0;
464 }
465 
466 static void dpaa_set_rx_mode(struct net_device *net_dev)
467 {
468 	const struct dpaa_priv	*priv;
469 	int err;
470 
471 	priv = netdev_priv(net_dev);
472 
473 	if (!!(net_dev->flags & IFF_PROMISC) != priv->mac_dev->promisc) {
474 		priv->mac_dev->promisc = !priv->mac_dev->promisc;
475 		err = priv->mac_dev->set_promisc(priv->mac_dev->fman_mac,
476 						 priv->mac_dev->promisc);
477 		if (err < 0)
478 			netif_err(priv, drv, net_dev,
479 				  "mac_dev->set_promisc() = %d\n",
480 				  err);
481 	}
482 
483 	if (!!(net_dev->flags & IFF_ALLMULTI) != priv->mac_dev->allmulti) {
484 		priv->mac_dev->allmulti = !priv->mac_dev->allmulti;
485 		err = priv->mac_dev->set_allmulti(priv->mac_dev->fman_mac,
486 						  priv->mac_dev->allmulti);
487 		if (err < 0)
488 			netif_err(priv, drv, net_dev,
489 				  "mac_dev->set_allmulti() = %d\n",
490 				  err);
491 	}
492 
493 	err = priv->mac_dev->set_multi(net_dev, priv->mac_dev);
494 	if (err < 0)
495 		netif_err(priv, drv, net_dev, "mac_dev->set_multi() = %d\n",
496 			  err);
497 }
498 
499 static struct dpaa_bp *dpaa_bpid2pool(int bpid)
500 {
501 	if (WARN_ON(bpid < 0 || bpid >= BM_MAX_NUM_OF_POOLS))
502 		return NULL;
503 
504 	return dpaa_bp_array[bpid];
505 }
506 
507 /* checks if this bpool is already allocated */
508 static bool dpaa_bpid2pool_use(int bpid)
509 {
510 	if (dpaa_bpid2pool(bpid)) {
511 		refcount_inc(&dpaa_bp_array[bpid]->refs);
512 		return true;
513 	}
514 
515 	return false;
516 }
517 
518 /* called only once per bpid by dpaa_bp_alloc_pool() */
519 static void dpaa_bpid2pool_map(int bpid, struct dpaa_bp *dpaa_bp)
520 {
521 	dpaa_bp_array[bpid] = dpaa_bp;
522 	refcount_set(&dpaa_bp->refs, 1);
523 }
524 
525 static int dpaa_bp_alloc_pool(struct dpaa_bp *dpaa_bp)
526 {
527 	int err;
528 
529 	if (dpaa_bp->size == 0 || dpaa_bp->config_count == 0) {
530 		pr_err("%s: Buffer pool is not properly initialized! Missing size or initial number of buffers\n",
531 		       __func__);
532 		return -EINVAL;
533 	}
534 
535 	/* If the pool is already specified, we only create one per bpid */
536 	if (dpaa_bp->bpid != FSL_DPAA_BPID_INV &&
537 	    dpaa_bpid2pool_use(dpaa_bp->bpid))
538 		return 0;
539 
540 	if (dpaa_bp->bpid == FSL_DPAA_BPID_INV) {
541 		dpaa_bp->pool = bman_new_pool();
542 		if (!dpaa_bp->pool) {
543 			pr_err("%s: bman_new_pool() failed\n",
544 			       __func__);
545 			return -ENODEV;
546 		}
547 
548 		dpaa_bp->bpid = (u8)bman_get_bpid(dpaa_bp->pool);
549 	}
550 
551 	if (dpaa_bp->seed_cb) {
552 		err = dpaa_bp->seed_cb(dpaa_bp);
553 		if (err)
554 			goto pool_seed_failed;
555 	}
556 
557 	dpaa_bpid2pool_map(dpaa_bp->bpid, dpaa_bp);
558 
559 	return 0;
560 
561 pool_seed_failed:
562 	pr_err("%s: pool seeding failed\n", __func__);
563 	bman_free_pool(dpaa_bp->pool);
564 
565 	return err;
566 }
567 
568 /* remove and free all the buffers from the given buffer pool */
569 static void dpaa_bp_drain(struct dpaa_bp *bp)
570 {
571 	u8 num = 8;
572 	int ret;
573 
574 	do {
575 		struct bm_buffer bmb[8];
576 		int i;
577 
578 		ret = bman_acquire(bp->pool, bmb, num);
579 		if (ret < 0) {
580 			if (num == 8) {
581 				/* we have less than 8 buffers left;
582 				 * drain them one by one
583 				 */
584 				num = 1;
585 				ret = 1;
586 				continue;
587 			} else {
588 				/* Pool is fully drained */
589 				break;
590 			}
591 		}
592 
593 		if (bp->free_buf_cb)
594 			for (i = 0; i < num; i++)
595 				bp->free_buf_cb(bp, &bmb[i]);
596 	} while (ret > 0);
597 }
598 
599 static void dpaa_bp_free(struct dpaa_bp *dpaa_bp)
600 {
601 	struct dpaa_bp *bp = dpaa_bpid2pool(dpaa_bp->bpid);
602 
603 	/* the mapping between bpid and dpaa_bp is done very late in the
604 	 * allocation procedure; if something failed before the mapping, the bp
605 	 * was not configured, therefore we don't need the below instructions
606 	 */
607 	if (!bp)
608 		return;
609 
610 	if (!refcount_dec_and_test(&bp->refs))
611 		return;
612 
613 	if (bp->free_buf_cb)
614 		dpaa_bp_drain(bp);
615 
616 	dpaa_bp_array[bp->bpid] = NULL;
617 	bman_free_pool(bp->pool);
618 }
619 
620 static void dpaa_bps_free(struct dpaa_priv *priv)
621 {
622 	dpaa_bp_free(priv->dpaa_bp);
623 }
624 
625 /* Use multiple WQs for FQ assignment:
626  *	- Tx Confirmation queues go to WQ1.
627  *	- Rx Error and Tx Error queues go to WQ5 (giving them a better chance
628  *	  to be scheduled, in case there are many more FQs in WQ6).
629  *	- Rx Default goes to WQ6.
630  *	- Tx queues go to different WQs depending on their priority. Equal
631  *	  chunks of NR_CPUS queues go to WQ6 (lowest priority), WQ2, WQ1 and
632  *	  WQ0 (highest priority).
633  * This ensures that Tx-confirmed buffers are timely released. In particular,
634  * it avoids congestion on the Tx Confirm FQs, which can pile up PFDRs if they
635  * are greatly outnumbered by other FQs in the system, while
636  * dequeue scheduling is round-robin.
637  */
638 static inline void dpaa_assign_wq(struct dpaa_fq *fq, int idx)
639 {
640 	switch (fq->fq_type) {
641 	case FQ_TYPE_TX_CONFIRM:
642 	case FQ_TYPE_TX_CONF_MQ:
643 		fq->wq = 1;
644 		break;
645 	case FQ_TYPE_RX_ERROR:
646 	case FQ_TYPE_TX_ERROR:
647 		fq->wq = 5;
648 		break;
649 	case FQ_TYPE_RX_DEFAULT:
650 	case FQ_TYPE_RX_PCD:
651 		fq->wq = 6;
652 		break;
653 	case FQ_TYPE_TX:
654 		switch (idx / DPAA_TC_TXQ_NUM) {
655 		case 0:
656 			/* Low priority (best effort) */
657 			fq->wq = 6;
658 			break;
659 		case 1:
660 			/* Medium priority */
661 			fq->wq = 2;
662 			break;
663 		case 2:
664 			/* High priority */
665 			fq->wq = 1;
666 			break;
667 		case 3:
668 			/* Very high priority */
669 			fq->wq = 0;
670 			break;
671 		default:
672 			WARN(1, "Too many TX FQs: more than %d!\n",
673 			     DPAA_ETH_TXQ_NUM);
674 		}
675 		break;
676 	default:
677 		WARN(1, "Invalid FQ type %d for FQID %d!\n",
678 		     fq->fq_type, fq->fqid);
679 	}
680 }
681 
682 static struct dpaa_fq *dpaa_fq_alloc(struct device *dev,
683 				     u32 start, u32 count,
684 				     struct list_head *list,
685 				     enum dpaa_fq_type fq_type)
686 {
687 	struct dpaa_fq *dpaa_fq;
688 	int i;
689 
690 	dpaa_fq = devm_kcalloc(dev, count, sizeof(*dpaa_fq),
691 			       GFP_KERNEL);
692 	if (!dpaa_fq)
693 		return NULL;
694 
695 	for (i = 0; i < count; i++) {
696 		dpaa_fq[i].fq_type = fq_type;
697 		dpaa_fq[i].fqid = start ? start + i : 0;
698 		list_add_tail(&dpaa_fq[i].list, list);
699 	}
700 
701 	for (i = 0; i < count; i++)
702 		dpaa_assign_wq(dpaa_fq + i, i);
703 
704 	return dpaa_fq;
705 }
706 
707 static int dpaa_alloc_all_fqs(struct device *dev, struct list_head *list,
708 			      struct fm_port_fqs *port_fqs)
709 {
710 	struct dpaa_fq *dpaa_fq;
711 	u32 fq_base, fq_base_aligned, i;
712 
713 	dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_RX_ERROR);
714 	if (!dpaa_fq)
715 		goto fq_alloc_failed;
716 
717 	port_fqs->rx_errq = &dpaa_fq[0];
718 
719 	dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_RX_DEFAULT);
720 	if (!dpaa_fq)
721 		goto fq_alloc_failed;
722 
723 	port_fqs->rx_defq = &dpaa_fq[0];
724 
725 	/* the PCD FQIDs range needs to be aligned for correct operation */
726 	if (qman_alloc_fqid_range(&fq_base, 2 * DPAA_ETH_PCD_RXQ_NUM))
727 		goto fq_alloc_failed;
728 
729 	fq_base_aligned = ALIGN(fq_base, DPAA_ETH_PCD_RXQ_NUM);
730 
731 	for (i = fq_base; i < fq_base_aligned; i++)
732 		qman_release_fqid(i);
733 
734 	for (i = fq_base_aligned + DPAA_ETH_PCD_RXQ_NUM;
735 	     i < (fq_base + 2 * DPAA_ETH_PCD_RXQ_NUM); i++)
736 		qman_release_fqid(i);
737 
738 	dpaa_fq = dpaa_fq_alloc(dev, fq_base_aligned, DPAA_ETH_PCD_RXQ_NUM,
739 				list, FQ_TYPE_RX_PCD);
740 	if (!dpaa_fq)
741 		goto fq_alloc_failed;
742 
743 	port_fqs->rx_pcdq = &dpaa_fq[0];
744 
745 	if (!dpaa_fq_alloc(dev, 0, DPAA_ETH_TXQ_NUM, list, FQ_TYPE_TX_CONF_MQ))
746 		goto fq_alloc_failed;
747 
748 	dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_TX_ERROR);
749 	if (!dpaa_fq)
750 		goto fq_alloc_failed;
751 
752 	port_fqs->tx_errq = &dpaa_fq[0];
753 
754 	dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_TX_CONFIRM);
755 	if (!dpaa_fq)
756 		goto fq_alloc_failed;
757 
758 	port_fqs->tx_defq = &dpaa_fq[0];
759 
760 	if (!dpaa_fq_alloc(dev, 0, DPAA_ETH_TXQ_NUM, list, FQ_TYPE_TX))
761 		goto fq_alloc_failed;
762 
763 	return 0;
764 
765 fq_alloc_failed:
766 	dev_err(dev, "dpaa_fq_alloc() failed\n");
767 	return -ENOMEM;
768 }
769 
770 static u32 rx_pool_channel;
771 static DEFINE_SPINLOCK(rx_pool_channel_init);
772 
773 static int dpaa_get_channel(void)
774 {
775 	spin_lock(&rx_pool_channel_init);
776 	if (!rx_pool_channel) {
777 		u32 pool;
778 		int ret;
779 
780 		ret = qman_alloc_pool(&pool);
781 
782 		if (!ret)
783 			rx_pool_channel = pool;
784 	}
785 	spin_unlock(&rx_pool_channel_init);
786 	if (!rx_pool_channel)
787 		return -ENOMEM;
788 	return rx_pool_channel;
789 }
790 
791 static void dpaa_release_channel(void)
792 {
793 	qman_release_pool(rx_pool_channel);
794 }
795 
796 static void dpaa_eth_add_channel(u16 channel, struct device *dev)
797 {
798 	u32 pool = QM_SDQCR_CHANNELS_POOL_CONV(channel);
799 	const cpumask_t *cpus = qman_affine_cpus();
800 	struct qman_portal *portal;
801 	int cpu;
802 
803 	for_each_cpu_and(cpu, cpus, cpu_online_mask) {
804 		portal = qman_get_affine_portal(cpu);
805 		qman_p_static_dequeue_add(portal, pool);
806 		qman_start_using_portal(portal, dev);
807 	}
808 }
809 
810 /* Congestion group state change notification callback.
811  * Stops the device's egress queues while they are congested and
812  * wakes them upon exiting congested state.
813  * Also updates some CGR-related stats.
814  */
815 static void dpaa_eth_cgscn(struct qman_portal *qm, struct qman_cgr *cgr,
816 			   int congested)
817 {
818 	struct dpaa_priv *priv = (struct dpaa_priv *)container_of(cgr,
819 		struct dpaa_priv, cgr_data.cgr);
820 
821 	if (congested) {
822 		priv->cgr_data.congestion_start_jiffies = jiffies;
823 		netif_tx_stop_all_queues(priv->net_dev);
824 		priv->cgr_data.cgr_congested_count++;
825 	} else {
826 		priv->cgr_data.congested_jiffies +=
827 			(jiffies - priv->cgr_data.congestion_start_jiffies);
828 		netif_tx_wake_all_queues(priv->net_dev);
829 	}
830 }
831 
832 static int dpaa_eth_cgr_init(struct dpaa_priv *priv)
833 {
834 	struct qm_mcc_initcgr initcgr;
835 	u32 cs_th;
836 	int err;
837 
838 	err = qman_alloc_cgrid(&priv->cgr_data.cgr.cgrid);
839 	if (err < 0) {
840 		if (netif_msg_drv(priv))
841 			pr_err("%s: Error %d allocating CGR ID\n",
842 			       __func__, err);
843 		goto out_error;
844 	}
845 	priv->cgr_data.cgr.cb = dpaa_eth_cgscn;
846 
847 	/* Enable Congestion State Change Notifications and CS taildrop */
848 	memset(&initcgr, 0, sizeof(initcgr));
849 	initcgr.we_mask = cpu_to_be16(QM_CGR_WE_CSCN_EN | QM_CGR_WE_CS_THRES);
850 	initcgr.cgr.cscn_en = QM_CGR_EN;
851 
852 	/* Set different thresholds based on the MAC speed.
853 	 * This may turn suboptimal if the MAC is reconfigured at a speed
854 	 * lower than its max, e.g. if a dTSEC later negotiates a 100Mbps link.
855 	 * In such cases, we ought to reconfigure the threshold, too.
856 	 */
857 	if (priv->mac_dev->if_support & SUPPORTED_10000baseT_Full)
858 		cs_th = DPAA_CS_THRESHOLD_10G;
859 	else
860 		cs_th = DPAA_CS_THRESHOLD_1G;
861 	qm_cgr_cs_thres_set64(&initcgr.cgr.cs_thres, cs_th, 1);
862 
863 	initcgr.we_mask |= cpu_to_be16(QM_CGR_WE_CSTD_EN);
864 	initcgr.cgr.cstd_en = QM_CGR_EN;
865 
866 	err = qman_create_cgr(&priv->cgr_data.cgr, QMAN_CGR_FLAG_USE_INIT,
867 			      &initcgr);
868 	if (err < 0) {
869 		if (netif_msg_drv(priv))
870 			pr_err("%s: Error %d creating CGR with ID %d\n",
871 			       __func__, err, priv->cgr_data.cgr.cgrid);
872 		qman_release_cgrid(priv->cgr_data.cgr.cgrid);
873 		goto out_error;
874 	}
875 	if (netif_msg_drv(priv))
876 		pr_debug("Created CGR %d for netdev with hwaddr %pM on QMan channel %d\n",
877 			 priv->cgr_data.cgr.cgrid, priv->mac_dev->addr,
878 			 priv->cgr_data.cgr.chan);
879 
880 out_error:
881 	return err;
882 }
883 
884 static inline void dpaa_setup_ingress(const struct dpaa_priv *priv,
885 				      struct dpaa_fq *fq,
886 				      const struct qman_fq *template)
887 {
888 	fq->fq_base = *template;
889 	fq->net_dev = priv->net_dev;
890 
891 	fq->flags = QMAN_FQ_FLAG_NO_ENQUEUE;
892 	fq->channel = priv->channel;
893 }
894 
895 static inline void dpaa_setup_egress(const struct dpaa_priv *priv,
896 				     struct dpaa_fq *fq,
897 				     struct fman_port *port,
898 				     const struct qman_fq *template)
899 {
900 	fq->fq_base = *template;
901 	fq->net_dev = priv->net_dev;
902 
903 	if (port) {
904 		fq->flags = QMAN_FQ_FLAG_TO_DCPORTAL;
905 		fq->channel = (u16)fman_port_get_qman_channel_id(port);
906 	} else {
907 		fq->flags = QMAN_FQ_FLAG_NO_MODIFY;
908 	}
909 }
910 
911 static void dpaa_fq_setup(struct dpaa_priv *priv,
912 			  const struct dpaa_fq_cbs *fq_cbs,
913 			  struct fman_port *tx_port)
914 {
915 	int egress_cnt = 0, conf_cnt = 0, num_portals = 0, portal_cnt = 0, cpu;
916 	const cpumask_t *affine_cpus = qman_affine_cpus();
917 	u16 channels[NR_CPUS];
918 	struct dpaa_fq *fq;
919 
920 	for_each_cpu_and(cpu, affine_cpus, cpu_online_mask)
921 		channels[num_portals++] = qman_affine_channel(cpu);
922 
923 	if (num_portals == 0)
924 		dev_err(priv->net_dev->dev.parent,
925 			"No Qman software (affine) channels found\n");
926 
927 	/* Initialize each FQ in the list */
928 	list_for_each_entry(fq, &priv->dpaa_fq_list, list) {
929 		switch (fq->fq_type) {
930 		case FQ_TYPE_RX_DEFAULT:
931 			dpaa_setup_ingress(priv, fq, &fq_cbs->rx_defq);
932 			break;
933 		case FQ_TYPE_RX_ERROR:
934 			dpaa_setup_ingress(priv, fq, &fq_cbs->rx_errq);
935 			break;
936 		case FQ_TYPE_RX_PCD:
937 			if (!num_portals)
938 				continue;
939 			dpaa_setup_ingress(priv, fq, &fq_cbs->rx_defq);
940 			fq->channel = channels[portal_cnt++ % num_portals];
941 			break;
942 		case FQ_TYPE_TX:
943 			dpaa_setup_egress(priv, fq, tx_port,
944 					  &fq_cbs->egress_ern);
945 			/* If we have more Tx queues than the number of cores,
946 			 * just ignore the extra ones.
947 			 */
948 			if (egress_cnt < DPAA_ETH_TXQ_NUM)
949 				priv->egress_fqs[egress_cnt++] = &fq->fq_base;
950 			break;
951 		case FQ_TYPE_TX_CONF_MQ:
952 			priv->conf_fqs[conf_cnt++] = &fq->fq_base;
953 			fallthrough;
954 		case FQ_TYPE_TX_CONFIRM:
955 			dpaa_setup_ingress(priv, fq, &fq_cbs->tx_defq);
956 			break;
957 		case FQ_TYPE_TX_ERROR:
958 			dpaa_setup_ingress(priv, fq, &fq_cbs->tx_errq);
959 			break;
960 		default:
961 			dev_warn(priv->net_dev->dev.parent,
962 				 "Unknown FQ type detected!\n");
963 			break;
964 		}
965 	}
966 
967 	 /* Make sure all CPUs receive a corresponding Tx queue. */
968 	while (egress_cnt < DPAA_ETH_TXQ_NUM) {
969 		list_for_each_entry(fq, &priv->dpaa_fq_list, list) {
970 			if (fq->fq_type != FQ_TYPE_TX)
971 				continue;
972 			priv->egress_fqs[egress_cnt++] = &fq->fq_base;
973 			if (egress_cnt == DPAA_ETH_TXQ_NUM)
974 				break;
975 		}
976 	}
977 }
978 
979 static inline int dpaa_tx_fq_to_id(const struct dpaa_priv *priv,
980 				   struct qman_fq *tx_fq)
981 {
982 	int i;
983 
984 	for (i = 0; i < DPAA_ETH_TXQ_NUM; i++)
985 		if (priv->egress_fqs[i] == tx_fq)
986 			return i;
987 
988 	return -EINVAL;
989 }
990 
991 static int dpaa_fq_init(struct dpaa_fq *dpaa_fq, bool td_enable)
992 {
993 	const struct dpaa_priv	*priv;
994 	struct qman_fq *confq = NULL;
995 	struct qm_mcc_initfq initfq;
996 	struct device *dev;
997 	struct qman_fq *fq;
998 	int queue_id;
999 	int err;
1000 
1001 	priv = netdev_priv(dpaa_fq->net_dev);
1002 	dev = dpaa_fq->net_dev->dev.parent;
1003 
1004 	if (dpaa_fq->fqid == 0)
1005 		dpaa_fq->flags |= QMAN_FQ_FLAG_DYNAMIC_FQID;
1006 
1007 	dpaa_fq->init = !(dpaa_fq->flags & QMAN_FQ_FLAG_NO_MODIFY);
1008 
1009 	err = qman_create_fq(dpaa_fq->fqid, dpaa_fq->flags, &dpaa_fq->fq_base);
1010 	if (err) {
1011 		dev_err(dev, "qman_create_fq() failed\n");
1012 		return err;
1013 	}
1014 	fq = &dpaa_fq->fq_base;
1015 
1016 	if (dpaa_fq->init) {
1017 		memset(&initfq, 0, sizeof(initfq));
1018 
1019 		initfq.we_mask = cpu_to_be16(QM_INITFQ_WE_FQCTRL);
1020 		/* Note: we may get to keep an empty FQ in cache */
1021 		initfq.fqd.fq_ctrl = cpu_to_be16(QM_FQCTRL_PREFERINCACHE);
1022 
1023 		/* Try to reduce the number of portal interrupts for
1024 		 * Tx Confirmation FQs.
1025 		 */
1026 		if (dpaa_fq->fq_type == FQ_TYPE_TX_CONFIRM)
1027 			initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_AVOIDBLOCK);
1028 
1029 		/* FQ placement */
1030 		initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_DESTWQ);
1031 
1032 		qm_fqd_set_destwq(&initfq.fqd, dpaa_fq->channel, dpaa_fq->wq);
1033 
1034 		/* Put all egress queues in a congestion group of their own.
1035 		 * Sensu stricto, the Tx confirmation queues are Rx FQs,
1036 		 * rather than Tx - but they nonetheless account for the
1037 		 * memory footprint on behalf of egress traffic. We therefore
1038 		 * place them in the netdev's CGR, along with the Tx FQs.
1039 		 */
1040 		if (dpaa_fq->fq_type == FQ_TYPE_TX ||
1041 		    dpaa_fq->fq_type == FQ_TYPE_TX_CONFIRM ||
1042 		    dpaa_fq->fq_type == FQ_TYPE_TX_CONF_MQ) {
1043 			initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_CGID);
1044 			initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_CGE);
1045 			initfq.fqd.cgid = (u8)priv->cgr_data.cgr.cgrid;
1046 			/* Set a fixed overhead accounting, in an attempt to
1047 			 * reduce the impact of fixed-size skb shells and the
1048 			 * driver's needed headroom on system memory. This is
1049 			 * especially the case when the egress traffic is
1050 			 * composed of small datagrams.
1051 			 * Unfortunately, QMan's OAL value is capped to an
1052 			 * insufficient value, but even that is better than
1053 			 * no overhead accounting at all.
1054 			 */
1055 			initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_OAC);
1056 			qm_fqd_set_oac(&initfq.fqd, QM_OAC_CG);
1057 			qm_fqd_set_oal(&initfq.fqd,
1058 				       min(sizeof(struct sk_buff) +
1059 				       priv->tx_headroom,
1060 				       (size_t)FSL_QMAN_MAX_OAL));
1061 		}
1062 
1063 		if (td_enable) {
1064 			initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_TDTHRESH);
1065 			qm_fqd_set_taildrop(&initfq.fqd, DPAA_FQ_TD, 1);
1066 			initfq.fqd.fq_ctrl = cpu_to_be16(QM_FQCTRL_TDE);
1067 		}
1068 
1069 		if (dpaa_fq->fq_type == FQ_TYPE_TX) {
1070 			queue_id = dpaa_tx_fq_to_id(priv, &dpaa_fq->fq_base);
1071 			if (queue_id >= 0)
1072 				confq = priv->conf_fqs[queue_id];
1073 			if (confq) {
1074 				initfq.we_mask |=
1075 					cpu_to_be16(QM_INITFQ_WE_CONTEXTA);
1076 			/* ContextA: OVOM=1(use contextA2 bits instead of ICAD)
1077 			 *	     A2V=1 (contextA A2 field is valid)
1078 			 *	     A0V=1 (contextA A0 field is valid)
1079 			 *	     B0V=1 (contextB field is valid)
1080 			 * ContextA A2: EBD=1 (deallocate buffers inside FMan)
1081 			 * ContextB B0(ASPID): 0 (absolute Virtual Storage ID)
1082 			 */
1083 				qm_fqd_context_a_set64(&initfq.fqd,
1084 						       0x1e00000080000000ULL);
1085 			}
1086 		}
1087 
1088 		/* Put all the ingress queues in our "ingress CGR". */
1089 		if (priv->use_ingress_cgr &&
1090 		    (dpaa_fq->fq_type == FQ_TYPE_RX_DEFAULT ||
1091 		     dpaa_fq->fq_type == FQ_TYPE_RX_ERROR ||
1092 		     dpaa_fq->fq_type == FQ_TYPE_RX_PCD)) {
1093 			initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_CGID);
1094 			initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_CGE);
1095 			initfq.fqd.cgid = (u8)priv->ingress_cgr.cgrid;
1096 			/* Set a fixed overhead accounting, just like for the
1097 			 * egress CGR.
1098 			 */
1099 			initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_OAC);
1100 			qm_fqd_set_oac(&initfq.fqd, QM_OAC_CG);
1101 			qm_fqd_set_oal(&initfq.fqd,
1102 				       min(sizeof(struct sk_buff) +
1103 				       priv->tx_headroom,
1104 				       (size_t)FSL_QMAN_MAX_OAL));
1105 		}
1106 
1107 		/* Initialization common to all ingress queues */
1108 		if (dpaa_fq->flags & QMAN_FQ_FLAG_NO_ENQUEUE) {
1109 			initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_CONTEXTA);
1110 			initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_HOLDACTIVE |
1111 						QM_FQCTRL_CTXASTASHING);
1112 			initfq.fqd.context_a.stashing.exclusive =
1113 				QM_STASHING_EXCL_DATA | QM_STASHING_EXCL_CTX |
1114 				QM_STASHING_EXCL_ANNOTATION;
1115 			qm_fqd_set_stashing(&initfq.fqd, 1, 2,
1116 					    DIV_ROUND_UP(sizeof(struct qman_fq),
1117 							 64));
1118 		}
1119 
1120 		err = qman_init_fq(fq, QMAN_INITFQ_FLAG_SCHED, &initfq);
1121 		if (err < 0) {
1122 			dev_err(dev, "qman_init_fq(%u) = %d\n",
1123 				qman_fq_fqid(fq), err);
1124 			qman_destroy_fq(fq);
1125 			return err;
1126 		}
1127 	}
1128 
1129 	dpaa_fq->fqid = qman_fq_fqid(fq);
1130 
1131 	return 0;
1132 }
1133 
1134 static int dpaa_fq_free_entry(struct device *dev, struct qman_fq *fq)
1135 {
1136 	const struct dpaa_priv  *priv;
1137 	struct dpaa_fq *dpaa_fq;
1138 	int err, error;
1139 
1140 	err = 0;
1141 
1142 	dpaa_fq = container_of(fq, struct dpaa_fq, fq_base);
1143 	priv = netdev_priv(dpaa_fq->net_dev);
1144 
1145 	if (dpaa_fq->init) {
1146 		err = qman_retire_fq(fq, NULL);
1147 		if (err < 0 && netif_msg_drv(priv))
1148 			dev_err(dev, "qman_retire_fq(%u) = %d\n",
1149 				qman_fq_fqid(fq), err);
1150 
1151 		error = qman_oos_fq(fq);
1152 		if (error < 0 && netif_msg_drv(priv)) {
1153 			dev_err(dev, "qman_oos_fq(%u) = %d\n",
1154 				qman_fq_fqid(fq), error);
1155 			if (err >= 0)
1156 				err = error;
1157 		}
1158 	}
1159 
1160 	qman_destroy_fq(fq);
1161 	list_del(&dpaa_fq->list);
1162 
1163 	return err;
1164 }
1165 
1166 static int dpaa_fq_free(struct device *dev, struct list_head *list)
1167 {
1168 	struct dpaa_fq *dpaa_fq, *tmp;
1169 	int err, error;
1170 
1171 	err = 0;
1172 	list_for_each_entry_safe(dpaa_fq, tmp, list, list) {
1173 		error = dpaa_fq_free_entry(dev, (struct qman_fq *)dpaa_fq);
1174 		if (error < 0 && err >= 0)
1175 			err = error;
1176 	}
1177 
1178 	return err;
1179 }
1180 
1181 static int dpaa_eth_init_tx_port(struct fman_port *port, struct dpaa_fq *errq,
1182 				 struct dpaa_fq *defq,
1183 				 struct dpaa_buffer_layout *buf_layout)
1184 {
1185 	struct fman_buffer_prefix_content buf_prefix_content;
1186 	struct fman_port_params params;
1187 	int err;
1188 
1189 	memset(&params, 0, sizeof(params));
1190 	memset(&buf_prefix_content, 0, sizeof(buf_prefix_content));
1191 
1192 	buf_prefix_content.priv_data_size = buf_layout->priv_data_size;
1193 	buf_prefix_content.pass_prs_result = true;
1194 	buf_prefix_content.pass_hash_result = true;
1195 	buf_prefix_content.pass_time_stamp = true;
1196 	buf_prefix_content.data_align = DPAA_FD_DATA_ALIGNMENT;
1197 
1198 	params.specific_params.non_rx_params.err_fqid = errq->fqid;
1199 	params.specific_params.non_rx_params.dflt_fqid = defq->fqid;
1200 
1201 	err = fman_port_config(port, &params);
1202 	if (err) {
1203 		pr_err("%s: fman_port_config failed\n", __func__);
1204 		return err;
1205 	}
1206 
1207 	err = fman_port_cfg_buf_prefix_content(port, &buf_prefix_content);
1208 	if (err) {
1209 		pr_err("%s: fman_port_cfg_buf_prefix_content failed\n",
1210 		       __func__);
1211 		return err;
1212 	}
1213 
1214 	err = fman_port_init(port);
1215 	if (err)
1216 		pr_err("%s: fm_port_init failed\n", __func__);
1217 
1218 	return err;
1219 }
1220 
1221 static int dpaa_eth_init_rx_port(struct fman_port *port, struct dpaa_bp *bp,
1222 				 struct dpaa_fq *errq,
1223 				 struct dpaa_fq *defq, struct dpaa_fq *pcdq,
1224 				 struct dpaa_buffer_layout *buf_layout)
1225 {
1226 	struct fman_buffer_prefix_content buf_prefix_content;
1227 	struct fman_port_rx_params *rx_p;
1228 	struct fman_port_params params;
1229 	int err;
1230 
1231 	memset(&params, 0, sizeof(params));
1232 	memset(&buf_prefix_content, 0, sizeof(buf_prefix_content));
1233 
1234 	buf_prefix_content.priv_data_size = buf_layout->priv_data_size;
1235 	buf_prefix_content.pass_prs_result = true;
1236 	buf_prefix_content.pass_hash_result = true;
1237 	buf_prefix_content.pass_time_stamp = true;
1238 	buf_prefix_content.data_align = DPAA_FD_RX_DATA_ALIGNMENT;
1239 
1240 	rx_p = &params.specific_params.rx_params;
1241 	rx_p->err_fqid = errq->fqid;
1242 	rx_p->dflt_fqid = defq->fqid;
1243 	if (pcdq) {
1244 		rx_p->pcd_base_fqid = pcdq->fqid;
1245 		rx_p->pcd_fqs_count = DPAA_ETH_PCD_RXQ_NUM;
1246 	}
1247 
1248 	rx_p->ext_buf_pools.num_of_pools_used = 1;
1249 	rx_p->ext_buf_pools.ext_buf_pool[0].id =  bp->bpid;
1250 	rx_p->ext_buf_pools.ext_buf_pool[0].size = (u16)bp->size;
1251 
1252 	err = fman_port_config(port, &params);
1253 	if (err) {
1254 		pr_err("%s: fman_port_config failed\n", __func__);
1255 		return err;
1256 	}
1257 
1258 	err = fman_port_cfg_buf_prefix_content(port, &buf_prefix_content);
1259 	if (err) {
1260 		pr_err("%s: fman_port_cfg_buf_prefix_content failed\n",
1261 		       __func__);
1262 		return err;
1263 	}
1264 
1265 	err = fman_port_init(port);
1266 	if (err)
1267 		pr_err("%s: fm_port_init failed\n", __func__);
1268 
1269 	return err;
1270 }
1271 
1272 static int dpaa_eth_init_ports(struct mac_device *mac_dev,
1273 			       struct dpaa_bp *bp,
1274 			       struct fm_port_fqs *port_fqs,
1275 			       struct dpaa_buffer_layout *buf_layout,
1276 			       struct device *dev)
1277 {
1278 	struct fman_port *rxport = mac_dev->port[RX];
1279 	struct fman_port *txport = mac_dev->port[TX];
1280 	int err;
1281 
1282 	err = dpaa_eth_init_tx_port(txport, port_fqs->tx_errq,
1283 				    port_fqs->tx_defq, &buf_layout[TX]);
1284 	if (err)
1285 		return err;
1286 
1287 	err = dpaa_eth_init_rx_port(rxport, bp, port_fqs->rx_errq,
1288 				    port_fqs->rx_defq, port_fqs->rx_pcdq,
1289 				    &buf_layout[RX]);
1290 
1291 	return err;
1292 }
1293 
1294 static int dpaa_bman_release(const struct dpaa_bp *dpaa_bp,
1295 			     struct bm_buffer *bmb, int cnt)
1296 {
1297 	int err;
1298 
1299 	err = bman_release(dpaa_bp->pool, bmb, cnt);
1300 	/* Should never occur, address anyway to avoid leaking the buffers */
1301 	if (WARN_ON(err) && dpaa_bp->free_buf_cb)
1302 		while (cnt-- > 0)
1303 			dpaa_bp->free_buf_cb(dpaa_bp, &bmb[cnt]);
1304 
1305 	return cnt;
1306 }
1307 
1308 static void dpaa_release_sgt_members(struct qm_sg_entry *sgt)
1309 {
1310 	struct bm_buffer bmb[DPAA_BUFF_RELEASE_MAX];
1311 	struct dpaa_bp *dpaa_bp;
1312 	int i = 0, j;
1313 
1314 	memset(bmb, 0, sizeof(bmb));
1315 
1316 	do {
1317 		dpaa_bp = dpaa_bpid2pool(sgt[i].bpid);
1318 		if (!dpaa_bp)
1319 			return;
1320 
1321 		j = 0;
1322 		do {
1323 			WARN_ON(qm_sg_entry_is_ext(&sgt[i]));
1324 
1325 			bm_buffer_set64(&bmb[j], qm_sg_entry_get64(&sgt[i]));
1326 
1327 			j++; i++;
1328 		} while (j < ARRAY_SIZE(bmb) &&
1329 				!qm_sg_entry_is_final(&sgt[i - 1]) &&
1330 				sgt[i - 1].bpid == sgt[i].bpid);
1331 
1332 		dpaa_bman_release(dpaa_bp, bmb, j);
1333 	} while (!qm_sg_entry_is_final(&sgt[i - 1]));
1334 }
1335 
1336 static void dpaa_fd_release(const struct net_device *net_dev,
1337 			    const struct qm_fd *fd)
1338 {
1339 	struct qm_sg_entry *sgt;
1340 	struct dpaa_bp *dpaa_bp;
1341 	struct bm_buffer bmb;
1342 	dma_addr_t addr;
1343 	void *vaddr;
1344 
1345 	bmb.data = 0;
1346 	bm_buffer_set64(&bmb, qm_fd_addr(fd));
1347 
1348 	dpaa_bp = dpaa_bpid2pool(fd->bpid);
1349 	if (!dpaa_bp)
1350 		return;
1351 
1352 	if (qm_fd_get_format(fd) == qm_fd_sg) {
1353 		vaddr = phys_to_virt(qm_fd_addr(fd));
1354 		sgt = vaddr + qm_fd_get_offset(fd);
1355 
1356 		dma_unmap_page(dpaa_bp->priv->rx_dma_dev, qm_fd_addr(fd),
1357 			       DPAA_BP_RAW_SIZE, DMA_FROM_DEVICE);
1358 
1359 		dpaa_release_sgt_members(sgt);
1360 
1361 		addr = dma_map_page(dpaa_bp->priv->rx_dma_dev,
1362 				    virt_to_page(vaddr), 0, DPAA_BP_RAW_SIZE,
1363 				    DMA_FROM_DEVICE);
1364 		if (dma_mapping_error(dpaa_bp->priv->rx_dma_dev, addr)) {
1365 			netdev_err(net_dev, "DMA mapping failed\n");
1366 			return;
1367 		}
1368 		bm_buffer_set64(&bmb, addr);
1369 	}
1370 
1371 	dpaa_bman_release(dpaa_bp, &bmb, 1);
1372 }
1373 
1374 static void count_ern(struct dpaa_percpu_priv *percpu_priv,
1375 		      const union qm_mr_entry *msg)
1376 {
1377 	switch (msg->ern.rc & QM_MR_RC_MASK) {
1378 	case QM_MR_RC_CGR_TAILDROP:
1379 		percpu_priv->ern_cnt.cg_tdrop++;
1380 		break;
1381 	case QM_MR_RC_WRED:
1382 		percpu_priv->ern_cnt.wred++;
1383 		break;
1384 	case QM_MR_RC_ERROR:
1385 		percpu_priv->ern_cnt.err_cond++;
1386 		break;
1387 	case QM_MR_RC_ORPWINDOW_EARLY:
1388 		percpu_priv->ern_cnt.early_window++;
1389 		break;
1390 	case QM_MR_RC_ORPWINDOW_LATE:
1391 		percpu_priv->ern_cnt.late_window++;
1392 		break;
1393 	case QM_MR_RC_FQ_TAILDROP:
1394 		percpu_priv->ern_cnt.fq_tdrop++;
1395 		break;
1396 	case QM_MR_RC_ORPWINDOW_RETIRED:
1397 		percpu_priv->ern_cnt.fq_retired++;
1398 		break;
1399 	case QM_MR_RC_ORP_ZERO:
1400 		percpu_priv->ern_cnt.orp_zero++;
1401 		break;
1402 	}
1403 }
1404 
1405 /* Turn on HW checksum computation for this outgoing frame.
1406  * If the current protocol is not something we support in this regard
1407  * (or if the stack has already computed the SW checksum), we do nothing.
1408  *
1409  * Returns 0 if all goes well (or HW csum doesn't apply), and a negative value
1410  * otherwise.
1411  *
1412  * Note that this function may modify the fd->cmd field and the skb data buffer
1413  * (the Parse Results area).
1414  */
1415 static int dpaa_enable_tx_csum(struct dpaa_priv *priv,
1416 			       struct sk_buff *skb,
1417 			       struct qm_fd *fd,
1418 			       void *parse_results)
1419 {
1420 	struct fman_prs_result *parse_result;
1421 	u16 ethertype = ntohs(skb->protocol);
1422 	struct ipv6hdr *ipv6h = NULL;
1423 	struct iphdr *iph;
1424 	int retval = 0;
1425 	u8 l4_proto;
1426 
1427 	if (skb->ip_summed != CHECKSUM_PARTIAL)
1428 		return 0;
1429 
1430 	/* Note: L3 csum seems to be already computed in sw, but we can't choose
1431 	 * L4 alone from the FM configuration anyway.
1432 	 */
1433 
1434 	/* Fill in some fields of the Parse Results array, so the FMan
1435 	 * can find them as if they came from the FMan Parser.
1436 	 */
1437 	parse_result = (struct fman_prs_result *)parse_results;
1438 
1439 	/* If we're dealing with VLAN, get the real Ethernet type */
1440 	if (ethertype == ETH_P_8021Q) {
1441 		/* We can't always assume the MAC header is set correctly
1442 		 * by the stack, so reset to beginning of skb->data
1443 		 */
1444 		skb_reset_mac_header(skb);
1445 		ethertype = ntohs(vlan_eth_hdr(skb)->h_vlan_encapsulated_proto);
1446 	}
1447 
1448 	/* Fill in the relevant L3 parse result fields
1449 	 * and read the L4 protocol type
1450 	 */
1451 	switch (ethertype) {
1452 	case ETH_P_IP:
1453 		parse_result->l3r = cpu_to_be16(FM_L3_PARSE_RESULT_IPV4);
1454 		iph = ip_hdr(skb);
1455 		WARN_ON(!iph);
1456 		l4_proto = iph->protocol;
1457 		break;
1458 	case ETH_P_IPV6:
1459 		parse_result->l3r = cpu_to_be16(FM_L3_PARSE_RESULT_IPV6);
1460 		ipv6h = ipv6_hdr(skb);
1461 		WARN_ON(!ipv6h);
1462 		l4_proto = ipv6h->nexthdr;
1463 		break;
1464 	default:
1465 		/* We shouldn't even be here */
1466 		if (net_ratelimit())
1467 			netif_alert(priv, tx_err, priv->net_dev,
1468 				    "Can't compute HW csum for L3 proto 0x%x\n",
1469 				    ntohs(skb->protocol));
1470 		retval = -EIO;
1471 		goto return_error;
1472 	}
1473 
1474 	/* Fill in the relevant L4 parse result fields */
1475 	switch (l4_proto) {
1476 	case IPPROTO_UDP:
1477 		parse_result->l4r = FM_L4_PARSE_RESULT_UDP;
1478 		break;
1479 	case IPPROTO_TCP:
1480 		parse_result->l4r = FM_L4_PARSE_RESULT_TCP;
1481 		break;
1482 	default:
1483 		if (net_ratelimit())
1484 			netif_alert(priv, tx_err, priv->net_dev,
1485 				    "Can't compute HW csum for L4 proto 0x%x\n",
1486 				    l4_proto);
1487 		retval = -EIO;
1488 		goto return_error;
1489 	}
1490 
1491 	/* At index 0 is IPOffset_1 as defined in the Parse Results */
1492 	parse_result->ip_off[0] = (u8)skb_network_offset(skb);
1493 	parse_result->l4_off = (u8)skb_transport_offset(skb);
1494 
1495 	/* Enable L3 (and L4, if TCP or UDP) HW checksum. */
1496 	fd->cmd |= cpu_to_be32(FM_FD_CMD_RPD | FM_FD_CMD_DTC);
1497 
1498 	/* On P1023 and similar platforms fd->cmd interpretation could
1499 	 * be disabled by setting CONTEXT_A bit ICMD; currently this bit
1500 	 * is not set so we do not need to check; in the future, if/when
1501 	 * using context_a we need to check this bit
1502 	 */
1503 
1504 return_error:
1505 	return retval;
1506 }
1507 
1508 static int dpaa_bp_add_8_bufs(const struct dpaa_bp *dpaa_bp)
1509 {
1510 	struct net_device *net_dev = dpaa_bp->priv->net_dev;
1511 	struct bm_buffer bmb[8];
1512 	dma_addr_t addr;
1513 	struct page *p;
1514 	u8 i;
1515 
1516 	for (i = 0; i < 8; i++) {
1517 		p = dev_alloc_pages(0);
1518 		if (unlikely(!p)) {
1519 			netdev_err(net_dev, "dev_alloc_pages() failed\n");
1520 			goto release_previous_buffs;
1521 		}
1522 
1523 		addr = dma_map_page(dpaa_bp->priv->rx_dma_dev, p, 0,
1524 				    DPAA_BP_RAW_SIZE, DMA_FROM_DEVICE);
1525 		if (unlikely(dma_mapping_error(dpaa_bp->priv->rx_dma_dev,
1526 					       addr))) {
1527 			netdev_err(net_dev, "DMA map failed\n");
1528 			goto release_previous_buffs;
1529 		}
1530 
1531 		bmb[i].data = 0;
1532 		bm_buffer_set64(&bmb[i], addr);
1533 	}
1534 
1535 release_bufs:
1536 	return dpaa_bman_release(dpaa_bp, bmb, i);
1537 
1538 release_previous_buffs:
1539 	WARN_ONCE(1, "dpaa_eth: failed to add buffers on Rx\n");
1540 
1541 	bm_buffer_set64(&bmb[i], 0);
1542 	/* Avoid releasing a completely null buffer; bman_release() requires
1543 	 * at least one buffer.
1544 	 */
1545 	if (likely(i))
1546 		goto release_bufs;
1547 
1548 	return 0;
1549 }
1550 
1551 static int dpaa_bp_seed(struct dpaa_bp *dpaa_bp)
1552 {
1553 	int i;
1554 
1555 	/* Give each CPU an allotment of "config_count" buffers */
1556 	for_each_possible_cpu(i) {
1557 		int *count_ptr = per_cpu_ptr(dpaa_bp->percpu_count, i);
1558 		int j;
1559 
1560 		/* Although we access another CPU's counters here
1561 		 * we do it at boot time so it is safe
1562 		 */
1563 		for (j = 0; j < dpaa_bp->config_count; j += 8)
1564 			*count_ptr += dpaa_bp_add_8_bufs(dpaa_bp);
1565 	}
1566 	return 0;
1567 }
1568 
1569 /* Add buffers/(pages) for Rx processing whenever bpool count falls below
1570  * REFILL_THRESHOLD.
1571  */
1572 static int dpaa_eth_refill_bpool(struct dpaa_bp *dpaa_bp, int *countptr)
1573 {
1574 	int count = *countptr;
1575 	int new_bufs;
1576 
1577 	if (unlikely(count < FSL_DPAA_ETH_REFILL_THRESHOLD)) {
1578 		do {
1579 			new_bufs = dpaa_bp_add_8_bufs(dpaa_bp);
1580 			if (unlikely(!new_bufs)) {
1581 				/* Avoid looping forever if we've temporarily
1582 				 * run out of memory. We'll try again at the
1583 				 * next NAPI cycle.
1584 				 */
1585 				break;
1586 			}
1587 			count += new_bufs;
1588 		} while (count < FSL_DPAA_ETH_MAX_BUF_COUNT);
1589 
1590 		*countptr = count;
1591 		if (unlikely(count < FSL_DPAA_ETH_MAX_BUF_COUNT))
1592 			return -ENOMEM;
1593 	}
1594 
1595 	return 0;
1596 }
1597 
1598 static int dpaa_eth_refill_bpools(struct dpaa_priv *priv)
1599 {
1600 	struct dpaa_bp *dpaa_bp;
1601 	int *countptr;
1602 	int res;
1603 
1604 	dpaa_bp = priv->dpaa_bp;
1605 	if (!dpaa_bp)
1606 		return -EINVAL;
1607 	countptr = this_cpu_ptr(dpaa_bp->percpu_count);
1608 	res  = dpaa_eth_refill_bpool(dpaa_bp, countptr);
1609 	if (res)
1610 		return res;
1611 
1612 	return 0;
1613 }
1614 
1615 /* Cleanup function for outgoing frame descriptors that were built on Tx path,
1616  * either contiguous frames or scatter/gather ones.
1617  * Skb freeing is not handled here.
1618  *
1619  * This function may be called on error paths in the Tx function, so guard
1620  * against cases when not all fd relevant fields were filled in. To avoid
1621  * reading the invalid transmission timestamp for the error paths set ts to
1622  * false.
1623  *
1624  * Return the skb backpointer, since for S/G frames the buffer containing it
1625  * gets freed here.
1626  */
1627 static struct sk_buff *dpaa_cleanup_tx_fd(const struct dpaa_priv *priv,
1628 					  const struct qm_fd *fd, bool ts)
1629 {
1630 	const enum dma_data_direction dma_dir = DMA_TO_DEVICE;
1631 	struct device *dev = priv->net_dev->dev.parent;
1632 	struct skb_shared_hwtstamps shhwtstamps;
1633 	dma_addr_t addr = qm_fd_addr(fd);
1634 	void *vaddr = phys_to_virt(addr);
1635 	const struct qm_sg_entry *sgt;
1636 	struct sk_buff *skb;
1637 	u64 ns;
1638 	int i;
1639 
1640 	if (unlikely(qm_fd_get_format(fd) == qm_fd_sg)) {
1641 		dma_unmap_page(priv->tx_dma_dev, addr,
1642 			       qm_fd_get_offset(fd) + DPAA_SGT_SIZE,
1643 			       dma_dir);
1644 
1645 		/* The sgt buffer has been allocated with netdev_alloc_frag(),
1646 		 * it's from lowmem.
1647 		 */
1648 		sgt = vaddr + qm_fd_get_offset(fd);
1649 
1650 		/* sgt[0] is from lowmem, was dma_map_single()-ed */
1651 		dma_unmap_single(priv->tx_dma_dev, qm_sg_addr(&sgt[0]),
1652 				 qm_sg_entry_get_len(&sgt[0]), dma_dir);
1653 
1654 		/* remaining pages were mapped with skb_frag_dma_map() */
1655 		for (i = 1; (i < DPAA_SGT_MAX_ENTRIES) &&
1656 		     !qm_sg_entry_is_final(&sgt[i - 1]); i++) {
1657 			WARN_ON(qm_sg_entry_is_ext(&sgt[i]));
1658 
1659 			dma_unmap_page(priv->tx_dma_dev, qm_sg_addr(&sgt[i]),
1660 				       qm_sg_entry_get_len(&sgt[i]), dma_dir);
1661 		}
1662 	} else {
1663 		dma_unmap_single(priv->tx_dma_dev, addr,
1664 				 priv->tx_headroom + qm_fd_get_length(fd),
1665 				 dma_dir);
1666 	}
1667 
1668 	skb = *(struct sk_buff **)vaddr;
1669 
1670 	/* DMA unmapping is required before accessing the HW provided info */
1671 	if (ts && priv->tx_tstamp &&
1672 	    skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) {
1673 		memset(&shhwtstamps, 0, sizeof(shhwtstamps));
1674 
1675 		if (!fman_port_get_tstamp(priv->mac_dev->port[TX], vaddr,
1676 					  &ns)) {
1677 			shhwtstamps.hwtstamp = ns_to_ktime(ns);
1678 			skb_tstamp_tx(skb, &shhwtstamps);
1679 		} else {
1680 			dev_warn(dev, "fman_port_get_tstamp failed!\n");
1681 		}
1682 	}
1683 
1684 	if (qm_fd_get_format(fd) == qm_fd_sg)
1685 		/* Free the page that we allocated on Tx for the SGT */
1686 		free_pages((unsigned long)vaddr, 0);
1687 
1688 	return skb;
1689 }
1690 
1691 static u8 rx_csum_offload(const struct dpaa_priv *priv, const struct qm_fd *fd)
1692 {
1693 	/* The parser has run and performed L4 checksum validation.
1694 	 * We know there were no parser errors (and implicitly no
1695 	 * L4 csum error), otherwise we wouldn't be here.
1696 	 */
1697 	if ((priv->net_dev->features & NETIF_F_RXCSUM) &&
1698 	    (be32_to_cpu(fd->status) & FM_FD_STAT_L4CV))
1699 		return CHECKSUM_UNNECESSARY;
1700 
1701 	/* We're here because either the parser didn't run or the L4 checksum
1702 	 * was not verified. This may include the case of a UDP frame with
1703 	 * checksum zero or an L4 proto other than TCP/UDP
1704 	 */
1705 	return CHECKSUM_NONE;
1706 }
1707 
1708 #define PTR_IS_ALIGNED(x, a) (IS_ALIGNED((unsigned long)(x), (a)))
1709 
1710 /* Build a linear skb around the received buffer.
1711  * We are guaranteed there is enough room at the end of the data buffer to
1712  * accommodate the shared info area of the skb.
1713  */
1714 static struct sk_buff *contig_fd_to_skb(const struct dpaa_priv *priv,
1715 					const struct qm_fd *fd)
1716 {
1717 	ssize_t fd_off = qm_fd_get_offset(fd);
1718 	dma_addr_t addr = qm_fd_addr(fd);
1719 	struct dpaa_bp *dpaa_bp;
1720 	struct sk_buff *skb;
1721 	void *vaddr;
1722 
1723 	vaddr = phys_to_virt(addr);
1724 	WARN_ON(!IS_ALIGNED((unsigned long)vaddr, SMP_CACHE_BYTES));
1725 
1726 	dpaa_bp = dpaa_bpid2pool(fd->bpid);
1727 	if (!dpaa_bp)
1728 		goto free_buffer;
1729 
1730 	skb = build_skb(vaddr, dpaa_bp->size +
1731 			SKB_DATA_ALIGN(sizeof(struct skb_shared_info)));
1732 	if (WARN_ONCE(!skb, "Build skb failure on Rx\n"))
1733 		goto free_buffer;
1734 	WARN_ON(fd_off != priv->rx_headroom);
1735 	skb_reserve(skb, fd_off);
1736 	skb_put(skb, qm_fd_get_length(fd));
1737 
1738 	skb->ip_summed = rx_csum_offload(priv, fd);
1739 
1740 	return skb;
1741 
1742 free_buffer:
1743 	free_pages((unsigned long)vaddr, 0);
1744 	return NULL;
1745 }
1746 
1747 /* Build an skb with the data of the first S/G entry in the linear portion and
1748  * the rest of the frame as skb fragments.
1749  *
1750  * The page fragment holding the S/G Table is recycled here.
1751  */
1752 static struct sk_buff *sg_fd_to_skb(const struct dpaa_priv *priv,
1753 				    const struct qm_fd *fd)
1754 {
1755 	ssize_t fd_off = qm_fd_get_offset(fd);
1756 	dma_addr_t addr = qm_fd_addr(fd);
1757 	const struct qm_sg_entry *sgt;
1758 	struct page *page, *head_page;
1759 	struct dpaa_bp *dpaa_bp;
1760 	void *vaddr, *sg_vaddr;
1761 	int frag_off, frag_len;
1762 	struct sk_buff *skb;
1763 	dma_addr_t sg_addr;
1764 	int page_offset;
1765 	unsigned int sz;
1766 	int *count_ptr;
1767 	int i, j;
1768 
1769 	vaddr = phys_to_virt(addr);
1770 	WARN_ON(!IS_ALIGNED((unsigned long)vaddr, SMP_CACHE_BYTES));
1771 
1772 	/* Iterate through the SGT entries and add data buffers to the skb */
1773 	sgt = vaddr + fd_off;
1774 	skb = NULL;
1775 	for (i = 0; i < DPAA_SGT_MAX_ENTRIES; i++) {
1776 		/* Extension bit is not supported */
1777 		WARN_ON(qm_sg_entry_is_ext(&sgt[i]));
1778 
1779 		sg_addr = qm_sg_addr(&sgt[i]);
1780 		sg_vaddr = phys_to_virt(sg_addr);
1781 		WARN_ON(!PTR_IS_ALIGNED(sg_vaddr, SMP_CACHE_BYTES));
1782 
1783 		dma_unmap_page(priv->rx_dma_dev, sg_addr,
1784 			       DPAA_BP_RAW_SIZE, DMA_FROM_DEVICE);
1785 
1786 		/* We may use multiple Rx pools */
1787 		dpaa_bp = dpaa_bpid2pool(sgt[i].bpid);
1788 		if (!dpaa_bp)
1789 			goto free_buffers;
1790 
1791 		if (!skb) {
1792 			sz = dpaa_bp->size +
1793 				SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
1794 			skb = build_skb(sg_vaddr, sz);
1795 			if (WARN_ON(!skb))
1796 				goto free_buffers;
1797 
1798 			skb->ip_summed = rx_csum_offload(priv, fd);
1799 
1800 			/* Make sure forwarded skbs will have enough space
1801 			 * on Tx, if extra headers are added.
1802 			 */
1803 			WARN_ON(fd_off != priv->rx_headroom);
1804 			skb_reserve(skb, fd_off);
1805 			skb_put(skb, qm_sg_entry_get_len(&sgt[i]));
1806 		} else {
1807 			/* Not the first S/G entry; all data from buffer will
1808 			 * be added in an skb fragment; fragment index is offset
1809 			 * by one since first S/G entry was incorporated in the
1810 			 * linear part of the skb.
1811 			 *
1812 			 * Caution: 'page' may be a tail page.
1813 			 */
1814 			page = virt_to_page(sg_vaddr);
1815 			head_page = virt_to_head_page(sg_vaddr);
1816 
1817 			/* Compute offset in (possibly tail) page */
1818 			page_offset = ((unsigned long)sg_vaddr &
1819 					(PAGE_SIZE - 1)) +
1820 				(page_address(page) - page_address(head_page));
1821 			/* page_offset only refers to the beginning of sgt[i];
1822 			 * but the buffer itself may have an internal offset.
1823 			 */
1824 			frag_off = qm_sg_entry_get_off(&sgt[i]) + page_offset;
1825 			frag_len = qm_sg_entry_get_len(&sgt[i]);
1826 			/* skb_add_rx_frag() does no checking on the page; if
1827 			 * we pass it a tail page, we'll end up with
1828 			 * bad page accounting and eventually with segafults.
1829 			 */
1830 			skb_add_rx_frag(skb, i - 1, head_page, frag_off,
1831 					frag_len, dpaa_bp->size);
1832 		}
1833 
1834 		/* Update the pool count for the current {cpu x bpool} */
1835 		count_ptr = this_cpu_ptr(dpaa_bp->percpu_count);
1836 		(*count_ptr)--;
1837 
1838 		if (qm_sg_entry_is_final(&sgt[i]))
1839 			break;
1840 	}
1841 	WARN_ONCE(i == DPAA_SGT_MAX_ENTRIES, "No final bit on SGT\n");
1842 
1843 	/* free the SG table buffer */
1844 	free_pages((unsigned long)vaddr, 0);
1845 
1846 	return skb;
1847 
1848 free_buffers:
1849 	/* free all the SG entries */
1850 	for (j = 0; j < DPAA_SGT_MAX_ENTRIES ; j++) {
1851 		sg_addr = qm_sg_addr(&sgt[j]);
1852 		sg_vaddr = phys_to_virt(sg_addr);
1853 		/* all pages 0..i were unmaped */
1854 		if (j > i)
1855 			dma_unmap_page(priv->rx_dma_dev, qm_sg_addr(&sgt[j]),
1856 				       DPAA_BP_RAW_SIZE, DMA_FROM_DEVICE);
1857 		free_pages((unsigned long)sg_vaddr, 0);
1858 		/* counters 0..i-1 were decremented */
1859 		if (j >= i) {
1860 			dpaa_bp = dpaa_bpid2pool(sgt[j].bpid);
1861 			if (dpaa_bp) {
1862 				count_ptr = this_cpu_ptr(dpaa_bp->percpu_count);
1863 				(*count_ptr)--;
1864 			}
1865 		}
1866 
1867 		if (qm_sg_entry_is_final(&sgt[j]))
1868 			break;
1869 	}
1870 	/* free the SGT fragment */
1871 	free_pages((unsigned long)vaddr, 0);
1872 
1873 	return NULL;
1874 }
1875 
1876 static int skb_to_contig_fd(struct dpaa_priv *priv,
1877 			    struct sk_buff *skb, struct qm_fd *fd,
1878 			    int *offset)
1879 {
1880 	struct net_device *net_dev = priv->net_dev;
1881 	enum dma_data_direction dma_dir;
1882 	unsigned char *buff_start;
1883 	struct sk_buff **skbh;
1884 	dma_addr_t addr;
1885 	int err;
1886 
1887 	/* We are guaranteed to have at least tx_headroom bytes
1888 	 * available, so just use that for offset.
1889 	 */
1890 	fd->bpid = FSL_DPAA_BPID_INV;
1891 	buff_start = skb->data - priv->tx_headroom;
1892 	dma_dir = DMA_TO_DEVICE;
1893 
1894 	skbh = (struct sk_buff **)buff_start;
1895 	*skbh = skb;
1896 
1897 	/* Enable L3/L4 hardware checksum computation.
1898 	 *
1899 	 * We must do this before dma_map_single(DMA_TO_DEVICE), because we may
1900 	 * need to write into the skb.
1901 	 */
1902 	err = dpaa_enable_tx_csum(priv, skb, fd,
1903 				  buff_start + DPAA_TX_PRIV_DATA_SIZE);
1904 	if (unlikely(err < 0)) {
1905 		if (net_ratelimit())
1906 			netif_err(priv, tx_err, net_dev, "HW csum error: %d\n",
1907 				  err);
1908 		return err;
1909 	}
1910 
1911 	/* Fill in the rest of the FD fields */
1912 	qm_fd_set_contig(fd, priv->tx_headroom, skb->len);
1913 	fd->cmd |= cpu_to_be32(FM_FD_CMD_FCO);
1914 
1915 	/* Map the entire buffer size that may be seen by FMan, but no more */
1916 	addr = dma_map_single(priv->tx_dma_dev, buff_start,
1917 			      priv->tx_headroom + skb->len, dma_dir);
1918 	if (unlikely(dma_mapping_error(priv->tx_dma_dev, addr))) {
1919 		if (net_ratelimit())
1920 			netif_err(priv, tx_err, net_dev, "dma_map_single() failed\n");
1921 		return -EINVAL;
1922 	}
1923 	qm_fd_addr_set64(fd, addr);
1924 
1925 	return 0;
1926 }
1927 
1928 static int skb_to_sg_fd(struct dpaa_priv *priv,
1929 			struct sk_buff *skb, struct qm_fd *fd)
1930 {
1931 	const enum dma_data_direction dma_dir = DMA_TO_DEVICE;
1932 	const int nr_frags = skb_shinfo(skb)->nr_frags;
1933 	struct net_device *net_dev = priv->net_dev;
1934 	struct qm_sg_entry *sgt;
1935 	struct sk_buff **skbh;
1936 	void *buff_start;
1937 	skb_frag_t *frag;
1938 	dma_addr_t addr;
1939 	size_t frag_len;
1940 	struct page *p;
1941 	int i, j, err;
1942 
1943 	/* get a page to store the SGTable */
1944 	p = dev_alloc_pages(0);
1945 	if (unlikely(!p)) {
1946 		netdev_err(net_dev, "dev_alloc_pages() failed\n");
1947 		return -ENOMEM;
1948 	}
1949 	buff_start = page_address(p);
1950 
1951 	/* Enable L3/L4 hardware checksum computation.
1952 	 *
1953 	 * We must do this before dma_map_single(DMA_TO_DEVICE), because we may
1954 	 * need to write into the skb.
1955 	 */
1956 	err = dpaa_enable_tx_csum(priv, skb, fd,
1957 				  buff_start + DPAA_TX_PRIV_DATA_SIZE);
1958 	if (unlikely(err < 0)) {
1959 		if (net_ratelimit())
1960 			netif_err(priv, tx_err, net_dev, "HW csum error: %d\n",
1961 				  err);
1962 		goto csum_failed;
1963 	}
1964 
1965 	/* SGT[0] is used by the linear part */
1966 	sgt = (struct qm_sg_entry *)(buff_start + priv->tx_headroom);
1967 	frag_len = skb_headlen(skb);
1968 	qm_sg_entry_set_len(&sgt[0], frag_len);
1969 	sgt[0].bpid = FSL_DPAA_BPID_INV;
1970 	sgt[0].offset = 0;
1971 	addr = dma_map_single(priv->tx_dma_dev, skb->data,
1972 			      skb_headlen(skb), dma_dir);
1973 	if (unlikely(dma_mapping_error(priv->tx_dma_dev, addr))) {
1974 		netdev_err(priv->net_dev, "DMA mapping failed\n");
1975 		err = -EINVAL;
1976 		goto sg0_map_failed;
1977 	}
1978 	qm_sg_entry_set64(&sgt[0], addr);
1979 
1980 	/* populate the rest of SGT entries */
1981 	for (i = 0; i < nr_frags; i++) {
1982 		frag = &skb_shinfo(skb)->frags[i];
1983 		frag_len = skb_frag_size(frag);
1984 		WARN_ON(!skb_frag_page(frag));
1985 		addr = skb_frag_dma_map(priv->tx_dma_dev, frag, 0,
1986 					frag_len, dma_dir);
1987 		if (unlikely(dma_mapping_error(priv->tx_dma_dev, addr))) {
1988 			netdev_err(priv->net_dev, "DMA mapping failed\n");
1989 			err = -EINVAL;
1990 			goto sg_map_failed;
1991 		}
1992 
1993 		qm_sg_entry_set_len(&sgt[i + 1], frag_len);
1994 		sgt[i + 1].bpid = FSL_DPAA_BPID_INV;
1995 		sgt[i + 1].offset = 0;
1996 
1997 		/* keep the offset in the address */
1998 		qm_sg_entry_set64(&sgt[i + 1], addr);
1999 	}
2000 
2001 	/* Set the final bit in the last used entry of the SGT */
2002 	qm_sg_entry_set_f(&sgt[nr_frags], frag_len);
2003 
2004 	/* set fd offset to priv->tx_headroom */
2005 	qm_fd_set_sg(fd, priv->tx_headroom, skb->len);
2006 
2007 	/* DMA map the SGT page */
2008 	skbh = (struct sk_buff **)buff_start;
2009 	*skbh = skb;
2010 
2011 	addr = dma_map_page(priv->tx_dma_dev, p, 0,
2012 			    priv->tx_headroom + DPAA_SGT_SIZE, dma_dir);
2013 	if (unlikely(dma_mapping_error(priv->tx_dma_dev, addr))) {
2014 		netdev_err(priv->net_dev, "DMA mapping failed\n");
2015 		err = -EINVAL;
2016 		goto sgt_map_failed;
2017 	}
2018 
2019 	fd->bpid = FSL_DPAA_BPID_INV;
2020 	fd->cmd |= cpu_to_be32(FM_FD_CMD_FCO);
2021 	qm_fd_addr_set64(fd, addr);
2022 
2023 	return 0;
2024 
2025 sgt_map_failed:
2026 sg_map_failed:
2027 	for (j = 0; j < i; j++)
2028 		dma_unmap_page(priv->tx_dma_dev, qm_sg_addr(&sgt[j]),
2029 			       qm_sg_entry_get_len(&sgt[j]), dma_dir);
2030 sg0_map_failed:
2031 csum_failed:
2032 	free_pages((unsigned long)buff_start, 0);
2033 
2034 	return err;
2035 }
2036 
2037 static inline int dpaa_xmit(struct dpaa_priv *priv,
2038 			    struct rtnl_link_stats64 *percpu_stats,
2039 			    int queue,
2040 			    struct qm_fd *fd)
2041 {
2042 	struct qman_fq *egress_fq;
2043 	int err, i;
2044 
2045 	egress_fq = priv->egress_fqs[queue];
2046 	if (fd->bpid == FSL_DPAA_BPID_INV)
2047 		fd->cmd |= cpu_to_be32(qman_fq_fqid(priv->conf_fqs[queue]));
2048 
2049 	/* Trace this Tx fd */
2050 	trace_dpaa_tx_fd(priv->net_dev, egress_fq, fd);
2051 
2052 	for (i = 0; i < DPAA_ENQUEUE_RETRIES; i++) {
2053 		err = qman_enqueue(egress_fq, fd);
2054 		if (err != -EBUSY)
2055 			break;
2056 	}
2057 
2058 	if (unlikely(err < 0)) {
2059 		percpu_stats->tx_fifo_errors++;
2060 		return err;
2061 	}
2062 
2063 	percpu_stats->tx_packets++;
2064 	percpu_stats->tx_bytes += qm_fd_get_length(fd);
2065 
2066 	return 0;
2067 }
2068 
2069 #ifdef CONFIG_DPAA_ERRATUM_A050385
2070 static int dpaa_a050385_wa(struct net_device *net_dev, struct sk_buff **s)
2071 {
2072 	struct dpaa_priv *priv = netdev_priv(net_dev);
2073 	struct sk_buff *new_skb, *skb = *s;
2074 	unsigned char *start, i;
2075 
2076 	/* check linear buffer alignment */
2077 	if (!PTR_IS_ALIGNED(skb->data, DPAA_A050385_ALIGN))
2078 		goto workaround;
2079 
2080 	/* linear buffers just need to have an aligned start */
2081 	if (!skb_is_nonlinear(skb))
2082 		return 0;
2083 
2084 	/* linear data size for nonlinear skbs needs to be aligned */
2085 	if (!IS_ALIGNED(skb_headlen(skb), DPAA_A050385_ALIGN))
2086 		goto workaround;
2087 
2088 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2089 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2090 
2091 		/* all fragments need to have aligned start addresses */
2092 		if (!IS_ALIGNED(skb_frag_off(frag), DPAA_A050385_ALIGN))
2093 			goto workaround;
2094 
2095 		/* all but last fragment need to have aligned sizes */
2096 		if (!IS_ALIGNED(skb_frag_size(frag), DPAA_A050385_ALIGN) &&
2097 		    (i < skb_shinfo(skb)->nr_frags - 1))
2098 			goto workaround;
2099 	}
2100 
2101 	return 0;
2102 
2103 workaround:
2104 	/* copy all the skb content into a new linear buffer */
2105 	new_skb = netdev_alloc_skb(net_dev, skb->len + DPAA_A050385_ALIGN - 1 +
2106 						priv->tx_headroom);
2107 	if (!new_skb)
2108 		return -ENOMEM;
2109 
2110 	/* NET_SKB_PAD bytes already reserved, adding up to tx_headroom */
2111 	skb_reserve(new_skb, priv->tx_headroom - NET_SKB_PAD);
2112 
2113 	/* Workaround for DPAA_A050385 requires data start to be aligned */
2114 	start = PTR_ALIGN(new_skb->data, DPAA_A050385_ALIGN);
2115 	if (start - new_skb->data)
2116 		skb_reserve(new_skb, start - new_skb->data);
2117 
2118 	skb_put(new_skb, skb->len);
2119 	skb_copy_bits(skb, 0, new_skb->data, skb->len);
2120 	skb_copy_header(new_skb, skb);
2121 	new_skb->dev = skb->dev;
2122 
2123 	/* Copy relevant timestamp info from the old skb to the new */
2124 	if (priv->tx_tstamp) {
2125 		skb_shinfo(new_skb)->tx_flags = skb_shinfo(skb)->tx_flags;
2126 		skb_shinfo(new_skb)->hwtstamps = skb_shinfo(skb)->hwtstamps;
2127 		skb_shinfo(new_skb)->tskey = skb_shinfo(skb)->tskey;
2128 		if (skb->sk)
2129 			skb_set_owner_w(new_skb, skb->sk);
2130 	}
2131 
2132 	/* We move the headroom when we align it so we have to reset the
2133 	 * network and transport header offsets relative to the new data
2134 	 * pointer. The checksum offload relies on these offsets.
2135 	 */
2136 	skb_set_network_header(new_skb, skb_network_offset(skb));
2137 	skb_set_transport_header(new_skb, skb_transport_offset(skb));
2138 
2139 	dev_kfree_skb(skb);
2140 	*s = new_skb;
2141 
2142 	return 0;
2143 }
2144 #endif
2145 
2146 static netdev_tx_t
2147 dpaa_start_xmit(struct sk_buff *skb, struct net_device *net_dev)
2148 {
2149 	const int queue_mapping = skb_get_queue_mapping(skb);
2150 	bool nonlinear = skb_is_nonlinear(skb);
2151 	struct rtnl_link_stats64 *percpu_stats;
2152 	struct dpaa_percpu_priv *percpu_priv;
2153 	struct netdev_queue *txq;
2154 	struct dpaa_priv *priv;
2155 	struct qm_fd fd;
2156 	int offset = 0;
2157 	int err = 0;
2158 
2159 	priv = netdev_priv(net_dev);
2160 	percpu_priv = this_cpu_ptr(priv->percpu_priv);
2161 	percpu_stats = &percpu_priv->stats;
2162 
2163 	qm_fd_clear_fd(&fd);
2164 
2165 	if (!nonlinear) {
2166 		/* We're going to store the skb backpointer at the beginning
2167 		 * of the data buffer, so we need a privately owned skb
2168 		 *
2169 		 * We've made sure skb is not shared in dev->priv_flags,
2170 		 * we need to verify the skb head is not cloned
2171 		 */
2172 		if (skb_cow_head(skb, priv->tx_headroom))
2173 			goto enomem;
2174 
2175 		WARN_ON(skb_is_nonlinear(skb));
2176 	}
2177 
2178 	/* MAX_SKB_FRAGS is equal or larger than our dpaa_SGT_MAX_ENTRIES;
2179 	 * make sure we don't feed FMan with more fragments than it supports.
2180 	 */
2181 	if (unlikely(nonlinear &&
2182 		     (skb_shinfo(skb)->nr_frags >= DPAA_SGT_MAX_ENTRIES))) {
2183 		/* If the egress skb contains more fragments than we support
2184 		 * we have no choice but to linearize it ourselves.
2185 		 */
2186 		if (__skb_linearize(skb))
2187 			goto enomem;
2188 
2189 		nonlinear = skb_is_nonlinear(skb);
2190 	}
2191 
2192 #ifdef CONFIG_DPAA_ERRATUM_A050385
2193 	if (unlikely(fman_has_errata_a050385())) {
2194 		if (dpaa_a050385_wa(net_dev, &skb))
2195 			goto enomem;
2196 		nonlinear = skb_is_nonlinear(skb);
2197 	}
2198 #endif
2199 
2200 	if (nonlinear) {
2201 		/* Just create a S/G fd based on the skb */
2202 		err = skb_to_sg_fd(priv, skb, &fd);
2203 		percpu_priv->tx_frag_skbuffs++;
2204 	} else {
2205 		/* Create a contig FD from this skb */
2206 		err = skb_to_contig_fd(priv, skb, &fd, &offset);
2207 	}
2208 	if (unlikely(err < 0))
2209 		goto skb_to_fd_failed;
2210 
2211 	txq = netdev_get_tx_queue(net_dev, queue_mapping);
2212 
2213 	/* LLTX requires to do our own update of trans_start */
2214 	txq->trans_start = jiffies;
2215 
2216 	if (priv->tx_tstamp && skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) {
2217 		fd.cmd |= cpu_to_be32(FM_FD_CMD_UPD);
2218 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2219 	}
2220 
2221 	if (likely(dpaa_xmit(priv, percpu_stats, queue_mapping, &fd) == 0))
2222 		return NETDEV_TX_OK;
2223 
2224 	dpaa_cleanup_tx_fd(priv, &fd, false);
2225 skb_to_fd_failed:
2226 enomem:
2227 	percpu_stats->tx_errors++;
2228 	dev_kfree_skb(skb);
2229 	return NETDEV_TX_OK;
2230 }
2231 
2232 static void dpaa_rx_error(struct net_device *net_dev,
2233 			  const struct dpaa_priv *priv,
2234 			  struct dpaa_percpu_priv *percpu_priv,
2235 			  const struct qm_fd *fd,
2236 			  u32 fqid)
2237 {
2238 	if (net_ratelimit())
2239 		netif_err(priv, hw, net_dev, "Err FD status = 0x%08x\n",
2240 			  be32_to_cpu(fd->status) & FM_FD_STAT_RX_ERRORS);
2241 
2242 	percpu_priv->stats.rx_errors++;
2243 
2244 	if (be32_to_cpu(fd->status) & FM_FD_ERR_DMA)
2245 		percpu_priv->rx_errors.dme++;
2246 	if (be32_to_cpu(fd->status) & FM_FD_ERR_PHYSICAL)
2247 		percpu_priv->rx_errors.fpe++;
2248 	if (be32_to_cpu(fd->status) & FM_FD_ERR_SIZE)
2249 		percpu_priv->rx_errors.fse++;
2250 	if (be32_to_cpu(fd->status) & FM_FD_ERR_PRS_HDR_ERR)
2251 		percpu_priv->rx_errors.phe++;
2252 
2253 	dpaa_fd_release(net_dev, fd);
2254 }
2255 
2256 static void dpaa_tx_error(struct net_device *net_dev,
2257 			  const struct dpaa_priv *priv,
2258 			  struct dpaa_percpu_priv *percpu_priv,
2259 			  const struct qm_fd *fd,
2260 			  u32 fqid)
2261 {
2262 	struct sk_buff *skb;
2263 
2264 	if (net_ratelimit())
2265 		netif_warn(priv, hw, net_dev, "FD status = 0x%08x\n",
2266 			   be32_to_cpu(fd->status) & FM_FD_STAT_TX_ERRORS);
2267 
2268 	percpu_priv->stats.tx_errors++;
2269 
2270 	skb = dpaa_cleanup_tx_fd(priv, fd, false);
2271 	dev_kfree_skb(skb);
2272 }
2273 
2274 static int dpaa_eth_poll(struct napi_struct *napi, int budget)
2275 {
2276 	struct dpaa_napi_portal *np =
2277 			container_of(napi, struct dpaa_napi_portal, napi);
2278 
2279 	int cleaned = qman_p_poll_dqrr(np->p, budget);
2280 
2281 	if (cleaned < budget) {
2282 		napi_complete_done(napi, cleaned);
2283 		qman_p_irqsource_add(np->p, QM_PIRQ_DQRI);
2284 	} else if (np->down) {
2285 		qman_p_irqsource_add(np->p, QM_PIRQ_DQRI);
2286 	}
2287 
2288 	return cleaned;
2289 }
2290 
2291 static void dpaa_tx_conf(struct net_device *net_dev,
2292 			 const struct dpaa_priv *priv,
2293 			 struct dpaa_percpu_priv *percpu_priv,
2294 			 const struct qm_fd *fd,
2295 			 u32 fqid)
2296 {
2297 	struct sk_buff	*skb;
2298 
2299 	if (unlikely(be32_to_cpu(fd->status) & FM_FD_STAT_TX_ERRORS)) {
2300 		if (net_ratelimit())
2301 			netif_warn(priv, hw, net_dev, "FD status = 0x%08x\n",
2302 				   be32_to_cpu(fd->status) &
2303 				   FM_FD_STAT_TX_ERRORS);
2304 
2305 		percpu_priv->stats.tx_errors++;
2306 	}
2307 
2308 	percpu_priv->tx_confirm++;
2309 
2310 	skb = dpaa_cleanup_tx_fd(priv, fd, true);
2311 
2312 	consume_skb(skb);
2313 }
2314 
2315 static inline int dpaa_eth_napi_schedule(struct dpaa_percpu_priv *percpu_priv,
2316 					 struct qman_portal *portal)
2317 {
2318 	if (unlikely(in_irq() || !in_serving_softirq())) {
2319 		/* Disable QMan IRQ and invoke NAPI */
2320 		qman_p_irqsource_remove(portal, QM_PIRQ_DQRI);
2321 
2322 		percpu_priv->np.p = portal;
2323 		napi_schedule(&percpu_priv->np.napi);
2324 		percpu_priv->in_interrupt++;
2325 		return 1;
2326 	}
2327 	return 0;
2328 }
2329 
2330 static enum qman_cb_dqrr_result rx_error_dqrr(struct qman_portal *portal,
2331 					      struct qman_fq *fq,
2332 					      const struct qm_dqrr_entry *dq)
2333 {
2334 	struct dpaa_fq *dpaa_fq = container_of(fq, struct dpaa_fq, fq_base);
2335 	struct dpaa_percpu_priv *percpu_priv;
2336 	struct net_device *net_dev;
2337 	struct dpaa_bp *dpaa_bp;
2338 	struct dpaa_priv *priv;
2339 
2340 	net_dev = dpaa_fq->net_dev;
2341 	priv = netdev_priv(net_dev);
2342 	dpaa_bp = dpaa_bpid2pool(dq->fd.bpid);
2343 	if (!dpaa_bp)
2344 		return qman_cb_dqrr_consume;
2345 
2346 	percpu_priv = this_cpu_ptr(priv->percpu_priv);
2347 
2348 	if (dpaa_eth_napi_schedule(percpu_priv, portal))
2349 		return qman_cb_dqrr_stop;
2350 
2351 	dpaa_eth_refill_bpools(priv);
2352 	dpaa_rx_error(net_dev, priv, percpu_priv, &dq->fd, fq->fqid);
2353 
2354 	return qman_cb_dqrr_consume;
2355 }
2356 
2357 static enum qman_cb_dqrr_result rx_default_dqrr(struct qman_portal *portal,
2358 						struct qman_fq *fq,
2359 						const struct qm_dqrr_entry *dq)
2360 {
2361 	struct skb_shared_hwtstamps *shhwtstamps;
2362 	struct rtnl_link_stats64 *percpu_stats;
2363 	struct dpaa_percpu_priv *percpu_priv;
2364 	const struct qm_fd *fd = &dq->fd;
2365 	dma_addr_t addr = qm_fd_addr(fd);
2366 	enum qm_fd_format fd_format;
2367 	struct net_device *net_dev;
2368 	u32 fd_status, hash_offset;
2369 	struct dpaa_bp *dpaa_bp;
2370 	struct dpaa_priv *priv;
2371 	unsigned int skb_len;
2372 	struct sk_buff *skb;
2373 	int *count_ptr;
2374 	void *vaddr;
2375 	u64 ns;
2376 
2377 	fd_status = be32_to_cpu(fd->status);
2378 	fd_format = qm_fd_get_format(fd);
2379 	net_dev = ((struct dpaa_fq *)fq)->net_dev;
2380 	priv = netdev_priv(net_dev);
2381 	dpaa_bp = dpaa_bpid2pool(dq->fd.bpid);
2382 	if (!dpaa_bp)
2383 		return qman_cb_dqrr_consume;
2384 
2385 	/* Trace the Rx fd */
2386 	trace_dpaa_rx_fd(net_dev, fq, &dq->fd);
2387 
2388 	percpu_priv = this_cpu_ptr(priv->percpu_priv);
2389 	percpu_stats = &percpu_priv->stats;
2390 
2391 	if (unlikely(dpaa_eth_napi_schedule(percpu_priv, portal)))
2392 		return qman_cb_dqrr_stop;
2393 
2394 	/* Make sure we didn't run out of buffers */
2395 	if (unlikely(dpaa_eth_refill_bpools(priv))) {
2396 		/* Unable to refill the buffer pool due to insufficient
2397 		 * system memory. Just release the frame back into the pool,
2398 		 * otherwise we'll soon end up with an empty buffer pool.
2399 		 */
2400 		dpaa_fd_release(net_dev, &dq->fd);
2401 		return qman_cb_dqrr_consume;
2402 	}
2403 
2404 	if (unlikely(fd_status & FM_FD_STAT_RX_ERRORS) != 0) {
2405 		if (net_ratelimit())
2406 			netif_warn(priv, hw, net_dev, "FD status = 0x%08x\n",
2407 				   fd_status & FM_FD_STAT_RX_ERRORS);
2408 
2409 		percpu_stats->rx_errors++;
2410 		dpaa_fd_release(net_dev, fd);
2411 		return qman_cb_dqrr_consume;
2412 	}
2413 
2414 	dma_unmap_page(dpaa_bp->priv->rx_dma_dev, addr, DPAA_BP_RAW_SIZE,
2415 		       DMA_FROM_DEVICE);
2416 
2417 	/* prefetch the first 64 bytes of the frame or the SGT start */
2418 	vaddr = phys_to_virt(addr);
2419 	prefetch(vaddr + qm_fd_get_offset(fd));
2420 
2421 	/* The only FD types that we may receive are contig and S/G */
2422 	WARN_ON((fd_format != qm_fd_contig) && (fd_format != qm_fd_sg));
2423 
2424 	/* Account for either the contig buffer or the SGT buffer (depending on
2425 	 * which case we were in) having been removed from the pool.
2426 	 */
2427 	count_ptr = this_cpu_ptr(dpaa_bp->percpu_count);
2428 	(*count_ptr)--;
2429 
2430 	if (likely(fd_format == qm_fd_contig))
2431 		skb = contig_fd_to_skb(priv, fd);
2432 	else
2433 		skb = sg_fd_to_skb(priv, fd);
2434 	if (!skb)
2435 		return qman_cb_dqrr_consume;
2436 
2437 	if (priv->rx_tstamp) {
2438 		shhwtstamps = skb_hwtstamps(skb);
2439 		memset(shhwtstamps, 0, sizeof(*shhwtstamps));
2440 
2441 		if (!fman_port_get_tstamp(priv->mac_dev->port[RX], vaddr, &ns))
2442 			shhwtstamps->hwtstamp = ns_to_ktime(ns);
2443 		else
2444 			dev_warn(net_dev->dev.parent, "fman_port_get_tstamp failed!\n");
2445 	}
2446 
2447 	skb->protocol = eth_type_trans(skb, net_dev);
2448 
2449 	if (net_dev->features & NETIF_F_RXHASH && priv->keygen_in_use &&
2450 	    !fman_port_get_hash_result_offset(priv->mac_dev->port[RX],
2451 					      &hash_offset)) {
2452 		enum pkt_hash_types type;
2453 
2454 		/* if L4 exists, it was used in the hash generation */
2455 		type = be32_to_cpu(fd->status) & FM_FD_STAT_L4CV ?
2456 			PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3;
2457 		skb_set_hash(skb, be32_to_cpu(*(u32 *)(vaddr + hash_offset)),
2458 			     type);
2459 	}
2460 
2461 	skb_len = skb->len;
2462 
2463 	if (unlikely(netif_receive_skb(skb) == NET_RX_DROP)) {
2464 		percpu_stats->rx_dropped++;
2465 		return qman_cb_dqrr_consume;
2466 	}
2467 
2468 	percpu_stats->rx_packets++;
2469 	percpu_stats->rx_bytes += skb_len;
2470 
2471 	return qman_cb_dqrr_consume;
2472 }
2473 
2474 static enum qman_cb_dqrr_result conf_error_dqrr(struct qman_portal *portal,
2475 						struct qman_fq *fq,
2476 						const struct qm_dqrr_entry *dq)
2477 {
2478 	struct dpaa_percpu_priv *percpu_priv;
2479 	struct net_device *net_dev;
2480 	struct dpaa_priv *priv;
2481 
2482 	net_dev = ((struct dpaa_fq *)fq)->net_dev;
2483 	priv = netdev_priv(net_dev);
2484 
2485 	percpu_priv = this_cpu_ptr(priv->percpu_priv);
2486 
2487 	if (dpaa_eth_napi_schedule(percpu_priv, portal))
2488 		return qman_cb_dqrr_stop;
2489 
2490 	dpaa_tx_error(net_dev, priv, percpu_priv, &dq->fd, fq->fqid);
2491 
2492 	return qman_cb_dqrr_consume;
2493 }
2494 
2495 static enum qman_cb_dqrr_result conf_dflt_dqrr(struct qman_portal *portal,
2496 					       struct qman_fq *fq,
2497 					       const struct qm_dqrr_entry *dq)
2498 {
2499 	struct dpaa_percpu_priv *percpu_priv;
2500 	struct net_device *net_dev;
2501 	struct dpaa_priv *priv;
2502 
2503 	net_dev = ((struct dpaa_fq *)fq)->net_dev;
2504 	priv = netdev_priv(net_dev);
2505 
2506 	/* Trace the fd */
2507 	trace_dpaa_tx_conf_fd(net_dev, fq, &dq->fd);
2508 
2509 	percpu_priv = this_cpu_ptr(priv->percpu_priv);
2510 
2511 	if (dpaa_eth_napi_schedule(percpu_priv, portal))
2512 		return qman_cb_dqrr_stop;
2513 
2514 	dpaa_tx_conf(net_dev, priv, percpu_priv, &dq->fd, fq->fqid);
2515 
2516 	return qman_cb_dqrr_consume;
2517 }
2518 
2519 static void egress_ern(struct qman_portal *portal,
2520 		       struct qman_fq *fq,
2521 		       const union qm_mr_entry *msg)
2522 {
2523 	const struct qm_fd *fd = &msg->ern.fd;
2524 	struct dpaa_percpu_priv *percpu_priv;
2525 	const struct dpaa_priv *priv;
2526 	struct net_device *net_dev;
2527 	struct sk_buff *skb;
2528 
2529 	net_dev = ((struct dpaa_fq *)fq)->net_dev;
2530 	priv = netdev_priv(net_dev);
2531 	percpu_priv = this_cpu_ptr(priv->percpu_priv);
2532 
2533 	percpu_priv->stats.tx_dropped++;
2534 	percpu_priv->stats.tx_fifo_errors++;
2535 	count_ern(percpu_priv, msg);
2536 
2537 	skb = dpaa_cleanup_tx_fd(priv, fd, false);
2538 	dev_kfree_skb_any(skb);
2539 }
2540 
2541 static const struct dpaa_fq_cbs dpaa_fq_cbs = {
2542 	.rx_defq = { .cb = { .dqrr = rx_default_dqrr } },
2543 	.tx_defq = { .cb = { .dqrr = conf_dflt_dqrr } },
2544 	.rx_errq = { .cb = { .dqrr = rx_error_dqrr } },
2545 	.tx_errq = { .cb = { .dqrr = conf_error_dqrr } },
2546 	.egress_ern = { .cb = { .ern = egress_ern } }
2547 };
2548 
2549 static void dpaa_eth_napi_enable(struct dpaa_priv *priv)
2550 {
2551 	struct dpaa_percpu_priv *percpu_priv;
2552 	int i;
2553 
2554 	for_each_online_cpu(i) {
2555 		percpu_priv = per_cpu_ptr(priv->percpu_priv, i);
2556 
2557 		percpu_priv->np.down = 0;
2558 		napi_enable(&percpu_priv->np.napi);
2559 	}
2560 }
2561 
2562 static void dpaa_eth_napi_disable(struct dpaa_priv *priv)
2563 {
2564 	struct dpaa_percpu_priv *percpu_priv;
2565 	int i;
2566 
2567 	for_each_online_cpu(i) {
2568 		percpu_priv = per_cpu_ptr(priv->percpu_priv, i);
2569 
2570 		percpu_priv->np.down = 1;
2571 		napi_disable(&percpu_priv->np.napi);
2572 	}
2573 }
2574 
2575 static void dpaa_adjust_link(struct net_device *net_dev)
2576 {
2577 	struct mac_device *mac_dev;
2578 	struct dpaa_priv *priv;
2579 
2580 	priv = netdev_priv(net_dev);
2581 	mac_dev = priv->mac_dev;
2582 	mac_dev->adjust_link(mac_dev);
2583 }
2584 
2585 /* The Aquantia PHYs are capable of performing rate adaptation */
2586 #define PHY_VEND_AQUANTIA	0x03a1b400
2587 
2588 static int dpaa_phy_init(struct net_device *net_dev)
2589 {
2590 	__ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
2591 	struct mac_device *mac_dev;
2592 	struct phy_device *phy_dev;
2593 	struct dpaa_priv *priv;
2594 
2595 	priv = netdev_priv(net_dev);
2596 	mac_dev = priv->mac_dev;
2597 
2598 	phy_dev = of_phy_connect(net_dev, mac_dev->phy_node,
2599 				 &dpaa_adjust_link, 0,
2600 				 mac_dev->phy_if);
2601 	if (!phy_dev) {
2602 		netif_err(priv, ifup, net_dev, "init_phy() failed\n");
2603 		return -ENODEV;
2604 	}
2605 
2606 	/* Unless the PHY is capable of rate adaptation */
2607 	if (mac_dev->phy_if != PHY_INTERFACE_MODE_XGMII ||
2608 	    ((phy_dev->drv->phy_id & GENMASK(31, 10)) != PHY_VEND_AQUANTIA)) {
2609 		/* remove any features not supported by the controller */
2610 		ethtool_convert_legacy_u32_to_link_mode(mask,
2611 							mac_dev->if_support);
2612 		linkmode_and(phy_dev->supported, phy_dev->supported, mask);
2613 	}
2614 
2615 	phy_support_asym_pause(phy_dev);
2616 
2617 	mac_dev->phy_dev = phy_dev;
2618 	net_dev->phydev = phy_dev;
2619 
2620 	return 0;
2621 }
2622 
2623 static int dpaa_open(struct net_device *net_dev)
2624 {
2625 	struct mac_device *mac_dev;
2626 	struct dpaa_priv *priv;
2627 	int err, i;
2628 
2629 	priv = netdev_priv(net_dev);
2630 	mac_dev = priv->mac_dev;
2631 	dpaa_eth_napi_enable(priv);
2632 
2633 	err = dpaa_phy_init(net_dev);
2634 	if (err)
2635 		goto phy_init_failed;
2636 
2637 	for (i = 0; i < ARRAY_SIZE(mac_dev->port); i++) {
2638 		err = fman_port_enable(mac_dev->port[i]);
2639 		if (err)
2640 			goto mac_start_failed;
2641 	}
2642 
2643 	err = priv->mac_dev->start(mac_dev);
2644 	if (err < 0) {
2645 		netif_err(priv, ifup, net_dev, "mac_dev->start() = %d\n", err);
2646 		goto mac_start_failed;
2647 	}
2648 
2649 	netif_tx_start_all_queues(net_dev);
2650 
2651 	return 0;
2652 
2653 mac_start_failed:
2654 	for (i = 0; i < ARRAY_SIZE(mac_dev->port); i++)
2655 		fman_port_disable(mac_dev->port[i]);
2656 
2657 phy_init_failed:
2658 	dpaa_eth_napi_disable(priv);
2659 
2660 	return err;
2661 }
2662 
2663 static int dpaa_eth_stop(struct net_device *net_dev)
2664 {
2665 	struct dpaa_priv *priv;
2666 	int err;
2667 
2668 	err = dpaa_stop(net_dev);
2669 
2670 	priv = netdev_priv(net_dev);
2671 	dpaa_eth_napi_disable(priv);
2672 
2673 	return err;
2674 }
2675 
2676 static int dpaa_ts_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2677 {
2678 	struct dpaa_priv *priv = netdev_priv(dev);
2679 	struct hwtstamp_config config;
2680 
2681 	if (copy_from_user(&config, rq->ifr_data, sizeof(config)))
2682 		return -EFAULT;
2683 
2684 	switch (config.tx_type) {
2685 	case HWTSTAMP_TX_OFF:
2686 		/* Couldn't disable rx/tx timestamping separately.
2687 		 * Do nothing here.
2688 		 */
2689 		priv->tx_tstamp = false;
2690 		break;
2691 	case HWTSTAMP_TX_ON:
2692 		priv->mac_dev->set_tstamp(priv->mac_dev->fman_mac, true);
2693 		priv->tx_tstamp = true;
2694 		break;
2695 	default:
2696 		return -ERANGE;
2697 	}
2698 
2699 	if (config.rx_filter == HWTSTAMP_FILTER_NONE) {
2700 		/* Couldn't disable rx/tx timestamping separately.
2701 		 * Do nothing here.
2702 		 */
2703 		priv->rx_tstamp = false;
2704 	} else {
2705 		priv->mac_dev->set_tstamp(priv->mac_dev->fman_mac, true);
2706 		priv->rx_tstamp = true;
2707 		/* TS is set for all frame types, not only those requested */
2708 		config.rx_filter = HWTSTAMP_FILTER_ALL;
2709 	}
2710 
2711 	return copy_to_user(rq->ifr_data, &config, sizeof(config)) ?
2712 			-EFAULT : 0;
2713 }
2714 
2715 static int dpaa_ioctl(struct net_device *net_dev, struct ifreq *rq, int cmd)
2716 {
2717 	int ret = -EINVAL;
2718 
2719 	if (cmd == SIOCGMIIREG) {
2720 		if (net_dev->phydev)
2721 			return phy_mii_ioctl(net_dev->phydev, rq, cmd);
2722 	}
2723 
2724 	if (cmd == SIOCSHWTSTAMP)
2725 		return dpaa_ts_ioctl(net_dev, rq, cmd);
2726 
2727 	return ret;
2728 }
2729 
2730 static const struct net_device_ops dpaa_ops = {
2731 	.ndo_open = dpaa_open,
2732 	.ndo_start_xmit = dpaa_start_xmit,
2733 	.ndo_stop = dpaa_eth_stop,
2734 	.ndo_tx_timeout = dpaa_tx_timeout,
2735 	.ndo_get_stats64 = dpaa_get_stats64,
2736 	.ndo_change_carrier = fixed_phy_change_carrier,
2737 	.ndo_set_mac_address = dpaa_set_mac_address,
2738 	.ndo_validate_addr = eth_validate_addr,
2739 	.ndo_set_rx_mode = dpaa_set_rx_mode,
2740 	.ndo_do_ioctl = dpaa_ioctl,
2741 	.ndo_setup_tc = dpaa_setup_tc,
2742 };
2743 
2744 static int dpaa_napi_add(struct net_device *net_dev)
2745 {
2746 	struct dpaa_priv *priv = netdev_priv(net_dev);
2747 	struct dpaa_percpu_priv *percpu_priv;
2748 	int cpu;
2749 
2750 	for_each_possible_cpu(cpu) {
2751 		percpu_priv = per_cpu_ptr(priv->percpu_priv, cpu);
2752 
2753 		netif_napi_add(net_dev, &percpu_priv->np.napi,
2754 			       dpaa_eth_poll, NAPI_POLL_WEIGHT);
2755 	}
2756 
2757 	return 0;
2758 }
2759 
2760 static void dpaa_napi_del(struct net_device *net_dev)
2761 {
2762 	struct dpaa_priv *priv = netdev_priv(net_dev);
2763 	struct dpaa_percpu_priv *percpu_priv;
2764 	int cpu;
2765 
2766 	for_each_possible_cpu(cpu) {
2767 		percpu_priv = per_cpu_ptr(priv->percpu_priv, cpu);
2768 
2769 		netif_napi_del(&percpu_priv->np.napi);
2770 	}
2771 }
2772 
2773 static inline void dpaa_bp_free_pf(const struct dpaa_bp *bp,
2774 				   struct bm_buffer *bmb)
2775 {
2776 	dma_addr_t addr = bm_buf_addr(bmb);
2777 
2778 	dma_unmap_page(bp->priv->rx_dma_dev, addr, DPAA_BP_RAW_SIZE,
2779 		       DMA_FROM_DEVICE);
2780 
2781 	skb_free_frag(phys_to_virt(addr));
2782 }
2783 
2784 /* Alloc the dpaa_bp struct and configure default values */
2785 static struct dpaa_bp *dpaa_bp_alloc(struct device *dev)
2786 {
2787 	struct dpaa_bp *dpaa_bp;
2788 
2789 	dpaa_bp = devm_kzalloc(dev, sizeof(*dpaa_bp), GFP_KERNEL);
2790 	if (!dpaa_bp)
2791 		return ERR_PTR(-ENOMEM);
2792 
2793 	dpaa_bp->bpid = FSL_DPAA_BPID_INV;
2794 	dpaa_bp->percpu_count = devm_alloc_percpu(dev, *dpaa_bp->percpu_count);
2795 	if (!dpaa_bp->percpu_count)
2796 		return ERR_PTR(-ENOMEM);
2797 
2798 	dpaa_bp->config_count = FSL_DPAA_ETH_MAX_BUF_COUNT;
2799 
2800 	dpaa_bp->seed_cb = dpaa_bp_seed;
2801 	dpaa_bp->free_buf_cb = dpaa_bp_free_pf;
2802 
2803 	return dpaa_bp;
2804 }
2805 
2806 /* Place all ingress FQs (Rx Default, Rx Error) in a dedicated CGR.
2807  * We won't be sending congestion notifications to FMan; for now, we just use
2808  * this CGR to generate enqueue rejections to FMan in order to drop the frames
2809  * before they reach our ingress queues and eat up memory.
2810  */
2811 static int dpaa_ingress_cgr_init(struct dpaa_priv *priv)
2812 {
2813 	struct qm_mcc_initcgr initcgr;
2814 	u32 cs_th;
2815 	int err;
2816 
2817 	err = qman_alloc_cgrid(&priv->ingress_cgr.cgrid);
2818 	if (err < 0) {
2819 		if (netif_msg_drv(priv))
2820 			pr_err("Error %d allocating CGR ID\n", err);
2821 		goto out_error;
2822 	}
2823 
2824 	/* Enable CS TD, but disable Congestion State Change Notifications. */
2825 	memset(&initcgr, 0, sizeof(initcgr));
2826 	initcgr.we_mask = cpu_to_be16(QM_CGR_WE_CS_THRES);
2827 	initcgr.cgr.cscn_en = QM_CGR_EN;
2828 	cs_th = DPAA_INGRESS_CS_THRESHOLD;
2829 	qm_cgr_cs_thres_set64(&initcgr.cgr.cs_thres, cs_th, 1);
2830 
2831 	initcgr.we_mask |= cpu_to_be16(QM_CGR_WE_CSTD_EN);
2832 	initcgr.cgr.cstd_en = QM_CGR_EN;
2833 
2834 	/* This CGR will be associated with the SWP affined to the current CPU.
2835 	 * However, we'll place all our ingress FQs in it.
2836 	 */
2837 	err = qman_create_cgr(&priv->ingress_cgr, QMAN_CGR_FLAG_USE_INIT,
2838 			      &initcgr);
2839 	if (err < 0) {
2840 		if (netif_msg_drv(priv))
2841 			pr_err("Error %d creating ingress CGR with ID %d\n",
2842 			       err, priv->ingress_cgr.cgrid);
2843 		qman_release_cgrid(priv->ingress_cgr.cgrid);
2844 		goto out_error;
2845 	}
2846 	if (netif_msg_drv(priv))
2847 		pr_debug("Created ingress CGR %d for netdev with hwaddr %pM\n",
2848 			 priv->ingress_cgr.cgrid, priv->mac_dev->addr);
2849 
2850 	priv->use_ingress_cgr = true;
2851 
2852 out_error:
2853 	return err;
2854 }
2855 
2856 static u16 dpaa_get_headroom(struct dpaa_buffer_layout *bl,
2857 			     enum port_type port)
2858 {
2859 	u16 headroom;
2860 
2861 	/* The frame headroom must accommodate:
2862 	 * - the driver private data area
2863 	 * - parse results, hash results, timestamp if selected
2864 	 * If either hash results or time stamp are selected, both will
2865 	 * be copied to/from the frame headroom, as TS is located between PR and
2866 	 * HR in the IC and IC copy size has a granularity of 16bytes
2867 	 * (see description of FMBM_RICP and FMBM_TICP registers in DPAARM)
2868 	 *
2869 	 * Also make sure the headroom is a multiple of data_align bytes
2870 	 */
2871 	headroom = (u16)(bl[port].priv_data_size + DPAA_HWA_SIZE);
2872 
2873 	if (port == RX)
2874 		return ALIGN(headroom, DPAA_FD_RX_DATA_ALIGNMENT);
2875 	else
2876 		return ALIGN(headroom, DPAA_FD_DATA_ALIGNMENT);
2877 }
2878 
2879 static int dpaa_eth_probe(struct platform_device *pdev)
2880 {
2881 	struct net_device *net_dev = NULL;
2882 	struct dpaa_bp *dpaa_bp = NULL;
2883 	struct dpaa_fq *dpaa_fq, *tmp;
2884 	struct dpaa_priv *priv = NULL;
2885 	struct fm_port_fqs port_fqs;
2886 	struct mac_device *mac_dev;
2887 	int err = 0, channel;
2888 	struct device *dev;
2889 
2890 	dev = &pdev->dev;
2891 
2892 	err = bman_is_probed();
2893 	if (!err)
2894 		return -EPROBE_DEFER;
2895 	if (err < 0) {
2896 		dev_err(dev, "failing probe due to bman probe error\n");
2897 		return -ENODEV;
2898 	}
2899 	err = qman_is_probed();
2900 	if (!err)
2901 		return -EPROBE_DEFER;
2902 	if (err < 0) {
2903 		dev_err(dev, "failing probe due to qman probe error\n");
2904 		return -ENODEV;
2905 	}
2906 	err = bman_portals_probed();
2907 	if (!err)
2908 		return -EPROBE_DEFER;
2909 	if (err < 0) {
2910 		dev_err(dev,
2911 			"failing probe due to bman portals probe error\n");
2912 		return -ENODEV;
2913 	}
2914 	err = qman_portals_probed();
2915 	if (!err)
2916 		return -EPROBE_DEFER;
2917 	if (err < 0) {
2918 		dev_err(dev,
2919 			"failing probe due to qman portals probe error\n");
2920 		return -ENODEV;
2921 	}
2922 
2923 	/* Allocate this early, so we can store relevant information in
2924 	 * the private area
2925 	 */
2926 	net_dev = alloc_etherdev_mq(sizeof(*priv), DPAA_ETH_TXQ_NUM);
2927 	if (!net_dev) {
2928 		dev_err(dev, "alloc_etherdev_mq() failed\n");
2929 		return -ENOMEM;
2930 	}
2931 
2932 	/* Do this here, so we can be verbose early */
2933 	SET_NETDEV_DEV(net_dev, dev->parent);
2934 	dev_set_drvdata(dev, net_dev);
2935 
2936 	priv = netdev_priv(net_dev);
2937 	priv->net_dev = net_dev;
2938 
2939 	priv->msg_enable = netif_msg_init(debug, DPAA_MSG_DEFAULT);
2940 
2941 	mac_dev = dpaa_mac_dev_get(pdev);
2942 	if (IS_ERR(mac_dev)) {
2943 		netdev_err(net_dev, "dpaa_mac_dev_get() failed\n");
2944 		err = PTR_ERR(mac_dev);
2945 		goto free_netdev;
2946 	}
2947 
2948 	/* Devices used for DMA mapping */
2949 	priv->rx_dma_dev = fman_port_get_device(mac_dev->port[RX]);
2950 	priv->tx_dma_dev = fman_port_get_device(mac_dev->port[TX]);
2951 	err = dma_coerce_mask_and_coherent(priv->rx_dma_dev, DMA_BIT_MASK(40));
2952 	if (!err)
2953 		err = dma_coerce_mask_and_coherent(priv->tx_dma_dev,
2954 						   DMA_BIT_MASK(40));
2955 	if (err) {
2956 		netdev_err(net_dev, "dma_coerce_mask_and_coherent() failed\n");
2957 		goto free_netdev;
2958 	}
2959 
2960 	/* If fsl_fm_max_frm is set to a higher value than the all-common 1500,
2961 	 * we choose conservatively and let the user explicitly set a higher
2962 	 * MTU via ifconfig. Otherwise, the user may end up with different MTUs
2963 	 * in the same LAN.
2964 	 * If on the other hand fsl_fm_max_frm has been chosen below 1500,
2965 	 * start with the maximum allowed.
2966 	 */
2967 	net_dev->mtu = min(dpaa_get_max_mtu(), ETH_DATA_LEN);
2968 
2969 	netdev_dbg(net_dev, "Setting initial MTU on net device: %d\n",
2970 		   net_dev->mtu);
2971 
2972 	priv->buf_layout[RX].priv_data_size = DPAA_RX_PRIV_DATA_SIZE; /* Rx */
2973 	priv->buf_layout[TX].priv_data_size = DPAA_TX_PRIV_DATA_SIZE; /* Tx */
2974 
2975 	/* bp init */
2976 	dpaa_bp = dpaa_bp_alloc(dev);
2977 	if (IS_ERR(dpaa_bp)) {
2978 		err = PTR_ERR(dpaa_bp);
2979 		goto free_dpaa_bps;
2980 	}
2981 	/* the raw size of the buffers used for reception */
2982 	dpaa_bp->raw_size = DPAA_BP_RAW_SIZE;
2983 	/* avoid runtime computations by keeping the usable size here */
2984 	dpaa_bp->size = dpaa_bp_size(dpaa_bp->raw_size);
2985 	dpaa_bp->priv = priv;
2986 
2987 	err = dpaa_bp_alloc_pool(dpaa_bp);
2988 	if (err < 0)
2989 		goto free_dpaa_bps;
2990 	priv->dpaa_bp = dpaa_bp;
2991 
2992 	INIT_LIST_HEAD(&priv->dpaa_fq_list);
2993 
2994 	memset(&port_fqs, 0, sizeof(port_fqs));
2995 
2996 	err = dpaa_alloc_all_fqs(dev, &priv->dpaa_fq_list, &port_fqs);
2997 	if (err < 0) {
2998 		dev_err(dev, "dpaa_alloc_all_fqs() failed\n");
2999 		goto free_dpaa_bps;
3000 	}
3001 
3002 	priv->mac_dev = mac_dev;
3003 
3004 	channel = dpaa_get_channel();
3005 	if (channel < 0) {
3006 		dev_err(dev, "dpaa_get_channel() failed\n");
3007 		err = channel;
3008 		goto free_dpaa_bps;
3009 	}
3010 
3011 	priv->channel = (u16)channel;
3012 
3013 	/* Walk the CPUs with affine portals
3014 	 * and add this pool channel to each's dequeue mask.
3015 	 */
3016 	dpaa_eth_add_channel(priv->channel, &pdev->dev);
3017 
3018 	dpaa_fq_setup(priv, &dpaa_fq_cbs, priv->mac_dev->port[TX]);
3019 
3020 	/* Create a congestion group for this netdev, with
3021 	 * dynamically-allocated CGR ID.
3022 	 * Must be executed after probing the MAC, but before
3023 	 * assigning the egress FQs to the CGRs.
3024 	 */
3025 	err = dpaa_eth_cgr_init(priv);
3026 	if (err < 0) {
3027 		dev_err(dev, "Error initializing CGR\n");
3028 		goto free_dpaa_bps;
3029 	}
3030 
3031 	err = dpaa_ingress_cgr_init(priv);
3032 	if (err < 0) {
3033 		dev_err(dev, "Error initializing ingress CGR\n");
3034 		goto delete_egress_cgr;
3035 	}
3036 
3037 	/* Add the FQs to the interface, and make them active */
3038 	list_for_each_entry_safe(dpaa_fq, tmp, &priv->dpaa_fq_list, list) {
3039 		err = dpaa_fq_init(dpaa_fq, false);
3040 		if (err < 0)
3041 			goto free_dpaa_fqs;
3042 	}
3043 
3044 	priv->tx_headroom = dpaa_get_headroom(priv->buf_layout, TX);
3045 	priv->rx_headroom = dpaa_get_headroom(priv->buf_layout, RX);
3046 
3047 	/* All real interfaces need their ports initialized */
3048 	err = dpaa_eth_init_ports(mac_dev, dpaa_bp, &port_fqs,
3049 				  &priv->buf_layout[0], dev);
3050 	if (err)
3051 		goto free_dpaa_fqs;
3052 
3053 	/* Rx traffic distribution based on keygen hashing defaults to on */
3054 	priv->keygen_in_use = true;
3055 
3056 	priv->percpu_priv = devm_alloc_percpu(dev, *priv->percpu_priv);
3057 	if (!priv->percpu_priv) {
3058 		dev_err(dev, "devm_alloc_percpu() failed\n");
3059 		err = -ENOMEM;
3060 		goto free_dpaa_fqs;
3061 	}
3062 
3063 	priv->num_tc = 1;
3064 	netif_set_real_num_tx_queues(net_dev, priv->num_tc * DPAA_TC_TXQ_NUM);
3065 
3066 	/* Initialize NAPI */
3067 	err = dpaa_napi_add(net_dev);
3068 	if (err < 0)
3069 		goto delete_dpaa_napi;
3070 
3071 	err = dpaa_netdev_init(net_dev, &dpaa_ops, tx_timeout);
3072 	if (err < 0)
3073 		goto delete_dpaa_napi;
3074 
3075 	dpaa_eth_sysfs_init(&net_dev->dev);
3076 
3077 	netif_info(priv, probe, net_dev, "Probed interface %s\n",
3078 		   net_dev->name);
3079 
3080 	return 0;
3081 
3082 delete_dpaa_napi:
3083 	dpaa_napi_del(net_dev);
3084 free_dpaa_fqs:
3085 	dpaa_fq_free(dev, &priv->dpaa_fq_list);
3086 	qman_delete_cgr_safe(&priv->ingress_cgr);
3087 	qman_release_cgrid(priv->ingress_cgr.cgrid);
3088 delete_egress_cgr:
3089 	qman_delete_cgr_safe(&priv->cgr_data.cgr);
3090 	qman_release_cgrid(priv->cgr_data.cgr.cgrid);
3091 free_dpaa_bps:
3092 	dpaa_bps_free(priv);
3093 free_netdev:
3094 	dev_set_drvdata(dev, NULL);
3095 	free_netdev(net_dev);
3096 
3097 	return err;
3098 }
3099 
3100 static int dpaa_remove(struct platform_device *pdev)
3101 {
3102 	struct net_device *net_dev;
3103 	struct dpaa_priv *priv;
3104 	struct device *dev;
3105 	int err;
3106 
3107 	dev = &pdev->dev;
3108 	net_dev = dev_get_drvdata(dev);
3109 
3110 	priv = netdev_priv(net_dev);
3111 
3112 	dpaa_eth_sysfs_remove(dev);
3113 
3114 	dev_set_drvdata(dev, NULL);
3115 	unregister_netdev(net_dev);
3116 
3117 	err = dpaa_fq_free(dev, &priv->dpaa_fq_list);
3118 
3119 	qman_delete_cgr_safe(&priv->ingress_cgr);
3120 	qman_release_cgrid(priv->ingress_cgr.cgrid);
3121 	qman_delete_cgr_safe(&priv->cgr_data.cgr);
3122 	qman_release_cgrid(priv->cgr_data.cgr.cgrid);
3123 
3124 	dpaa_napi_del(net_dev);
3125 
3126 	dpaa_bps_free(priv);
3127 
3128 	free_netdev(net_dev);
3129 
3130 	return err;
3131 }
3132 
3133 static const struct platform_device_id dpaa_devtype[] = {
3134 	{
3135 		.name = "dpaa-ethernet",
3136 		.driver_data = 0,
3137 	}, {
3138 	}
3139 };
3140 MODULE_DEVICE_TABLE(platform, dpaa_devtype);
3141 
3142 static struct platform_driver dpaa_driver = {
3143 	.driver = {
3144 		.name = KBUILD_MODNAME,
3145 	},
3146 	.id_table = dpaa_devtype,
3147 	.probe = dpaa_eth_probe,
3148 	.remove = dpaa_remove
3149 };
3150 
3151 static int __init dpaa_load(void)
3152 {
3153 	int err;
3154 
3155 	pr_debug("FSL DPAA Ethernet driver\n");
3156 
3157 	/* initialize dpaa_eth mirror values */
3158 	dpaa_rx_extra_headroom = fman_get_rx_extra_headroom();
3159 	dpaa_max_frm = fman_get_max_frm();
3160 
3161 	err = platform_driver_register(&dpaa_driver);
3162 	if (err < 0)
3163 		pr_err("Error, platform_driver_register() = %d\n", err);
3164 
3165 	return err;
3166 }
3167 module_init(dpaa_load);
3168 
3169 static void __exit dpaa_unload(void)
3170 {
3171 	platform_driver_unregister(&dpaa_driver);
3172 
3173 	/* Only one channel is used and needs to be released after all
3174 	 * interfaces are removed
3175 	 */
3176 	dpaa_release_channel();
3177 }
3178 module_exit(dpaa_unload);
3179 
3180 MODULE_LICENSE("Dual BSD/GPL");
3181 MODULE_DESCRIPTION("FSL DPAA Ethernet driver");
3182