1 // SPDX-License-Identifier: BSD-3-Clause OR GPL-2.0-or-later 2 /* 3 * Copyright 2008 - 2016 Freescale Semiconductor Inc. 4 * Copyright 2020 NXP 5 */ 6 7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 8 9 #include <linux/init.h> 10 #include <linux/mod_devicetable.h> 11 #include <linux/module.h> 12 #include <linux/of_mdio.h> 13 #include <linux/of_net.h> 14 #include <linux/io.h> 15 #include <linux/if_arp.h> 16 #include <linux/if_vlan.h> 17 #include <linux/icmp.h> 18 #include <linux/ip.h> 19 #include <linux/ipv6.h> 20 #include <linux/platform_device.h> 21 #include <linux/udp.h> 22 #include <linux/tcp.h> 23 #include <linux/net.h> 24 #include <linux/skbuff.h> 25 #include <linux/etherdevice.h> 26 #include <linux/if_ether.h> 27 #include <linux/highmem.h> 28 #include <linux/percpu.h> 29 #include <linux/dma-mapping.h> 30 #include <linux/sort.h> 31 #include <linux/phy_fixed.h> 32 #include <linux/bpf.h> 33 #include <linux/bpf_trace.h> 34 #include <soc/fsl/bman.h> 35 #include <soc/fsl/qman.h> 36 #include "fman.h" 37 #include "fman_port.h" 38 #include "mac.h" 39 #include "dpaa_eth.h" 40 41 /* CREATE_TRACE_POINTS only needs to be defined once. Other dpaa files 42 * using trace events only need to #include <trace/events/sched.h> 43 */ 44 #define CREATE_TRACE_POINTS 45 #include "dpaa_eth_trace.h" 46 47 static int debug = -1; 48 module_param(debug, int, 0444); 49 MODULE_PARM_DESC(debug, "Module/Driver verbosity level (0=none,...,16=all)"); 50 51 static u16 tx_timeout = 1000; 52 module_param(tx_timeout, ushort, 0444); 53 MODULE_PARM_DESC(tx_timeout, "The Tx timeout in ms"); 54 55 #define FM_FD_STAT_RX_ERRORS \ 56 (FM_FD_ERR_DMA | FM_FD_ERR_PHYSICAL | \ 57 FM_FD_ERR_SIZE | FM_FD_ERR_CLS_DISCARD | \ 58 FM_FD_ERR_EXTRACTION | FM_FD_ERR_NO_SCHEME | \ 59 FM_FD_ERR_PRS_TIMEOUT | FM_FD_ERR_PRS_ILL_INSTRUCT | \ 60 FM_FD_ERR_PRS_HDR_ERR) 61 62 #define FM_FD_STAT_TX_ERRORS \ 63 (FM_FD_ERR_UNSUPPORTED_FORMAT | \ 64 FM_FD_ERR_LENGTH | FM_FD_ERR_DMA) 65 66 #define DPAA_MSG_DEFAULT (NETIF_MSG_DRV | NETIF_MSG_PROBE | \ 67 NETIF_MSG_LINK | NETIF_MSG_IFUP | \ 68 NETIF_MSG_IFDOWN | NETIF_MSG_HW) 69 70 #define DPAA_INGRESS_CS_THRESHOLD 0x10000000 71 /* Ingress congestion threshold on FMan ports 72 * The size in bytes of the ingress tail-drop threshold on FMan ports. 73 * Traffic piling up above this value will be rejected by QMan and discarded 74 * by FMan. 75 */ 76 77 /* Size in bytes of the FQ taildrop threshold */ 78 #define DPAA_FQ_TD 0x200000 79 80 #define DPAA_CS_THRESHOLD_1G 0x06000000 81 /* Egress congestion threshold on 1G ports, range 0x1000 .. 0x10000000 82 * The size in bytes of the egress Congestion State notification threshold on 83 * 1G ports. The 1G dTSECs can quite easily be flooded by cores doing Tx in a 84 * tight loop (e.g. by sending UDP datagrams at "while(1) speed"), 85 * and the larger the frame size, the more acute the problem. 86 * So we have to find a balance between these factors: 87 * - avoiding the device staying congested for a prolonged time (risking 88 * the netdev watchdog to fire - see also the tx_timeout module param); 89 * - affecting performance of protocols such as TCP, which otherwise 90 * behave well under the congestion notification mechanism; 91 * - preventing the Tx cores from tightly-looping (as if the congestion 92 * threshold was too low to be effective); 93 * - running out of memory if the CS threshold is set too high. 94 */ 95 96 #define DPAA_CS_THRESHOLD_10G 0x10000000 97 /* The size in bytes of the egress Congestion State notification threshold on 98 * 10G ports, range 0x1000 .. 0x10000000 99 */ 100 101 /* Largest value that the FQD's OAL field can hold */ 102 #define FSL_QMAN_MAX_OAL 127 103 104 /* Default alignment for start of data in an Rx FD */ 105 #ifdef CONFIG_DPAA_ERRATUM_A050385 106 /* aligning data start to 64 avoids DMA transaction splits, unless the buffer 107 * is crossing a 4k page boundary 108 */ 109 #define DPAA_FD_DATA_ALIGNMENT (fman_has_errata_a050385() ? 64 : 16) 110 /* aligning to 256 avoids DMA transaction splits caused by 4k page boundary 111 * crossings; also, all SG fragments except the last must have a size multiple 112 * of 256 to avoid DMA transaction splits 113 */ 114 #define DPAA_A050385_ALIGN 256 115 #define DPAA_FD_RX_DATA_ALIGNMENT (fman_has_errata_a050385() ? \ 116 DPAA_A050385_ALIGN : 16) 117 #else 118 #define DPAA_FD_DATA_ALIGNMENT 16 119 #define DPAA_FD_RX_DATA_ALIGNMENT DPAA_FD_DATA_ALIGNMENT 120 #endif 121 122 /* The DPAA requires 256 bytes reserved and mapped for the SGT */ 123 #define DPAA_SGT_SIZE 256 124 125 /* Values for the L3R field of the FM Parse Results 126 */ 127 /* L3 Type field: First IP Present IPv4 */ 128 #define FM_L3_PARSE_RESULT_IPV4 0x8000 129 /* L3 Type field: First IP Present IPv6 */ 130 #define FM_L3_PARSE_RESULT_IPV6 0x4000 131 /* Values for the L4R field of the FM Parse Results */ 132 /* L4 Type field: UDP */ 133 #define FM_L4_PARSE_RESULT_UDP 0x40 134 /* L4 Type field: TCP */ 135 #define FM_L4_PARSE_RESULT_TCP 0x20 136 137 /* FD status field indicating whether the FM Parser has attempted to validate 138 * the L4 csum of the frame. 139 * Note that having this bit set doesn't necessarily imply that the checksum 140 * is valid. One would have to check the parse results to find that out. 141 */ 142 #define FM_FD_STAT_L4CV 0x00000004 143 144 #define DPAA_SGT_MAX_ENTRIES 16 /* maximum number of entries in SG Table */ 145 #define DPAA_BUFF_RELEASE_MAX 8 /* maximum number of buffers released at once */ 146 147 #define FSL_DPAA_BPID_INV 0xff 148 #define FSL_DPAA_ETH_MAX_BUF_COUNT 128 149 #define FSL_DPAA_ETH_REFILL_THRESHOLD 80 150 151 #define DPAA_TX_PRIV_DATA_SIZE 16 152 #define DPAA_PARSE_RESULTS_SIZE sizeof(struct fman_prs_result) 153 #define DPAA_TIME_STAMP_SIZE 8 154 #define DPAA_HASH_RESULTS_SIZE 8 155 #define DPAA_HWA_SIZE (DPAA_PARSE_RESULTS_SIZE + DPAA_TIME_STAMP_SIZE \ 156 + DPAA_HASH_RESULTS_SIZE) 157 #define DPAA_RX_PRIV_DATA_DEFAULT_SIZE (DPAA_TX_PRIV_DATA_SIZE + \ 158 XDP_PACKET_HEADROOM - DPAA_HWA_SIZE) 159 #ifdef CONFIG_DPAA_ERRATUM_A050385 160 #define DPAA_RX_PRIV_DATA_A050385_SIZE (DPAA_A050385_ALIGN - DPAA_HWA_SIZE) 161 #define DPAA_RX_PRIV_DATA_SIZE (fman_has_errata_a050385() ? \ 162 DPAA_RX_PRIV_DATA_A050385_SIZE : \ 163 DPAA_RX_PRIV_DATA_DEFAULT_SIZE) 164 #else 165 #define DPAA_RX_PRIV_DATA_SIZE DPAA_RX_PRIV_DATA_DEFAULT_SIZE 166 #endif 167 168 #define DPAA_ETH_PCD_RXQ_NUM 128 169 170 #define DPAA_ENQUEUE_RETRIES 100000 171 172 enum port_type {RX, TX}; 173 174 struct fm_port_fqs { 175 struct dpaa_fq *tx_defq; 176 struct dpaa_fq *tx_errq; 177 struct dpaa_fq *rx_defq; 178 struct dpaa_fq *rx_errq; 179 struct dpaa_fq *rx_pcdq; 180 }; 181 182 /* All the dpa bps in use at any moment */ 183 static struct dpaa_bp *dpaa_bp_array[BM_MAX_NUM_OF_POOLS]; 184 185 #define DPAA_BP_RAW_SIZE 4096 186 187 #ifdef CONFIG_DPAA_ERRATUM_A050385 188 #define dpaa_bp_size(raw_size) (SKB_WITH_OVERHEAD(raw_size) & \ 189 ~(DPAA_A050385_ALIGN - 1)) 190 #else 191 #define dpaa_bp_size(raw_size) SKB_WITH_OVERHEAD(raw_size) 192 #endif 193 194 static int dpaa_max_frm; 195 196 static int dpaa_rx_extra_headroom; 197 198 #define dpaa_get_max_mtu() \ 199 (dpaa_max_frm - (VLAN_ETH_HLEN + ETH_FCS_LEN)) 200 201 static void dpaa_eth_cgr_set_speed(struct mac_device *mac_dev, int speed); 202 203 static int dpaa_netdev_init(struct net_device *net_dev, 204 const struct net_device_ops *dpaa_ops, 205 u16 tx_timeout) 206 { 207 struct dpaa_priv *priv = netdev_priv(net_dev); 208 struct device *dev = net_dev->dev.parent; 209 struct mac_device *mac_dev = priv->mac_dev; 210 struct dpaa_percpu_priv *percpu_priv; 211 const u8 *mac_addr; 212 int i, err; 213 214 /* Although we access another CPU's private data here 215 * we do it at initialization so it is safe 216 */ 217 for_each_possible_cpu(i) { 218 percpu_priv = per_cpu_ptr(priv->percpu_priv, i); 219 percpu_priv->net_dev = net_dev; 220 } 221 222 net_dev->netdev_ops = dpaa_ops; 223 mac_addr = mac_dev->addr; 224 225 net_dev->mem_start = (unsigned long)priv->mac_dev->res->start; 226 net_dev->mem_end = (unsigned long)priv->mac_dev->res->end; 227 228 net_dev->min_mtu = ETH_MIN_MTU; 229 net_dev->max_mtu = dpaa_get_max_mtu(); 230 231 net_dev->hw_features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 232 NETIF_F_LLTX | NETIF_F_RXHASH); 233 234 net_dev->hw_features |= NETIF_F_SG | NETIF_F_HIGHDMA; 235 /* The kernels enables GSO automatically, if we declare NETIF_F_SG. 236 * For conformity, we'll still declare GSO explicitly. 237 */ 238 net_dev->features |= NETIF_F_GSO; 239 net_dev->features |= NETIF_F_RXCSUM; 240 241 net_dev->priv_flags |= IFF_LIVE_ADDR_CHANGE; 242 /* we do not want shared skbs on TX */ 243 net_dev->priv_flags &= ~IFF_TX_SKB_SHARING; 244 245 net_dev->features |= net_dev->hw_features; 246 net_dev->vlan_features = net_dev->features; 247 248 net_dev->xdp_features = NETDEV_XDP_ACT_BASIC | 249 NETDEV_XDP_ACT_REDIRECT | 250 NETDEV_XDP_ACT_NDO_XMIT; 251 252 if (is_valid_ether_addr(mac_addr)) { 253 memcpy(net_dev->perm_addr, mac_addr, net_dev->addr_len); 254 eth_hw_addr_set(net_dev, mac_addr); 255 } else { 256 eth_hw_addr_random(net_dev); 257 err = mac_dev->change_addr(mac_dev->fman_mac, 258 (const enet_addr_t *)net_dev->dev_addr); 259 if (err) { 260 dev_err(dev, "Failed to set random MAC address\n"); 261 return -EINVAL; 262 } 263 dev_info(dev, "Using random MAC address: %pM\n", 264 net_dev->dev_addr); 265 } 266 267 net_dev->ethtool_ops = &dpaa_ethtool_ops; 268 269 net_dev->needed_headroom = priv->tx_headroom; 270 net_dev->watchdog_timeo = msecs_to_jiffies(tx_timeout); 271 272 /* The rest of the config is filled in by the mac device already */ 273 mac_dev->phylink_config.dev = &net_dev->dev; 274 mac_dev->phylink_config.type = PHYLINK_NETDEV; 275 mac_dev->update_speed = dpaa_eth_cgr_set_speed; 276 mac_dev->phylink = phylink_create(&mac_dev->phylink_config, 277 dev_fwnode(mac_dev->dev), 278 mac_dev->phy_if, 279 mac_dev->phylink_ops); 280 if (IS_ERR(mac_dev->phylink)) { 281 err = PTR_ERR(mac_dev->phylink); 282 dev_err_probe(dev, err, "Could not create phylink\n"); 283 return err; 284 } 285 286 /* start without the RUNNING flag, phylib controls it later */ 287 netif_carrier_off(net_dev); 288 289 err = register_netdev(net_dev); 290 if (err < 0) { 291 dev_err(dev, "register_netdev() = %d\n", err); 292 phylink_destroy(mac_dev->phylink); 293 return err; 294 } 295 296 return 0; 297 } 298 299 static int dpaa_stop(struct net_device *net_dev) 300 { 301 struct mac_device *mac_dev; 302 struct dpaa_priv *priv; 303 int i, error; 304 int err = 0; 305 306 priv = netdev_priv(net_dev); 307 mac_dev = priv->mac_dev; 308 309 netif_tx_stop_all_queues(net_dev); 310 /* Allow the Fman (Tx) port to process in-flight frames before we 311 * try switching it off. 312 */ 313 msleep(200); 314 315 phylink_stop(mac_dev->phylink); 316 mac_dev->disable(mac_dev->fman_mac); 317 318 for (i = 0; i < ARRAY_SIZE(mac_dev->port); i++) { 319 error = fman_port_disable(mac_dev->port[i]); 320 if (error) 321 err = error; 322 } 323 324 phylink_disconnect_phy(mac_dev->phylink); 325 net_dev->phydev = NULL; 326 327 msleep(200); 328 329 return err; 330 } 331 332 static void dpaa_tx_timeout(struct net_device *net_dev, unsigned int txqueue) 333 { 334 struct dpaa_percpu_priv *percpu_priv; 335 const struct dpaa_priv *priv; 336 337 priv = netdev_priv(net_dev); 338 percpu_priv = this_cpu_ptr(priv->percpu_priv); 339 340 netif_crit(priv, timer, net_dev, "Transmit timeout latency: %u ms\n", 341 jiffies_to_msecs(jiffies - dev_trans_start(net_dev))); 342 343 percpu_priv->stats.tx_errors++; 344 } 345 346 /* Calculates the statistics for the given device by adding the statistics 347 * collected by each CPU. 348 */ 349 static void dpaa_get_stats64(struct net_device *net_dev, 350 struct rtnl_link_stats64 *s) 351 { 352 int numstats = sizeof(struct rtnl_link_stats64) / sizeof(u64); 353 struct dpaa_priv *priv = netdev_priv(net_dev); 354 struct dpaa_percpu_priv *percpu_priv; 355 u64 *netstats = (u64 *)s; 356 u64 *cpustats; 357 int i, j; 358 359 for_each_possible_cpu(i) { 360 percpu_priv = per_cpu_ptr(priv->percpu_priv, i); 361 362 cpustats = (u64 *)&percpu_priv->stats; 363 364 /* add stats from all CPUs */ 365 for (j = 0; j < numstats; j++) 366 netstats[j] += cpustats[j]; 367 } 368 } 369 370 static int dpaa_setup_tc(struct net_device *net_dev, enum tc_setup_type type, 371 void *type_data) 372 { 373 struct dpaa_priv *priv = netdev_priv(net_dev); 374 struct tc_mqprio_qopt *mqprio = type_data; 375 u8 num_tc; 376 int i; 377 378 if (type != TC_SETUP_QDISC_MQPRIO) 379 return -EOPNOTSUPP; 380 381 mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS; 382 num_tc = mqprio->num_tc; 383 384 if (num_tc == priv->num_tc) 385 return 0; 386 387 if (!num_tc) { 388 netdev_reset_tc(net_dev); 389 goto out; 390 } 391 392 if (num_tc > DPAA_TC_NUM) { 393 netdev_err(net_dev, "Too many traffic classes: max %d supported.\n", 394 DPAA_TC_NUM); 395 return -EINVAL; 396 } 397 398 netdev_set_num_tc(net_dev, num_tc); 399 400 for (i = 0; i < num_tc; i++) 401 netdev_set_tc_queue(net_dev, i, DPAA_TC_TXQ_NUM, 402 i * DPAA_TC_TXQ_NUM); 403 404 out: 405 priv->num_tc = num_tc ? : 1; 406 netif_set_real_num_tx_queues(net_dev, priv->num_tc * DPAA_TC_TXQ_NUM); 407 return 0; 408 } 409 410 static struct mac_device *dpaa_mac_dev_get(struct platform_device *pdev) 411 { 412 struct dpaa_eth_data *eth_data; 413 struct device *dpaa_dev; 414 struct mac_device *mac_dev; 415 416 dpaa_dev = &pdev->dev; 417 eth_data = dpaa_dev->platform_data; 418 if (!eth_data) { 419 dev_err(dpaa_dev, "eth_data missing\n"); 420 return ERR_PTR(-ENODEV); 421 } 422 mac_dev = eth_data->mac_dev; 423 if (!mac_dev) { 424 dev_err(dpaa_dev, "mac_dev missing\n"); 425 return ERR_PTR(-EINVAL); 426 } 427 428 return mac_dev; 429 } 430 431 static int dpaa_set_mac_address(struct net_device *net_dev, void *addr) 432 { 433 const struct dpaa_priv *priv; 434 struct mac_device *mac_dev; 435 struct sockaddr old_addr; 436 int err; 437 438 priv = netdev_priv(net_dev); 439 440 memcpy(old_addr.sa_data, net_dev->dev_addr, ETH_ALEN); 441 442 err = eth_mac_addr(net_dev, addr); 443 if (err < 0) { 444 netif_err(priv, drv, net_dev, "eth_mac_addr() = %d\n", err); 445 return err; 446 } 447 448 mac_dev = priv->mac_dev; 449 450 err = mac_dev->change_addr(mac_dev->fman_mac, 451 (const enet_addr_t *)net_dev->dev_addr); 452 if (err < 0) { 453 netif_err(priv, drv, net_dev, "mac_dev->change_addr() = %d\n", 454 err); 455 /* reverting to previous address */ 456 eth_mac_addr(net_dev, &old_addr); 457 458 return err; 459 } 460 461 return 0; 462 } 463 464 static void dpaa_set_rx_mode(struct net_device *net_dev) 465 { 466 const struct dpaa_priv *priv; 467 int err; 468 469 priv = netdev_priv(net_dev); 470 471 if (!!(net_dev->flags & IFF_PROMISC) != priv->mac_dev->promisc) { 472 priv->mac_dev->promisc = !priv->mac_dev->promisc; 473 err = priv->mac_dev->set_promisc(priv->mac_dev->fman_mac, 474 priv->mac_dev->promisc); 475 if (err < 0) 476 netif_err(priv, drv, net_dev, 477 "mac_dev->set_promisc() = %d\n", 478 err); 479 } 480 481 if (!!(net_dev->flags & IFF_ALLMULTI) != priv->mac_dev->allmulti) { 482 priv->mac_dev->allmulti = !priv->mac_dev->allmulti; 483 err = priv->mac_dev->set_allmulti(priv->mac_dev->fman_mac, 484 priv->mac_dev->allmulti); 485 if (err < 0) 486 netif_err(priv, drv, net_dev, 487 "mac_dev->set_allmulti() = %d\n", 488 err); 489 } 490 491 err = priv->mac_dev->set_multi(net_dev, priv->mac_dev); 492 if (err < 0) 493 netif_err(priv, drv, net_dev, "mac_dev->set_multi() = %d\n", 494 err); 495 } 496 497 static struct dpaa_bp *dpaa_bpid2pool(int bpid) 498 { 499 if (WARN_ON(bpid < 0 || bpid >= BM_MAX_NUM_OF_POOLS)) 500 return NULL; 501 502 return dpaa_bp_array[bpid]; 503 } 504 505 /* checks if this bpool is already allocated */ 506 static bool dpaa_bpid2pool_use(int bpid) 507 { 508 if (dpaa_bpid2pool(bpid)) { 509 refcount_inc(&dpaa_bp_array[bpid]->refs); 510 return true; 511 } 512 513 return false; 514 } 515 516 /* called only once per bpid by dpaa_bp_alloc_pool() */ 517 static void dpaa_bpid2pool_map(int bpid, struct dpaa_bp *dpaa_bp) 518 { 519 dpaa_bp_array[bpid] = dpaa_bp; 520 refcount_set(&dpaa_bp->refs, 1); 521 } 522 523 static int dpaa_bp_alloc_pool(struct dpaa_bp *dpaa_bp) 524 { 525 int err; 526 527 if (dpaa_bp->size == 0 || dpaa_bp->config_count == 0) { 528 pr_err("%s: Buffer pool is not properly initialized! Missing size or initial number of buffers\n", 529 __func__); 530 return -EINVAL; 531 } 532 533 /* If the pool is already specified, we only create one per bpid */ 534 if (dpaa_bp->bpid != FSL_DPAA_BPID_INV && 535 dpaa_bpid2pool_use(dpaa_bp->bpid)) 536 return 0; 537 538 if (dpaa_bp->bpid == FSL_DPAA_BPID_INV) { 539 dpaa_bp->pool = bman_new_pool(); 540 if (!dpaa_bp->pool) { 541 pr_err("%s: bman_new_pool() failed\n", 542 __func__); 543 return -ENODEV; 544 } 545 546 dpaa_bp->bpid = (u8)bman_get_bpid(dpaa_bp->pool); 547 } 548 549 if (dpaa_bp->seed_cb) { 550 err = dpaa_bp->seed_cb(dpaa_bp); 551 if (err) 552 goto pool_seed_failed; 553 } 554 555 dpaa_bpid2pool_map(dpaa_bp->bpid, dpaa_bp); 556 557 return 0; 558 559 pool_seed_failed: 560 pr_err("%s: pool seeding failed\n", __func__); 561 bman_free_pool(dpaa_bp->pool); 562 563 return err; 564 } 565 566 /* remove and free all the buffers from the given buffer pool */ 567 static void dpaa_bp_drain(struct dpaa_bp *bp) 568 { 569 u8 num = 8; 570 int ret; 571 572 do { 573 struct bm_buffer bmb[8]; 574 int i; 575 576 ret = bman_acquire(bp->pool, bmb, num); 577 if (ret < 0) { 578 if (num == 8) { 579 /* we have less than 8 buffers left; 580 * drain them one by one 581 */ 582 num = 1; 583 ret = 1; 584 continue; 585 } else { 586 /* Pool is fully drained */ 587 break; 588 } 589 } 590 591 if (bp->free_buf_cb) 592 for (i = 0; i < num; i++) 593 bp->free_buf_cb(bp, &bmb[i]); 594 } while (ret > 0); 595 } 596 597 static void dpaa_bp_free(struct dpaa_bp *dpaa_bp) 598 { 599 struct dpaa_bp *bp = dpaa_bpid2pool(dpaa_bp->bpid); 600 601 /* the mapping between bpid and dpaa_bp is done very late in the 602 * allocation procedure; if something failed before the mapping, the bp 603 * was not configured, therefore we don't need the below instructions 604 */ 605 if (!bp) 606 return; 607 608 if (!refcount_dec_and_test(&bp->refs)) 609 return; 610 611 if (bp->free_buf_cb) 612 dpaa_bp_drain(bp); 613 614 dpaa_bp_array[bp->bpid] = NULL; 615 bman_free_pool(bp->pool); 616 } 617 618 static void dpaa_bps_free(struct dpaa_priv *priv) 619 { 620 dpaa_bp_free(priv->dpaa_bp); 621 } 622 623 /* Use multiple WQs for FQ assignment: 624 * - Tx Confirmation queues go to WQ1. 625 * - Rx Error and Tx Error queues go to WQ5 (giving them a better chance 626 * to be scheduled, in case there are many more FQs in WQ6). 627 * - Rx Default goes to WQ6. 628 * - Tx queues go to different WQs depending on their priority. Equal 629 * chunks of NR_CPUS queues go to WQ6 (lowest priority), WQ2, WQ1 and 630 * WQ0 (highest priority). 631 * This ensures that Tx-confirmed buffers are timely released. In particular, 632 * it avoids congestion on the Tx Confirm FQs, which can pile up PFDRs if they 633 * are greatly outnumbered by other FQs in the system, while 634 * dequeue scheduling is round-robin. 635 */ 636 static inline void dpaa_assign_wq(struct dpaa_fq *fq, int idx) 637 { 638 switch (fq->fq_type) { 639 case FQ_TYPE_TX_CONFIRM: 640 case FQ_TYPE_TX_CONF_MQ: 641 fq->wq = 1; 642 break; 643 case FQ_TYPE_RX_ERROR: 644 case FQ_TYPE_TX_ERROR: 645 fq->wq = 5; 646 break; 647 case FQ_TYPE_RX_DEFAULT: 648 case FQ_TYPE_RX_PCD: 649 fq->wq = 6; 650 break; 651 case FQ_TYPE_TX: 652 switch (idx / DPAA_TC_TXQ_NUM) { 653 case 0: 654 /* Low priority (best effort) */ 655 fq->wq = 6; 656 break; 657 case 1: 658 /* Medium priority */ 659 fq->wq = 2; 660 break; 661 case 2: 662 /* High priority */ 663 fq->wq = 1; 664 break; 665 case 3: 666 /* Very high priority */ 667 fq->wq = 0; 668 break; 669 default: 670 WARN(1, "Too many TX FQs: more than %d!\n", 671 DPAA_ETH_TXQ_NUM); 672 } 673 break; 674 default: 675 WARN(1, "Invalid FQ type %d for FQID %d!\n", 676 fq->fq_type, fq->fqid); 677 } 678 } 679 680 static struct dpaa_fq *dpaa_fq_alloc(struct device *dev, 681 u32 start, u32 count, 682 struct list_head *list, 683 enum dpaa_fq_type fq_type) 684 { 685 struct dpaa_fq *dpaa_fq; 686 int i; 687 688 dpaa_fq = devm_kcalloc(dev, count, sizeof(*dpaa_fq), 689 GFP_KERNEL); 690 if (!dpaa_fq) 691 return NULL; 692 693 for (i = 0; i < count; i++) { 694 dpaa_fq[i].fq_type = fq_type; 695 dpaa_fq[i].fqid = start ? start + i : 0; 696 list_add_tail(&dpaa_fq[i].list, list); 697 } 698 699 for (i = 0; i < count; i++) 700 dpaa_assign_wq(dpaa_fq + i, i); 701 702 return dpaa_fq; 703 } 704 705 static int dpaa_alloc_all_fqs(struct device *dev, struct list_head *list, 706 struct fm_port_fqs *port_fqs) 707 { 708 struct dpaa_fq *dpaa_fq; 709 u32 fq_base, fq_base_aligned, i; 710 711 dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_RX_ERROR); 712 if (!dpaa_fq) 713 goto fq_alloc_failed; 714 715 port_fqs->rx_errq = &dpaa_fq[0]; 716 717 dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_RX_DEFAULT); 718 if (!dpaa_fq) 719 goto fq_alloc_failed; 720 721 port_fqs->rx_defq = &dpaa_fq[0]; 722 723 /* the PCD FQIDs range needs to be aligned for correct operation */ 724 if (qman_alloc_fqid_range(&fq_base, 2 * DPAA_ETH_PCD_RXQ_NUM)) 725 goto fq_alloc_failed; 726 727 fq_base_aligned = ALIGN(fq_base, DPAA_ETH_PCD_RXQ_NUM); 728 729 for (i = fq_base; i < fq_base_aligned; i++) 730 qman_release_fqid(i); 731 732 for (i = fq_base_aligned + DPAA_ETH_PCD_RXQ_NUM; 733 i < (fq_base + 2 * DPAA_ETH_PCD_RXQ_NUM); i++) 734 qman_release_fqid(i); 735 736 dpaa_fq = dpaa_fq_alloc(dev, fq_base_aligned, DPAA_ETH_PCD_RXQ_NUM, 737 list, FQ_TYPE_RX_PCD); 738 if (!dpaa_fq) 739 goto fq_alloc_failed; 740 741 port_fqs->rx_pcdq = &dpaa_fq[0]; 742 743 if (!dpaa_fq_alloc(dev, 0, DPAA_ETH_TXQ_NUM, list, FQ_TYPE_TX_CONF_MQ)) 744 goto fq_alloc_failed; 745 746 dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_TX_ERROR); 747 if (!dpaa_fq) 748 goto fq_alloc_failed; 749 750 port_fqs->tx_errq = &dpaa_fq[0]; 751 752 dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_TX_CONFIRM); 753 if (!dpaa_fq) 754 goto fq_alloc_failed; 755 756 port_fqs->tx_defq = &dpaa_fq[0]; 757 758 if (!dpaa_fq_alloc(dev, 0, DPAA_ETH_TXQ_NUM, list, FQ_TYPE_TX)) 759 goto fq_alloc_failed; 760 761 return 0; 762 763 fq_alloc_failed: 764 dev_err(dev, "dpaa_fq_alloc() failed\n"); 765 return -ENOMEM; 766 } 767 768 static u32 rx_pool_channel; 769 static DEFINE_SPINLOCK(rx_pool_channel_init); 770 771 static int dpaa_get_channel(void) 772 { 773 spin_lock(&rx_pool_channel_init); 774 if (!rx_pool_channel) { 775 u32 pool; 776 int ret; 777 778 ret = qman_alloc_pool(&pool); 779 780 if (!ret) 781 rx_pool_channel = pool; 782 } 783 spin_unlock(&rx_pool_channel_init); 784 if (!rx_pool_channel) 785 return -ENOMEM; 786 return rx_pool_channel; 787 } 788 789 static void dpaa_release_channel(void) 790 { 791 qman_release_pool(rx_pool_channel); 792 } 793 794 static void dpaa_eth_add_channel(u16 channel, struct device *dev) 795 { 796 u32 pool = QM_SDQCR_CHANNELS_POOL_CONV(channel); 797 const cpumask_t *cpus = qman_affine_cpus(); 798 struct qman_portal *portal; 799 int cpu; 800 801 for_each_cpu_and(cpu, cpus, cpu_online_mask) { 802 portal = qman_get_affine_portal(cpu); 803 qman_p_static_dequeue_add(portal, pool); 804 qman_start_using_portal(portal, dev); 805 } 806 } 807 808 /* Congestion group state change notification callback. 809 * Stops the device's egress queues while they are congested and 810 * wakes them upon exiting congested state. 811 * Also updates some CGR-related stats. 812 */ 813 static void dpaa_eth_cgscn(struct qman_portal *qm, struct qman_cgr *cgr, 814 int congested) 815 { 816 struct dpaa_priv *priv = (struct dpaa_priv *)container_of(cgr, 817 struct dpaa_priv, cgr_data.cgr); 818 819 if (congested) { 820 priv->cgr_data.congestion_start_jiffies = jiffies; 821 netif_tx_stop_all_queues(priv->net_dev); 822 priv->cgr_data.cgr_congested_count++; 823 } else { 824 priv->cgr_data.congested_jiffies += 825 (jiffies - priv->cgr_data.congestion_start_jiffies); 826 netif_tx_wake_all_queues(priv->net_dev); 827 } 828 } 829 830 static int dpaa_eth_cgr_init(struct dpaa_priv *priv) 831 { 832 struct qm_mcc_initcgr initcgr; 833 u32 cs_th; 834 int err; 835 836 err = qman_alloc_cgrid(&priv->cgr_data.cgr.cgrid); 837 if (err < 0) { 838 if (netif_msg_drv(priv)) 839 pr_err("%s: Error %d allocating CGR ID\n", 840 __func__, err); 841 goto out_error; 842 } 843 priv->cgr_data.cgr.cb = dpaa_eth_cgscn; 844 845 /* Enable Congestion State Change Notifications and CS taildrop */ 846 memset(&initcgr, 0, sizeof(initcgr)); 847 initcgr.we_mask = cpu_to_be16(QM_CGR_WE_CSCN_EN | QM_CGR_WE_CS_THRES); 848 initcgr.cgr.cscn_en = QM_CGR_EN; 849 850 /* Set different thresholds based on the configured MAC speed. 851 * This may turn suboptimal if the MAC is reconfigured at another 852 * speed, so MACs must call dpaa_eth_cgr_set_speed in their link_up 853 * callback. 854 */ 855 if (priv->mac_dev->phylink_config.mac_capabilities & MAC_10000FD) 856 cs_th = DPAA_CS_THRESHOLD_10G; 857 else 858 cs_th = DPAA_CS_THRESHOLD_1G; 859 qm_cgr_cs_thres_set64(&initcgr.cgr.cs_thres, cs_th, 1); 860 861 initcgr.we_mask |= cpu_to_be16(QM_CGR_WE_CSTD_EN); 862 initcgr.cgr.cstd_en = QM_CGR_EN; 863 864 err = qman_create_cgr(&priv->cgr_data.cgr, QMAN_CGR_FLAG_USE_INIT, 865 &initcgr); 866 if (err < 0) { 867 if (netif_msg_drv(priv)) 868 pr_err("%s: Error %d creating CGR with ID %d\n", 869 __func__, err, priv->cgr_data.cgr.cgrid); 870 qman_release_cgrid(priv->cgr_data.cgr.cgrid); 871 goto out_error; 872 } 873 if (netif_msg_drv(priv)) 874 pr_debug("Created CGR %d for netdev with hwaddr %pM on QMan channel %d\n", 875 priv->cgr_data.cgr.cgrid, priv->mac_dev->addr, 876 priv->cgr_data.cgr.chan); 877 878 out_error: 879 return err; 880 } 881 882 static void dpaa_eth_cgr_set_speed(struct mac_device *mac_dev, int speed) 883 { 884 struct net_device *net_dev = to_net_dev(mac_dev->phylink_config.dev); 885 struct dpaa_priv *priv = netdev_priv(net_dev); 886 struct qm_mcc_initcgr opts = { }; 887 u32 cs_th; 888 int err; 889 890 opts.we_mask = cpu_to_be16(QM_CGR_WE_CS_THRES); 891 switch (speed) { 892 case SPEED_10000: 893 cs_th = DPAA_CS_THRESHOLD_10G; 894 break; 895 case SPEED_1000: 896 default: 897 cs_th = DPAA_CS_THRESHOLD_1G; 898 break; 899 } 900 qm_cgr_cs_thres_set64(&opts.cgr.cs_thres, cs_th, 1); 901 902 err = qman_update_cgr_safe(&priv->cgr_data.cgr, &opts); 903 if (err) 904 netdev_err(net_dev, "could not update speed: %d\n", err); 905 } 906 907 static inline void dpaa_setup_ingress(const struct dpaa_priv *priv, 908 struct dpaa_fq *fq, 909 const struct qman_fq *template) 910 { 911 fq->fq_base = *template; 912 fq->net_dev = priv->net_dev; 913 914 fq->flags = QMAN_FQ_FLAG_NO_ENQUEUE; 915 fq->channel = priv->channel; 916 } 917 918 static inline void dpaa_setup_egress(const struct dpaa_priv *priv, 919 struct dpaa_fq *fq, 920 struct fman_port *port, 921 const struct qman_fq *template) 922 { 923 fq->fq_base = *template; 924 fq->net_dev = priv->net_dev; 925 926 if (port) { 927 fq->flags = QMAN_FQ_FLAG_TO_DCPORTAL; 928 fq->channel = (u16)fman_port_get_qman_channel_id(port); 929 } else { 930 fq->flags = QMAN_FQ_FLAG_NO_MODIFY; 931 } 932 } 933 934 static void dpaa_fq_setup(struct dpaa_priv *priv, 935 const struct dpaa_fq_cbs *fq_cbs, 936 struct fman_port *tx_port) 937 { 938 int egress_cnt = 0, conf_cnt = 0, num_portals = 0, portal_cnt = 0, cpu; 939 const cpumask_t *affine_cpus = qman_affine_cpus(); 940 u16 channels[NR_CPUS]; 941 struct dpaa_fq *fq; 942 943 for_each_cpu_and(cpu, affine_cpus, cpu_online_mask) 944 channels[num_portals++] = qman_affine_channel(cpu); 945 946 if (num_portals == 0) 947 dev_err(priv->net_dev->dev.parent, 948 "No Qman software (affine) channels found\n"); 949 950 /* Initialize each FQ in the list */ 951 list_for_each_entry(fq, &priv->dpaa_fq_list, list) { 952 switch (fq->fq_type) { 953 case FQ_TYPE_RX_DEFAULT: 954 dpaa_setup_ingress(priv, fq, &fq_cbs->rx_defq); 955 break; 956 case FQ_TYPE_RX_ERROR: 957 dpaa_setup_ingress(priv, fq, &fq_cbs->rx_errq); 958 break; 959 case FQ_TYPE_RX_PCD: 960 if (!num_portals) 961 continue; 962 dpaa_setup_ingress(priv, fq, &fq_cbs->rx_defq); 963 fq->channel = channels[portal_cnt++ % num_portals]; 964 break; 965 case FQ_TYPE_TX: 966 dpaa_setup_egress(priv, fq, tx_port, 967 &fq_cbs->egress_ern); 968 /* If we have more Tx queues than the number of cores, 969 * just ignore the extra ones. 970 */ 971 if (egress_cnt < DPAA_ETH_TXQ_NUM) 972 priv->egress_fqs[egress_cnt++] = &fq->fq_base; 973 break; 974 case FQ_TYPE_TX_CONF_MQ: 975 priv->conf_fqs[conf_cnt++] = &fq->fq_base; 976 fallthrough; 977 case FQ_TYPE_TX_CONFIRM: 978 dpaa_setup_ingress(priv, fq, &fq_cbs->tx_defq); 979 break; 980 case FQ_TYPE_TX_ERROR: 981 dpaa_setup_ingress(priv, fq, &fq_cbs->tx_errq); 982 break; 983 default: 984 dev_warn(priv->net_dev->dev.parent, 985 "Unknown FQ type detected!\n"); 986 break; 987 } 988 } 989 990 /* Make sure all CPUs receive a corresponding Tx queue. */ 991 while (egress_cnt < DPAA_ETH_TXQ_NUM) { 992 list_for_each_entry(fq, &priv->dpaa_fq_list, list) { 993 if (fq->fq_type != FQ_TYPE_TX) 994 continue; 995 priv->egress_fqs[egress_cnt++] = &fq->fq_base; 996 if (egress_cnt == DPAA_ETH_TXQ_NUM) 997 break; 998 } 999 } 1000 } 1001 1002 static inline int dpaa_tx_fq_to_id(const struct dpaa_priv *priv, 1003 struct qman_fq *tx_fq) 1004 { 1005 int i; 1006 1007 for (i = 0; i < DPAA_ETH_TXQ_NUM; i++) 1008 if (priv->egress_fqs[i] == tx_fq) 1009 return i; 1010 1011 return -EINVAL; 1012 } 1013 1014 static int dpaa_fq_init(struct dpaa_fq *dpaa_fq, bool td_enable) 1015 { 1016 const struct dpaa_priv *priv; 1017 struct qman_fq *confq = NULL; 1018 struct qm_mcc_initfq initfq; 1019 struct device *dev; 1020 struct qman_fq *fq; 1021 int queue_id; 1022 int err; 1023 1024 priv = netdev_priv(dpaa_fq->net_dev); 1025 dev = dpaa_fq->net_dev->dev.parent; 1026 1027 if (dpaa_fq->fqid == 0) 1028 dpaa_fq->flags |= QMAN_FQ_FLAG_DYNAMIC_FQID; 1029 1030 dpaa_fq->init = !(dpaa_fq->flags & QMAN_FQ_FLAG_NO_MODIFY); 1031 1032 err = qman_create_fq(dpaa_fq->fqid, dpaa_fq->flags, &dpaa_fq->fq_base); 1033 if (err) { 1034 dev_err(dev, "qman_create_fq() failed\n"); 1035 return err; 1036 } 1037 fq = &dpaa_fq->fq_base; 1038 1039 if (dpaa_fq->init) { 1040 memset(&initfq, 0, sizeof(initfq)); 1041 1042 initfq.we_mask = cpu_to_be16(QM_INITFQ_WE_FQCTRL); 1043 /* Note: we may get to keep an empty FQ in cache */ 1044 initfq.fqd.fq_ctrl = cpu_to_be16(QM_FQCTRL_PREFERINCACHE); 1045 1046 /* Try to reduce the number of portal interrupts for 1047 * Tx Confirmation FQs. 1048 */ 1049 if (dpaa_fq->fq_type == FQ_TYPE_TX_CONFIRM) 1050 initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_AVOIDBLOCK); 1051 1052 /* FQ placement */ 1053 initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_DESTWQ); 1054 1055 qm_fqd_set_destwq(&initfq.fqd, dpaa_fq->channel, dpaa_fq->wq); 1056 1057 /* Put all egress queues in a congestion group of their own. 1058 * Sensu stricto, the Tx confirmation queues are Rx FQs, 1059 * rather than Tx - but they nonetheless account for the 1060 * memory footprint on behalf of egress traffic. We therefore 1061 * place them in the netdev's CGR, along with the Tx FQs. 1062 */ 1063 if (dpaa_fq->fq_type == FQ_TYPE_TX || 1064 dpaa_fq->fq_type == FQ_TYPE_TX_CONFIRM || 1065 dpaa_fq->fq_type == FQ_TYPE_TX_CONF_MQ) { 1066 initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_CGID); 1067 initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_CGE); 1068 initfq.fqd.cgid = (u8)priv->cgr_data.cgr.cgrid; 1069 /* Set a fixed overhead accounting, in an attempt to 1070 * reduce the impact of fixed-size skb shells and the 1071 * driver's needed headroom on system memory. This is 1072 * especially the case when the egress traffic is 1073 * composed of small datagrams. 1074 * Unfortunately, QMan's OAL value is capped to an 1075 * insufficient value, but even that is better than 1076 * no overhead accounting at all. 1077 */ 1078 initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_OAC); 1079 qm_fqd_set_oac(&initfq.fqd, QM_OAC_CG); 1080 qm_fqd_set_oal(&initfq.fqd, 1081 min(sizeof(struct sk_buff) + 1082 priv->tx_headroom, 1083 (size_t)FSL_QMAN_MAX_OAL)); 1084 } 1085 1086 if (td_enable) { 1087 initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_TDTHRESH); 1088 qm_fqd_set_taildrop(&initfq.fqd, DPAA_FQ_TD, 1); 1089 initfq.fqd.fq_ctrl = cpu_to_be16(QM_FQCTRL_TDE); 1090 } 1091 1092 if (dpaa_fq->fq_type == FQ_TYPE_TX) { 1093 queue_id = dpaa_tx_fq_to_id(priv, &dpaa_fq->fq_base); 1094 if (queue_id >= 0) 1095 confq = priv->conf_fqs[queue_id]; 1096 if (confq) { 1097 initfq.we_mask |= 1098 cpu_to_be16(QM_INITFQ_WE_CONTEXTA); 1099 /* ContextA: OVOM=1(use contextA2 bits instead of ICAD) 1100 * A2V=1 (contextA A2 field is valid) 1101 * A0V=1 (contextA A0 field is valid) 1102 * B0V=1 (contextB field is valid) 1103 * ContextA A2: EBD=1 (deallocate buffers inside FMan) 1104 * ContextB B0(ASPID): 0 (absolute Virtual Storage ID) 1105 */ 1106 qm_fqd_context_a_set64(&initfq.fqd, 1107 0x1e00000080000000ULL); 1108 } 1109 } 1110 1111 /* Put all the ingress queues in our "ingress CGR". */ 1112 if (priv->use_ingress_cgr && 1113 (dpaa_fq->fq_type == FQ_TYPE_RX_DEFAULT || 1114 dpaa_fq->fq_type == FQ_TYPE_RX_ERROR || 1115 dpaa_fq->fq_type == FQ_TYPE_RX_PCD)) { 1116 initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_CGID); 1117 initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_CGE); 1118 initfq.fqd.cgid = (u8)priv->ingress_cgr.cgrid; 1119 /* Set a fixed overhead accounting, just like for the 1120 * egress CGR. 1121 */ 1122 initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_OAC); 1123 qm_fqd_set_oac(&initfq.fqd, QM_OAC_CG); 1124 qm_fqd_set_oal(&initfq.fqd, 1125 min(sizeof(struct sk_buff) + 1126 priv->tx_headroom, 1127 (size_t)FSL_QMAN_MAX_OAL)); 1128 } 1129 1130 /* Initialization common to all ingress queues */ 1131 if (dpaa_fq->flags & QMAN_FQ_FLAG_NO_ENQUEUE) { 1132 initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_CONTEXTA); 1133 initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_HOLDACTIVE | 1134 QM_FQCTRL_CTXASTASHING); 1135 initfq.fqd.context_a.stashing.exclusive = 1136 QM_STASHING_EXCL_DATA | QM_STASHING_EXCL_CTX | 1137 QM_STASHING_EXCL_ANNOTATION; 1138 qm_fqd_set_stashing(&initfq.fqd, 1, 2, 1139 DIV_ROUND_UP(sizeof(struct qman_fq), 1140 64)); 1141 } 1142 1143 err = qman_init_fq(fq, QMAN_INITFQ_FLAG_SCHED, &initfq); 1144 if (err < 0) { 1145 dev_err(dev, "qman_init_fq(%u) = %d\n", 1146 qman_fq_fqid(fq), err); 1147 qman_destroy_fq(fq); 1148 return err; 1149 } 1150 } 1151 1152 dpaa_fq->fqid = qman_fq_fqid(fq); 1153 1154 if (dpaa_fq->fq_type == FQ_TYPE_RX_DEFAULT || 1155 dpaa_fq->fq_type == FQ_TYPE_RX_PCD) { 1156 err = xdp_rxq_info_reg(&dpaa_fq->xdp_rxq, dpaa_fq->net_dev, 1157 dpaa_fq->fqid, 0); 1158 if (err) { 1159 dev_err(dev, "xdp_rxq_info_reg() = %d\n", err); 1160 return err; 1161 } 1162 1163 err = xdp_rxq_info_reg_mem_model(&dpaa_fq->xdp_rxq, 1164 MEM_TYPE_PAGE_ORDER0, NULL); 1165 if (err) { 1166 dev_err(dev, "xdp_rxq_info_reg_mem_model() = %d\n", 1167 err); 1168 xdp_rxq_info_unreg(&dpaa_fq->xdp_rxq); 1169 return err; 1170 } 1171 } 1172 1173 return 0; 1174 } 1175 1176 static int dpaa_fq_free_entry(struct device *dev, struct qman_fq *fq) 1177 { 1178 const struct dpaa_priv *priv; 1179 struct dpaa_fq *dpaa_fq; 1180 int err, error; 1181 1182 err = 0; 1183 1184 dpaa_fq = container_of(fq, struct dpaa_fq, fq_base); 1185 priv = netdev_priv(dpaa_fq->net_dev); 1186 1187 if (dpaa_fq->init) { 1188 err = qman_retire_fq(fq, NULL); 1189 if (err < 0 && netif_msg_drv(priv)) 1190 dev_err(dev, "qman_retire_fq(%u) = %d\n", 1191 qman_fq_fqid(fq), err); 1192 1193 error = qman_oos_fq(fq); 1194 if (error < 0 && netif_msg_drv(priv)) { 1195 dev_err(dev, "qman_oos_fq(%u) = %d\n", 1196 qman_fq_fqid(fq), error); 1197 if (err >= 0) 1198 err = error; 1199 } 1200 } 1201 1202 if ((dpaa_fq->fq_type == FQ_TYPE_RX_DEFAULT || 1203 dpaa_fq->fq_type == FQ_TYPE_RX_PCD) && 1204 xdp_rxq_info_is_reg(&dpaa_fq->xdp_rxq)) 1205 xdp_rxq_info_unreg(&dpaa_fq->xdp_rxq); 1206 1207 qman_destroy_fq(fq); 1208 list_del(&dpaa_fq->list); 1209 1210 return err; 1211 } 1212 1213 static int dpaa_fq_free(struct device *dev, struct list_head *list) 1214 { 1215 struct dpaa_fq *dpaa_fq, *tmp; 1216 int err, error; 1217 1218 err = 0; 1219 list_for_each_entry_safe(dpaa_fq, tmp, list, list) { 1220 error = dpaa_fq_free_entry(dev, (struct qman_fq *)dpaa_fq); 1221 if (error < 0 && err >= 0) 1222 err = error; 1223 } 1224 1225 return err; 1226 } 1227 1228 static int dpaa_eth_init_tx_port(struct fman_port *port, struct dpaa_fq *errq, 1229 struct dpaa_fq *defq, 1230 struct dpaa_buffer_layout *buf_layout) 1231 { 1232 struct fman_buffer_prefix_content buf_prefix_content; 1233 struct fman_port_params params; 1234 int err; 1235 1236 memset(¶ms, 0, sizeof(params)); 1237 memset(&buf_prefix_content, 0, sizeof(buf_prefix_content)); 1238 1239 buf_prefix_content.priv_data_size = buf_layout->priv_data_size; 1240 buf_prefix_content.pass_prs_result = true; 1241 buf_prefix_content.pass_hash_result = true; 1242 buf_prefix_content.pass_time_stamp = true; 1243 buf_prefix_content.data_align = DPAA_FD_DATA_ALIGNMENT; 1244 1245 params.specific_params.non_rx_params.err_fqid = errq->fqid; 1246 params.specific_params.non_rx_params.dflt_fqid = defq->fqid; 1247 1248 err = fman_port_config(port, ¶ms); 1249 if (err) { 1250 pr_err("%s: fman_port_config failed\n", __func__); 1251 return err; 1252 } 1253 1254 err = fman_port_cfg_buf_prefix_content(port, &buf_prefix_content); 1255 if (err) { 1256 pr_err("%s: fman_port_cfg_buf_prefix_content failed\n", 1257 __func__); 1258 return err; 1259 } 1260 1261 err = fman_port_init(port); 1262 if (err) 1263 pr_err("%s: fm_port_init failed\n", __func__); 1264 1265 return err; 1266 } 1267 1268 static int dpaa_eth_init_rx_port(struct fman_port *port, struct dpaa_bp *bp, 1269 struct dpaa_fq *errq, 1270 struct dpaa_fq *defq, struct dpaa_fq *pcdq, 1271 struct dpaa_buffer_layout *buf_layout) 1272 { 1273 struct fman_buffer_prefix_content buf_prefix_content; 1274 struct fman_port_rx_params *rx_p; 1275 struct fman_port_params params; 1276 int err; 1277 1278 memset(¶ms, 0, sizeof(params)); 1279 memset(&buf_prefix_content, 0, sizeof(buf_prefix_content)); 1280 1281 buf_prefix_content.priv_data_size = buf_layout->priv_data_size; 1282 buf_prefix_content.pass_prs_result = true; 1283 buf_prefix_content.pass_hash_result = true; 1284 buf_prefix_content.pass_time_stamp = true; 1285 buf_prefix_content.data_align = DPAA_FD_RX_DATA_ALIGNMENT; 1286 1287 rx_p = ¶ms.specific_params.rx_params; 1288 rx_p->err_fqid = errq->fqid; 1289 rx_p->dflt_fqid = defq->fqid; 1290 if (pcdq) { 1291 rx_p->pcd_base_fqid = pcdq->fqid; 1292 rx_p->pcd_fqs_count = DPAA_ETH_PCD_RXQ_NUM; 1293 } 1294 1295 rx_p->ext_buf_pools.num_of_pools_used = 1; 1296 rx_p->ext_buf_pools.ext_buf_pool[0].id = bp->bpid; 1297 rx_p->ext_buf_pools.ext_buf_pool[0].size = (u16)bp->size; 1298 1299 err = fman_port_config(port, ¶ms); 1300 if (err) { 1301 pr_err("%s: fman_port_config failed\n", __func__); 1302 return err; 1303 } 1304 1305 err = fman_port_cfg_buf_prefix_content(port, &buf_prefix_content); 1306 if (err) { 1307 pr_err("%s: fman_port_cfg_buf_prefix_content failed\n", 1308 __func__); 1309 return err; 1310 } 1311 1312 err = fman_port_init(port); 1313 if (err) 1314 pr_err("%s: fm_port_init failed\n", __func__); 1315 1316 return err; 1317 } 1318 1319 static int dpaa_eth_init_ports(struct mac_device *mac_dev, 1320 struct dpaa_bp *bp, 1321 struct fm_port_fqs *port_fqs, 1322 struct dpaa_buffer_layout *buf_layout, 1323 struct device *dev) 1324 { 1325 struct fman_port *rxport = mac_dev->port[RX]; 1326 struct fman_port *txport = mac_dev->port[TX]; 1327 int err; 1328 1329 err = dpaa_eth_init_tx_port(txport, port_fqs->tx_errq, 1330 port_fqs->tx_defq, &buf_layout[TX]); 1331 if (err) 1332 return err; 1333 1334 err = dpaa_eth_init_rx_port(rxport, bp, port_fqs->rx_errq, 1335 port_fqs->rx_defq, port_fqs->rx_pcdq, 1336 &buf_layout[RX]); 1337 1338 return err; 1339 } 1340 1341 static int dpaa_bman_release(const struct dpaa_bp *dpaa_bp, 1342 struct bm_buffer *bmb, int cnt) 1343 { 1344 int err; 1345 1346 err = bman_release(dpaa_bp->pool, bmb, cnt); 1347 /* Should never occur, address anyway to avoid leaking the buffers */ 1348 if (WARN_ON(err) && dpaa_bp->free_buf_cb) 1349 while (cnt-- > 0) 1350 dpaa_bp->free_buf_cb(dpaa_bp, &bmb[cnt]); 1351 1352 return cnt; 1353 } 1354 1355 static void dpaa_release_sgt_members(struct qm_sg_entry *sgt) 1356 { 1357 struct bm_buffer bmb[DPAA_BUFF_RELEASE_MAX]; 1358 struct dpaa_bp *dpaa_bp; 1359 int i = 0, j; 1360 1361 memset(bmb, 0, sizeof(bmb)); 1362 1363 do { 1364 dpaa_bp = dpaa_bpid2pool(sgt[i].bpid); 1365 if (!dpaa_bp) 1366 return; 1367 1368 j = 0; 1369 do { 1370 WARN_ON(qm_sg_entry_is_ext(&sgt[i])); 1371 1372 bm_buffer_set64(&bmb[j], qm_sg_entry_get64(&sgt[i])); 1373 1374 j++; i++; 1375 } while (j < ARRAY_SIZE(bmb) && 1376 !qm_sg_entry_is_final(&sgt[i - 1]) && 1377 sgt[i - 1].bpid == sgt[i].bpid); 1378 1379 dpaa_bman_release(dpaa_bp, bmb, j); 1380 } while (!qm_sg_entry_is_final(&sgt[i - 1])); 1381 } 1382 1383 static void dpaa_fd_release(const struct net_device *net_dev, 1384 const struct qm_fd *fd) 1385 { 1386 struct qm_sg_entry *sgt; 1387 struct dpaa_bp *dpaa_bp; 1388 struct bm_buffer bmb; 1389 dma_addr_t addr; 1390 void *vaddr; 1391 1392 bmb.data = 0; 1393 bm_buffer_set64(&bmb, qm_fd_addr(fd)); 1394 1395 dpaa_bp = dpaa_bpid2pool(fd->bpid); 1396 if (!dpaa_bp) 1397 return; 1398 1399 if (qm_fd_get_format(fd) == qm_fd_sg) { 1400 vaddr = phys_to_virt(qm_fd_addr(fd)); 1401 sgt = vaddr + qm_fd_get_offset(fd); 1402 1403 dma_unmap_page(dpaa_bp->priv->rx_dma_dev, qm_fd_addr(fd), 1404 DPAA_BP_RAW_SIZE, DMA_FROM_DEVICE); 1405 1406 dpaa_release_sgt_members(sgt); 1407 1408 addr = dma_map_page(dpaa_bp->priv->rx_dma_dev, 1409 virt_to_page(vaddr), 0, DPAA_BP_RAW_SIZE, 1410 DMA_FROM_DEVICE); 1411 if (dma_mapping_error(dpaa_bp->priv->rx_dma_dev, addr)) { 1412 netdev_err(net_dev, "DMA mapping failed\n"); 1413 return; 1414 } 1415 bm_buffer_set64(&bmb, addr); 1416 } 1417 1418 dpaa_bman_release(dpaa_bp, &bmb, 1); 1419 } 1420 1421 static void count_ern(struct dpaa_percpu_priv *percpu_priv, 1422 const union qm_mr_entry *msg) 1423 { 1424 switch (msg->ern.rc & QM_MR_RC_MASK) { 1425 case QM_MR_RC_CGR_TAILDROP: 1426 percpu_priv->ern_cnt.cg_tdrop++; 1427 break; 1428 case QM_MR_RC_WRED: 1429 percpu_priv->ern_cnt.wred++; 1430 break; 1431 case QM_MR_RC_ERROR: 1432 percpu_priv->ern_cnt.err_cond++; 1433 break; 1434 case QM_MR_RC_ORPWINDOW_EARLY: 1435 percpu_priv->ern_cnt.early_window++; 1436 break; 1437 case QM_MR_RC_ORPWINDOW_LATE: 1438 percpu_priv->ern_cnt.late_window++; 1439 break; 1440 case QM_MR_RC_FQ_TAILDROP: 1441 percpu_priv->ern_cnt.fq_tdrop++; 1442 break; 1443 case QM_MR_RC_ORPWINDOW_RETIRED: 1444 percpu_priv->ern_cnt.fq_retired++; 1445 break; 1446 case QM_MR_RC_ORP_ZERO: 1447 percpu_priv->ern_cnt.orp_zero++; 1448 break; 1449 } 1450 } 1451 1452 /* Turn on HW checksum computation for this outgoing frame. 1453 * If the current protocol is not something we support in this regard 1454 * (or if the stack has already computed the SW checksum), we do nothing. 1455 * 1456 * Returns 0 if all goes well (or HW csum doesn't apply), and a negative value 1457 * otherwise. 1458 * 1459 * Note that this function may modify the fd->cmd field and the skb data buffer 1460 * (the Parse Results area). 1461 */ 1462 static int dpaa_enable_tx_csum(struct dpaa_priv *priv, 1463 struct sk_buff *skb, 1464 struct qm_fd *fd, 1465 void *parse_results) 1466 { 1467 struct fman_prs_result *parse_result; 1468 u16 ethertype = ntohs(skb->protocol); 1469 struct ipv6hdr *ipv6h = NULL; 1470 struct iphdr *iph; 1471 int retval = 0; 1472 u8 l4_proto; 1473 1474 if (skb->ip_summed != CHECKSUM_PARTIAL) 1475 return 0; 1476 1477 /* Note: L3 csum seems to be already computed in sw, but we can't choose 1478 * L4 alone from the FM configuration anyway. 1479 */ 1480 1481 /* Fill in some fields of the Parse Results array, so the FMan 1482 * can find them as if they came from the FMan Parser. 1483 */ 1484 parse_result = (struct fman_prs_result *)parse_results; 1485 1486 /* If we're dealing with VLAN, get the real Ethernet type */ 1487 if (ethertype == ETH_P_8021Q) 1488 ethertype = ntohs(skb_vlan_eth_hdr(skb)->h_vlan_encapsulated_proto); 1489 1490 /* Fill in the relevant L3 parse result fields 1491 * and read the L4 protocol type 1492 */ 1493 switch (ethertype) { 1494 case ETH_P_IP: 1495 parse_result->l3r = cpu_to_be16(FM_L3_PARSE_RESULT_IPV4); 1496 iph = ip_hdr(skb); 1497 WARN_ON(!iph); 1498 l4_proto = iph->protocol; 1499 break; 1500 case ETH_P_IPV6: 1501 parse_result->l3r = cpu_to_be16(FM_L3_PARSE_RESULT_IPV6); 1502 ipv6h = ipv6_hdr(skb); 1503 WARN_ON(!ipv6h); 1504 l4_proto = ipv6h->nexthdr; 1505 break; 1506 default: 1507 /* We shouldn't even be here */ 1508 if (net_ratelimit()) 1509 netif_alert(priv, tx_err, priv->net_dev, 1510 "Can't compute HW csum for L3 proto 0x%x\n", 1511 ntohs(skb->protocol)); 1512 retval = -EIO; 1513 goto return_error; 1514 } 1515 1516 /* Fill in the relevant L4 parse result fields */ 1517 switch (l4_proto) { 1518 case IPPROTO_UDP: 1519 parse_result->l4r = FM_L4_PARSE_RESULT_UDP; 1520 break; 1521 case IPPROTO_TCP: 1522 parse_result->l4r = FM_L4_PARSE_RESULT_TCP; 1523 break; 1524 default: 1525 if (net_ratelimit()) 1526 netif_alert(priv, tx_err, priv->net_dev, 1527 "Can't compute HW csum for L4 proto 0x%x\n", 1528 l4_proto); 1529 retval = -EIO; 1530 goto return_error; 1531 } 1532 1533 /* At index 0 is IPOffset_1 as defined in the Parse Results */ 1534 parse_result->ip_off[0] = (u8)skb_network_offset(skb); 1535 parse_result->l4_off = (u8)skb_transport_offset(skb); 1536 1537 /* Enable L3 (and L4, if TCP or UDP) HW checksum. */ 1538 fd->cmd |= cpu_to_be32(FM_FD_CMD_RPD | FM_FD_CMD_DTC); 1539 1540 /* On P1023 and similar platforms fd->cmd interpretation could 1541 * be disabled by setting CONTEXT_A bit ICMD; currently this bit 1542 * is not set so we do not need to check; in the future, if/when 1543 * using context_a we need to check this bit 1544 */ 1545 1546 return_error: 1547 return retval; 1548 } 1549 1550 static int dpaa_bp_add_8_bufs(const struct dpaa_bp *dpaa_bp) 1551 { 1552 struct net_device *net_dev = dpaa_bp->priv->net_dev; 1553 struct bm_buffer bmb[8]; 1554 dma_addr_t addr; 1555 struct page *p; 1556 u8 i; 1557 1558 for (i = 0; i < 8; i++) { 1559 p = dev_alloc_pages(0); 1560 if (unlikely(!p)) { 1561 netdev_err(net_dev, "dev_alloc_pages() failed\n"); 1562 goto release_previous_buffs; 1563 } 1564 1565 addr = dma_map_page(dpaa_bp->priv->rx_dma_dev, p, 0, 1566 DPAA_BP_RAW_SIZE, DMA_FROM_DEVICE); 1567 if (unlikely(dma_mapping_error(dpaa_bp->priv->rx_dma_dev, 1568 addr))) { 1569 netdev_err(net_dev, "DMA map failed\n"); 1570 goto release_previous_buffs; 1571 } 1572 1573 bmb[i].data = 0; 1574 bm_buffer_set64(&bmb[i], addr); 1575 } 1576 1577 release_bufs: 1578 return dpaa_bman_release(dpaa_bp, bmb, i); 1579 1580 release_previous_buffs: 1581 WARN_ONCE(1, "dpaa_eth: failed to add buffers on Rx\n"); 1582 1583 bm_buffer_set64(&bmb[i], 0); 1584 /* Avoid releasing a completely null buffer; bman_release() requires 1585 * at least one buffer. 1586 */ 1587 if (likely(i)) 1588 goto release_bufs; 1589 1590 return 0; 1591 } 1592 1593 static int dpaa_bp_seed(struct dpaa_bp *dpaa_bp) 1594 { 1595 int i; 1596 1597 /* Give each CPU an allotment of "config_count" buffers */ 1598 for_each_possible_cpu(i) { 1599 int *count_ptr = per_cpu_ptr(dpaa_bp->percpu_count, i); 1600 int j; 1601 1602 /* Although we access another CPU's counters here 1603 * we do it at boot time so it is safe 1604 */ 1605 for (j = 0; j < dpaa_bp->config_count; j += 8) 1606 *count_ptr += dpaa_bp_add_8_bufs(dpaa_bp); 1607 } 1608 return 0; 1609 } 1610 1611 /* Add buffers/(pages) for Rx processing whenever bpool count falls below 1612 * REFILL_THRESHOLD. 1613 */ 1614 static int dpaa_eth_refill_bpool(struct dpaa_bp *dpaa_bp, int *countptr) 1615 { 1616 int count = *countptr; 1617 int new_bufs; 1618 1619 if (unlikely(count < FSL_DPAA_ETH_REFILL_THRESHOLD)) { 1620 do { 1621 new_bufs = dpaa_bp_add_8_bufs(dpaa_bp); 1622 if (unlikely(!new_bufs)) { 1623 /* Avoid looping forever if we've temporarily 1624 * run out of memory. We'll try again at the 1625 * next NAPI cycle. 1626 */ 1627 break; 1628 } 1629 count += new_bufs; 1630 } while (count < FSL_DPAA_ETH_MAX_BUF_COUNT); 1631 1632 *countptr = count; 1633 if (unlikely(count < FSL_DPAA_ETH_MAX_BUF_COUNT)) 1634 return -ENOMEM; 1635 } 1636 1637 return 0; 1638 } 1639 1640 static int dpaa_eth_refill_bpools(struct dpaa_priv *priv) 1641 { 1642 struct dpaa_bp *dpaa_bp; 1643 int *countptr; 1644 1645 dpaa_bp = priv->dpaa_bp; 1646 if (!dpaa_bp) 1647 return -EINVAL; 1648 countptr = this_cpu_ptr(dpaa_bp->percpu_count); 1649 1650 return dpaa_eth_refill_bpool(dpaa_bp, countptr); 1651 } 1652 1653 /* Cleanup function for outgoing frame descriptors that were built on Tx path, 1654 * either contiguous frames or scatter/gather ones. 1655 * Skb freeing is not handled here. 1656 * 1657 * This function may be called on error paths in the Tx function, so guard 1658 * against cases when not all fd relevant fields were filled in. To avoid 1659 * reading the invalid transmission timestamp for the error paths set ts to 1660 * false. 1661 * 1662 * Return the skb backpointer, since for S/G frames the buffer containing it 1663 * gets freed here. 1664 * 1665 * No skb backpointer is set when transmitting XDP frames. Cleanup the buffer 1666 * and return NULL in this case. 1667 */ 1668 static struct sk_buff *dpaa_cleanup_tx_fd(const struct dpaa_priv *priv, 1669 const struct qm_fd *fd, bool ts) 1670 { 1671 const enum dma_data_direction dma_dir = DMA_TO_DEVICE; 1672 struct device *dev = priv->net_dev->dev.parent; 1673 struct skb_shared_hwtstamps shhwtstamps; 1674 dma_addr_t addr = qm_fd_addr(fd); 1675 void *vaddr = phys_to_virt(addr); 1676 const struct qm_sg_entry *sgt; 1677 struct dpaa_eth_swbp *swbp; 1678 struct sk_buff *skb; 1679 u64 ns; 1680 int i; 1681 1682 if (unlikely(qm_fd_get_format(fd) == qm_fd_sg)) { 1683 dma_unmap_page(priv->tx_dma_dev, addr, 1684 qm_fd_get_offset(fd) + DPAA_SGT_SIZE, 1685 dma_dir); 1686 1687 /* The sgt buffer has been allocated with netdev_alloc_frag(), 1688 * it's from lowmem. 1689 */ 1690 sgt = vaddr + qm_fd_get_offset(fd); 1691 1692 /* sgt[0] is from lowmem, was dma_map_single()-ed */ 1693 dma_unmap_single(priv->tx_dma_dev, qm_sg_addr(&sgt[0]), 1694 qm_sg_entry_get_len(&sgt[0]), dma_dir); 1695 1696 /* remaining pages were mapped with skb_frag_dma_map() */ 1697 for (i = 1; (i < DPAA_SGT_MAX_ENTRIES) && 1698 !qm_sg_entry_is_final(&sgt[i - 1]); i++) { 1699 WARN_ON(qm_sg_entry_is_ext(&sgt[i])); 1700 1701 dma_unmap_page(priv->tx_dma_dev, qm_sg_addr(&sgt[i]), 1702 qm_sg_entry_get_len(&sgt[i]), dma_dir); 1703 } 1704 } else { 1705 dma_unmap_single(priv->tx_dma_dev, addr, 1706 qm_fd_get_offset(fd) + qm_fd_get_length(fd), 1707 dma_dir); 1708 } 1709 1710 swbp = (struct dpaa_eth_swbp *)vaddr; 1711 skb = swbp->skb; 1712 1713 /* No skb backpointer is set when running XDP. An xdp_frame 1714 * backpointer is saved instead. 1715 */ 1716 if (!skb) { 1717 xdp_return_frame(swbp->xdpf); 1718 return NULL; 1719 } 1720 1721 /* DMA unmapping is required before accessing the HW provided info */ 1722 if (ts && priv->tx_tstamp && 1723 skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) { 1724 memset(&shhwtstamps, 0, sizeof(shhwtstamps)); 1725 1726 if (!fman_port_get_tstamp(priv->mac_dev->port[TX], vaddr, 1727 &ns)) { 1728 shhwtstamps.hwtstamp = ns_to_ktime(ns); 1729 skb_tstamp_tx(skb, &shhwtstamps); 1730 } else { 1731 dev_warn(dev, "fman_port_get_tstamp failed!\n"); 1732 } 1733 } 1734 1735 if (qm_fd_get_format(fd) == qm_fd_sg) 1736 /* Free the page that we allocated on Tx for the SGT */ 1737 free_pages((unsigned long)vaddr, 0); 1738 1739 return skb; 1740 } 1741 1742 static u8 rx_csum_offload(const struct dpaa_priv *priv, const struct qm_fd *fd) 1743 { 1744 /* The parser has run and performed L4 checksum validation. 1745 * We know there were no parser errors (and implicitly no 1746 * L4 csum error), otherwise we wouldn't be here. 1747 */ 1748 if ((priv->net_dev->features & NETIF_F_RXCSUM) && 1749 (be32_to_cpu(fd->status) & FM_FD_STAT_L4CV)) 1750 return CHECKSUM_UNNECESSARY; 1751 1752 /* We're here because either the parser didn't run or the L4 checksum 1753 * was not verified. This may include the case of a UDP frame with 1754 * checksum zero or an L4 proto other than TCP/UDP 1755 */ 1756 return CHECKSUM_NONE; 1757 } 1758 1759 #define PTR_IS_ALIGNED(x, a) (IS_ALIGNED((unsigned long)(x), (a))) 1760 1761 /* Build a linear skb around the received buffer. 1762 * We are guaranteed there is enough room at the end of the data buffer to 1763 * accommodate the shared info area of the skb. 1764 */ 1765 static struct sk_buff *contig_fd_to_skb(const struct dpaa_priv *priv, 1766 const struct qm_fd *fd) 1767 { 1768 ssize_t fd_off = qm_fd_get_offset(fd); 1769 dma_addr_t addr = qm_fd_addr(fd); 1770 struct dpaa_bp *dpaa_bp; 1771 struct sk_buff *skb; 1772 void *vaddr; 1773 1774 vaddr = phys_to_virt(addr); 1775 WARN_ON(!IS_ALIGNED((unsigned long)vaddr, SMP_CACHE_BYTES)); 1776 1777 dpaa_bp = dpaa_bpid2pool(fd->bpid); 1778 if (!dpaa_bp) 1779 goto free_buffer; 1780 1781 skb = build_skb(vaddr, dpaa_bp->size + 1782 SKB_DATA_ALIGN(sizeof(struct skb_shared_info))); 1783 if (WARN_ONCE(!skb, "Build skb failure on Rx\n")) 1784 goto free_buffer; 1785 skb_reserve(skb, fd_off); 1786 skb_put(skb, qm_fd_get_length(fd)); 1787 1788 skb->ip_summed = rx_csum_offload(priv, fd); 1789 1790 return skb; 1791 1792 free_buffer: 1793 free_pages((unsigned long)vaddr, 0); 1794 return NULL; 1795 } 1796 1797 /* Build an skb with the data of the first S/G entry in the linear portion and 1798 * the rest of the frame as skb fragments. 1799 * 1800 * The page fragment holding the S/G Table is recycled here. 1801 */ 1802 static struct sk_buff *sg_fd_to_skb(const struct dpaa_priv *priv, 1803 const struct qm_fd *fd) 1804 { 1805 ssize_t fd_off = qm_fd_get_offset(fd); 1806 dma_addr_t addr = qm_fd_addr(fd); 1807 const struct qm_sg_entry *sgt; 1808 struct page *page, *head_page; 1809 struct dpaa_bp *dpaa_bp; 1810 void *vaddr, *sg_vaddr; 1811 int frag_off, frag_len; 1812 struct sk_buff *skb; 1813 dma_addr_t sg_addr; 1814 int page_offset; 1815 unsigned int sz; 1816 int *count_ptr; 1817 int i, j; 1818 1819 vaddr = phys_to_virt(addr); 1820 WARN_ON(!IS_ALIGNED((unsigned long)vaddr, SMP_CACHE_BYTES)); 1821 1822 /* Iterate through the SGT entries and add data buffers to the skb */ 1823 sgt = vaddr + fd_off; 1824 skb = NULL; 1825 for (i = 0; i < DPAA_SGT_MAX_ENTRIES; i++) { 1826 /* Extension bit is not supported */ 1827 WARN_ON(qm_sg_entry_is_ext(&sgt[i])); 1828 1829 sg_addr = qm_sg_addr(&sgt[i]); 1830 sg_vaddr = phys_to_virt(sg_addr); 1831 WARN_ON(!PTR_IS_ALIGNED(sg_vaddr, SMP_CACHE_BYTES)); 1832 1833 dma_unmap_page(priv->rx_dma_dev, sg_addr, 1834 DPAA_BP_RAW_SIZE, DMA_FROM_DEVICE); 1835 1836 /* We may use multiple Rx pools */ 1837 dpaa_bp = dpaa_bpid2pool(sgt[i].bpid); 1838 if (!dpaa_bp) 1839 goto free_buffers; 1840 1841 if (!skb) { 1842 sz = dpaa_bp->size + 1843 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 1844 skb = build_skb(sg_vaddr, sz); 1845 if (WARN_ON(!skb)) 1846 goto free_buffers; 1847 1848 skb->ip_summed = rx_csum_offload(priv, fd); 1849 1850 /* Make sure forwarded skbs will have enough space 1851 * on Tx, if extra headers are added. 1852 */ 1853 WARN_ON(fd_off != priv->rx_headroom); 1854 skb_reserve(skb, fd_off); 1855 skb_put(skb, qm_sg_entry_get_len(&sgt[i])); 1856 } else { 1857 /* Not the first S/G entry; all data from buffer will 1858 * be added in an skb fragment; fragment index is offset 1859 * by one since first S/G entry was incorporated in the 1860 * linear part of the skb. 1861 * 1862 * Caution: 'page' may be a tail page. 1863 */ 1864 page = virt_to_page(sg_vaddr); 1865 head_page = virt_to_head_page(sg_vaddr); 1866 1867 /* Compute offset in (possibly tail) page */ 1868 page_offset = ((unsigned long)sg_vaddr & 1869 (PAGE_SIZE - 1)) + 1870 (page_address(page) - page_address(head_page)); 1871 /* page_offset only refers to the beginning of sgt[i]; 1872 * but the buffer itself may have an internal offset. 1873 */ 1874 frag_off = qm_sg_entry_get_off(&sgt[i]) + page_offset; 1875 frag_len = qm_sg_entry_get_len(&sgt[i]); 1876 /* skb_add_rx_frag() does no checking on the page; if 1877 * we pass it a tail page, we'll end up with 1878 * bad page accounting and eventually with segafults. 1879 */ 1880 skb_add_rx_frag(skb, i - 1, head_page, frag_off, 1881 frag_len, dpaa_bp->size); 1882 } 1883 1884 /* Update the pool count for the current {cpu x bpool} */ 1885 count_ptr = this_cpu_ptr(dpaa_bp->percpu_count); 1886 (*count_ptr)--; 1887 1888 if (qm_sg_entry_is_final(&sgt[i])) 1889 break; 1890 } 1891 WARN_ONCE(i == DPAA_SGT_MAX_ENTRIES, "No final bit on SGT\n"); 1892 1893 /* free the SG table buffer */ 1894 free_pages((unsigned long)vaddr, 0); 1895 1896 return skb; 1897 1898 free_buffers: 1899 /* free all the SG entries */ 1900 for (j = 0; j < DPAA_SGT_MAX_ENTRIES ; j++) { 1901 sg_addr = qm_sg_addr(&sgt[j]); 1902 sg_vaddr = phys_to_virt(sg_addr); 1903 /* all pages 0..i were unmaped */ 1904 if (j > i) 1905 dma_unmap_page(priv->rx_dma_dev, qm_sg_addr(&sgt[j]), 1906 DPAA_BP_RAW_SIZE, DMA_FROM_DEVICE); 1907 free_pages((unsigned long)sg_vaddr, 0); 1908 /* counters 0..i-1 were decremented */ 1909 if (j >= i) { 1910 dpaa_bp = dpaa_bpid2pool(sgt[j].bpid); 1911 if (dpaa_bp) { 1912 count_ptr = this_cpu_ptr(dpaa_bp->percpu_count); 1913 (*count_ptr)--; 1914 } 1915 } 1916 1917 if (qm_sg_entry_is_final(&sgt[j])) 1918 break; 1919 } 1920 /* free the SGT fragment */ 1921 free_pages((unsigned long)vaddr, 0); 1922 1923 return NULL; 1924 } 1925 1926 static int skb_to_contig_fd(struct dpaa_priv *priv, 1927 struct sk_buff *skb, struct qm_fd *fd, 1928 int *offset) 1929 { 1930 struct net_device *net_dev = priv->net_dev; 1931 enum dma_data_direction dma_dir; 1932 struct dpaa_eth_swbp *swbp; 1933 unsigned char *buff_start; 1934 dma_addr_t addr; 1935 int err; 1936 1937 /* We are guaranteed to have at least tx_headroom bytes 1938 * available, so just use that for offset. 1939 */ 1940 fd->bpid = FSL_DPAA_BPID_INV; 1941 buff_start = skb->data - priv->tx_headroom; 1942 dma_dir = DMA_TO_DEVICE; 1943 1944 swbp = (struct dpaa_eth_swbp *)buff_start; 1945 swbp->skb = skb; 1946 1947 /* Enable L3/L4 hardware checksum computation. 1948 * 1949 * We must do this before dma_map_single(DMA_TO_DEVICE), because we may 1950 * need to write into the skb. 1951 */ 1952 err = dpaa_enable_tx_csum(priv, skb, fd, 1953 buff_start + DPAA_TX_PRIV_DATA_SIZE); 1954 if (unlikely(err < 0)) { 1955 if (net_ratelimit()) 1956 netif_err(priv, tx_err, net_dev, "HW csum error: %d\n", 1957 err); 1958 return err; 1959 } 1960 1961 /* Fill in the rest of the FD fields */ 1962 qm_fd_set_contig(fd, priv->tx_headroom, skb->len); 1963 fd->cmd |= cpu_to_be32(FM_FD_CMD_FCO); 1964 1965 /* Map the entire buffer size that may be seen by FMan, but no more */ 1966 addr = dma_map_single(priv->tx_dma_dev, buff_start, 1967 priv->tx_headroom + skb->len, dma_dir); 1968 if (unlikely(dma_mapping_error(priv->tx_dma_dev, addr))) { 1969 if (net_ratelimit()) 1970 netif_err(priv, tx_err, net_dev, "dma_map_single() failed\n"); 1971 return -EINVAL; 1972 } 1973 qm_fd_addr_set64(fd, addr); 1974 1975 return 0; 1976 } 1977 1978 static int skb_to_sg_fd(struct dpaa_priv *priv, 1979 struct sk_buff *skb, struct qm_fd *fd) 1980 { 1981 const enum dma_data_direction dma_dir = DMA_TO_DEVICE; 1982 const int nr_frags = skb_shinfo(skb)->nr_frags; 1983 struct net_device *net_dev = priv->net_dev; 1984 struct dpaa_eth_swbp *swbp; 1985 struct qm_sg_entry *sgt; 1986 void *buff_start; 1987 skb_frag_t *frag; 1988 dma_addr_t addr; 1989 size_t frag_len; 1990 struct page *p; 1991 int i, j, err; 1992 1993 /* get a page to store the SGTable */ 1994 p = dev_alloc_pages(0); 1995 if (unlikely(!p)) { 1996 netdev_err(net_dev, "dev_alloc_pages() failed\n"); 1997 return -ENOMEM; 1998 } 1999 buff_start = page_address(p); 2000 2001 /* Enable L3/L4 hardware checksum computation. 2002 * 2003 * We must do this before dma_map_single(DMA_TO_DEVICE), because we may 2004 * need to write into the skb. 2005 */ 2006 err = dpaa_enable_tx_csum(priv, skb, fd, 2007 buff_start + DPAA_TX_PRIV_DATA_SIZE); 2008 if (unlikely(err < 0)) { 2009 if (net_ratelimit()) 2010 netif_err(priv, tx_err, net_dev, "HW csum error: %d\n", 2011 err); 2012 goto csum_failed; 2013 } 2014 2015 /* SGT[0] is used by the linear part */ 2016 sgt = (struct qm_sg_entry *)(buff_start + priv->tx_headroom); 2017 frag_len = skb_headlen(skb); 2018 qm_sg_entry_set_len(&sgt[0], frag_len); 2019 sgt[0].bpid = FSL_DPAA_BPID_INV; 2020 sgt[0].offset = 0; 2021 addr = dma_map_single(priv->tx_dma_dev, skb->data, 2022 skb_headlen(skb), dma_dir); 2023 if (unlikely(dma_mapping_error(priv->tx_dma_dev, addr))) { 2024 netdev_err(priv->net_dev, "DMA mapping failed\n"); 2025 err = -EINVAL; 2026 goto sg0_map_failed; 2027 } 2028 qm_sg_entry_set64(&sgt[0], addr); 2029 2030 /* populate the rest of SGT entries */ 2031 for (i = 0; i < nr_frags; i++) { 2032 frag = &skb_shinfo(skb)->frags[i]; 2033 frag_len = skb_frag_size(frag); 2034 WARN_ON(!skb_frag_page(frag)); 2035 addr = skb_frag_dma_map(priv->tx_dma_dev, frag, 0, 2036 frag_len, dma_dir); 2037 if (unlikely(dma_mapping_error(priv->tx_dma_dev, addr))) { 2038 netdev_err(priv->net_dev, "DMA mapping failed\n"); 2039 err = -EINVAL; 2040 goto sg_map_failed; 2041 } 2042 2043 qm_sg_entry_set_len(&sgt[i + 1], frag_len); 2044 sgt[i + 1].bpid = FSL_DPAA_BPID_INV; 2045 sgt[i + 1].offset = 0; 2046 2047 /* keep the offset in the address */ 2048 qm_sg_entry_set64(&sgt[i + 1], addr); 2049 } 2050 2051 /* Set the final bit in the last used entry of the SGT */ 2052 qm_sg_entry_set_f(&sgt[nr_frags], frag_len); 2053 2054 /* set fd offset to priv->tx_headroom */ 2055 qm_fd_set_sg(fd, priv->tx_headroom, skb->len); 2056 2057 /* DMA map the SGT page */ 2058 swbp = (struct dpaa_eth_swbp *)buff_start; 2059 swbp->skb = skb; 2060 2061 addr = dma_map_page(priv->tx_dma_dev, p, 0, 2062 priv->tx_headroom + DPAA_SGT_SIZE, dma_dir); 2063 if (unlikely(dma_mapping_error(priv->tx_dma_dev, addr))) { 2064 netdev_err(priv->net_dev, "DMA mapping failed\n"); 2065 err = -EINVAL; 2066 goto sgt_map_failed; 2067 } 2068 2069 fd->bpid = FSL_DPAA_BPID_INV; 2070 fd->cmd |= cpu_to_be32(FM_FD_CMD_FCO); 2071 qm_fd_addr_set64(fd, addr); 2072 2073 return 0; 2074 2075 sgt_map_failed: 2076 sg_map_failed: 2077 for (j = 0; j < i; j++) 2078 dma_unmap_page(priv->tx_dma_dev, qm_sg_addr(&sgt[j]), 2079 qm_sg_entry_get_len(&sgt[j]), dma_dir); 2080 sg0_map_failed: 2081 csum_failed: 2082 free_pages((unsigned long)buff_start, 0); 2083 2084 return err; 2085 } 2086 2087 static inline int dpaa_xmit(struct dpaa_priv *priv, 2088 struct rtnl_link_stats64 *percpu_stats, 2089 int queue, 2090 struct qm_fd *fd) 2091 { 2092 struct qman_fq *egress_fq; 2093 int err, i; 2094 2095 egress_fq = priv->egress_fqs[queue]; 2096 if (fd->bpid == FSL_DPAA_BPID_INV) 2097 fd->cmd |= cpu_to_be32(qman_fq_fqid(priv->conf_fqs[queue])); 2098 2099 /* Trace this Tx fd */ 2100 trace_dpaa_tx_fd(priv->net_dev, egress_fq, fd); 2101 2102 for (i = 0; i < DPAA_ENQUEUE_RETRIES; i++) { 2103 err = qman_enqueue(egress_fq, fd); 2104 if (err != -EBUSY) 2105 break; 2106 } 2107 2108 if (unlikely(err < 0)) { 2109 percpu_stats->tx_fifo_errors++; 2110 return err; 2111 } 2112 2113 percpu_stats->tx_packets++; 2114 percpu_stats->tx_bytes += qm_fd_get_length(fd); 2115 2116 return 0; 2117 } 2118 2119 #ifdef CONFIG_DPAA_ERRATUM_A050385 2120 static int dpaa_a050385_wa_skb(struct net_device *net_dev, struct sk_buff **s) 2121 { 2122 struct dpaa_priv *priv = netdev_priv(net_dev); 2123 struct sk_buff *new_skb, *skb = *s; 2124 unsigned char *start, i; 2125 2126 /* check linear buffer alignment */ 2127 if (!PTR_IS_ALIGNED(skb->data, DPAA_A050385_ALIGN)) 2128 goto workaround; 2129 2130 /* linear buffers just need to have an aligned start */ 2131 if (!skb_is_nonlinear(skb)) 2132 return 0; 2133 2134 /* linear data size for nonlinear skbs needs to be aligned */ 2135 if (!IS_ALIGNED(skb_headlen(skb), DPAA_A050385_ALIGN)) 2136 goto workaround; 2137 2138 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2139 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2140 2141 /* all fragments need to have aligned start addresses */ 2142 if (!IS_ALIGNED(skb_frag_off(frag), DPAA_A050385_ALIGN)) 2143 goto workaround; 2144 2145 /* all but last fragment need to have aligned sizes */ 2146 if (!IS_ALIGNED(skb_frag_size(frag), DPAA_A050385_ALIGN) && 2147 (i < skb_shinfo(skb)->nr_frags - 1)) 2148 goto workaround; 2149 } 2150 2151 return 0; 2152 2153 workaround: 2154 /* copy all the skb content into a new linear buffer */ 2155 new_skb = netdev_alloc_skb(net_dev, skb->len + DPAA_A050385_ALIGN - 1 + 2156 priv->tx_headroom); 2157 if (!new_skb) 2158 return -ENOMEM; 2159 2160 /* NET_SKB_PAD bytes already reserved, adding up to tx_headroom */ 2161 skb_reserve(new_skb, priv->tx_headroom - NET_SKB_PAD); 2162 2163 /* Workaround for DPAA_A050385 requires data start to be aligned */ 2164 start = PTR_ALIGN(new_skb->data, DPAA_A050385_ALIGN); 2165 if (start - new_skb->data) 2166 skb_reserve(new_skb, start - new_skb->data); 2167 2168 skb_put(new_skb, skb->len); 2169 skb_copy_bits(skb, 0, new_skb->data, skb->len); 2170 skb_copy_header(new_skb, skb); 2171 new_skb->dev = skb->dev; 2172 2173 /* Copy relevant timestamp info from the old skb to the new */ 2174 if (priv->tx_tstamp) { 2175 skb_shinfo(new_skb)->tx_flags = skb_shinfo(skb)->tx_flags; 2176 skb_shinfo(new_skb)->hwtstamps = skb_shinfo(skb)->hwtstamps; 2177 skb_shinfo(new_skb)->tskey = skb_shinfo(skb)->tskey; 2178 if (skb->sk) 2179 skb_set_owner_w(new_skb, skb->sk); 2180 } 2181 2182 /* We move the headroom when we align it so we have to reset the 2183 * network and transport header offsets relative to the new data 2184 * pointer. The checksum offload relies on these offsets. 2185 */ 2186 skb_set_network_header(new_skb, skb_network_offset(skb)); 2187 skb_set_transport_header(new_skb, skb_transport_offset(skb)); 2188 2189 dev_kfree_skb(skb); 2190 *s = new_skb; 2191 2192 return 0; 2193 } 2194 2195 static int dpaa_a050385_wa_xdpf(struct dpaa_priv *priv, 2196 struct xdp_frame **init_xdpf) 2197 { 2198 struct xdp_frame *new_xdpf, *xdpf = *init_xdpf; 2199 void *new_buff, *aligned_data; 2200 struct page *p; 2201 u32 data_shift; 2202 int headroom; 2203 2204 /* Check the data alignment and make sure the headroom is large 2205 * enough to store the xdpf backpointer. Use an aligned headroom 2206 * value. 2207 * 2208 * Due to alignment constraints, we give XDP access to the full 256 2209 * byte frame headroom. If the XDP program uses all of it, copy the 2210 * data to a new buffer and make room for storing the backpointer. 2211 */ 2212 if (PTR_IS_ALIGNED(xdpf->data, DPAA_FD_DATA_ALIGNMENT) && 2213 xdpf->headroom >= priv->tx_headroom) { 2214 xdpf->headroom = priv->tx_headroom; 2215 return 0; 2216 } 2217 2218 /* Try to move the data inside the buffer just enough to align it and 2219 * store the xdpf backpointer. If the available headroom isn't large 2220 * enough, resort to allocating a new buffer and copying the data. 2221 */ 2222 aligned_data = PTR_ALIGN_DOWN(xdpf->data, DPAA_FD_DATA_ALIGNMENT); 2223 data_shift = xdpf->data - aligned_data; 2224 2225 /* The XDP frame's headroom needs to be large enough to accommodate 2226 * shifting the data as well as storing the xdpf backpointer. 2227 */ 2228 if (xdpf->headroom >= data_shift + priv->tx_headroom) { 2229 memmove(aligned_data, xdpf->data, xdpf->len); 2230 xdpf->data = aligned_data; 2231 xdpf->headroom = priv->tx_headroom; 2232 return 0; 2233 } 2234 2235 /* The new xdp_frame is stored in the new buffer. Reserve enough space 2236 * in the headroom for storing it along with the driver's private 2237 * info. The headroom needs to be aligned to DPAA_FD_DATA_ALIGNMENT to 2238 * guarantee the data's alignment in the buffer. 2239 */ 2240 headroom = ALIGN(sizeof(*new_xdpf) + priv->tx_headroom, 2241 DPAA_FD_DATA_ALIGNMENT); 2242 2243 /* Assure the extended headroom and data don't overflow the buffer, 2244 * while maintaining the mandatory tailroom. 2245 */ 2246 if (headroom + xdpf->len > DPAA_BP_RAW_SIZE - 2247 SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 2248 return -ENOMEM; 2249 2250 p = dev_alloc_pages(0); 2251 if (unlikely(!p)) 2252 return -ENOMEM; 2253 2254 /* Copy the data to the new buffer at a properly aligned offset */ 2255 new_buff = page_address(p); 2256 memcpy(new_buff + headroom, xdpf->data, xdpf->len); 2257 2258 /* Create an XDP frame around the new buffer in a similar fashion 2259 * to xdp_convert_buff_to_frame. 2260 */ 2261 new_xdpf = new_buff; 2262 new_xdpf->data = new_buff + headroom; 2263 new_xdpf->len = xdpf->len; 2264 new_xdpf->headroom = priv->tx_headroom; 2265 new_xdpf->frame_sz = DPAA_BP_RAW_SIZE; 2266 new_xdpf->mem.type = MEM_TYPE_PAGE_ORDER0; 2267 2268 /* Release the initial buffer */ 2269 xdp_return_frame_rx_napi(xdpf); 2270 2271 *init_xdpf = new_xdpf; 2272 return 0; 2273 } 2274 #endif 2275 2276 static netdev_tx_t 2277 dpaa_start_xmit(struct sk_buff *skb, struct net_device *net_dev) 2278 { 2279 const int queue_mapping = skb_get_queue_mapping(skb); 2280 bool nonlinear = skb_is_nonlinear(skb); 2281 struct rtnl_link_stats64 *percpu_stats; 2282 struct dpaa_percpu_priv *percpu_priv; 2283 struct netdev_queue *txq; 2284 struct dpaa_priv *priv; 2285 struct qm_fd fd; 2286 int offset = 0; 2287 int err = 0; 2288 2289 priv = netdev_priv(net_dev); 2290 percpu_priv = this_cpu_ptr(priv->percpu_priv); 2291 percpu_stats = &percpu_priv->stats; 2292 2293 qm_fd_clear_fd(&fd); 2294 2295 if (!nonlinear) { 2296 /* We're going to store the skb backpointer at the beginning 2297 * of the data buffer, so we need a privately owned skb 2298 * 2299 * We've made sure skb is not shared in dev->priv_flags, 2300 * we need to verify the skb head is not cloned 2301 */ 2302 if (skb_cow_head(skb, priv->tx_headroom)) 2303 goto enomem; 2304 2305 WARN_ON(skb_is_nonlinear(skb)); 2306 } 2307 2308 /* MAX_SKB_FRAGS is equal or larger than our dpaa_SGT_MAX_ENTRIES; 2309 * make sure we don't feed FMan with more fragments than it supports. 2310 */ 2311 if (unlikely(nonlinear && 2312 (skb_shinfo(skb)->nr_frags >= DPAA_SGT_MAX_ENTRIES))) { 2313 /* If the egress skb contains more fragments than we support 2314 * we have no choice but to linearize it ourselves. 2315 */ 2316 if (__skb_linearize(skb)) 2317 goto enomem; 2318 2319 nonlinear = skb_is_nonlinear(skb); 2320 } 2321 2322 #ifdef CONFIG_DPAA_ERRATUM_A050385 2323 if (unlikely(fman_has_errata_a050385())) { 2324 if (dpaa_a050385_wa_skb(net_dev, &skb)) 2325 goto enomem; 2326 nonlinear = skb_is_nonlinear(skb); 2327 } 2328 #endif 2329 2330 if (nonlinear) { 2331 /* Just create a S/G fd based on the skb */ 2332 err = skb_to_sg_fd(priv, skb, &fd); 2333 percpu_priv->tx_frag_skbuffs++; 2334 } else { 2335 /* Create a contig FD from this skb */ 2336 err = skb_to_contig_fd(priv, skb, &fd, &offset); 2337 } 2338 if (unlikely(err < 0)) 2339 goto skb_to_fd_failed; 2340 2341 txq = netdev_get_tx_queue(net_dev, queue_mapping); 2342 2343 /* LLTX requires to do our own update of trans_start */ 2344 txq_trans_cond_update(txq); 2345 2346 if (priv->tx_tstamp && skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) { 2347 fd.cmd |= cpu_to_be32(FM_FD_CMD_UPD); 2348 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 2349 } 2350 2351 if (likely(dpaa_xmit(priv, percpu_stats, queue_mapping, &fd) == 0)) 2352 return NETDEV_TX_OK; 2353 2354 dpaa_cleanup_tx_fd(priv, &fd, false); 2355 skb_to_fd_failed: 2356 enomem: 2357 percpu_stats->tx_errors++; 2358 dev_kfree_skb(skb); 2359 return NETDEV_TX_OK; 2360 } 2361 2362 static void dpaa_rx_error(struct net_device *net_dev, 2363 const struct dpaa_priv *priv, 2364 struct dpaa_percpu_priv *percpu_priv, 2365 const struct qm_fd *fd, 2366 u32 fqid) 2367 { 2368 if (net_ratelimit()) 2369 netif_err(priv, hw, net_dev, "Err FD status = 0x%08x\n", 2370 be32_to_cpu(fd->status) & FM_FD_STAT_RX_ERRORS); 2371 2372 percpu_priv->stats.rx_errors++; 2373 2374 if (be32_to_cpu(fd->status) & FM_FD_ERR_DMA) 2375 percpu_priv->rx_errors.dme++; 2376 if (be32_to_cpu(fd->status) & FM_FD_ERR_PHYSICAL) 2377 percpu_priv->rx_errors.fpe++; 2378 if (be32_to_cpu(fd->status) & FM_FD_ERR_SIZE) 2379 percpu_priv->rx_errors.fse++; 2380 if (be32_to_cpu(fd->status) & FM_FD_ERR_PRS_HDR_ERR) 2381 percpu_priv->rx_errors.phe++; 2382 2383 dpaa_fd_release(net_dev, fd); 2384 } 2385 2386 static void dpaa_tx_error(struct net_device *net_dev, 2387 const struct dpaa_priv *priv, 2388 struct dpaa_percpu_priv *percpu_priv, 2389 const struct qm_fd *fd, 2390 u32 fqid) 2391 { 2392 struct sk_buff *skb; 2393 2394 if (net_ratelimit()) 2395 netif_warn(priv, hw, net_dev, "FD status = 0x%08x\n", 2396 be32_to_cpu(fd->status) & FM_FD_STAT_TX_ERRORS); 2397 2398 percpu_priv->stats.tx_errors++; 2399 2400 skb = dpaa_cleanup_tx_fd(priv, fd, false); 2401 dev_kfree_skb(skb); 2402 } 2403 2404 static int dpaa_eth_poll(struct napi_struct *napi, int budget) 2405 { 2406 struct dpaa_napi_portal *np = 2407 container_of(napi, struct dpaa_napi_portal, napi); 2408 int cleaned; 2409 2410 np->xdp_act = 0; 2411 2412 cleaned = qman_p_poll_dqrr(np->p, budget); 2413 2414 if (np->xdp_act & XDP_REDIRECT) 2415 xdp_do_flush(); 2416 2417 if (cleaned < budget) { 2418 napi_complete_done(napi, cleaned); 2419 qman_p_irqsource_add(np->p, QM_PIRQ_DQRI); 2420 } else if (np->down) { 2421 qman_p_irqsource_add(np->p, QM_PIRQ_DQRI); 2422 } 2423 2424 return cleaned; 2425 } 2426 2427 static void dpaa_tx_conf(struct net_device *net_dev, 2428 const struct dpaa_priv *priv, 2429 struct dpaa_percpu_priv *percpu_priv, 2430 const struct qm_fd *fd, 2431 u32 fqid) 2432 { 2433 struct sk_buff *skb; 2434 2435 if (unlikely(be32_to_cpu(fd->status) & FM_FD_STAT_TX_ERRORS)) { 2436 if (net_ratelimit()) 2437 netif_warn(priv, hw, net_dev, "FD status = 0x%08x\n", 2438 be32_to_cpu(fd->status) & 2439 FM_FD_STAT_TX_ERRORS); 2440 2441 percpu_priv->stats.tx_errors++; 2442 } 2443 2444 percpu_priv->tx_confirm++; 2445 2446 skb = dpaa_cleanup_tx_fd(priv, fd, true); 2447 2448 consume_skb(skb); 2449 } 2450 2451 static inline int dpaa_eth_napi_schedule(struct dpaa_percpu_priv *percpu_priv, 2452 struct qman_portal *portal, bool sched_napi) 2453 { 2454 if (sched_napi) { 2455 /* Disable QMan IRQ and invoke NAPI */ 2456 qman_p_irqsource_remove(portal, QM_PIRQ_DQRI); 2457 2458 percpu_priv->np.p = portal; 2459 napi_schedule(&percpu_priv->np.napi); 2460 percpu_priv->in_interrupt++; 2461 return 1; 2462 } 2463 return 0; 2464 } 2465 2466 static enum qman_cb_dqrr_result rx_error_dqrr(struct qman_portal *portal, 2467 struct qman_fq *fq, 2468 const struct qm_dqrr_entry *dq, 2469 bool sched_napi) 2470 { 2471 struct dpaa_fq *dpaa_fq = container_of(fq, struct dpaa_fq, fq_base); 2472 struct dpaa_percpu_priv *percpu_priv; 2473 struct net_device *net_dev; 2474 struct dpaa_bp *dpaa_bp; 2475 struct dpaa_priv *priv; 2476 2477 net_dev = dpaa_fq->net_dev; 2478 priv = netdev_priv(net_dev); 2479 dpaa_bp = dpaa_bpid2pool(dq->fd.bpid); 2480 if (!dpaa_bp) 2481 return qman_cb_dqrr_consume; 2482 2483 percpu_priv = this_cpu_ptr(priv->percpu_priv); 2484 2485 if (dpaa_eth_napi_schedule(percpu_priv, portal, sched_napi)) 2486 return qman_cb_dqrr_stop; 2487 2488 dpaa_eth_refill_bpools(priv); 2489 dpaa_rx_error(net_dev, priv, percpu_priv, &dq->fd, fq->fqid); 2490 2491 return qman_cb_dqrr_consume; 2492 } 2493 2494 static int dpaa_xdp_xmit_frame(struct net_device *net_dev, 2495 struct xdp_frame *xdpf) 2496 { 2497 struct dpaa_priv *priv = netdev_priv(net_dev); 2498 struct rtnl_link_stats64 *percpu_stats; 2499 struct dpaa_percpu_priv *percpu_priv; 2500 struct dpaa_eth_swbp *swbp; 2501 struct netdev_queue *txq; 2502 void *buff_start; 2503 struct qm_fd fd; 2504 dma_addr_t addr; 2505 int err; 2506 2507 percpu_priv = this_cpu_ptr(priv->percpu_priv); 2508 percpu_stats = &percpu_priv->stats; 2509 2510 #ifdef CONFIG_DPAA_ERRATUM_A050385 2511 if (unlikely(fman_has_errata_a050385())) { 2512 if (dpaa_a050385_wa_xdpf(priv, &xdpf)) { 2513 err = -ENOMEM; 2514 goto out_error; 2515 } 2516 } 2517 #endif 2518 2519 if (xdpf->headroom < DPAA_TX_PRIV_DATA_SIZE) { 2520 err = -EINVAL; 2521 goto out_error; 2522 } 2523 2524 buff_start = xdpf->data - xdpf->headroom; 2525 2526 /* Leave empty the skb backpointer at the start of the buffer. 2527 * Save the XDP frame for easy cleanup on confirmation. 2528 */ 2529 swbp = (struct dpaa_eth_swbp *)buff_start; 2530 swbp->skb = NULL; 2531 swbp->xdpf = xdpf; 2532 2533 qm_fd_clear_fd(&fd); 2534 fd.bpid = FSL_DPAA_BPID_INV; 2535 fd.cmd |= cpu_to_be32(FM_FD_CMD_FCO); 2536 qm_fd_set_contig(&fd, xdpf->headroom, xdpf->len); 2537 2538 addr = dma_map_single(priv->tx_dma_dev, buff_start, 2539 xdpf->headroom + xdpf->len, 2540 DMA_TO_DEVICE); 2541 if (unlikely(dma_mapping_error(priv->tx_dma_dev, addr))) { 2542 err = -EINVAL; 2543 goto out_error; 2544 } 2545 2546 qm_fd_addr_set64(&fd, addr); 2547 2548 /* Bump the trans_start */ 2549 txq = netdev_get_tx_queue(net_dev, smp_processor_id()); 2550 txq_trans_cond_update(txq); 2551 2552 err = dpaa_xmit(priv, percpu_stats, smp_processor_id(), &fd); 2553 if (err) { 2554 dma_unmap_single(priv->tx_dma_dev, addr, 2555 qm_fd_get_offset(&fd) + qm_fd_get_length(&fd), 2556 DMA_TO_DEVICE); 2557 goto out_error; 2558 } 2559 2560 return 0; 2561 2562 out_error: 2563 percpu_stats->tx_errors++; 2564 return err; 2565 } 2566 2567 static u32 dpaa_run_xdp(struct dpaa_priv *priv, struct qm_fd *fd, void *vaddr, 2568 struct dpaa_fq *dpaa_fq, unsigned int *xdp_meta_len) 2569 { 2570 ssize_t fd_off = qm_fd_get_offset(fd); 2571 struct bpf_prog *xdp_prog; 2572 struct xdp_frame *xdpf; 2573 struct xdp_buff xdp; 2574 u32 xdp_act; 2575 int err; 2576 2577 xdp_prog = READ_ONCE(priv->xdp_prog); 2578 if (!xdp_prog) 2579 return XDP_PASS; 2580 2581 xdp_init_buff(&xdp, DPAA_BP_RAW_SIZE - DPAA_TX_PRIV_DATA_SIZE, 2582 &dpaa_fq->xdp_rxq); 2583 xdp_prepare_buff(&xdp, vaddr + fd_off - XDP_PACKET_HEADROOM, 2584 XDP_PACKET_HEADROOM, qm_fd_get_length(fd), true); 2585 2586 /* We reserve a fixed headroom of 256 bytes under the erratum and we 2587 * offer it all to XDP programs to use. If no room is left for the 2588 * xdpf backpointer on TX, we will need to copy the data. 2589 * Disable metadata support since data realignments might be required 2590 * and the information can be lost. 2591 */ 2592 #ifdef CONFIG_DPAA_ERRATUM_A050385 2593 if (unlikely(fman_has_errata_a050385())) { 2594 xdp_set_data_meta_invalid(&xdp); 2595 xdp.data_hard_start = vaddr; 2596 xdp.frame_sz = DPAA_BP_RAW_SIZE; 2597 } 2598 #endif 2599 2600 xdp_act = bpf_prog_run_xdp(xdp_prog, &xdp); 2601 2602 /* Update the length and the offset of the FD */ 2603 qm_fd_set_contig(fd, xdp.data - vaddr, xdp.data_end - xdp.data); 2604 2605 switch (xdp_act) { 2606 case XDP_PASS: 2607 #ifdef CONFIG_DPAA_ERRATUM_A050385 2608 *xdp_meta_len = xdp_data_meta_unsupported(&xdp) ? 0 : 2609 xdp.data - xdp.data_meta; 2610 #else 2611 *xdp_meta_len = xdp.data - xdp.data_meta; 2612 #endif 2613 break; 2614 case XDP_TX: 2615 /* We can access the full headroom when sending the frame 2616 * back out 2617 */ 2618 xdp.data_hard_start = vaddr; 2619 xdp.frame_sz = DPAA_BP_RAW_SIZE; 2620 xdpf = xdp_convert_buff_to_frame(&xdp); 2621 if (unlikely(!xdpf)) { 2622 free_pages((unsigned long)vaddr, 0); 2623 break; 2624 } 2625 2626 if (dpaa_xdp_xmit_frame(priv->net_dev, xdpf)) 2627 xdp_return_frame_rx_napi(xdpf); 2628 2629 break; 2630 case XDP_REDIRECT: 2631 /* Allow redirect to use the full headroom */ 2632 xdp.data_hard_start = vaddr; 2633 xdp.frame_sz = DPAA_BP_RAW_SIZE; 2634 2635 err = xdp_do_redirect(priv->net_dev, &xdp, xdp_prog); 2636 if (err) { 2637 trace_xdp_exception(priv->net_dev, xdp_prog, xdp_act); 2638 free_pages((unsigned long)vaddr, 0); 2639 } 2640 break; 2641 default: 2642 bpf_warn_invalid_xdp_action(priv->net_dev, xdp_prog, xdp_act); 2643 fallthrough; 2644 case XDP_ABORTED: 2645 trace_xdp_exception(priv->net_dev, xdp_prog, xdp_act); 2646 fallthrough; 2647 case XDP_DROP: 2648 /* Free the buffer */ 2649 free_pages((unsigned long)vaddr, 0); 2650 break; 2651 } 2652 2653 return xdp_act; 2654 } 2655 2656 static enum qman_cb_dqrr_result rx_default_dqrr(struct qman_portal *portal, 2657 struct qman_fq *fq, 2658 const struct qm_dqrr_entry *dq, 2659 bool sched_napi) 2660 { 2661 bool ts_valid = false, hash_valid = false; 2662 struct skb_shared_hwtstamps *shhwtstamps; 2663 unsigned int skb_len, xdp_meta_len = 0; 2664 struct rtnl_link_stats64 *percpu_stats; 2665 struct dpaa_percpu_priv *percpu_priv; 2666 const struct qm_fd *fd = &dq->fd; 2667 dma_addr_t addr = qm_fd_addr(fd); 2668 struct dpaa_napi_portal *np; 2669 enum qm_fd_format fd_format; 2670 struct net_device *net_dev; 2671 u32 fd_status, hash_offset; 2672 struct qm_sg_entry *sgt; 2673 struct dpaa_bp *dpaa_bp; 2674 struct dpaa_fq *dpaa_fq; 2675 struct dpaa_priv *priv; 2676 struct sk_buff *skb; 2677 int *count_ptr; 2678 u32 xdp_act; 2679 void *vaddr; 2680 u32 hash; 2681 u64 ns; 2682 2683 dpaa_fq = container_of(fq, struct dpaa_fq, fq_base); 2684 fd_status = be32_to_cpu(fd->status); 2685 fd_format = qm_fd_get_format(fd); 2686 net_dev = dpaa_fq->net_dev; 2687 priv = netdev_priv(net_dev); 2688 dpaa_bp = dpaa_bpid2pool(dq->fd.bpid); 2689 if (!dpaa_bp) 2690 return qman_cb_dqrr_consume; 2691 2692 /* Trace the Rx fd */ 2693 trace_dpaa_rx_fd(net_dev, fq, &dq->fd); 2694 2695 percpu_priv = this_cpu_ptr(priv->percpu_priv); 2696 percpu_stats = &percpu_priv->stats; 2697 np = &percpu_priv->np; 2698 2699 if (unlikely(dpaa_eth_napi_schedule(percpu_priv, portal, sched_napi))) 2700 return qman_cb_dqrr_stop; 2701 2702 /* Make sure we didn't run out of buffers */ 2703 if (unlikely(dpaa_eth_refill_bpools(priv))) { 2704 /* Unable to refill the buffer pool due to insufficient 2705 * system memory. Just release the frame back into the pool, 2706 * otherwise we'll soon end up with an empty buffer pool. 2707 */ 2708 dpaa_fd_release(net_dev, &dq->fd); 2709 return qman_cb_dqrr_consume; 2710 } 2711 2712 if (unlikely(fd_status & FM_FD_STAT_RX_ERRORS) != 0) { 2713 if (net_ratelimit()) 2714 netif_warn(priv, hw, net_dev, "FD status = 0x%08x\n", 2715 fd_status & FM_FD_STAT_RX_ERRORS); 2716 2717 percpu_stats->rx_errors++; 2718 dpaa_fd_release(net_dev, fd); 2719 return qman_cb_dqrr_consume; 2720 } 2721 2722 dma_unmap_page(dpaa_bp->priv->rx_dma_dev, addr, DPAA_BP_RAW_SIZE, 2723 DMA_FROM_DEVICE); 2724 2725 /* prefetch the first 64 bytes of the frame or the SGT start */ 2726 vaddr = phys_to_virt(addr); 2727 prefetch(vaddr + qm_fd_get_offset(fd)); 2728 2729 /* The only FD types that we may receive are contig and S/G */ 2730 WARN_ON((fd_format != qm_fd_contig) && (fd_format != qm_fd_sg)); 2731 2732 /* Account for either the contig buffer or the SGT buffer (depending on 2733 * which case we were in) having been removed from the pool. 2734 */ 2735 count_ptr = this_cpu_ptr(dpaa_bp->percpu_count); 2736 (*count_ptr)--; 2737 2738 /* Extract the timestamp stored in the headroom before running XDP */ 2739 if (priv->rx_tstamp) { 2740 if (!fman_port_get_tstamp(priv->mac_dev->port[RX], vaddr, &ns)) 2741 ts_valid = true; 2742 else 2743 WARN_ONCE(1, "fman_port_get_tstamp failed!\n"); 2744 } 2745 2746 /* Extract the hash stored in the headroom before running XDP */ 2747 if (net_dev->features & NETIF_F_RXHASH && priv->keygen_in_use && 2748 !fman_port_get_hash_result_offset(priv->mac_dev->port[RX], 2749 &hash_offset)) { 2750 hash = be32_to_cpu(*(u32 *)(vaddr + hash_offset)); 2751 hash_valid = true; 2752 } 2753 2754 if (likely(fd_format == qm_fd_contig)) { 2755 xdp_act = dpaa_run_xdp(priv, (struct qm_fd *)fd, vaddr, 2756 dpaa_fq, &xdp_meta_len); 2757 np->xdp_act |= xdp_act; 2758 if (xdp_act != XDP_PASS) { 2759 percpu_stats->rx_packets++; 2760 percpu_stats->rx_bytes += qm_fd_get_length(fd); 2761 return qman_cb_dqrr_consume; 2762 } 2763 skb = contig_fd_to_skb(priv, fd); 2764 } else { 2765 /* XDP doesn't support S/G frames. Return the fragments to the 2766 * buffer pool and release the SGT. 2767 */ 2768 if (READ_ONCE(priv->xdp_prog)) { 2769 WARN_ONCE(1, "S/G frames not supported under XDP\n"); 2770 sgt = vaddr + qm_fd_get_offset(fd); 2771 dpaa_release_sgt_members(sgt); 2772 free_pages((unsigned long)vaddr, 0); 2773 return qman_cb_dqrr_consume; 2774 } 2775 skb = sg_fd_to_skb(priv, fd); 2776 } 2777 if (!skb) 2778 return qman_cb_dqrr_consume; 2779 2780 if (xdp_meta_len) 2781 skb_metadata_set(skb, xdp_meta_len); 2782 2783 /* Set the previously extracted timestamp */ 2784 if (ts_valid) { 2785 shhwtstamps = skb_hwtstamps(skb); 2786 memset(shhwtstamps, 0, sizeof(*shhwtstamps)); 2787 shhwtstamps->hwtstamp = ns_to_ktime(ns); 2788 } 2789 2790 skb->protocol = eth_type_trans(skb, net_dev); 2791 2792 /* Set the previously extracted hash */ 2793 if (hash_valid) { 2794 enum pkt_hash_types type; 2795 2796 /* if L4 exists, it was used in the hash generation */ 2797 type = be32_to_cpu(fd->status) & FM_FD_STAT_L4CV ? 2798 PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3; 2799 skb_set_hash(skb, hash, type); 2800 } 2801 2802 skb_len = skb->len; 2803 2804 if (unlikely(netif_receive_skb(skb) == NET_RX_DROP)) { 2805 percpu_stats->rx_dropped++; 2806 return qman_cb_dqrr_consume; 2807 } 2808 2809 percpu_stats->rx_packets++; 2810 percpu_stats->rx_bytes += skb_len; 2811 2812 return qman_cb_dqrr_consume; 2813 } 2814 2815 static enum qman_cb_dqrr_result conf_error_dqrr(struct qman_portal *portal, 2816 struct qman_fq *fq, 2817 const struct qm_dqrr_entry *dq, 2818 bool sched_napi) 2819 { 2820 struct dpaa_percpu_priv *percpu_priv; 2821 struct net_device *net_dev; 2822 struct dpaa_priv *priv; 2823 2824 net_dev = ((struct dpaa_fq *)fq)->net_dev; 2825 priv = netdev_priv(net_dev); 2826 2827 percpu_priv = this_cpu_ptr(priv->percpu_priv); 2828 2829 if (dpaa_eth_napi_schedule(percpu_priv, portal, sched_napi)) 2830 return qman_cb_dqrr_stop; 2831 2832 dpaa_tx_error(net_dev, priv, percpu_priv, &dq->fd, fq->fqid); 2833 2834 return qman_cb_dqrr_consume; 2835 } 2836 2837 static enum qman_cb_dqrr_result conf_dflt_dqrr(struct qman_portal *portal, 2838 struct qman_fq *fq, 2839 const struct qm_dqrr_entry *dq, 2840 bool sched_napi) 2841 { 2842 struct dpaa_percpu_priv *percpu_priv; 2843 struct net_device *net_dev; 2844 struct dpaa_priv *priv; 2845 2846 net_dev = ((struct dpaa_fq *)fq)->net_dev; 2847 priv = netdev_priv(net_dev); 2848 2849 /* Trace the fd */ 2850 trace_dpaa_tx_conf_fd(net_dev, fq, &dq->fd); 2851 2852 percpu_priv = this_cpu_ptr(priv->percpu_priv); 2853 2854 if (dpaa_eth_napi_schedule(percpu_priv, portal, sched_napi)) 2855 return qman_cb_dqrr_stop; 2856 2857 dpaa_tx_conf(net_dev, priv, percpu_priv, &dq->fd, fq->fqid); 2858 2859 return qman_cb_dqrr_consume; 2860 } 2861 2862 static void egress_ern(struct qman_portal *portal, 2863 struct qman_fq *fq, 2864 const union qm_mr_entry *msg) 2865 { 2866 const struct qm_fd *fd = &msg->ern.fd; 2867 struct dpaa_percpu_priv *percpu_priv; 2868 const struct dpaa_priv *priv; 2869 struct net_device *net_dev; 2870 struct sk_buff *skb; 2871 2872 net_dev = ((struct dpaa_fq *)fq)->net_dev; 2873 priv = netdev_priv(net_dev); 2874 percpu_priv = this_cpu_ptr(priv->percpu_priv); 2875 2876 percpu_priv->stats.tx_dropped++; 2877 percpu_priv->stats.tx_fifo_errors++; 2878 count_ern(percpu_priv, msg); 2879 2880 skb = dpaa_cleanup_tx_fd(priv, fd, false); 2881 dev_kfree_skb_any(skb); 2882 } 2883 2884 static const struct dpaa_fq_cbs dpaa_fq_cbs = { 2885 .rx_defq = { .cb = { .dqrr = rx_default_dqrr } }, 2886 .tx_defq = { .cb = { .dqrr = conf_dflt_dqrr } }, 2887 .rx_errq = { .cb = { .dqrr = rx_error_dqrr } }, 2888 .tx_errq = { .cb = { .dqrr = conf_error_dqrr } }, 2889 .egress_ern = { .cb = { .ern = egress_ern } } 2890 }; 2891 2892 static void dpaa_eth_napi_enable(struct dpaa_priv *priv) 2893 { 2894 struct dpaa_percpu_priv *percpu_priv; 2895 int i; 2896 2897 for_each_online_cpu(i) { 2898 percpu_priv = per_cpu_ptr(priv->percpu_priv, i); 2899 2900 percpu_priv->np.down = false; 2901 napi_enable(&percpu_priv->np.napi); 2902 } 2903 } 2904 2905 static void dpaa_eth_napi_disable(struct dpaa_priv *priv) 2906 { 2907 struct dpaa_percpu_priv *percpu_priv; 2908 int i; 2909 2910 for_each_online_cpu(i) { 2911 percpu_priv = per_cpu_ptr(priv->percpu_priv, i); 2912 2913 percpu_priv->np.down = true; 2914 napi_disable(&percpu_priv->np.napi); 2915 } 2916 } 2917 2918 static int dpaa_open(struct net_device *net_dev) 2919 { 2920 struct mac_device *mac_dev; 2921 struct dpaa_priv *priv; 2922 int err, i; 2923 2924 priv = netdev_priv(net_dev); 2925 mac_dev = priv->mac_dev; 2926 dpaa_eth_napi_enable(priv); 2927 2928 err = phylink_of_phy_connect(mac_dev->phylink, 2929 mac_dev->dev->of_node, 0); 2930 if (err) 2931 goto phy_init_failed; 2932 2933 for (i = 0; i < ARRAY_SIZE(mac_dev->port); i++) { 2934 err = fman_port_enable(mac_dev->port[i]); 2935 if (err) 2936 goto mac_start_failed; 2937 } 2938 2939 err = priv->mac_dev->enable(mac_dev->fman_mac); 2940 if (err < 0) { 2941 netif_err(priv, ifup, net_dev, "mac_dev->enable() = %d\n", err); 2942 goto mac_start_failed; 2943 } 2944 phylink_start(mac_dev->phylink); 2945 2946 netif_tx_start_all_queues(net_dev); 2947 2948 return 0; 2949 2950 mac_start_failed: 2951 for (i = 0; i < ARRAY_SIZE(mac_dev->port); i++) 2952 fman_port_disable(mac_dev->port[i]); 2953 phylink_disconnect_phy(mac_dev->phylink); 2954 2955 phy_init_failed: 2956 dpaa_eth_napi_disable(priv); 2957 2958 return err; 2959 } 2960 2961 static int dpaa_eth_stop(struct net_device *net_dev) 2962 { 2963 struct dpaa_priv *priv; 2964 int err; 2965 2966 err = dpaa_stop(net_dev); 2967 2968 priv = netdev_priv(net_dev); 2969 dpaa_eth_napi_disable(priv); 2970 2971 return err; 2972 } 2973 2974 static bool xdp_validate_mtu(struct dpaa_priv *priv, int mtu) 2975 { 2976 int max_contig_data = priv->dpaa_bp->size - priv->rx_headroom; 2977 2978 /* We do not support S/G fragments when XDP is enabled. 2979 * Limit the MTU in relation to the buffer size. 2980 */ 2981 if (mtu + VLAN_ETH_HLEN + ETH_FCS_LEN > max_contig_data) { 2982 dev_warn(priv->net_dev->dev.parent, 2983 "The maximum MTU for XDP is %d\n", 2984 max_contig_data - VLAN_ETH_HLEN - ETH_FCS_LEN); 2985 return false; 2986 } 2987 2988 return true; 2989 } 2990 2991 static int dpaa_change_mtu(struct net_device *net_dev, int new_mtu) 2992 { 2993 struct dpaa_priv *priv = netdev_priv(net_dev); 2994 2995 if (priv->xdp_prog && !xdp_validate_mtu(priv, new_mtu)) 2996 return -EINVAL; 2997 2998 net_dev->mtu = new_mtu; 2999 return 0; 3000 } 3001 3002 static int dpaa_setup_xdp(struct net_device *net_dev, struct netdev_bpf *bpf) 3003 { 3004 struct dpaa_priv *priv = netdev_priv(net_dev); 3005 struct bpf_prog *old_prog; 3006 int err; 3007 bool up; 3008 3009 /* S/G fragments are not supported in XDP-mode */ 3010 if (bpf->prog && !xdp_validate_mtu(priv, net_dev->mtu)) { 3011 NL_SET_ERR_MSG_MOD(bpf->extack, "MTU too large for XDP"); 3012 return -EINVAL; 3013 } 3014 3015 up = netif_running(net_dev); 3016 3017 if (up) 3018 dpaa_eth_stop(net_dev); 3019 3020 old_prog = xchg(&priv->xdp_prog, bpf->prog); 3021 if (old_prog) 3022 bpf_prog_put(old_prog); 3023 3024 if (up) { 3025 err = dpaa_open(net_dev); 3026 if (err) { 3027 NL_SET_ERR_MSG_MOD(bpf->extack, "dpaa_open() failed"); 3028 return err; 3029 } 3030 } 3031 3032 return 0; 3033 } 3034 3035 static int dpaa_xdp(struct net_device *net_dev, struct netdev_bpf *xdp) 3036 { 3037 switch (xdp->command) { 3038 case XDP_SETUP_PROG: 3039 return dpaa_setup_xdp(net_dev, xdp); 3040 default: 3041 return -EINVAL; 3042 } 3043 } 3044 3045 static int dpaa_xdp_xmit(struct net_device *net_dev, int n, 3046 struct xdp_frame **frames, u32 flags) 3047 { 3048 struct xdp_frame *xdpf; 3049 int i, nxmit = 0; 3050 3051 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK)) 3052 return -EINVAL; 3053 3054 if (!netif_running(net_dev)) 3055 return -ENETDOWN; 3056 3057 for (i = 0; i < n; i++) { 3058 xdpf = frames[i]; 3059 if (dpaa_xdp_xmit_frame(net_dev, xdpf)) 3060 break; 3061 nxmit++; 3062 } 3063 3064 return nxmit; 3065 } 3066 3067 static int dpaa_ts_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 3068 { 3069 struct dpaa_priv *priv = netdev_priv(dev); 3070 struct hwtstamp_config config; 3071 3072 if (copy_from_user(&config, rq->ifr_data, sizeof(config))) 3073 return -EFAULT; 3074 3075 switch (config.tx_type) { 3076 case HWTSTAMP_TX_OFF: 3077 /* Couldn't disable rx/tx timestamping separately. 3078 * Do nothing here. 3079 */ 3080 priv->tx_tstamp = false; 3081 break; 3082 case HWTSTAMP_TX_ON: 3083 priv->mac_dev->set_tstamp(priv->mac_dev->fman_mac, true); 3084 priv->tx_tstamp = true; 3085 break; 3086 default: 3087 return -ERANGE; 3088 } 3089 3090 if (config.rx_filter == HWTSTAMP_FILTER_NONE) { 3091 /* Couldn't disable rx/tx timestamping separately. 3092 * Do nothing here. 3093 */ 3094 priv->rx_tstamp = false; 3095 } else { 3096 priv->mac_dev->set_tstamp(priv->mac_dev->fman_mac, true); 3097 priv->rx_tstamp = true; 3098 /* TS is set for all frame types, not only those requested */ 3099 config.rx_filter = HWTSTAMP_FILTER_ALL; 3100 } 3101 3102 return copy_to_user(rq->ifr_data, &config, sizeof(config)) ? 3103 -EFAULT : 0; 3104 } 3105 3106 static int dpaa_ioctl(struct net_device *net_dev, struct ifreq *rq, int cmd) 3107 { 3108 int ret = -EINVAL; 3109 struct dpaa_priv *priv = netdev_priv(net_dev); 3110 3111 if (cmd == SIOCGMIIREG) { 3112 if (net_dev->phydev) 3113 return phylink_mii_ioctl(priv->mac_dev->phylink, rq, 3114 cmd); 3115 } 3116 3117 if (cmd == SIOCSHWTSTAMP) 3118 return dpaa_ts_ioctl(net_dev, rq, cmd); 3119 3120 return ret; 3121 } 3122 3123 static const struct net_device_ops dpaa_ops = { 3124 .ndo_open = dpaa_open, 3125 .ndo_start_xmit = dpaa_start_xmit, 3126 .ndo_stop = dpaa_eth_stop, 3127 .ndo_tx_timeout = dpaa_tx_timeout, 3128 .ndo_get_stats64 = dpaa_get_stats64, 3129 .ndo_change_carrier = fixed_phy_change_carrier, 3130 .ndo_set_mac_address = dpaa_set_mac_address, 3131 .ndo_validate_addr = eth_validate_addr, 3132 .ndo_set_rx_mode = dpaa_set_rx_mode, 3133 .ndo_eth_ioctl = dpaa_ioctl, 3134 .ndo_setup_tc = dpaa_setup_tc, 3135 .ndo_change_mtu = dpaa_change_mtu, 3136 .ndo_bpf = dpaa_xdp, 3137 .ndo_xdp_xmit = dpaa_xdp_xmit, 3138 }; 3139 3140 static int dpaa_napi_add(struct net_device *net_dev) 3141 { 3142 struct dpaa_priv *priv = netdev_priv(net_dev); 3143 struct dpaa_percpu_priv *percpu_priv; 3144 int cpu; 3145 3146 for_each_possible_cpu(cpu) { 3147 percpu_priv = per_cpu_ptr(priv->percpu_priv, cpu); 3148 3149 netif_napi_add(net_dev, &percpu_priv->np.napi, dpaa_eth_poll); 3150 } 3151 3152 return 0; 3153 } 3154 3155 static void dpaa_napi_del(struct net_device *net_dev) 3156 { 3157 struct dpaa_priv *priv = netdev_priv(net_dev); 3158 struct dpaa_percpu_priv *percpu_priv; 3159 int cpu; 3160 3161 for_each_possible_cpu(cpu) { 3162 percpu_priv = per_cpu_ptr(priv->percpu_priv, cpu); 3163 3164 netif_napi_del(&percpu_priv->np.napi); 3165 } 3166 } 3167 3168 static inline void dpaa_bp_free_pf(const struct dpaa_bp *bp, 3169 struct bm_buffer *bmb) 3170 { 3171 dma_addr_t addr = bm_buf_addr(bmb); 3172 3173 dma_unmap_page(bp->priv->rx_dma_dev, addr, DPAA_BP_RAW_SIZE, 3174 DMA_FROM_DEVICE); 3175 3176 skb_free_frag(phys_to_virt(addr)); 3177 } 3178 3179 /* Alloc the dpaa_bp struct and configure default values */ 3180 static struct dpaa_bp *dpaa_bp_alloc(struct device *dev) 3181 { 3182 struct dpaa_bp *dpaa_bp; 3183 3184 dpaa_bp = devm_kzalloc(dev, sizeof(*dpaa_bp), GFP_KERNEL); 3185 if (!dpaa_bp) 3186 return ERR_PTR(-ENOMEM); 3187 3188 dpaa_bp->bpid = FSL_DPAA_BPID_INV; 3189 dpaa_bp->percpu_count = devm_alloc_percpu(dev, *dpaa_bp->percpu_count); 3190 if (!dpaa_bp->percpu_count) 3191 return ERR_PTR(-ENOMEM); 3192 3193 dpaa_bp->config_count = FSL_DPAA_ETH_MAX_BUF_COUNT; 3194 3195 dpaa_bp->seed_cb = dpaa_bp_seed; 3196 dpaa_bp->free_buf_cb = dpaa_bp_free_pf; 3197 3198 return dpaa_bp; 3199 } 3200 3201 /* Place all ingress FQs (Rx Default, Rx Error) in a dedicated CGR. 3202 * We won't be sending congestion notifications to FMan; for now, we just use 3203 * this CGR to generate enqueue rejections to FMan in order to drop the frames 3204 * before they reach our ingress queues and eat up memory. 3205 */ 3206 static int dpaa_ingress_cgr_init(struct dpaa_priv *priv) 3207 { 3208 struct qm_mcc_initcgr initcgr; 3209 u32 cs_th; 3210 int err; 3211 3212 err = qman_alloc_cgrid(&priv->ingress_cgr.cgrid); 3213 if (err < 0) { 3214 if (netif_msg_drv(priv)) 3215 pr_err("Error %d allocating CGR ID\n", err); 3216 goto out_error; 3217 } 3218 3219 /* Enable CS TD, but disable Congestion State Change Notifications. */ 3220 memset(&initcgr, 0, sizeof(initcgr)); 3221 initcgr.we_mask = cpu_to_be16(QM_CGR_WE_CS_THRES); 3222 initcgr.cgr.cscn_en = QM_CGR_EN; 3223 cs_th = DPAA_INGRESS_CS_THRESHOLD; 3224 qm_cgr_cs_thres_set64(&initcgr.cgr.cs_thres, cs_th, 1); 3225 3226 initcgr.we_mask |= cpu_to_be16(QM_CGR_WE_CSTD_EN); 3227 initcgr.cgr.cstd_en = QM_CGR_EN; 3228 3229 /* This CGR will be associated with the SWP affined to the current CPU. 3230 * However, we'll place all our ingress FQs in it. 3231 */ 3232 err = qman_create_cgr(&priv->ingress_cgr, QMAN_CGR_FLAG_USE_INIT, 3233 &initcgr); 3234 if (err < 0) { 3235 if (netif_msg_drv(priv)) 3236 pr_err("Error %d creating ingress CGR with ID %d\n", 3237 err, priv->ingress_cgr.cgrid); 3238 qman_release_cgrid(priv->ingress_cgr.cgrid); 3239 goto out_error; 3240 } 3241 if (netif_msg_drv(priv)) 3242 pr_debug("Created ingress CGR %d for netdev with hwaddr %pM\n", 3243 priv->ingress_cgr.cgrid, priv->mac_dev->addr); 3244 3245 priv->use_ingress_cgr = true; 3246 3247 out_error: 3248 return err; 3249 } 3250 3251 static u16 dpaa_get_headroom(struct dpaa_buffer_layout *bl, 3252 enum port_type port) 3253 { 3254 u16 headroom; 3255 3256 /* The frame headroom must accommodate: 3257 * - the driver private data area 3258 * - parse results, hash results, timestamp if selected 3259 * If either hash results or time stamp are selected, both will 3260 * be copied to/from the frame headroom, as TS is located between PR and 3261 * HR in the IC and IC copy size has a granularity of 16bytes 3262 * (see description of FMBM_RICP and FMBM_TICP registers in DPAARM) 3263 * 3264 * Also make sure the headroom is a multiple of data_align bytes 3265 */ 3266 headroom = (u16)(bl[port].priv_data_size + DPAA_HWA_SIZE); 3267 3268 if (port == RX) { 3269 #ifdef CONFIG_DPAA_ERRATUM_A050385 3270 if (unlikely(fman_has_errata_a050385())) 3271 headroom = XDP_PACKET_HEADROOM; 3272 #endif 3273 3274 return ALIGN(headroom, DPAA_FD_RX_DATA_ALIGNMENT); 3275 } else { 3276 return ALIGN(headroom, DPAA_FD_DATA_ALIGNMENT); 3277 } 3278 } 3279 3280 static int dpaa_eth_probe(struct platform_device *pdev) 3281 { 3282 struct net_device *net_dev = NULL; 3283 struct dpaa_bp *dpaa_bp = NULL; 3284 struct dpaa_fq *dpaa_fq, *tmp; 3285 struct dpaa_priv *priv = NULL; 3286 struct fm_port_fqs port_fqs; 3287 struct mac_device *mac_dev; 3288 int err = 0, channel; 3289 struct device *dev; 3290 3291 dev = &pdev->dev; 3292 3293 err = bman_is_probed(); 3294 if (!err) 3295 return -EPROBE_DEFER; 3296 if (err < 0) { 3297 dev_err(dev, "failing probe due to bman probe error\n"); 3298 return -ENODEV; 3299 } 3300 err = qman_is_probed(); 3301 if (!err) 3302 return -EPROBE_DEFER; 3303 if (err < 0) { 3304 dev_err(dev, "failing probe due to qman probe error\n"); 3305 return -ENODEV; 3306 } 3307 err = bman_portals_probed(); 3308 if (!err) 3309 return -EPROBE_DEFER; 3310 if (err < 0) { 3311 dev_err(dev, 3312 "failing probe due to bman portals probe error\n"); 3313 return -ENODEV; 3314 } 3315 err = qman_portals_probed(); 3316 if (!err) 3317 return -EPROBE_DEFER; 3318 if (err < 0) { 3319 dev_err(dev, 3320 "failing probe due to qman portals probe error\n"); 3321 return -ENODEV; 3322 } 3323 3324 /* Allocate this early, so we can store relevant information in 3325 * the private area 3326 */ 3327 net_dev = alloc_etherdev_mq(sizeof(*priv), DPAA_ETH_TXQ_NUM); 3328 if (!net_dev) { 3329 dev_err(dev, "alloc_etherdev_mq() failed\n"); 3330 return -ENOMEM; 3331 } 3332 3333 /* Do this here, so we can be verbose early */ 3334 SET_NETDEV_DEV(net_dev, dev->parent); 3335 dev_set_drvdata(dev, net_dev); 3336 3337 priv = netdev_priv(net_dev); 3338 priv->net_dev = net_dev; 3339 3340 priv->msg_enable = netif_msg_init(debug, DPAA_MSG_DEFAULT); 3341 3342 mac_dev = dpaa_mac_dev_get(pdev); 3343 if (IS_ERR(mac_dev)) { 3344 netdev_err(net_dev, "dpaa_mac_dev_get() failed\n"); 3345 err = PTR_ERR(mac_dev); 3346 goto free_netdev; 3347 } 3348 3349 /* Devices used for DMA mapping */ 3350 priv->rx_dma_dev = fman_port_get_device(mac_dev->port[RX]); 3351 priv->tx_dma_dev = fman_port_get_device(mac_dev->port[TX]); 3352 err = dma_coerce_mask_and_coherent(priv->rx_dma_dev, DMA_BIT_MASK(40)); 3353 if (!err) 3354 err = dma_coerce_mask_and_coherent(priv->tx_dma_dev, 3355 DMA_BIT_MASK(40)); 3356 if (err) { 3357 netdev_err(net_dev, "dma_coerce_mask_and_coherent() failed\n"); 3358 goto free_netdev; 3359 } 3360 3361 /* If fsl_fm_max_frm is set to a higher value than the all-common 1500, 3362 * we choose conservatively and let the user explicitly set a higher 3363 * MTU via ifconfig. Otherwise, the user may end up with different MTUs 3364 * in the same LAN. 3365 * If on the other hand fsl_fm_max_frm has been chosen below 1500, 3366 * start with the maximum allowed. 3367 */ 3368 net_dev->mtu = min(dpaa_get_max_mtu(), ETH_DATA_LEN); 3369 3370 netdev_dbg(net_dev, "Setting initial MTU on net device: %d\n", 3371 net_dev->mtu); 3372 3373 priv->buf_layout[RX].priv_data_size = DPAA_RX_PRIV_DATA_SIZE; /* Rx */ 3374 priv->buf_layout[TX].priv_data_size = DPAA_TX_PRIV_DATA_SIZE; /* Tx */ 3375 3376 /* bp init */ 3377 dpaa_bp = dpaa_bp_alloc(dev); 3378 if (IS_ERR(dpaa_bp)) { 3379 err = PTR_ERR(dpaa_bp); 3380 goto free_dpaa_bps; 3381 } 3382 /* the raw size of the buffers used for reception */ 3383 dpaa_bp->raw_size = DPAA_BP_RAW_SIZE; 3384 /* avoid runtime computations by keeping the usable size here */ 3385 dpaa_bp->size = dpaa_bp_size(dpaa_bp->raw_size); 3386 dpaa_bp->priv = priv; 3387 3388 err = dpaa_bp_alloc_pool(dpaa_bp); 3389 if (err < 0) 3390 goto free_dpaa_bps; 3391 priv->dpaa_bp = dpaa_bp; 3392 3393 INIT_LIST_HEAD(&priv->dpaa_fq_list); 3394 3395 memset(&port_fqs, 0, sizeof(port_fqs)); 3396 3397 err = dpaa_alloc_all_fqs(dev, &priv->dpaa_fq_list, &port_fqs); 3398 if (err < 0) { 3399 dev_err(dev, "dpaa_alloc_all_fqs() failed\n"); 3400 goto free_dpaa_bps; 3401 } 3402 3403 priv->mac_dev = mac_dev; 3404 3405 channel = dpaa_get_channel(); 3406 if (channel < 0) { 3407 dev_err(dev, "dpaa_get_channel() failed\n"); 3408 err = channel; 3409 goto free_dpaa_bps; 3410 } 3411 3412 priv->channel = (u16)channel; 3413 3414 /* Walk the CPUs with affine portals 3415 * and add this pool channel to each's dequeue mask. 3416 */ 3417 dpaa_eth_add_channel(priv->channel, &pdev->dev); 3418 3419 dpaa_fq_setup(priv, &dpaa_fq_cbs, priv->mac_dev->port[TX]); 3420 3421 /* Create a congestion group for this netdev, with 3422 * dynamically-allocated CGR ID. 3423 * Must be executed after probing the MAC, but before 3424 * assigning the egress FQs to the CGRs. 3425 */ 3426 err = dpaa_eth_cgr_init(priv); 3427 if (err < 0) { 3428 dev_err(dev, "Error initializing CGR\n"); 3429 goto free_dpaa_bps; 3430 } 3431 3432 err = dpaa_ingress_cgr_init(priv); 3433 if (err < 0) { 3434 dev_err(dev, "Error initializing ingress CGR\n"); 3435 goto delete_egress_cgr; 3436 } 3437 3438 /* Add the FQs to the interface, and make them active */ 3439 list_for_each_entry_safe(dpaa_fq, tmp, &priv->dpaa_fq_list, list) { 3440 err = dpaa_fq_init(dpaa_fq, false); 3441 if (err < 0) 3442 goto free_dpaa_fqs; 3443 } 3444 3445 priv->tx_headroom = dpaa_get_headroom(priv->buf_layout, TX); 3446 priv->rx_headroom = dpaa_get_headroom(priv->buf_layout, RX); 3447 3448 /* All real interfaces need their ports initialized */ 3449 err = dpaa_eth_init_ports(mac_dev, dpaa_bp, &port_fqs, 3450 &priv->buf_layout[0], dev); 3451 if (err) 3452 goto free_dpaa_fqs; 3453 3454 /* Rx traffic distribution based on keygen hashing defaults to on */ 3455 priv->keygen_in_use = true; 3456 3457 priv->percpu_priv = devm_alloc_percpu(dev, *priv->percpu_priv); 3458 if (!priv->percpu_priv) { 3459 dev_err(dev, "devm_alloc_percpu() failed\n"); 3460 err = -ENOMEM; 3461 goto free_dpaa_fqs; 3462 } 3463 3464 priv->num_tc = 1; 3465 netif_set_real_num_tx_queues(net_dev, priv->num_tc * DPAA_TC_TXQ_NUM); 3466 3467 /* Initialize NAPI */ 3468 err = dpaa_napi_add(net_dev); 3469 if (err < 0) 3470 goto delete_dpaa_napi; 3471 3472 err = dpaa_netdev_init(net_dev, &dpaa_ops, tx_timeout); 3473 if (err < 0) 3474 goto delete_dpaa_napi; 3475 3476 dpaa_eth_sysfs_init(&net_dev->dev); 3477 3478 netif_info(priv, probe, net_dev, "Probed interface %s\n", 3479 net_dev->name); 3480 3481 return 0; 3482 3483 delete_dpaa_napi: 3484 dpaa_napi_del(net_dev); 3485 free_dpaa_fqs: 3486 dpaa_fq_free(dev, &priv->dpaa_fq_list); 3487 qman_delete_cgr_safe(&priv->ingress_cgr); 3488 qman_release_cgrid(priv->ingress_cgr.cgrid); 3489 delete_egress_cgr: 3490 qman_delete_cgr_safe(&priv->cgr_data.cgr); 3491 qman_release_cgrid(priv->cgr_data.cgr.cgrid); 3492 free_dpaa_bps: 3493 dpaa_bps_free(priv); 3494 free_netdev: 3495 dev_set_drvdata(dev, NULL); 3496 free_netdev(net_dev); 3497 3498 return err; 3499 } 3500 3501 static void dpaa_remove(struct platform_device *pdev) 3502 { 3503 struct net_device *net_dev; 3504 struct dpaa_priv *priv; 3505 struct device *dev; 3506 int err; 3507 3508 dev = &pdev->dev; 3509 net_dev = dev_get_drvdata(dev); 3510 3511 priv = netdev_priv(net_dev); 3512 3513 dpaa_eth_sysfs_remove(dev); 3514 3515 dev_set_drvdata(dev, NULL); 3516 unregister_netdev(net_dev); 3517 phylink_destroy(priv->mac_dev->phylink); 3518 3519 err = dpaa_fq_free(dev, &priv->dpaa_fq_list); 3520 if (err) 3521 dev_err(dev, "Failed to free FQs on remove (%pE)\n", 3522 ERR_PTR(err)); 3523 3524 qman_delete_cgr_safe(&priv->ingress_cgr); 3525 qman_release_cgrid(priv->ingress_cgr.cgrid); 3526 qman_delete_cgr_safe(&priv->cgr_data.cgr); 3527 qman_release_cgrid(priv->cgr_data.cgr.cgrid); 3528 3529 dpaa_napi_del(net_dev); 3530 3531 dpaa_bps_free(priv); 3532 3533 free_netdev(net_dev); 3534 } 3535 3536 static const struct platform_device_id dpaa_devtype[] = { 3537 { 3538 .name = "dpaa-ethernet", 3539 .driver_data = 0, 3540 }, { 3541 } 3542 }; 3543 MODULE_DEVICE_TABLE(platform, dpaa_devtype); 3544 3545 static struct platform_driver dpaa_driver = { 3546 .driver = { 3547 .name = KBUILD_MODNAME, 3548 }, 3549 .id_table = dpaa_devtype, 3550 .probe = dpaa_eth_probe, 3551 .remove_new = dpaa_remove 3552 }; 3553 3554 static int __init dpaa_load(void) 3555 { 3556 int err; 3557 3558 pr_debug("FSL DPAA Ethernet driver\n"); 3559 3560 /* initialize dpaa_eth mirror values */ 3561 dpaa_rx_extra_headroom = fman_get_rx_extra_headroom(); 3562 dpaa_max_frm = fman_get_max_frm(); 3563 3564 err = platform_driver_register(&dpaa_driver); 3565 if (err < 0) 3566 pr_err("Error, platform_driver_register() = %d\n", err); 3567 3568 return err; 3569 } 3570 module_init(dpaa_load); 3571 3572 static void __exit dpaa_unload(void) 3573 { 3574 platform_driver_unregister(&dpaa_driver); 3575 3576 /* Only one channel is used and needs to be released after all 3577 * interfaces are removed 3578 */ 3579 dpaa_release_channel(); 3580 } 3581 module_exit(dpaa_unload); 3582 3583 MODULE_LICENSE("Dual BSD/GPL"); 3584 MODULE_DESCRIPTION("FSL DPAA Ethernet driver"); 3585