1 /* Copyright 2008 - 2016 Freescale Semiconductor Inc.
2  *
3  * Redistribution and use in source and binary forms, with or without
4  * modification, are permitted provided that the following conditions are met:
5  *     * Redistributions of source code must retain the above copyright
6  *	 notice, this list of conditions and the following disclaimer.
7  *     * Redistributions in binary form must reproduce the above copyright
8  *	 notice, this list of conditions and the following disclaimer in the
9  *	 documentation and/or other materials provided with the distribution.
10  *     * Neither the name of Freescale Semiconductor nor the
11  *	 names of its contributors may be used to endorse or promote products
12  *	 derived from this software without specific prior written permission.
13  *
14  * ALTERNATIVELY, this software may be distributed under the terms of the
15  * GNU General Public License ("GPL") as published by the Free Software
16  * Foundation, either version 2 of that License or (at your option) any
17  * later version.
18  *
19  * THIS SOFTWARE IS PROVIDED BY Freescale Semiconductor ``AS IS'' AND ANY
20  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
21  * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
22  * DISCLAIMED. IN NO EVENT SHALL Freescale Semiconductor BE LIABLE FOR ANY
23  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
24  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
25  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
26  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
28  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29  */
30 
31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
32 
33 #include <linux/init.h>
34 #include <linux/module.h>
35 #include <linux/of_platform.h>
36 #include <linux/of_mdio.h>
37 #include <linux/of_net.h>
38 #include <linux/io.h>
39 #include <linux/if_arp.h>
40 #include <linux/if_vlan.h>
41 #include <linux/icmp.h>
42 #include <linux/ip.h>
43 #include <linux/ipv6.h>
44 #include <linux/udp.h>
45 #include <linux/tcp.h>
46 #include <linux/net.h>
47 #include <linux/skbuff.h>
48 #include <linux/etherdevice.h>
49 #include <linux/if_ether.h>
50 #include <linux/highmem.h>
51 #include <linux/percpu.h>
52 #include <linux/dma-mapping.h>
53 #include <linux/sort.h>
54 #include <soc/fsl/bman.h>
55 #include <soc/fsl/qman.h>
56 
57 #include "fman.h"
58 #include "fman_port.h"
59 #include "mac.h"
60 #include "dpaa_eth.h"
61 
62 /* CREATE_TRACE_POINTS only needs to be defined once. Other dpaa files
63  * using trace events only need to #include <trace/events/sched.h>
64  */
65 #define CREATE_TRACE_POINTS
66 #include "dpaa_eth_trace.h"
67 
68 static int debug = -1;
69 module_param(debug, int, 0444);
70 MODULE_PARM_DESC(debug, "Module/Driver verbosity level (0=none,...,16=all)");
71 
72 static u16 tx_timeout = 1000;
73 module_param(tx_timeout, ushort, 0444);
74 MODULE_PARM_DESC(tx_timeout, "The Tx timeout in ms");
75 
76 #define FM_FD_STAT_RX_ERRORS						\
77 	(FM_FD_ERR_DMA | FM_FD_ERR_PHYSICAL	| \
78 	 FM_FD_ERR_SIZE | FM_FD_ERR_CLS_DISCARD | \
79 	 FM_FD_ERR_EXTRACTION | FM_FD_ERR_NO_SCHEME	| \
80 	 FM_FD_ERR_PRS_TIMEOUT | FM_FD_ERR_PRS_ILL_INSTRUCT | \
81 	 FM_FD_ERR_PRS_HDR_ERR)
82 
83 #define FM_FD_STAT_TX_ERRORS \
84 	(FM_FD_ERR_UNSUPPORTED_FORMAT | \
85 	 FM_FD_ERR_LENGTH | FM_FD_ERR_DMA)
86 
87 #define DPAA_MSG_DEFAULT (NETIF_MSG_DRV | NETIF_MSG_PROBE | \
88 			  NETIF_MSG_LINK | NETIF_MSG_IFUP | \
89 			  NETIF_MSG_IFDOWN)
90 
91 #define DPAA_INGRESS_CS_THRESHOLD 0x10000000
92 /* Ingress congestion threshold on FMan ports
93  * The size in bytes of the ingress tail-drop threshold on FMan ports.
94  * Traffic piling up above this value will be rejected by QMan and discarded
95  * by FMan.
96  */
97 
98 /* Size in bytes of the FQ taildrop threshold */
99 #define DPAA_FQ_TD 0x200000
100 
101 #define DPAA_CS_THRESHOLD_1G 0x06000000
102 /* Egress congestion threshold on 1G ports, range 0x1000 .. 0x10000000
103  * The size in bytes of the egress Congestion State notification threshold on
104  * 1G ports. The 1G dTSECs can quite easily be flooded by cores doing Tx in a
105  * tight loop (e.g. by sending UDP datagrams at "while(1) speed"),
106  * and the larger the frame size, the more acute the problem.
107  * So we have to find a balance between these factors:
108  * - avoiding the device staying congested for a prolonged time (risking
109  *   the netdev watchdog to fire - see also the tx_timeout module param);
110  * - affecting performance of protocols such as TCP, which otherwise
111  *   behave well under the congestion notification mechanism;
112  * - preventing the Tx cores from tightly-looping (as if the congestion
113  *   threshold was too low to be effective);
114  * - running out of memory if the CS threshold is set too high.
115  */
116 
117 #define DPAA_CS_THRESHOLD_10G 0x10000000
118 /* The size in bytes of the egress Congestion State notification threshold on
119  * 10G ports, range 0x1000 .. 0x10000000
120  */
121 
122 /* Largest value that the FQD's OAL field can hold */
123 #define FSL_QMAN_MAX_OAL	127
124 
125 /* Default alignment for start of data in an Rx FD */
126 #define DPAA_FD_DATA_ALIGNMENT  16
127 
128 /* Values for the L3R field of the FM Parse Results
129  */
130 /* L3 Type field: First IP Present IPv4 */
131 #define FM_L3_PARSE_RESULT_IPV4	0x8000
132 /* L3 Type field: First IP Present IPv6 */
133 #define FM_L3_PARSE_RESULT_IPV6	0x4000
134 /* Values for the L4R field of the FM Parse Results */
135 /* L4 Type field: UDP */
136 #define FM_L4_PARSE_RESULT_UDP	0x40
137 /* L4 Type field: TCP */
138 #define FM_L4_PARSE_RESULT_TCP	0x20
139 
140 /* FD status field indicating whether the FM Parser has attempted to validate
141  * the L4 csum of the frame.
142  * Note that having this bit set doesn't necessarily imply that the checksum
143  * is valid. One would have to check the parse results to find that out.
144  */
145 #define FM_FD_STAT_L4CV         0x00000004
146 
147 #define DPAA_SGT_MAX_ENTRIES 16 /* maximum number of entries in SG Table */
148 #define DPAA_BUFF_RELEASE_MAX 8 /* maximum number of buffers released at once */
149 
150 #define FSL_DPAA_BPID_INV		0xff
151 #define FSL_DPAA_ETH_MAX_BUF_COUNT	128
152 #define FSL_DPAA_ETH_REFILL_THRESHOLD	80
153 
154 #define DPAA_TX_PRIV_DATA_SIZE	16
155 #define DPAA_PARSE_RESULTS_SIZE sizeof(struct fman_prs_result)
156 #define DPAA_TIME_STAMP_SIZE 8
157 #define DPAA_HASH_RESULTS_SIZE 8
158 #define DPAA_RX_PRIV_DATA_SIZE	(u16)(DPAA_TX_PRIV_DATA_SIZE + \
159 					dpaa_rx_extra_headroom)
160 
161 #define DPAA_ETH_PCD_RXQ_NUM	128
162 
163 #define DPAA_ENQUEUE_RETRIES	100000
164 
165 enum port_type {RX, TX};
166 
167 struct fm_port_fqs {
168 	struct dpaa_fq *tx_defq;
169 	struct dpaa_fq *tx_errq;
170 	struct dpaa_fq *rx_defq;
171 	struct dpaa_fq *rx_errq;
172 	struct dpaa_fq *rx_pcdq;
173 };
174 
175 /* All the dpa bps in use at any moment */
176 static struct dpaa_bp *dpaa_bp_array[BM_MAX_NUM_OF_POOLS];
177 
178 /* The raw buffer size must be cacheline aligned */
179 #define DPAA_BP_RAW_SIZE 4096
180 /* When using more than one buffer pool, the raw sizes are as follows:
181  * 1 bp: 4KB
182  * 2 bp: 2KB, 4KB
183  * 3 bp: 1KB, 2KB, 4KB
184  * 4 bp: 1KB, 2KB, 4KB, 8KB
185  */
186 static inline size_t bpool_buffer_raw_size(u8 index, u8 cnt)
187 {
188 	size_t res = DPAA_BP_RAW_SIZE / 4;
189 	u8 i;
190 
191 	for (i = (cnt < 3) ? cnt : 3; i < 3 + index; i++)
192 		res *= 2;
193 	return res;
194 }
195 
196 /* FMan-DMA requires 16-byte alignment for Rx buffers, but SKB_DATA_ALIGN is
197  * even stronger (SMP_CACHE_BYTES-aligned), so we just get away with that,
198  * via SKB_WITH_OVERHEAD(). We can't rely on netdev_alloc_frag() giving us
199  * half-page-aligned buffers, so we reserve some more space for start-of-buffer
200  * alignment.
201  */
202 #define dpaa_bp_size(raw_size) SKB_WITH_OVERHEAD((raw_size) - SMP_CACHE_BYTES)
203 
204 static int dpaa_max_frm;
205 
206 static int dpaa_rx_extra_headroom;
207 
208 #define dpaa_get_max_mtu()	\
209 	(dpaa_max_frm - (VLAN_ETH_HLEN + ETH_FCS_LEN))
210 
211 static int dpaa_netdev_init(struct net_device *net_dev,
212 			    const struct net_device_ops *dpaa_ops,
213 			    u16 tx_timeout)
214 {
215 	struct dpaa_priv *priv = netdev_priv(net_dev);
216 	struct device *dev = net_dev->dev.parent;
217 	struct dpaa_percpu_priv *percpu_priv;
218 	const u8 *mac_addr;
219 	int i, err;
220 
221 	/* Although we access another CPU's private data here
222 	 * we do it at initialization so it is safe
223 	 */
224 	for_each_possible_cpu(i) {
225 		percpu_priv = per_cpu_ptr(priv->percpu_priv, i);
226 		percpu_priv->net_dev = net_dev;
227 	}
228 
229 	net_dev->netdev_ops = dpaa_ops;
230 	mac_addr = priv->mac_dev->addr;
231 
232 	net_dev->mem_start = priv->mac_dev->res->start;
233 	net_dev->mem_end = priv->mac_dev->res->end;
234 
235 	net_dev->min_mtu = ETH_MIN_MTU;
236 	net_dev->max_mtu = dpaa_get_max_mtu();
237 
238 	net_dev->hw_features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
239 				 NETIF_F_LLTX | NETIF_F_RXHASH);
240 
241 	net_dev->hw_features |= NETIF_F_SG | NETIF_F_HIGHDMA;
242 	/* The kernels enables GSO automatically, if we declare NETIF_F_SG.
243 	 * For conformity, we'll still declare GSO explicitly.
244 	 */
245 	net_dev->features |= NETIF_F_GSO;
246 	net_dev->features |= NETIF_F_RXCSUM;
247 
248 	net_dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
249 	/* we do not want shared skbs on TX */
250 	net_dev->priv_flags &= ~IFF_TX_SKB_SHARING;
251 
252 	net_dev->features |= net_dev->hw_features;
253 	net_dev->vlan_features = net_dev->features;
254 
255 	memcpy(net_dev->perm_addr, mac_addr, net_dev->addr_len);
256 	memcpy(net_dev->dev_addr, mac_addr, net_dev->addr_len);
257 
258 	net_dev->ethtool_ops = &dpaa_ethtool_ops;
259 
260 	net_dev->needed_headroom = priv->tx_headroom;
261 	net_dev->watchdog_timeo = msecs_to_jiffies(tx_timeout);
262 
263 	/* start without the RUNNING flag, phylib controls it later */
264 	netif_carrier_off(net_dev);
265 
266 	err = register_netdev(net_dev);
267 	if (err < 0) {
268 		dev_err(dev, "register_netdev() = %d\n", err);
269 		return err;
270 	}
271 
272 	return 0;
273 }
274 
275 static int dpaa_stop(struct net_device *net_dev)
276 {
277 	struct mac_device *mac_dev;
278 	struct dpaa_priv *priv;
279 	int i, err, error;
280 
281 	priv = netdev_priv(net_dev);
282 	mac_dev = priv->mac_dev;
283 
284 	netif_tx_stop_all_queues(net_dev);
285 	/* Allow the Fman (Tx) port to process in-flight frames before we
286 	 * try switching it off.
287 	 */
288 	usleep_range(5000, 10000);
289 
290 	err = mac_dev->stop(mac_dev);
291 	if (err < 0)
292 		netif_err(priv, ifdown, net_dev, "mac_dev->stop() = %d\n",
293 			  err);
294 
295 	for (i = 0; i < ARRAY_SIZE(mac_dev->port); i++) {
296 		error = fman_port_disable(mac_dev->port[i]);
297 		if (error)
298 			err = error;
299 	}
300 
301 	if (net_dev->phydev)
302 		phy_disconnect(net_dev->phydev);
303 	net_dev->phydev = NULL;
304 
305 	return err;
306 }
307 
308 static void dpaa_tx_timeout(struct net_device *net_dev)
309 {
310 	struct dpaa_percpu_priv *percpu_priv;
311 	const struct dpaa_priv	*priv;
312 
313 	priv = netdev_priv(net_dev);
314 	percpu_priv = this_cpu_ptr(priv->percpu_priv);
315 
316 	netif_crit(priv, timer, net_dev, "Transmit timeout latency: %u ms\n",
317 		   jiffies_to_msecs(jiffies - dev_trans_start(net_dev)));
318 
319 	percpu_priv->stats.tx_errors++;
320 }
321 
322 /* Calculates the statistics for the given device by adding the statistics
323  * collected by each CPU.
324  */
325 static void dpaa_get_stats64(struct net_device *net_dev,
326 			     struct rtnl_link_stats64 *s)
327 {
328 	int numstats = sizeof(struct rtnl_link_stats64) / sizeof(u64);
329 	struct dpaa_priv *priv = netdev_priv(net_dev);
330 	struct dpaa_percpu_priv *percpu_priv;
331 	u64 *netstats = (u64 *)s;
332 	u64 *cpustats;
333 	int i, j;
334 
335 	for_each_possible_cpu(i) {
336 		percpu_priv = per_cpu_ptr(priv->percpu_priv, i);
337 
338 		cpustats = (u64 *)&percpu_priv->stats;
339 
340 		/* add stats from all CPUs */
341 		for (j = 0; j < numstats; j++)
342 			netstats[j] += cpustats[j];
343 	}
344 }
345 
346 static int dpaa_setup_tc(struct net_device *net_dev, enum tc_setup_type type,
347 			 void *type_data)
348 {
349 	struct dpaa_priv *priv = netdev_priv(net_dev);
350 	struct tc_mqprio_qopt *mqprio = type_data;
351 	u8 num_tc;
352 	int i;
353 
354 	if (type != TC_SETUP_MQPRIO)
355 		return -EOPNOTSUPP;
356 
357 	mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
358 	num_tc = mqprio->num_tc;
359 
360 	if (num_tc == priv->num_tc)
361 		return 0;
362 
363 	if (!num_tc) {
364 		netdev_reset_tc(net_dev);
365 		goto out;
366 	}
367 
368 	if (num_tc > DPAA_TC_NUM) {
369 		netdev_err(net_dev, "Too many traffic classes: max %d supported.\n",
370 			   DPAA_TC_NUM);
371 		return -EINVAL;
372 	}
373 
374 	netdev_set_num_tc(net_dev, num_tc);
375 
376 	for (i = 0; i < num_tc; i++)
377 		netdev_set_tc_queue(net_dev, i, DPAA_TC_TXQ_NUM,
378 				    i * DPAA_TC_TXQ_NUM);
379 
380 out:
381 	priv->num_tc = num_tc ? : 1;
382 	netif_set_real_num_tx_queues(net_dev, priv->num_tc * DPAA_TC_TXQ_NUM);
383 	return 0;
384 }
385 
386 static struct mac_device *dpaa_mac_dev_get(struct platform_device *pdev)
387 {
388 	struct platform_device *of_dev;
389 	struct dpaa_eth_data *eth_data;
390 	struct device *dpaa_dev, *dev;
391 	struct device_node *mac_node;
392 	struct mac_device *mac_dev;
393 
394 	dpaa_dev = &pdev->dev;
395 	eth_data = dpaa_dev->platform_data;
396 	if (!eth_data)
397 		return ERR_PTR(-ENODEV);
398 
399 	mac_node = eth_data->mac_node;
400 
401 	of_dev = of_find_device_by_node(mac_node);
402 	if (!of_dev) {
403 		dev_err(dpaa_dev, "of_find_device_by_node(%pOF) failed\n",
404 			mac_node);
405 		of_node_put(mac_node);
406 		return ERR_PTR(-EINVAL);
407 	}
408 	of_node_put(mac_node);
409 
410 	dev = &of_dev->dev;
411 
412 	mac_dev = dev_get_drvdata(dev);
413 	if (!mac_dev) {
414 		dev_err(dpaa_dev, "dev_get_drvdata(%s) failed\n",
415 			dev_name(dev));
416 		return ERR_PTR(-EINVAL);
417 	}
418 
419 	return mac_dev;
420 }
421 
422 static int dpaa_set_mac_address(struct net_device *net_dev, void *addr)
423 {
424 	const struct dpaa_priv *priv;
425 	struct mac_device *mac_dev;
426 	struct sockaddr old_addr;
427 	int err;
428 
429 	priv = netdev_priv(net_dev);
430 
431 	memcpy(old_addr.sa_data, net_dev->dev_addr,  ETH_ALEN);
432 
433 	err = eth_mac_addr(net_dev, addr);
434 	if (err < 0) {
435 		netif_err(priv, drv, net_dev, "eth_mac_addr() = %d\n", err);
436 		return err;
437 	}
438 
439 	mac_dev = priv->mac_dev;
440 
441 	err = mac_dev->change_addr(mac_dev->fman_mac,
442 				   (enet_addr_t *)net_dev->dev_addr);
443 	if (err < 0) {
444 		netif_err(priv, drv, net_dev, "mac_dev->change_addr() = %d\n",
445 			  err);
446 		/* reverting to previous address */
447 		eth_mac_addr(net_dev, &old_addr);
448 
449 		return err;
450 	}
451 
452 	return 0;
453 }
454 
455 static void dpaa_set_rx_mode(struct net_device *net_dev)
456 {
457 	const struct dpaa_priv	*priv;
458 	int err;
459 
460 	priv = netdev_priv(net_dev);
461 
462 	if (!!(net_dev->flags & IFF_PROMISC) != priv->mac_dev->promisc) {
463 		priv->mac_dev->promisc = !priv->mac_dev->promisc;
464 		err = priv->mac_dev->set_promisc(priv->mac_dev->fman_mac,
465 						 priv->mac_dev->promisc);
466 		if (err < 0)
467 			netif_err(priv, drv, net_dev,
468 				  "mac_dev->set_promisc() = %d\n",
469 				  err);
470 	}
471 
472 	err = priv->mac_dev->set_multi(net_dev, priv->mac_dev);
473 	if (err < 0)
474 		netif_err(priv, drv, net_dev, "mac_dev->set_multi() = %d\n",
475 			  err);
476 }
477 
478 static struct dpaa_bp *dpaa_bpid2pool(int bpid)
479 {
480 	if (WARN_ON(bpid < 0 || bpid >= BM_MAX_NUM_OF_POOLS))
481 		return NULL;
482 
483 	return dpaa_bp_array[bpid];
484 }
485 
486 /* checks if this bpool is already allocated */
487 static bool dpaa_bpid2pool_use(int bpid)
488 {
489 	if (dpaa_bpid2pool(bpid)) {
490 		atomic_inc(&dpaa_bp_array[bpid]->refs);
491 		return true;
492 	}
493 
494 	return false;
495 }
496 
497 /* called only once per bpid by dpaa_bp_alloc_pool() */
498 static void dpaa_bpid2pool_map(int bpid, struct dpaa_bp *dpaa_bp)
499 {
500 	dpaa_bp_array[bpid] = dpaa_bp;
501 	atomic_set(&dpaa_bp->refs, 1);
502 }
503 
504 static int dpaa_bp_alloc_pool(struct dpaa_bp *dpaa_bp)
505 {
506 	int err;
507 
508 	if (dpaa_bp->size == 0 || dpaa_bp->config_count == 0) {
509 		pr_err("%s: Buffer pool is not properly initialized! Missing size or initial number of buffers\n",
510 		       __func__);
511 		return -EINVAL;
512 	}
513 
514 	/* If the pool is already specified, we only create one per bpid */
515 	if (dpaa_bp->bpid != FSL_DPAA_BPID_INV &&
516 	    dpaa_bpid2pool_use(dpaa_bp->bpid))
517 		return 0;
518 
519 	if (dpaa_bp->bpid == FSL_DPAA_BPID_INV) {
520 		dpaa_bp->pool = bman_new_pool();
521 		if (!dpaa_bp->pool) {
522 			pr_err("%s: bman_new_pool() failed\n",
523 			       __func__);
524 			return -ENODEV;
525 		}
526 
527 		dpaa_bp->bpid = (u8)bman_get_bpid(dpaa_bp->pool);
528 	}
529 
530 	if (dpaa_bp->seed_cb) {
531 		err = dpaa_bp->seed_cb(dpaa_bp);
532 		if (err)
533 			goto pool_seed_failed;
534 	}
535 
536 	dpaa_bpid2pool_map(dpaa_bp->bpid, dpaa_bp);
537 
538 	return 0;
539 
540 pool_seed_failed:
541 	pr_err("%s: pool seeding failed\n", __func__);
542 	bman_free_pool(dpaa_bp->pool);
543 
544 	return err;
545 }
546 
547 /* remove and free all the buffers from the given buffer pool */
548 static void dpaa_bp_drain(struct dpaa_bp *bp)
549 {
550 	u8 num = 8;
551 	int ret;
552 
553 	do {
554 		struct bm_buffer bmb[8];
555 		int i;
556 
557 		ret = bman_acquire(bp->pool, bmb, num);
558 		if (ret < 0) {
559 			if (num == 8) {
560 				/* we have less than 8 buffers left;
561 				 * drain them one by one
562 				 */
563 				num = 1;
564 				ret = 1;
565 				continue;
566 			} else {
567 				/* Pool is fully drained */
568 				break;
569 			}
570 		}
571 
572 		if (bp->free_buf_cb)
573 			for (i = 0; i < num; i++)
574 				bp->free_buf_cb(bp, &bmb[i]);
575 	} while (ret > 0);
576 }
577 
578 static void dpaa_bp_free(struct dpaa_bp *dpaa_bp)
579 {
580 	struct dpaa_bp *bp = dpaa_bpid2pool(dpaa_bp->bpid);
581 
582 	/* the mapping between bpid and dpaa_bp is done very late in the
583 	 * allocation procedure; if something failed before the mapping, the bp
584 	 * was not configured, therefore we don't need the below instructions
585 	 */
586 	if (!bp)
587 		return;
588 
589 	if (!atomic_dec_and_test(&bp->refs))
590 		return;
591 
592 	if (bp->free_buf_cb)
593 		dpaa_bp_drain(bp);
594 
595 	dpaa_bp_array[bp->bpid] = NULL;
596 	bman_free_pool(bp->pool);
597 }
598 
599 static void dpaa_bps_free(struct dpaa_priv *priv)
600 {
601 	int i;
602 
603 	for (i = 0; i < DPAA_BPS_NUM; i++)
604 		dpaa_bp_free(priv->dpaa_bps[i]);
605 }
606 
607 /* Use multiple WQs for FQ assignment:
608  *	- Tx Confirmation queues go to WQ1.
609  *	- Rx Error and Tx Error queues go to WQ5 (giving them a better chance
610  *	  to be scheduled, in case there are many more FQs in WQ6).
611  *	- Rx Default goes to WQ6.
612  *	- Tx queues go to different WQs depending on their priority. Equal
613  *	  chunks of NR_CPUS queues go to WQ6 (lowest priority), WQ2, WQ1 and
614  *	  WQ0 (highest priority).
615  * This ensures that Tx-confirmed buffers are timely released. In particular,
616  * it avoids congestion on the Tx Confirm FQs, which can pile up PFDRs if they
617  * are greatly outnumbered by other FQs in the system, while
618  * dequeue scheduling is round-robin.
619  */
620 static inline void dpaa_assign_wq(struct dpaa_fq *fq, int idx)
621 {
622 	switch (fq->fq_type) {
623 	case FQ_TYPE_TX_CONFIRM:
624 	case FQ_TYPE_TX_CONF_MQ:
625 		fq->wq = 1;
626 		break;
627 	case FQ_TYPE_RX_ERROR:
628 	case FQ_TYPE_TX_ERROR:
629 		fq->wq = 5;
630 		break;
631 	case FQ_TYPE_RX_DEFAULT:
632 	case FQ_TYPE_RX_PCD:
633 		fq->wq = 6;
634 		break;
635 	case FQ_TYPE_TX:
636 		switch (idx / DPAA_TC_TXQ_NUM) {
637 		case 0:
638 			/* Low priority (best effort) */
639 			fq->wq = 6;
640 			break;
641 		case 1:
642 			/* Medium priority */
643 			fq->wq = 2;
644 			break;
645 		case 2:
646 			/* High priority */
647 			fq->wq = 1;
648 			break;
649 		case 3:
650 			/* Very high priority */
651 			fq->wq = 0;
652 			break;
653 		default:
654 			WARN(1, "Too many TX FQs: more than %d!\n",
655 			     DPAA_ETH_TXQ_NUM);
656 		}
657 		break;
658 	default:
659 		WARN(1, "Invalid FQ type %d for FQID %d!\n",
660 		     fq->fq_type, fq->fqid);
661 	}
662 }
663 
664 static struct dpaa_fq *dpaa_fq_alloc(struct device *dev,
665 				     u32 start, u32 count,
666 				     struct list_head *list,
667 				     enum dpaa_fq_type fq_type)
668 {
669 	struct dpaa_fq *dpaa_fq;
670 	int i;
671 
672 	dpaa_fq = devm_kzalloc(dev, sizeof(*dpaa_fq) * count,
673 			       GFP_KERNEL);
674 	if (!dpaa_fq)
675 		return NULL;
676 
677 	for (i = 0; i < count; i++) {
678 		dpaa_fq[i].fq_type = fq_type;
679 		dpaa_fq[i].fqid = start ? start + i : 0;
680 		list_add_tail(&dpaa_fq[i].list, list);
681 	}
682 
683 	for (i = 0; i < count; i++)
684 		dpaa_assign_wq(dpaa_fq + i, i);
685 
686 	return dpaa_fq;
687 }
688 
689 static int dpaa_alloc_all_fqs(struct device *dev, struct list_head *list,
690 			      struct fm_port_fqs *port_fqs)
691 {
692 	struct dpaa_fq *dpaa_fq;
693 	u32 fq_base, fq_base_aligned, i;
694 
695 	dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_RX_ERROR);
696 	if (!dpaa_fq)
697 		goto fq_alloc_failed;
698 
699 	port_fqs->rx_errq = &dpaa_fq[0];
700 
701 	dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_RX_DEFAULT);
702 	if (!dpaa_fq)
703 		goto fq_alloc_failed;
704 
705 	port_fqs->rx_defq = &dpaa_fq[0];
706 
707 	/* the PCD FQIDs range needs to be aligned for correct operation */
708 	if (qman_alloc_fqid_range(&fq_base, 2 * DPAA_ETH_PCD_RXQ_NUM))
709 		goto fq_alloc_failed;
710 
711 	fq_base_aligned = ALIGN(fq_base, DPAA_ETH_PCD_RXQ_NUM);
712 
713 	for (i = fq_base; i < fq_base_aligned; i++)
714 		qman_release_fqid(i);
715 
716 	for (i = fq_base_aligned + DPAA_ETH_PCD_RXQ_NUM;
717 	     i < (fq_base + 2 * DPAA_ETH_PCD_RXQ_NUM); i++)
718 		qman_release_fqid(i);
719 
720 	dpaa_fq = dpaa_fq_alloc(dev, fq_base_aligned, DPAA_ETH_PCD_RXQ_NUM,
721 				list, FQ_TYPE_RX_PCD);
722 	if (!dpaa_fq)
723 		goto fq_alloc_failed;
724 
725 	port_fqs->rx_pcdq = &dpaa_fq[0];
726 
727 	if (!dpaa_fq_alloc(dev, 0, DPAA_ETH_TXQ_NUM, list, FQ_TYPE_TX_CONF_MQ))
728 		goto fq_alloc_failed;
729 
730 	dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_TX_ERROR);
731 	if (!dpaa_fq)
732 		goto fq_alloc_failed;
733 
734 	port_fqs->tx_errq = &dpaa_fq[0];
735 
736 	dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_TX_CONFIRM);
737 	if (!dpaa_fq)
738 		goto fq_alloc_failed;
739 
740 	port_fqs->tx_defq = &dpaa_fq[0];
741 
742 	if (!dpaa_fq_alloc(dev, 0, DPAA_ETH_TXQ_NUM, list, FQ_TYPE_TX))
743 		goto fq_alloc_failed;
744 
745 	return 0;
746 
747 fq_alloc_failed:
748 	dev_err(dev, "dpaa_fq_alloc() failed\n");
749 	return -ENOMEM;
750 }
751 
752 static u32 rx_pool_channel;
753 static DEFINE_SPINLOCK(rx_pool_channel_init);
754 
755 static int dpaa_get_channel(void)
756 {
757 	spin_lock(&rx_pool_channel_init);
758 	if (!rx_pool_channel) {
759 		u32 pool;
760 		int ret;
761 
762 		ret = qman_alloc_pool(&pool);
763 
764 		if (!ret)
765 			rx_pool_channel = pool;
766 	}
767 	spin_unlock(&rx_pool_channel_init);
768 	if (!rx_pool_channel)
769 		return -ENOMEM;
770 	return rx_pool_channel;
771 }
772 
773 static void dpaa_release_channel(void)
774 {
775 	qman_release_pool(rx_pool_channel);
776 }
777 
778 static void dpaa_eth_add_channel(u16 channel)
779 {
780 	u32 pool = QM_SDQCR_CHANNELS_POOL_CONV(channel);
781 	const cpumask_t *cpus = qman_affine_cpus();
782 	struct qman_portal *portal;
783 	int cpu;
784 
785 	for_each_cpu(cpu, cpus) {
786 		portal = qman_get_affine_portal(cpu);
787 		qman_p_static_dequeue_add(portal, pool);
788 	}
789 }
790 
791 /* Congestion group state change notification callback.
792  * Stops the device's egress queues while they are congested and
793  * wakes them upon exiting congested state.
794  * Also updates some CGR-related stats.
795  */
796 static void dpaa_eth_cgscn(struct qman_portal *qm, struct qman_cgr *cgr,
797 			   int congested)
798 {
799 	struct dpaa_priv *priv = (struct dpaa_priv *)container_of(cgr,
800 		struct dpaa_priv, cgr_data.cgr);
801 
802 	if (congested) {
803 		priv->cgr_data.congestion_start_jiffies = jiffies;
804 		netif_tx_stop_all_queues(priv->net_dev);
805 		priv->cgr_data.cgr_congested_count++;
806 	} else {
807 		priv->cgr_data.congested_jiffies +=
808 			(jiffies - priv->cgr_data.congestion_start_jiffies);
809 		netif_tx_wake_all_queues(priv->net_dev);
810 	}
811 }
812 
813 static int dpaa_eth_cgr_init(struct dpaa_priv *priv)
814 {
815 	struct qm_mcc_initcgr initcgr;
816 	u32 cs_th;
817 	int err;
818 
819 	err = qman_alloc_cgrid(&priv->cgr_data.cgr.cgrid);
820 	if (err < 0) {
821 		if (netif_msg_drv(priv))
822 			pr_err("%s: Error %d allocating CGR ID\n",
823 			       __func__, err);
824 		goto out_error;
825 	}
826 	priv->cgr_data.cgr.cb = dpaa_eth_cgscn;
827 
828 	/* Enable Congestion State Change Notifications and CS taildrop */
829 	memset(&initcgr, 0, sizeof(initcgr));
830 	initcgr.we_mask = cpu_to_be16(QM_CGR_WE_CSCN_EN | QM_CGR_WE_CS_THRES);
831 	initcgr.cgr.cscn_en = QM_CGR_EN;
832 
833 	/* Set different thresholds based on the MAC speed.
834 	 * This may turn suboptimal if the MAC is reconfigured at a speed
835 	 * lower than its max, e.g. if a dTSEC later negotiates a 100Mbps link.
836 	 * In such cases, we ought to reconfigure the threshold, too.
837 	 */
838 	if (priv->mac_dev->if_support & SUPPORTED_10000baseT_Full)
839 		cs_th = DPAA_CS_THRESHOLD_10G;
840 	else
841 		cs_th = DPAA_CS_THRESHOLD_1G;
842 	qm_cgr_cs_thres_set64(&initcgr.cgr.cs_thres, cs_th, 1);
843 
844 	initcgr.we_mask |= cpu_to_be16(QM_CGR_WE_CSTD_EN);
845 	initcgr.cgr.cstd_en = QM_CGR_EN;
846 
847 	err = qman_create_cgr(&priv->cgr_data.cgr, QMAN_CGR_FLAG_USE_INIT,
848 			      &initcgr);
849 	if (err < 0) {
850 		if (netif_msg_drv(priv))
851 			pr_err("%s: Error %d creating CGR with ID %d\n",
852 			       __func__, err, priv->cgr_data.cgr.cgrid);
853 		qman_release_cgrid(priv->cgr_data.cgr.cgrid);
854 		goto out_error;
855 	}
856 	if (netif_msg_drv(priv))
857 		pr_debug("Created CGR %d for netdev with hwaddr %pM on QMan channel %d\n",
858 			 priv->cgr_data.cgr.cgrid, priv->mac_dev->addr,
859 			 priv->cgr_data.cgr.chan);
860 
861 out_error:
862 	return err;
863 }
864 
865 static inline void dpaa_setup_ingress(const struct dpaa_priv *priv,
866 				      struct dpaa_fq *fq,
867 				      const struct qman_fq *template)
868 {
869 	fq->fq_base = *template;
870 	fq->net_dev = priv->net_dev;
871 
872 	fq->flags = QMAN_FQ_FLAG_NO_ENQUEUE;
873 	fq->channel = priv->channel;
874 }
875 
876 static inline void dpaa_setup_egress(const struct dpaa_priv *priv,
877 				     struct dpaa_fq *fq,
878 				     struct fman_port *port,
879 				     const struct qman_fq *template)
880 {
881 	fq->fq_base = *template;
882 	fq->net_dev = priv->net_dev;
883 
884 	if (port) {
885 		fq->flags = QMAN_FQ_FLAG_TO_DCPORTAL;
886 		fq->channel = (u16)fman_port_get_qman_channel_id(port);
887 	} else {
888 		fq->flags = QMAN_FQ_FLAG_NO_MODIFY;
889 	}
890 }
891 
892 static void dpaa_fq_setup(struct dpaa_priv *priv,
893 			  const struct dpaa_fq_cbs *fq_cbs,
894 			  struct fman_port *tx_port)
895 {
896 	int egress_cnt = 0, conf_cnt = 0, num_portals = 0, portal_cnt = 0, cpu;
897 	const cpumask_t *affine_cpus = qman_affine_cpus();
898 	u16 channels[NR_CPUS];
899 	struct dpaa_fq *fq;
900 
901 	for_each_cpu(cpu, affine_cpus)
902 		channels[num_portals++] = qman_affine_channel(cpu);
903 
904 	if (num_portals == 0)
905 		dev_err(priv->net_dev->dev.parent,
906 			"No Qman software (affine) channels found");
907 
908 	/* Initialize each FQ in the list */
909 	list_for_each_entry(fq, &priv->dpaa_fq_list, list) {
910 		switch (fq->fq_type) {
911 		case FQ_TYPE_RX_DEFAULT:
912 			dpaa_setup_ingress(priv, fq, &fq_cbs->rx_defq);
913 			break;
914 		case FQ_TYPE_RX_ERROR:
915 			dpaa_setup_ingress(priv, fq, &fq_cbs->rx_errq);
916 			break;
917 		case FQ_TYPE_RX_PCD:
918 			if (!num_portals)
919 				continue;
920 			dpaa_setup_ingress(priv, fq, &fq_cbs->rx_defq);
921 			fq->channel = channels[portal_cnt++ % num_portals];
922 			break;
923 		case FQ_TYPE_TX:
924 			dpaa_setup_egress(priv, fq, tx_port,
925 					  &fq_cbs->egress_ern);
926 			/* If we have more Tx queues than the number of cores,
927 			 * just ignore the extra ones.
928 			 */
929 			if (egress_cnt < DPAA_ETH_TXQ_NUM)
930 				priv->egress_fqs[egress_cnt++] = &fq->fq_base;
931 			break;
932 		case FQ_TYPE_TX_CONF_MQ:
933 			priv->conf_fqs[conf_cnt++] = &fq->fq_base;
934 			/* fall through */
935 		case FQ_TYPE_TX_CONFIRM:
936 			dpaa_setup_ingress(priv, fq, &fq_cbs->tx_defq);
937 			break;
938 		case FQ_TYPE_TX_ERROR:
939 			dpaa_setup_ingress(priv, fq, &fq_cbs->tx_errq);
940 			break;
941 		default:
942 			dev_warn(priv->net_dev->dev.parent,
943 				 "Unknown FQ type detected!\n");
944 			break;
945 		}
946 	}
947 
948 	 /* Make sure all CPUs receive a corresponding Tx queue. */
949 	while (egress_cnt < DPAA_ETH_TXQ_NUM) {
950 		list_for_each_entry(fq, &priv->dpaa_fq_list, list) {
951 			if (fq->fq_type != FQ_TYPE_TX)
952 				continue;
953 			priv->egress_fqs[egress_cnt++] = &fq->fq_base;
954 			if (egress_cnt == DPAA_ETH_TXQ_NUM)
955 				break;
956 		}
957 	}
958 }
959 
960 static inline int dpaa_tx_fq_to_id(const struct dpaa_priv *priv,
961 				   struct qman_fq *tx_fq)
962 {
963 	int i;
964 
965 	for (i = 0; i < DPAA_ETH_TXQ_NUM; i++)
966 		if (priv->egress_fqs[i] == tx_fq)
967 			return i;
968 
969 	return -EINVAL;
970 }
971 
972 static int dpaa_fq_init(struct dpaa_fq *dpaa_fq, bool td_enable)
973 {
974 	const struct dpaa_priv	*priv;
975 	struct qman_fq *confq = NULL;
976 	struct qm_mcc_initfq initfq;
977 	struct device *dev;
978 	struct qman_fq *fq;
979 	int queue_id;
980 	int err;
981 
982 	priv = netdev_priv(dpaa_fq->net_dev);
983 	dev = dpaa_fq->net_dev->dev.parent;
984 
985 	if (dpaa_fq->fqid == 0)
986 		dpaa_fq->flags |= QMAN_FQ_FLAG_DYNAMIC_FQID;
987 
988 	dpaa_fq->init = !(dpaa_fq->flags & QMAN_FQ_FLAG_NO_MODIFY);
989 
990 	err = qman_create_fq(dpaa_fq->fqid, dpaa_fq->flags, &dpaa_fq->fq_base);
991 	if (err) {
992 		dev_err(dev, "qman_create_fq() failed\n");
993 		return err;
994 	}
995 	fq = &dpaa_fq->fq_base;
996 
997 	if (dpaa_fq->init) {
998 		memset(&initfq, 0, sizeof(initfq));
999 
1000 		initfq.we_mask = cpu_to_be16(QM_INITFQ_WE_FQCTRL);
1001 		/* Note: we may get to keep an empty FQ in cache */
1002 		initfq.fqd.fq_ctrl = cpu_to_be16(QM_FQCTRL_PREFERINCACHE);
1003 
1004 		/* Try to reduce the number of portal interrupts for
1005 		 * Tx Confirmation FQs.
1006 		 */
1007 		if (dpaa_fq->fq_type == FQ_TYPE_TX_CONFIRM)
1008 			initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_AVOIDBLOCK);
1009 
1010 		/* FQ placement */
1011 		initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_DESTWQ);
1012 
1013 		qm_fqd_set_destwq(&initfq.fqd, dpaa_fq->channel, dpaa_fq->wq);
1014 
1015 		/* Put all egress queues in a congestion group of their own.
1016 		 * Sensu stricto, the Tx confirmation queues are Rx FQs,
1017 		 * rather than Tx - but they nonetheless account for the
1018 		 * memory footprint on behalf of egress traffic. We therefore
1019 		 * place them in the netdev's CGR, along with the Tx FQs.
1020 		 */
1021 		if (dpaa_fq->fq_type == FQ_TYPE_TX ||
1022 		    dpaa_fq->fq_type == FQ_TYPE_TX_CONFIRM ||
1023 		    dpaa_fq->fq_type == FQ_TYPE_TX_CONF_MQ) {
1024 			initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_CGID);
1025 			initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_CGE);
1026 			initfq.fqd.cgid = (u8)priv->cgr_data.cgr.cgrid;
1027 			/* Set a fixed overhead accounting, in an attempt to
1028 			 * reduce the impact of fixed-size skb shells and the
1029 			 * driver's needed headroom on system memory. This is
1030 			 * especially the case when the egress traffic is
1031 			 * composed of small datagrams.
1032 			 * Unfortunately, QMan's OAL value is capped to an
1033 			 * insufficient value, but even that is better than
1034 			 * no overhead accounting at all.
1035 			 */
1036 			initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_OAC);
1037 			qm_fqd_set_oac(&initfq.fqd, QM_OAC_CG);
1038 			qm_fqd_set_oal(&initfq.fqd,
1039 				       min(sizeof(struct sk_buff) +
1040 				       priv->tx_headroom,
1041 				       (size_t)FSL_QMAN_MAX_OAL));
1042 		}
1043 
1044 		if (td_enable) {
1045 			initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_TDTHRESH);
1046 			qm_fqd_set_taildrop(&initfq.fqd, DPAA_FQ_TD, 1);
1047 			initfq.fqd.fq_ctrl = cpu_to_be16(QM_FQCTRL_TDE);
1048 		}
1049 
1050 		if (dpaa_fq->fq_type == FQ_TYPE_TX) {
1051 			queue_id = dpaa_tx_fq_to_id(priv, &dpaa_fq->fq_base);
1052 			if (queue_id >= 0)
1053 				confq = priv->conf_fqs[queue_id];
1054 			if (confq) {
1055 				initfq.we_mask |=
1056 					cpu_to_be16(QM_INITFQ_WE_CONTEXTA);
1057 			/* ContextA: OVOM=1(use contextA2 bits instead of ICAD)
1058 			 *	     A2V=1 (contextA A2 field is valid)
1059 			 *	     A0V=1 (contextA A0 field is valid)
1060 			 *	     B0V=1 (contextB field is valid)
1061 			 * ContextA A2: EBD=1 (deallocate buffers inside FMan)
1062 			 * ContextB B0(ASPID): 0 (absolute Virtual Storage ID)
1063 			 */
1064 				qm_fqd_context_a_set64(&initfq.fqd,
1065 						       0x1e00000080000000ULL);
1066 			}
1067 		}
1068 
1069 		/* Put all the ingress queues in our "ingress CGR". */
1070 		if (priv->use_ingress_cgr &&
1071 		    (dpaa_fq->fq_type == FQ_TYPE_RX_DEFAULT ||
1072 		     dpaa_fq->fq_type == FQ_TYPE_RX_ERROR ||
1073 		     dpaa_fq->fq_type == FQ_TYPE_RX_PCD)) {
1074 			initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_CGID);
1075 			initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_CGE);
1076 			initfq.fqd.cgid = (u8)priv->ingress_cgr.cgrid;
1077 			/* Set a fixed overhead accounting, just like for the
1078 			 * egress CGR.
1079 			 */
1080 			initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_OAC);
1081 			qm_fqd_set_oac(&initfq.fqd, QM_OAC_CG);
1082 			qm_fqd_set_oal(&initfq.fqd,
1083 				       min(sizeof(struct sk_buff) +
1084 				       priv->tx_headroom,
1085 				       (size_t)FSL_QMAN_MAX_OAL));
1086 		}
1087 
1088 		/* Initialization common to all ingress queues */
1089 		if (dpaa_fq->flags & QMAN_FQ_FLAG_NO_ENQUEUE) {
1090 			initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_CONTEXTA);
1091 			initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_HOLDACTIVE |
1092 						QM_FQCTRL_CTXASTASHING);
1093 			initfq.fqd.context_a.stashing.exclusive =
1094 				QM_STASHING_EXCL_DATA | QM_STASHING_EXCL_CTX |
1095 				QM_STASHING_EXCL_ANNOTATION;
1096 			qm_fqd_set_stashing(&initfq.fqd, 1, 2,
1097 					    DIV_ROUND_UP(sizeof(struct qman_fq),
1098 							 64));
1099 		}
1100 
1101 		err = qman_init_fq(fq, QMAN_INITFQ_FLAG_SCHED, &initfq);
1102 		if (err < 0) {
1103 			dev_err(dev, "qman_init_fq(%u) = %d\n",
1104 				qman_fq_fqid(fq), err);
1105 			qman_destroy_fq(fq);
1106 			return err;
1107 		}
1108 	}
1109 
1110 	dpaa_fq->fqid = qman_fq_fqid(fq);
1111 
1112 	return 0;
1113 }
1114 
1115 static int dpaa_fq_free_entry(struct device *dev, struct qman_fq *fq)
1116 {
1117 	const struct dpaa_priv  *priv;
1118 	struct dpaa_fq *dpaa_fq;
1119 	int err, error;
1120 
1121 	err = 0;
1122 
1123 	dpaa_fq = container_of(fq, struct dpaa_fq, fq_base);
1124 	priv = netdev_priv(dpaa_fq->net_dev);
1125 
1126 	if (dpaa_fq->init) {
1127 		err = qman_retire_fq(fq, NULL);
1128 		if (err < 0 && netif_msg_drv(priv))
1129 			dev_err(dev, "qman_retire_fq(%u) = %d\n",
1130 				qman_fq_fqid(fq), err);
1131 
1132 		error = qman_oos_fq(fq);
1133 		if (error < 0 && netif_msg_drv(priv)) {
1134 			dev_err(dev, "qman_oos_fq(%u) = %d\n",
1135 				qman_fq_fqid(fq), error);
1136 			if (err >= 0)
1137 				err = error;
1138 		}
1139 	}
1140 
1141 	qman_destroy_fq(fq);
1142 	list_del(&dpaa_fq->list);
1143 
1144 	return err;
1145 }
1146 
1147 static int dpaa_fq_free(struct device *dev, struct list_head *list)
1148 {
1149 	struct dpaa_fq *dpaa_fq, *tmp;
1150 	int err, error;
1151 
1152 	err = 0;
1153 	list_for_each_entry_safe(dpaa_fq, tmp, list, list) {
1154 		error = dpaa_fq_free_entry(dev, (struct qman_fq *)dpaa_fq);
1155 		if (error < 0 && err >= 0)
1156 			err = error;
1157 	}
1158 
1159 	return err;
1160 }
1161 
1162 static int dpaa_eth_init_tx_port(struct fman_port *port, struct dpaa_fq *errq,
1163 				 struct dpaa_fq *defq,
1164 				 struct dpaa_buffer_layout *buf_layout)
1165 {
1166 	struct fman_buffer_prefix_content buf_prefix_content;
1167 	struct fman_port_params params;
1168 	int err;
1169 
1170 	memset(&params, 0, sizeof(params));
1171 	memset(&buf_prefix_content, 0, sizeof(buf_prefix_content));
1172 
1173 	buf_prefix_content.priv_data_size = buf_layout->priv_data_size;
1174 	buf_prefix_content.pass_prs_result = true;
1175 	buf_prefix_content.pass_hash_result = true;
1176 	buf_prefix_content.pass_time_stamp = false;
1177 	buf_prefix_content.data_align = DPAA_FD_DATA_ALIGNMENT;
1178 
1179 	params.specific_params.non_rx_params.err_fqid = errq->fqid;
1180 	params.specific_params.non_rx_params.dflt_fqid = defq->fqid;
1181 
1182 	err = fman_port_config(port, &params);
1183 	if (err) {
1184 		pr_err("%s: fman_port_config failed\n", __func__);
1185 		return err;
1186 	}
1187 
1188 	err = fman_port_cfg_buf_prefix_content(port, &buf_prefix_content);
1189 	if (err) {
1190 		pr_err("%s: fman_port_cfg_buf_prefix_content failed\n",
1191 		       __func__);
1192 		return err;
1193 	}
1194 
1195 	err = fman_port_init(port);
1196 	if (err)
1197 		pr_err("%s: fm_port_init failed\n", __func__);
1198 
1199 	return err;
1200 }
1201 
1202 static int dpaa_eth_init_rx_port(struct fman_port *port, struct dpaa_bp **bps,
1203 				 size_t count, struct dpaa_fq *errq,
1204 				 struct dpaa_fq *defq, struct dpaa_fq *pcdq,
1205 				 struct dpaa_buffer_layout *buf_layout)
1206 {
1207 	struct fman_buffer_prefix_content buf_prefix_content;
1208 	struct fman_port_rx_params *rx_p;
1209 	struct fman_port_params params;
1210 	int i, err;
1211 
1212 	memset(&params, 0, sizeof(params));
1213 	memset(&buf_prefix_content, 0, sizeof(buf_prefix_content));
1214 
1215 	buf_prefix_content.priv_data_size = buf_layout->priv_data_size;
1216 	buf_prefix_content.pass_prs_result = true;
1217 	buf_prefix_content.pass_hash_result = true;
1218 	buf_prefix_content.pass_time_stamp = false;
1219 	buf_prefix_content.data_align = DPAA_FD_DATA_ALIGNMENT;
1220 
1221 	rx_p = &params.specific_params.rx_params;
1222 	rx_p->err_fqid = errq->fqid;
1223 	rx_p->dflt_fqid = defq->fqid;
1224 	if (pcdq) {
1225 		rx_p->pcd_base_fqid = pcdq->fqid;
1226 		rx_p->pcd_fqs_count = DPAA_ETH_PCD_RXQ_NUM;
1227 	}
1228 
1229 	count = min(ARRAY_SIZE(rx_p->ext_buf_pools.ext_buf_pool), count);
1230 	rx_p->ext_buf_pools.num_of_pools_used = (u8)count;
1231 	for (i = 0; i < count; i++) {
1232 		rx_p->ext_buf_pools.ext_buf_pool[i].id =  bps[i]->bpid;
1233 		rx_p->ext_buf_pools.ext_buf_pool[i].size = (u16)bps[i]->size;
1234 	}
1235 
1236 	err = fman_port_config(port, &params);
1237 	if (err) {
1238 		pr_err("%s: fman_port_config failed\n", __func__);
1239 		return err;
1240 	}
1241 
1242 	err = fman_port_cfg_buf_prefix_content(port, &buf_prefix_content);
1243 	if (err) {
1244 		pr_err("%s: fman_port_cfg_buf_prefix_content failed\n",
1245 		       __func__);
1246 		return err;
1247 	}
1248 
1249 	err = fman_port_init(port);
1250 	if (err)
1251 		pr_err("%s: fm_port_init failed\n", __func__);
1252 
1253 	return err;
1254 }
1255 
1256 static int dpaa_eth_init_ports(struct mac_device *mac_dev,
1257 			       struct dpaa_bp **bps, size_t count,
1258 			       struct fm_port_fqs *port_fqs,
1259 			       struct dpaa_buffer_layout *buf_layout,
1260 			       struct device *dev)
1261 {
1262 	struct fman_port *rxport = mac_dev->port[RX];
1263 	struct fman_port *txport = mac_dev->port[TX];
1264 	int err;
1265 
1266 	err = dpaa_eth_init_tx_port(txport, port_fqs->tx_errq,
1267 				    port_fqs->tx_defq, &buf_layout[TX]);
1268 	if (err)
1269 		return err;
1270 
1271 	err = dpaa_eth_init_rx_port(rxport, bps, count, port_fqs->rx_errq,
1272 				    port_fqs->rx_defq, port_fqs->rx_pcdq,
1273 				    &buf_layout[RX]);
1274 
1275 	return err;
1276 }
1277 
1278 static int dpaa_bman_release(const struct dpaa_bp *dpaa_bp,
1279 			     struct bm_buffer *bmb, int cnt)
1280 {
1281 	int err;
1282 
1283 	err = bman_release(dpaa_bp->pool, bmb, cnt);
1284 	/* Should never occur, address anyway to avoid leaking the buffers */
1285 	if (unlikely(WARN_ON(err)) && dpaa_bp->free_buf_cb)
1286 		while (cnt-- > 0)
1287 			dpaa_bp->free_buf_cb(dpaa_bp, &bmb[cnt]);
1288 
1289 	return cnt;
1290 }
1291 
1292 static void dpaa_release_sgt_members(struct qm_sg_entry *sgt)
1293 {
1294 	struct bm_buffer bmb[DPAA_BUFF_RELEASE_MAX];
1295 	struct dpaa_bp *dpaa_bp;
1296 	int i = 0, j;
1297 
1298 	memset(bmb, 0, sizeof(bmb));
1299 
1300 	do {
1301 		dpaa_bp = dpaa_bpid2pool(sgt[i].bpid);
1302 		if (!dpaa_bp)
1303 			return;
1304 
1305 		j = 0;
1306 		do {
1307 			WARN_ON(qm_sg_entry_is_ext(&sgt[i]));
1308 
1309 			bm_buffer_set64(&bmb[j], qm_sg_entry_get64(&sgt[i]));
1310 
1311 			j++; i++;
1312 		} while (j < ARRAY_SIZE(bmb) &&
1313 				!qm_sg_entry_is_final(&sgt[i - 1]) &&
1314 				sgt[i - 1].bpid == sgt[i].bpid);
1315 
1316 		dpaa_bman_release(dpaa_bp, bmb, j);
1317 	} while (!qm_sg_entry_is_final(&sgt[i - 1]));
1318 }
1319 
1320 static void dpaa_fd_release(const struct net_device *net_dev,
1321 			    const struct qm_fd *fd)
1322 {
1323 	struct qm_sg_entry *sgt;
1324 	struct dpaa_bp *dpaa_bp;
1325 	struct bm_buffer bmb;
1326 	dma_addr_t addr;
1327 	void *vaddr;
1328 
1329 	bmb.data = 0;
1330 	bm_buffer_set64(&bmb, qm_fd_addr(fd));
1331 
1332 	dpaa_bp = dpaa_bpid2pool(fd->bpid);
1333 	if (!dpaa_bp)
1334 		return;
1335 
1336 	if (qm_fd_get_format(fd) == qm_fd_sg) {
1337 		vaddr = phys_to_virt(qm_fd_addr(fd));
1338 		sgt = vaddr + qm_fd_get_offset(fd);
1339 
1340 		dma_unmap_single(dpaa_bp->dev, qm_fd_addr(fd), dpaa_bp->size,
1341 				 DMA_FROM_DEVICE);
1342 
1343 		dpaa_release_sgt_members(sgt);
1344 
1345 		addr = dma_map_single(dpaa_bp->dev, vaddr, dpaa_bp->size,
1346 				      DMA_FROM_DEVICE);
1347 		if (dma_mapping_error(dpaa_bp->dev, addr)) {
1348 			dev_err(dpaa_bp->dev, "DMA mapping failed");
1349 			return;
1350 		}
1351 		bm_buffer_set64(&bmb, addr);
1352 	}
1353 
1354 	dpaa_bman_release(dpaa_bp, &bmb, 1);
1355 }
1356 
1357 static void count_ern(struct dpaa_percpu_priv *percpu_priv,
1358 		      const union qm_mr_entry *msg)
1359 {
1360 	switch (msg->ern.rc & QM_MR_RC_MASK) {
1361 	case QM_MR_RC_CGR_TAILDROP:
1362 		percpu_priv->ern_cnt.cg_tdrop++;
1363 		break;
1364 	case QM_MR_RC_WRED:
1365 		percpu_priv->ern_cnt.wred++;
1366 		break;
1367 	case QM_MR_RC_ERROR:
1368 		percpu_priv->ern_cnt.err_cond++;
1369 		break;
1370 	case QM_MR_RC_ORPWINDOW_EARLY:
1371 		percpu_priv->ern_cnt.early_window++;
1372 		break;
1373 	case QM_MR_RC_ORPWINDOW_LATE:
1374 		percpu_priv->ern_cnt.late_window++;
1375 		break;
1376 	case QM_MR_RC_FQ_TAILDROP:
1377 		percpu_priv->ern_cnt.fq_tdrop++;
1378 		break;
1379 	case QM_MR_RC_ORPWINDOW_RETIRED:
1380 		percpu_priv->ern_cnt.fq_retired++;
1381 		break;
1382 	case QM_MR_RC_ORP_ZERO:
1383 		percpu_priv->ern_cnt.orp_zero++;
1384 		break;
1385 	}
1386 }
1387 
1388 /* Turn on HW checksum computation for this outgoing frame.
1389  * If the current protocol is not something we support in this regard
1390  * (or if the stack has already computed the SW checksum), we do nothing.
1391  *
1392  * Returns 0 if all goes well (or HW csum doesn't apply), and a negative value
1393  * otherwise.
1394  *
1395  * Note that this function may modify the fd->cmd field and the skb data buffer
1396  * (the Parse Results area).
1397  */
1398 static int dpaa_enable_tx_csum(struct dpaa_priv *priv,
1399 			       struct sk_buff *skb,
1400 			       struct qm_fd *fd,
1401 			       char *parse_results)
1402 {
1403 	struct fman_prs_result *parse_result;
1404 	u16 ethertype = ntohs(skb->protocol);
1405 	struct ipv6hdr *ipv6h = NULL;
1406 	struct iphdr *iph;
1407 	int retval = 0;
1408 	u8 l4_proto;
1409 
1410 	if (skb->ip_summed != CHECKSUM_PARTIAL)
1411 		return 0;
1412 
1413 	/* Note: L3 csum seems to be already computed in sw, but we can't choose
1414 	 * L4 alone from the FM configuration anyway.
1415 	 */
1416 
1417 	/* Fill in some fields of the Parse Results array, so the FMan
1418 	 * can find them as if they came from the FMan Parser.
1419 	 */
1420 	parse_result = (struct fman_prs_result *)parse_results;
1421 
1422 	/* If we're dealing with VLAN, get the real Ethernet type */
1423 	if (ethertype == ETH_P_8021Q) {
1424 		/* We can't always assume the MAC header is set correctly
1425 		 * by the stack, so reset to beginning of skb->data
1426 		 */
1427 		skb_reset_mac_header(skb);
1428 		ethertype = ntohs(vlan_eth_hdr(skb)->h_vlan_encapsulated_proto);
1429 	}
1430 
1431 	/* Fill in the relevant L3 parse result fields
1432 	 * and read the L4 protocol type
1433 	 */
1434 	switch (ethertype) {
1435 	case ETH_P_IP:
1436 		parse_result->l3r = cpu_to_be16(FM_L3_PARSE_RESULT_IPV4);
1437 		iph = ip_hdr(skb);
1438 		WARN_ON(!iph);
1439 		l4_proto = iph->protocol;
1440 		break;
1441 	case ETH_P_IPV6:
1442 		parse_result->l3r = cpu_to_be16(FM_L3_PARSE_RESULT_IPV6);
1443 		ipv6h = ipv6_hdr(skb);
1444 		WARN_ON(!ipv6h);
1445 		l4_proto = ipv6h->nexthdr;
1446 		break;
1447 	default:
1448 		/* We shouldn't even be here */
1449 		if (net_ratelimit())
1450 			netif_alert(priv, tx_err, priv->net_dev,
1451 				    "Can't compute HW csum for L3 proto 0x%x\n",
1452 				    ntohs(skb->protocol));
1453 		retval = -EIO;
1454 		goto return_error;
1455 	}
1456 
1457 	/* Fill in the relevant L4 parse result fields */
1458 	switch (l4_proto) {
1459 	case IPPROTO_UDP:
1460 		parse_result->l4r = FM_L4_PARSE_RESULT_UDP;
1461 		break;
1462 	case IPPROTO_TCP:
1463 		parse_result->l4r = FM_L4_PARSE_RESULT_TCP;
1464 		break;
1465 	default:
1466 		if (net_ratelimit())
1467 			netif_alert(priv, tx_err, priv->net_dev,
1468 				    "Can't compute HW csum for L4 proto 0x%x\n",
1469 				    l4_proto);
1470 		retval = -EIO;
1471 		goto return_error;
1472 	}
1473 
1474 	/* At index 0 is IPOffset_1 as defined in the Parse Results */
1475 	parse_result->ip_off[0] = (u8)skb_network_offset(skb);
1476 	parse_result->l4_off = (u8)skb_transport_offset(skb);
1477 
1478 	/* Enable L3 (and L4, if TCP or UDP) HW checksum. */
1479 	fd->cmd |= cpu_to_be32(FM_FD_CMD_RPD | FM_FD_CMD_DTC);
1480 
1481 	/* On P1023 and similar platforms fd->cmd interpretation could
1482 	 * be disabled by setting CONTEXT_A bit ICMD; currently this bit
1483 	 * is not set so we do not need to check; in the future, if/when
1484 	 * using context_a we need to check this bit
1485 	 */
1486 
1487 return_error:
1488 	return retval;
1489 }
1490 
1491 static int dpaa_bp_add_8_bufs(const struct dpaa_bp *dpaa_bp)
1492 {
1493 	struct device *dev = dpaa_bp->dev;
1494 	struct bm_buffer bmb[8];
1495 	dma_addr_t addr;
1496 	void *new_buf;
1497 	u8 i;
1498 
1499 	for (i = 0; i < 8; i++) {
1500 		new_buf = netdev_alloc_frag(dpaa_bp->raw_size);
1501 		if (unlikely(!new_buf)) {
1502 			dev_err(dev, "netdev_alloc_frag() failed, size %zu\n",
1503 				dpaa_bp->raw_size);
1504 			goto release_previous_buffs;
1505 		}
1506 		new_buf = PTR_ALIGN(new_buf, SMP_CACHE_BYTES);
1507 
1508 		addr = dma_map_single(dev, new_buf,
1509 				      dpaa_bp->size, DMA_FROM_DEVICE);
1510 		if (unlikely(dma_mapping_error(dev, addr))) {
1511 			dev_err(dpaa_bp->dev, "DMA map failed");
1512 			goto release_previous_buffs;
1513 		}
1514 
1515 		bmb[i].data = 0;
1516 		bm_buffer_set64(&bmb[i], addr);
1517 	}
1518 
1519 release_bufs:
1520 	return dpaa_bman_release(dpaa_bp, bmb, i);
1521 
1522 release_previous_buffs:
1523 	WARN_ONCE(1, "dpaa_eth: failed to add buffers on Rx\n");
1524 
1525 	bm_buffer_set64(&bmb[i], 0);
1526 	/* Avoid releasing a completely null buffer; bman_release() requires
1527 	 * at least one buffer.
1528 	 */
1529 	if (likely(i))
1530 		goto release_bufs;
1531 
1532 	return 0;
1533 }
1534 
1535 static int dpaa_bp_seed(struct dpaa_bp *dpaa_bp)
1536 {
1537 	int i;
1538 
1539 	/* Give each CPU an allotment of "config_count" buffers */
1540 	for_each_possible_cpu(i) {
1541 		int *count_ptr = per_cpu_ptr(dpaa_bp->percpu_count, i);
1542 		int j;
1543 
1544 		/* Although we access another CPU's counters here
1545 		 * we do it at boot time so it is safe
1546 		 */
1547 		for (j = 0; j < dpaa_bp->config_count; j += 8)
1548 			*count_ptr += dpaa_bp_add_8_bufs(dpaa_bp);
1549 	}
1550 	return 0;
1551 }
1552 
1553 /* Add buffers/(pages) for Rx processing whenever bpool count falls below
1554  * REFILL_THRESHOLD.
1555  */
1556 static int dpaa_eth_refill_bpool(struct dpaa_bp *dpaa_bp, int *countptr)
1557 {
1558 	int count = *countptr;
1559 	int new_bufs;
1560 
1561 	if (unlikely(count < FSL_DPAA_ETH_REFILL_THRESHOLD)) {
1562 		do {
1563 			new_bufs = dpaa_bp_add_8_bufs(dpaa_bp);
1564 			if (unlikely(!new_bufs)) {
1565 				/* Avoid looping forever if we've temporarily
1566 				 * run out of memory. We'll try again at the
1567 				 * next NAPI cycle.
1568 				 */
1569 				break;
1570 			}
1571 			count += new_bufs;
1572 		} while (count < FSL_DPAA_ETH_MAX_BUF_COUNT);
1573 
1574 		*countptr = count;
1575 		if (unlikely(count < FSL_DPAA_ETH_MAX_BUF_COUNT))
1576 			return -ENOMEM;
1577 	}
1578 
1579 	return 0;
1580 }
1581 
1582 static int dpaa_eth_refill_bpools(struct dpaa_priv *priv)
1583 {
1584 	struct dpaa_bp *dpaa_bp;
1585 	int *countptr;
1586 	int res, i;
1587 
1588 	for (i = 0; i < DPAA_BPS_NUM; i++) {
1589 		dpaa_bp = priv->dpaa_bps[i];
1590 		if (!dpaa_bp)
1591 			return -EINVAL;
1592 		countptr = this_cpu_ptr(dpaa_bp->percpu_count);
1593 		res  = dpaa_eth_refill_bpool(dpaa_bp, countptr);
1594 		if (res)
1595 			return res;
1596 	}
1597 	return 0;
1598 }
1599 
1600 /* Cleanup function for outgoing frame descriptors that were built on Tx path,
1601  * either contiguous frames or scatter/gather ones.
1602  * Skb freeing is not handled here.
1603  *
1604  * This function may be called on error paths in the Tx function, so guard
1605  * against cases when not all fd relevant fields were filled in.
1606  *
1607  * Return the skb backpointer, since for S/G frames the buffer containing it
1608  * gets freed here.
1609  */
1610 static struct sk_buff *dpaa_cleanup_tx_fd(const struct dpaa_priv *priv,
1611 					  const struct qm_fd *fd)
1612 {
1613 	const enum dma_data_direction dma_dir = DMA_TO_DEVICE;
1614 	struct device *dev = priv->net_dev->dev.parent;
1615 	dma_addr_t addr = qm_fd_addr(fd);
1616 	const struct qm_sg_entry *sgt;
1617 	struct sk_buff **skbh, *skb;
1618 	int nr_frags, i;
1619 
1620 	skbh = (struct sk_buff **)phys_to_virt(addr);
1621 	skb = *skbh;
1622 
1623 	if (unlikely(qm_fd_get_format(fd) == qm_fd_sg)) {
1624 		nr_frags = skb_shinfo(skb)->nr_frags;
1625 		dma_unmap_single(dev, addr, qm_fd_get_offset(fd) +
1626 				 sizeof(struct qm_sg_entry) * (1 + nr_frags),
1627 				 dma_dir);
1628 
1629 		/* The sgt buffer has been allocated with netdev_alloc_frag(),
1630 		 * it's from lowmem.
1631 		 */
1632 		sgt = phys_to_virt(addr + qm_fd_get_offset(fd));
1633 
1634 		/* sgt[0] is from lowmem, was dma_map_single()-ed */
1635 		dma_unmap_single(dev, qm_sg_addr(&sgt[0]),
1636 				 qm_sg_entry_get_len(&sgt[0]), dma_dir);
1637 
1638 		/* remaining pages were mapped with skb_frag_dma_map() */
1639 		for (i = 1; i < nr_frags; i++) {
1640 			WARN_ON(qm_sg_entry_is_ext(&sgt[i]));
1641 
1642 			dma_unmap_page(dev, qm_sg_addr(&sgt[i]),
1643 				       qm_sg_entry_get_len(&sgt[i]), dma_dir);
1644 		}
1645 
1646 		/* Free the page frag that we allocated on Tx */
1647 		skb_free_frag(phys_to_virt(addr));
1648 	} else {
1649 		dma_unmap_single(dev, addr,
1650 				 skb_tail_pointer(skb) - (u8 *)skbh, dma_dir);
1651 	}
1652 
1653 	return skb;
1654 }
1655 
1656 static u8 rx_csum_offload(const struct dpaa_priv *priv, const struct qm_fd *fd)
1657 {
1658 	/* The parser has run and performed L4 checksum validation.
1659 	 * We know there were no parser errors (and implicitly no
1660 	 * L4 csum error), otherwise we wouldn't be here.
1661 	 */
1662 	if ((priv->net_dev->features & NETIF_F_RXCSUM) &&
1663 	    (be32_to_cpu(fd->status) & FM_FD_STAT_L4CV))
1664 		return CHECKSUM_UNNECESSARY;
1665 
1666 	/* We're here because either the parser didn't run or the L4 checksum
1667 	 * was not verified. This may include the case of a UDP frame with
1668 	 * checksum zero or an L4 proto other than TCP/UDP
1669 	 */
1670 	return CHECKSUM_NONE;
1671 }
1672 
1673 /* Build a linear skb around the received buffer.
1674  * We are guaranteed there is enough room at the end of the data buffer to
1675  * accommodate the shared info area of the skb.
1676  */
1677 static struct sk_buff *contig_fd_to_skb(const struct dpaa_priv *priv,
1678 					const struct qm_fd *fd)
1679 {
1680 	ssize_t fd_off = qm_fd_get_offset(fd);
1681 	dma_addr_t addr = qm_fd_addr(fd);
1682 	struct dpaa_bp *dpaa_bp;
1683 	struct sk_buff *skb;
1684 	void *vaddr;
1685 
1686 	vaddr = phys_to_virt(addr);
1687 	WARN_ON(!IS_ALIGNED((unsigned long)vaddr, SMP_CACHE_BYTES));
1688 
1689 	dpaa_bp = dpaa_bpid2pool(fd->bpid);
1690 	if (!dpaa_bp)
1691 		goto free_buffer;
1692 
1693 	skb = build_skb(vaddr, dpaa_bp->size +
1694 			SKB_DATA_ALIGN(sizeof(struct skb_shared_info)));
1695 	if (unlikely(!skb)) {
1696 		WARN_ONCE(1, "Build skb failure on Rx\n");
1697 		goto free_buffer;
1698 	}
1699 	WARN_ON(fd_off != priv->rx_headroom);
1700 	skb_reserve(skb, fd_off);
1701 	skb_put(skb, qm_fd_get_length(fd));
1702 
1703 	skb->ip_summed = rx_csum_offload(priv, fd);
1704 
1705 	return skb;
1706 
1707 free_buffer:
1708 	skb_free_frag(vaddr);
1709 	return NULL;
1710 }
1711 
1712 /* Build an skb with the data of the first S/G entry in the linear portion and
1713  * the rest of the frame as skb fragments.
1714  *
1715  * The page fragment holding the S/G Table is recycled here.
1716  */
1717 static struct sk_buff *sg_fd_to_skb(const struct dpaa_priv *priv,
1718 				    const struct qm_fd *fd)
1719 {
1720 	ssize_t fd_off = qm_fd_get_offset(fd);
1721 	dma_addr_t addr = qm_fd_addr(fd);
1722 	const struct qm_sg_entry *sgt;
1723 	struct page *page, *head_page;
1724 	struct dpaa_bp *dpaa_bp;
1725 	void *vaddr, *sg_vaddr;
1726 	int frag_off, frag_len;
1727 	struct sk_buff *skb;
1728 	dma_addr_t sg_addr;
1729 	int page_offset;
1730 	unsigned int sz;
1731 	int *count_ptr;
1732 	int i;
1733 
1734 	vaddr = phys_to_virt(addr);
1735 	WARN_ON(!IS_ALIGNED((unsigned long)vaddr, SMP_CACHE_BYTES));
1736 
1737 	/* Iterate through the SGT entries and add data buffers to the skb */
1738 	sgt = vaddr + fd_off;
1739 	for (i = 0; i < DPAA_SGT_MAX_ENTRIES; i++) {
1740 		/* Extension bit is not supported */
1741 		WARN_ON(qm_sg_entry_is_ext(&sgt[i]));
1742 
1743 		sg_addr = qm_sg_addr(&sgt[i]);
1744 		sg_vaddr = phys_to_virt(sg_addr);
1745 		WARN_ON(!IS_ALIGNED((unsigned long)sg_vaddr,
1746 				    SMP_CACHE_BYTES));
1747 
1748 		/* We may use multiple Rx pools */
1749 		dpaa_bp = dpaa_bpid2pool(sgt[i].bpid);
1750 		if (!dpaa_bp)
1751 			goto free_buffers;
1752 
1753 		count_ptr = this_cpu_ptr(dpaa_bp->percpu_count);
1754 		dma_unmap_single(dpaa_bp->dev, sg_addr, dpaa_bp->size,
1755 				 DMA_FROM_DEVICE);
1756 		if (i == 0) {
1757 			sz = dpaa_bp->size +
1758 				SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
1759 			skb = build_skb(sg_vaddr, sz);
1760 			if (WARN_ON(unlikely(!skb)))
1761 				goto free_buffers;
1762 
1763 			skb->ip_summed = rx_csum_offload(priv, fd);
1764 
1765 			/* Make sure forwarded skbs will have enough space
1766 			 * on Tx, if extra headers are added.
1767 			 */
1768 			WARN_ON(fd_off != priv->rx_headroom);
1769 			skb_reserve(skb, fd_off);
1770 			skb_put(skb, qm_sg_entry_get_len(&sgt[i]));
1771 		} else {
1772 			/* Not the first S/G entry; all data from buffer will
1773 			 * be added in an skb fragment; fragment index is offset
1774 			 * by one since first S/G entry was incorporated in the
1775 			 * linear part of the skb.
1776 			 *
1777 			 * Caution: 'page' may be a tail page.
1778 			 */
1779 			page = virt_to_page(sg_vaddr);
1780 			head_page = virt_to_head_page(sg_vaddr);
1781 
1782 			/* Compute offset in (possibly tail) page */
1783 			page_offset = ((unsigned long)sg_vaddr &
1784 					(PAGE_SIZE - 1)) +
1785 				(page_address(page) - page_address(head_page));
1786 			/* page_offset only refers to the beginning of sgt[i];
1787 			 * but the buffer itself may have an internal offset.
1788 			 */
1789 			frag_off = qm_sg_entry_get_off(&sgt[i]) + page_offset;
1790 			frag_len = qm_sg_entry_get_len(&sgt[i]);
1791 			/* skb_add_rx_frag() does no checking on the page; if
1792 			 * we pass it a tail page, we'll end up with
1793 			 * bad page accounting and eventually with segafults.
1794 			 */
1795 			skb_add_rx_frag(skb, i - 1, head_page, frag_off,
1796 					frag_len, dpaa_bp->size);
1797 		}
1798 		/* Update the pool count for the current {cpu x bpool} */
1799 		(*count_ptr)--;
1800 
1801 		if (qm_sg_entry_is_final(&sgt[i]))
1802 			break;
1803 	}
1804 	WARN_ONCE(i == DPAA_SGT_MAX_ENTRIES, "No final bit on SGT\n");
1805 
1806 	/* free the SG table buffer */
1807 	skb_free_frag(vaddr);
1808 
1809 	return skb;
1810 
1811 free_buffers:
1812 	/* compensate sw bpool counter changes */
1813 	for (i--; i >= 0; i--) {
1814 		dpaa_bp = dpaa_bpid2pool(sgt[i].bpid);
1815 		if (dpaa_bp) {
1816 			count_ptr = this_cpu_ptr(dpaa_bp->percpu_count);
1817 			(*count_ptr)++;
1818 		}
1819 	}
1820 	/* free all the SG entries */
1821 	for (i = 0; i < DPAA_SGT_MAX_ENTRIES ; i++) {
1822 		sg_addr = qm_sg_addr(&sgt[i]);
1823 		sg_vaddr = phys_to_virt(sg_addr);
1824 		skb_free_frag(sg_vaddr);
1825 		dpaa_bp = dpaa_bpid2pool(sgt[i].bpid);
1826 		if (dpaa_bp) {
1827 			count_ptr = this_cpu_ptr(dpaa_bp->percpu_count);
1828 			(*count_ptr)--;
1829 		}
1830 
1831 		if (qm_sg_entry_is_final(&sgt[i]))
1832 			break;
1833 	}
1834 	/* free the SGT fragment */
1835 	skb_free_frag(vaddr);
1836 
1837 	return NULL;
1838 }
1839 
1840 static int skb_to_contig_fd(struct dpaa_priv *priv,
1841 			    struct sk_buff *skb, struct qm_fd *fd,
1842 			    int *offset)
1843 {
1844 	struct net_device *net_dev = priv->net_dev;
1845 	struct device *dev = net_dev->dev.parent;
1846 	enum dma_data_direction dma_dir;
1847 	unsigned char *buffer_start;
1848 	struct sk_buff **skbh;
1849 	dma_addr_t addr;
1850 	int err;
1851 
1852 	/* We are guaranteed to have at least tx_headroom bytes
1853 	 * available, so just use that for offset.
1854 	 */
1855 	fd->bpid = FSL_DPAA_BPID_INV;
1856 	buffer_start = skb->data - priv->tx_headroom;
1857 	dma_dir = DMA_TO_DEVICE;
1858 
1859 	skbh = (struct sk_buff **)buffer_start;
1860 	*skbh = skb;
1861 
1862 	/* Enable L3/L4 hardware checksum computation.
1863 	 *
1864 	 * We must do this before dma_map_single(DMA_TO_DEVICE), because we may
1865 	 * need to write into the skb.
1866 	 */
1867 	err = dpaa_enable_tx_csum(priv, skb, fd,
1868 				  ((char *)skbh) + DPAA_TX_PRIV_DATA_SIZE);
1869 	if (unlikely(err < 0)) {
1870 		if (net_ratelimit())
1871 			netif_err(priv, tx_err, net_dev, "HW csum error: %d\n",
1872 				  err);
1873 		return err;
1874 	}
1875 
1876 	/* Fill in the rest of the FD fields */
1877 	qm_fd_set_contig(fd, priv->tx_headroom, skb->len);
1878 	fd->cmd |= cpu_to_be32(FM_FD_CMD_FCO);
1879 
1880 	/* Map the entire buffer size that may be seen by FMan, but no more */
1881 	addr = dma_map_single(dev, skbh,
1882 			      skb_tail_pointer(skb) - buffer_start, dma_dir);
1883 	if (unlikely(dma_mapping_error(dev, addr))) {
1884 		if (net_ratelimit())
1885 			netif_err(priv, tx_err, net_dev, "dma_map_single() failed\n");
1886 		return -EINVAL;
1887 	}
1888 	qm_fd_addr_set64(fd, addr);
1889 
1890 	return 0;
1891 }
1892 
1893 static int skb_to_sg_fd(struct dpaa_priv *priv,
1894 			struct sk_buff *skb, struct qm_fd *fd)
1895 {
1896 	const enum dma_data_direction dma_dir = DMA_TO_DEVICE;
1897 	const int nr_frags = skb_shinfo(skb)->nr_frags;
1898 	struct net_device *net_dev = priv->net_dev;
1899 	struct device *dev = net_dev->dev.parent;
1900 	struct qm_sg_entry *sgt;
1901 	struct sk_buff **skbh;
1902 	int i, j, err, sz;
1903 	void *buffer_start;
1904 	skb_frag_t *frag;
1905 	dma_addr_t addr;
1906 	size_t frag_len;
1907 	void *sgt_buf;
1908 
1909 	/* get a page frag to store the SGTable */
1910 	sz = SKB_DATA_ALIGN(priv->tx_headroom +
1911 		sizeof(struct qm_sg_entry) * (1 + nr_frags));
1912 	sgt_buf = netdev_alloc_frag(sz);
1913 	if (unlikely(!sgt_buf)) {
1914 		netdev_err(net_dev, "netdev_alloc_frag() failed for size %d\n",
1915 			   sz);
1916 		return -ENOMEM;
1917 	}
1918 
1919 	/* Enable L3/L4 hardware checksum computation.
1920 	 *
1921 	 * We must do this before dma_map_single(DMA_TO_DEVICE), because we may
1922 	 * need to write into the skb.
1923 	 */
1924 	err = dpaa_enable_tx_csum(priv, skb, fd,
1925 				  sgt_buf + DPAA_TX_PRIV_DATA_SIZE);
1926 	if (unlikely(err < 0)) {
1927 		if (net_ratelimit())
1928 			netif_err(priv, tx_err, net_dev, "HW csum error: %d\n",
1929 				  err);
1930 		goto csum_failed;
1931 	}
1932 
1933 	sgt = (struct qm_sg_entry *)(sgt_buf + priv->tx_headroom);
1934 	qm_sg_entry_set_len(&sgt[0], skb_headlen(skb));
1935 	sgt[0].bpid = FSL_DPAA_BPID_INV;
1936 	sgt[0].offset = 0;
1937 	addr = dma_map_single(dev, skb->data,
1938 			      skb_headlen(skb), dma_dir);
1939 	if (unlikely(dma_mapping_error(dev, addr))) {
1940 		dev_err(dev, "DMA mapping failed");
1941 		err = -EINVAL;
1942 		goto sg0_map_failed;
1943 	}
1944 	qm_sg_entry_set64(&sgt[0], addr);
1945 
1946 	/* populate the rest of SGT entries */
1947 	frag = &skb_shinfo(skb)->frags[0];
1948 	frag_len = frag->size;
1949 	for (i = 1; i <= nr_frags; i++, frag++) {
1950 		WARN_ON(!skb_frag_page(frag));
1951 		addr = skb_frag_dma_map(dev, frag, 0,
1952 					frag_len, dma_dir);
1953 		if (unlikely(dma_mapping_error(dev, addr))) {
1954 			dev_err(dev, "DMA mapping failed");
1955 			err = -EINVAL;
1956 			goto sg_map_failed;
1957 		}
1958 
1959 		qm_sg_entry_set_len(&sgt[i], frag_len);
1960 		sgt[i].bpid = FSL_DPAA_BPID_INV;
1961 		sgt[i].offset = 0;
1962 
1963 		/* keep the offset in the address */
1964 		qm_sg_entry_set64(&sgt[i], addr);
1965 		frag_len = frag->size;
1966 	}
1967 	qm_sg_entry_set_f(&sgt[i - 1], frag_len);
1968 
1969 	qm_fd_set_sg(fd, priv->tx_headroom, skb->len);
1970 
1971 	/* DMA map the SGT page */
1972 	buffer_start = (void *)sgt - priv->tx_headroom;
1973 	skbh = (struct sk_buff **)buffer_start;
1974 	*skbh = skb;
1975 
1976 	addr = dma_map_single(dev, buffer_start, priv->tx_headroom +
1977 			      sizeof(struct qm_sg_entry) * (1 + nr_frags),
1978 			      dma_dir);
1979 	if (unlikely(dma_mapping_error(dev, addr))) {
1980 		dev_err(dev, "DMA mapping failed");
1981 		err = -EINVAL;
1982 		goto sgt_map_failed;
1983 	}
1984 
1985 	fd->bpid = FSL_DPAA_BPID_INV;
1986 	fd->cmd |= cpu_to_be32(FM_FD_CMD_FCO);
1987 	qm_fd_addr_set64(fd, addr);
1988 
1989 	return 0;
1990 
1991 sgt_map_failed:
1992 sg_map_failed:
1993 	for (j = 0; j < i; j++)
1994 		dma_unmap_page(dev, qm_sg_addr(&sgt[j]),
1995 			       qm_sg_entry_get_len(&sgt[j]), dma_dir);
1996 sg0_map_failed:
1997 csum_failed:
1998 	skb_free_frag(sgt_buf);
1999 
2000 	return err;
2001 }
2002 
2003 static inline int dpaa_xmit(struct dpaa_priv *priv,
2004 			    struct rtnl_link_stats64 *percpu_stats,
2005 			    int queue,
2006 			    struct qm_fd *fd)
2007 {
2008 	struct qman_fq *egress_fq;
2009 	int err, i;
2010 
2011 	egress_fq = priv->egress_fqs[queue];
2012 	if (fd->bpid == FSL_DPAA_BPID_INV)
2013 		fd->cmd |= cpu_to_be32(qman_fq_fqid(priv->conf_fqs[queue]));
2014 
2015 	/* Trace this Tx fd */
2016 	trace_dpaa_tx_fd(priv->net_dev, egress_fq, fd);
2017 
2018 	for (i = 0; i < DPAA_ENQUEUE_RETRIES; i++) {
2019 		err = qman_enqueue(egress_fq, fd);
2020 		if (err != -EBUSY)
2021 			break;
2022 	}
2023 
2024 	if (unlikely(err < 0)) {
2025 		percpu_stats->tx_errors++;
2026 		percpu_stats->tx_fifo_errors++;
2027 		return err;
2028 	}
2029 
2030 	percpu_stats->tx_packets++;
2031 	percpu_stats->tx_bytes += qm_fd_get_length(fd);
2032 
2033 	return 0;
2034 }
2035 
2036 static int dpaa_start_xmit(struct sk_buff *skb, struct net_device *net_dev)
2037 {
2038 	const int queue_mapping = skb_get_queue_mapping(skb);
2039 	bool nonlinear = skb_is_nonlinear(skb);
2040 	struct rtnl_link_stats64 *percpu_stats;
2041 	struct dpaa_percpu_priv *percpu_priv;
2042 	struct dpaa_priv *priv;
2043 	struct qm_fd fd;
2044 	int offset = 0;
2045 	int err = 0;
2046 
2047 	priv = netdev_priv(net_dev);
2048 	percpu_priv = this_cpu_ptr(priv->percpu_priv);
2049 	percpu_stats = &percpu_priv->stats;
2050 
2051 	qm_fd_clear_fd(&fd);
2052 
2053 	if (!nonlinear) {
2054 		/* We're going to store the skb backpointer at the beginning
2055 		 * of the data buffer, so we need a privately owned skb
2056 		 *
2057 		 * We've made sure skb is not shared in dev->priv_flags,
2058 		 * we need to verify the skb head is not cloned
2059 		 */
2060 		if (skb_cow_head(skb, priv->tx_headroom))
2061 			goto enomem;
2062 
2063 		WARN_ON(skb_is_nonlinear(skb));
2064 	}
2065 
2066 	/* MAX_SKB_FRAGS is equal or larger than our dpaa_SGT_MAX_ENTRIES;
2067 	 * make sure we don't feed FMan with more fragments than it supports.
2068 	 */
2069 	if (nonlinear &&
2070 	    likely(skb_shinfo(skb)->nr_frags < DPAA_SGT_MAX_ENTRIES)) {
2071 		/* Just create a S/G fd based on the skb */
2072 		err = skb_to_sg_fd(priv, skb, &fd);
2073 		percpu_priv->tx_frag_skbuffs++;
2074 	} else {
2075 		/* If the egress skb contains more fragments than we support
2076 		 * we have no choice but to linearize it ourselves.
2077 		 */
2078 		if (unlikely(nonlinear) && __skb_linearize(skb))
2079 			goto enomem;
2080 
2081 		/* Finally, create a contig FD from this skb */
2082 		err = skb_to_contig_fd(priv, skb, &fd, &offset);
2083 	}
2084 	if (unlikely(err < 0))
2085 		goto skb_to_fd_failed;
2086 
2087 	if (likely(dpaa_xmit(priv, percpu_stats, queue_mapping, &fd) == 0))
2088 		return NETDEV_TX_OK;
2089 
2090 	dpaa_cleanup_tx_fd(priv, &fd);
2091 skb_to_fd_failed:
2092 enomem:
2093 	percpu_stats->tx_errors++;
2094 	dev_kfree_skb(skb);
2095 	return NETDEV_TX_OK;
2096 }
2097 
2098 static void dpaa_rx_error(struct net_device *net_dev,
2099 			  const struct dpaa_priv *priv,
2100 			  struct dpaa_percpu_priv *percpu_priv,
2101 			  const struct qm_fd *fd,
2102 			  u32 fqid)
2103 {
2104 	if (net_ratelimit())
2105 		netif_err(priv, hw, net_dev, "Err FD status = 0x%08x\n",
2106 			  be32_to_cpu(fd->status) & FM_FD_STAT_RX_ERRORS);
2107 
2108 	percpu_priv->stats.rx_errors++;
2109 
2110 	if (be32_to_cpu(fd->status) & FM_FD_ERR_DMA)
2111 		percpu_priv->rx_errors.dme++;
2112 	if (be32_to_cpu(fd->status) & FM_FD_ERR_PHYSICAL)
2113 		percpu_priv->rx_errors.fpe++;
2114 	if (be32_to_cpu(fd->status) & FM_FD_ERR_SIZE)
2115 		percpu_priv->rx_errors.fse++;
2116 	if (be32_to_cpu(fd->status) & FM_FD_ERR_PRS_HDR_ERR)
2117 		percpu_priv->rx_errors.phe++;
2118 
2119 	dpaa_fd_release(net_dev, fd);
2120 }
2121 
2122 static void dpaa_tx_error(struct net_device *net_dev,
2123 			  const struct dpaa_priv *priv,
2124 			  struct dpaa_percpu_priv *percpu_priv,
2125 			  const struct qm_fd *fd,
2126 			  u32 fqid)
2127 {
2128 	struct sk_buff *skb;
2129 
2130 	if (net_ratelimit())
2131 		netif_warn(priv, hw, net_dev, "FD status = 0x%08x\n",
2132 			   be32_to_cpu(fd->status) & FM_FD_STAT_TX_ERRORS);
2133 
2134 	percpu_priv->stats.tx_errors++;
2135 
2136 	skb = dpaa_cleanup_tx_fd(priv, fd);
2137 	dev_kfree_skb(skb);
2138 }
2139 
2140 static int dpaa_eth_poll(struct napi_struct *napi, int budget)
2141 {
2142 	struct dpaa_napi_portal *np =
2143 			container_of(napi, struct dpaa_napi_portal, napi);
2144 
2145 	int cleaned = qman_p_poll_dqrr(np->p, budget);
2146 
2147 	if (cleaned < budget) {
2148 		napi_complete_done(napi, cleaned);
2149 		qman_p_irqsource_add(np->p, QM_PIRQ_DQRI);
2150 
2151 	} else if (np->down) {
2152 		qman_p_irqsource_add(np->p, QM_PIRQ_DQRI);
2153 	}
2154 
2155 	return cleaned;
2156 }
2157 
2158 static void dpaa_tx_conf(struct net_device *net_dev,
2159 			 const struct dpaa_priv *priv,
2160 			 struct dpaa_percpu_priv *percpu_priv,
2161 			 const struct qm_fd *fd,
2162 			 u32 fqid)
2163 {
2164 	struct sk_buff	*skb;
2165 
2166 	if (unlikely(be32_to_cpu(fd->status) & FM_FD_STAT_TX_ERRORS)) {
2167 		if (net_ratelimit())
2168 			netif_warn(priv, hw, net_dev, "FD status = 0x%08x\n",
2169 				   be32_to_cpu(fd->status) &
2170 				   FM_FD_STAT_TX_ERRORS);
2171 
2172 		percpu_priv->stats.tx_errors++;
2173 	}
2174 
2175 	percpu_priv->tx_confirm++;
2176 
2177 	skb = dpaa_cleanup_tx_fd(priv, fd);
2178 
2179 	consume_skb(skb);
2180 }
2181 
2182 static inline int dpaa_eth_napi_schedule(struct dpaa_percpu_priv *percpu_priv,
2183 					 struct qman_portal *portal)
2184 {
2185 	if (unlikely(in_irq() || !in_serving_softirq())) {
2186 		/* Disable QMan IRQ and invoke NAPI */
2187 		qman_p_irqsource_remove(portal, QM_PIRQ_DQRI);
2188 
2189 		percpu_priv->np.p = portal;
2190 		napi_schedule(&percpu_priv->np.napi);
2191 		percpu_priv->in_interrupt++;
2192 		return 1;
2193 	}
2194 	return 0;
2195 }
2196 
2197 static enum qman_cb_dqrr_result rx_error_dqrr(struct qman_portal *portal,
2198 					      struct qman_fq *fq,
2199 					      const struct qm_dqrr_entry *dq)
2200 {
2201 	struct dpaa_fq *dpaa_fq = container_of(fq, struct dpaa_fq, fq_base);
2202 	struct dpaa_percpu_priv *percpu_priv;
2203 	struct net_device *net_dev;
2204 	struct dpaa_bp *dpaa_bp;
2205 	struct dpaa_priv *priv;
2206 
2207 	net_dev = dpaa_fq->net_dev;
2208 	priv = netdev_priv(net_dev);
2209 	dpaa_bp = dpaa_bpid2pool(dq->fd.bpid);
2210 	if (!dpaa_bp)
2211 		return qman_cb_dqrr_consume;
2212 
2213 	percpu_priv = this_cpu_ptr(priv->percpu_priv);
2214 
2215 	if (dpaa_eth_napi_schedule(percpu_priv, portal))
2216 		return qman_cb_dqrr_stop;
2217 
2218 	if (dpaa_eth_refill_bpools(priv))
2219 		/* Unable to refill the buffer pool due to insufficient
2220 		 * system memory. Just release the frame back into the pool,
2221 		 * otherwise we'll soon end up with an empty buffer pool.
2222 		 */
2223 		dpaa_fd_release(net_dev, &dq->fd);
2224 	else
2225 		dpaa_rx_error(net_dev, priv, percpu_priv, &dq->fd, fq->fqid);
2226 
2227 	return qman_cb_dqrr_consume;
2228 }
2229 
2230 static enum qman_cb_dqrr_result rx_default_dqrr(struct qman_portal *portal,
2231 						struct qman_fq *fq,
2232 						const struct qm_dqrr_entry *dq)
2233 {
2234 	struct rtnl_link_stats64 *percpu_stats;
2235 	struct dpaa_percpu_priv *percpu_priv;
2236 	const struct qm_fd *fd = &dq->fd;
2237 	dma_addr_t addr = qm_fd_addr(fd);
2238 	enum qm_fd_format fd_format;
2239 	struct net_device *net_dev;
2240 	u32 fd_status, hash_offset;
2241 	struct dpaa_bp *dpaa_bp;
2242 	struct dpaa_priv *priv;
2243 	unsigned int skb_len;
2244 	struct sk_buff *skb;
2245 	int *count_ptr;
2246 	void *vaddr;
2247 
2248 	fd_status = be32_to_cpu(fd->status);
2249 	fd_format = qm_fd_get_format(fd);
2250 	net_dev = ((struct dpaa_fq *)fq)->net_dev;
2251 	priv = netdev_priv(net_dev);
2252 	dpaa_bp = dpaa_bpid2pool(dq->fd.bpid);
2253 	if (!dpaa_bp)
2254 		return qman_cb_dqrr_consume;
2255 
2256 	/* Trace the Rx fd */
2257 	trace_dpaa_rx_fd(net_dev, fq, &dq->fd);
2258 
2259 	percpu_priv = this_cpu_ptr(priv->percpu_priv);
2260 	percpu_stats = &percpu_priv->stats;
2261 
2262 	if (unlikely(dpaa_eth_napi_schedule(percpu_priv, portal)))
2263 		return qman_cb_dqrr_stop;
2264 
2265 	/* Make sure we didn't run out of buffers */
2266 	if (unlikely(dpaa_eth_refill_bpools(priv))) {
2267 		/* Unable to refill the buffer pool due to insufficient
2268 		 * system memory. Just release the frame back into the pool,
2269 		 * otherwise we'll soon end up with an empty buffer pool.
2270 		 */
2271 		dpaa_fd_release(net_dev, &dq->fd);
2272 		return qman_cb_dqrr_consume;
2273 	}
2274 
2275 	if (unlikely(fd_status & FM_FD_STAT_RX_ERRORS) != 0) {
2276 		if (net_ratelimit())
2277 			netif_warn(priv, hw, net_dev, "FD status = 0x%08x\n",
2278 				   fd_status & FM_FD_STAT_RX_ERRORS);
2279 
2280 		percpu_stats->rx_errors++;
2281 		dpaa_fd_release(net_dev, fd);
2282 		return qman_cb_dqrr_consume;
2283 	}
2284 
2285 	dpaa_bp = dpaa_bpid2pool(fd->bpid);
2286 	if (!dpaa_bp)
2287 		return qman_cb_dqrr_consume;
2288 
2289 	dma_unmap_single(dpaa_bp->dev, addr, dpaa_bp->size, DMA_FROM_DEVICE);
2290 
2291 	/* prefetch the first 64 bytes of the frame or the SGT start */
2292 	vaddr = phys_to_virt(addr);
2293 	prefetch(vaddr + qm_fd_get_offset(fd));
2294 
2295 	fd_format = qm_fd_get_format(fd);
2296 	/* The only FD types that we may receive are contig and S/G */
2297 	WARN_ON((fd_format != qm_fd_contig) && (fd_format != qm_fd_sg));
2298 
2299 	/* Account for either the contig buffer or the SGT buffer (depending on
2300 	 * which case we were in) having been removed from the pool.
2301 	 */
2302 	count_ptr = this_cpu_ptr(dpaa_bp->percpu_count);
2303 	(*count_ptr)--;
2304 
2305 	if (likely(fd_format == qm_fd_contig))
2306 		skb = contig_fd_to_skb(priv, fd);
2307 	else
2308 		skb = sg_fd_to_skb(priv, fd);
2309 	if (!skb)
2310 		return qman_cb_dqrr_consume;
2311 
2312 	skb->protocol = eth_type_trans(skb, net_dev);
2313 
2314 	if (net_dev->features & NETIF_F_RXHASH && priv->keygen_in_use &&
2315 	    !fman_port_get_hash_result_offset(priv->mac_dev->port[RX],
2316 					      &hash_offset)) {
2317 		enum pkt_hash_types type;
2318 
2319 		/* if L4 exists, it was used in the hash generation */
2320 		type = be32_to_cpu(fd->status) & FM_FD_STAT_L4CV ?
2321 			PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3;
2322 		skb_set_hash(skb, be32_to_cpu(*(u32 *)(vaddr + hash_offset)),
2323 			     type);
2324 	}
2325 
2326 	skb_len = skb->len;
2327 
2328 	if (unlikely(netif_receive_skb(skb) == NET_RX_DROP))
2329 		return qman_cb_dqrr_consume;
2330 
2331 	percpu_stats->rx_packets++;
2332 	percpu_stats->rx_bytes += skb_len;
2333 
2334 	return qman_cb_dqrr_consume;
2335 }
2336 
2337 static enum qman_cb_dqrr_result conf_error_dqrr(struct qman_portal *portal,
2338 						struct qman_fq *fq,
2339 						const struct qm_dqrr_entry *dq)
2340 {
2341 	struct dpaa_percpu_priv *percpu_priv;
2342 	struct net_device *net_dev;
2343 	struct dpaa_priv *priv;
2344 
2345 	net_dev = ((struct dpaa_fq *)fq)->net_dev;
2346 	priv = netdev_priv(net_dev);
2347 
2348 	percpu_priv = this_cpu_ptr(priv->percpu_priv);
2349 
2350 	if (dpaa_eth_napi_schedule(percpu_priv, portal))
2351 		return qman_cb_dqrr_stop;
2352 
2353 	dpaa_tx_error(net_dev, priv, percpu_priv, &dq->fd, fq->fqid);
2354 
2355 	return qman_cb_dqrr_consume;
2356 }
2357 
2358 static enum qman_cb_dqrr_result conf_dflt_dqrr(struct qman_portal *portal,
2359 					       struct qman_fq *fq,
2360 					       const struct qm_dqrr_entry *dq)
2361 {
2362 	struct dpaa_percpu_priv *percpu_priv;
2363 	struct net_device *net_dev;
2364 	struct dpaa_priv *priv;
2365 
2366 	net_dev = ((struct dpaa_fq *)fq)->net_dev;
2367 	priv = netdev_priv(net_dev);
2368 
2369 	/* Trace the fd */
2370 	trace_dpaa_tx_conf_fd(net_dev, fq, &dq->fd);
2371 
2372 	percpu_priv = this_cpu_ptr(priv->percpu_priv);
2373 
2374 	if (dpaa_eth_napi_schedule(percpu_priv, portal))
2375 		return qman_cb_dqrr_stop;
2376 
2377 	dpaa_tx_conf(net_dev, priv, percpu_priv, &dq->fd, fq->fqid);
2378 
2379 	return qman_cb_dqrr_consume;
2380 }
2381 
2382 static void egress_ern(struct qman_portal *portal,
2383 		       struct qman_fq *fq,
2384 		       const union qm_mr_entry *msg)
2385 {
2386 	const struct qm_fd *fd = &msg->ern.fd;
2387 	struct dpaa_percpu_priv *percpu_priv;
2388 	const struct dpaa_priv *priv;
2389 	struct net_device *net_dev;
2390 	struct sk_buff *skb;
2391 
2392 	net_dev = ((struct dpaa_fq *)fq)->net_dev;
2393 	priv = netdev_priv(net_dev);
2394 	percpu_priv = this_cpu_ptr(priv->percpu_priv);
2395 
2396 	percpu_priv->stats.tx_dropped++;
2397 	percpu_priv->stats.tx_fifo_errors++;
2398 	count_ern(percpu_priv, msg);
2399 
2400 	skb = dpaa_cleanup_tx_fd(priv, fd);
2401 	dev_kfree_skb_any(skb);
2402 }
2403 
2404 static const struct dpaa_fq_cbs dpaa_fq_cbs = {
2405 	.rx_defq = { .cb = { .dqrr = rx_default_dqrr } },
2406 	.tx_defq = { .cb = { .dqrr = conf_dflt_dqrr } },
2407 	.rx_errq = { .cb = { .dqrr = rx_error_dqrr } },
2408 	.tx_errq = { .cb = { .dqrr = conf_error_dqrr } },
2409 	.egress_ern = { .cb = { .ern = egress_ern } }
2410 };
2411 
2412 static void dpaa_eth_napi_enable(struct dpaa_priv *priv)
2413 {
2414 	struct dpaa_percpu_priv *percpu_priv;
2415 	int i;
2416 
2417 	for_each_possible_cpu(i) {
2418 		percpu_priv = per_cpu_ptr(priv->percpu_priv, i);
2419 
2420 		percpu_priv->np.down = 0;
2421 		napi_enable(&percpu_priv->np.napi);
2422 	}
2423 }
2424 
2425 static void dpaa_eth_napi_disable(struct dpaa_priv *priv)
2426 {
2427 	struct dpaa_percpu_priv *percpu_priv;
2428 	int i;
2429 
2430 	for_each_possible_cpu(i) {
2431 		percpu_priv = per_cpu_ptr(priv->percpu_priv, i);
2432 
2433 		percpu_priv->np.down = 1;
2434 		napi_disable(&percpu_priv->np.napi);
2435 	}
2436 }
2437 
2438 static int dpaa_open(struct net_device *net_dev)
2439 {
2440 	struct mac_device *mac_dev;
2441 	struct dpaa_priv *priv;
2442 	int err, i;
2443 
2444 	priv = netdev_priv(net_dev);
2445 	mac_dev = priv->mac_dev;
2446 	dpaa_eth_napi_enable(priv);
2447 
2448 	net_dev->phydev = mac_dev->init_phy(net_dev, priv->mac_dev);
2449 	if (!net_dev->phydev) {
2450 		netif_err(priv, ifup, net_dev, "init_phy() failed\n");
2451 		err = -ENODEV;
2452 		goto phy_init_failed;
2453 	}
2454 
2455 	for (i = 0; i < ARRAY_SIZE(mac_dev->port); i++) {
2456 		err = fman_port_enable(mac_dev->port[i]);
2457 		if (err)
2458 			goto mac_start_failed;
2459 	}
2460 
2461 	err = priv->mac_dev->start(mac_dev);
2462 	if (err < 0) {
2463 		netif_err(priv, ifup, net_dev, "mac_dev->start() = %d\n", err);
2464 		goto mac_start_failed;
2465 	}
2466 
2467 	netif_tx_start_all_queues(net_dev);
2468 
2469 	return 0;
2470 
2471 mac_start_failed:
2472 	for (i = 0; i < ARRAY_SIZE(mac_dev->port); i++)
2473 		fman_port_disable(mac_dev->port[i]);
2474 
2475 phy_init_failed:
2476 	dpaa_eth_napi_disable(priv);
2477 
2478 	return err;
2479 }
2480 
2481 static int dpaa_eth_stop(struct net_device *net_dev)
2482 {
2483 	struct dpaa_priv *priv;
2484 	int err;
2485 
2486 	err = dpaa_stop(net_dev);
2487 
2488 	priv = netdev_priv(net_dev);
2489 	dpaa_eth_napi_disable(priv);
2490 
2491 	return err;
2492 }
2493 
2494 static int dpaa_ioctl(struct net_device *net_dev, struct ifreq *rq, int cmd)
2495 {
2496 	if (!net_dev->phydev)
2497 		return -EINVAL;
2498 	return phy_mii_ioctl(net_dev->phydev, rq, cmd);
2499 }
2500 
2501 static const struct net_device_ops dpaa_ops = {
2502 	.ndo_open = dpaa_open,
2503 	.ndo_start_xmit = dpaa_start_xmit,
2504 	.ndo_stop = dpaa_eth_stop,
2505 	.ndo_tx_timeout = dpaa_tx_timeout,
2506 	.ndo_get_stats64 = dpaa_get_stats64,
2507 	.ndo_set_mac_address = dpaa_set_mac_address,
2508 	.ndo_validate_addr = eth_validate_addr,
2509 	.ndo_set_rx_mode = dpaa_set_rx_mode,
2510 	.ndo_do_ioctl = dpaa_ioctl,
2511 	.ndo_setup_tc = dpaa_setup_tc,
2512 };
2513 
2514 static int dpaa_napi_add(struct net_device *net_dev)
2515 {
2516 	struct dpaa_priv *priv = netdev_priv(net_dev);
2517 	struct dpaa_percpu_priv *percpu_priv;
2518 	int cpu;
2519 
2520 	for_each_possible_cpu(cpu) {
2521 		percpu_priv = per_cpu_ptr(priv->percpu_priv, cpu);
2522 
2523 		netif_napi_add(net_dev, &percpu_priv->np.napi,
2524 			       dpaa_eth_poll, NAPI_POLL_WEIGHT);
2525 	}
2526 
2527 	return 0;
2528 }
2529 
2530 static void dpaa_napi_del(struct net_device *net_dev)
2531 {
2532 	struct dpaa_priv *priv = netdev_priv(net_dev);
2533 	struct dpaa_percpu_priv *percpu_priv;
2534 	int cpu;
2535 
2536 	for_each_possible_cpu(cpu) {
2537 		percpu_priv = per_cpu_ptr(priv->percpu_priv, cpu);
2538 
2539 		netif_napi_del(&percpu_priv->np.napi);
2540 	}
2541 }
2542 
2543 static inline void dpaa_bp_free_pf(const struct dpaa_bp *bp,
2544 				   struct bm_buffer *bmb)
2545 {
2546 	dma_addr_t addr = bm_buf_addr(bmb);
2547 
2548 	dma_unmap_single(bp->dev, addr, bp->size, DMA_FROM_DEVICE);
2549 
2550 	skb_free_frag(phys_to_virt(addr));
2551 }
2552 
2553 /* Alloc the dpaa_bp struct and configure default values */
2554 static struct dpaa_bp *dpaa_bp_alloc(struct device *dev)
2555 {
2556 	struct dpaa_bp *dpaa_bp;
2557 
2558 	dpaa_bp = devm_kzalloc(dev, sizeof(*dpaa_bp), GFP_KERNEL);
2559 	if (!dpaa_bp)
2560 		return ERR_PTR(-ENOMEM);
2561 
2562 	dpaa_bp->bpid = FSL_DPAA_BPID_INV;
2563 	dpaa_bp->percpu_count = devm_alloc_percpu(dev, *dpaa_bp->percpu_count);
2564 	if (!dpaa_bp->percpu_count)
2565 		return ERR_PTR(-ENOMEM);
2566 
2567 	dpaa_bp->config_count = FSL_DPAA_ETH_MAX_BUF_COUNT;
2568 
2569 	dpaa_bp->seed_cb = dpaa_bp_seed;
2570 	dpaa_bp->free_buf_cb = dpaa_bp_free_pf;
2571 
2572 	return dpaa_bp;
2573 }
2574 
2575 /* Place all ingress FQs (Rx Default, Rx Error) in a dedicated CGR.
2576  * We won't be sending congestion notifications to FMan; for now, we just use
2577  * this CGR to generate enqueue rejections to FMan in order to drop the frames
2578  * before they reach our ingress queues and eat up memory.
2579  */
2580 static int dpaa_ingress_cgr_init(struct dpaa_priv *priv)
2581 {
2582 	struct qm_mcc_initcgr initcgr;
2583 	u32 cs_th;
2584 	int err;
2585 
2586 	err = qman_alloc_cgrid(&priv->ingress_cgr.cgrid);
2587 	if (err < 0) {
2588 		if (netif_msg_drv(priv))
2589 			pr_err("Error %d allocating CGR ID\n", err);
2590 		goto out_error;
2591 	}
2592 
2593 	/* Enable CS TD, but disable Congestion State Change Notifications. */
2594 	memset(&initcgr, 0, sizeof(initcgr));
2595 	initcgr.we_mask = cpu_to_be16(QM_CGR_WE_CS_THRES);
2596 	initcgr.cgr.cscn_en = QM_CGR_EN;
2597 	cs_th = DPAA_INGRESS_CS_THRESHOLD;
2598 	qm_cgr_cs_thres_set64(&initcgr.cgr.cs_thres, cs_th, 1);
2599 
2600 	initcgr.we_mask |= cpu_to_be16(QM_CGR_WE_CSTD_EN);
2601 	initcgr.cgr.cstd_en = QM_CGR_EN;
2602 
2603 	/* This CGR will be associated with the SWP affined to the current CPU.
2604 	 * However, we'll place all our ingress FQs in it.
2605 	 */
2606 	err = qman_create_cgr(&priv->ingress_cgr, QMAN_CGR_FLAG_USE_INIT,
2607 			      &initcgr);
2608 	if (err < 0) {
2609 		if (netif_msg_drv(priv))
2610 			pr_err("Error %d creating ingress CGR with ID %d\n",
2611 			       err, priv->ingress_cgr.cgrid);
2612 		qman_release_cgrid(priv->ingress_cgr.cgrid);
2613 		goto out_error;
2614 	}
2615 	if (netif_msg_drv(priv))
2616 		pr_debug("Created ingress CGR %d for netdev with hwaddr %pM\n",
2617 			 priv->ingress_cgr.cgrid, priv->mac_dev->addr);
2618 
2619 	priv->use_ingress_cgr = true;
2620 
2621 out_error:
2622 	return err;
2623 }
2624 
2625 static const struct of_device_id dpaa_match[];
2626 
2627 static inline u16 dpaa_get_headroom(struct dpaa_buffer_layout *bl)
2628 {
2629 	u16 headroom;
2630 
2631 	/* The frame headroom must accommodate:
2632 	 * - the driver private data area
2633 	 * - parse results, hash results, timestamp if selected
2634 	 * If either hash results or time stamp are selected, both will
2635 	 * be copied to/from the frame headroom, as TS is located between PR and
2636 	 * HR in the IC and IC copy size has a granularity of 16bytes
2637 	 * (see description of FMBM_RICP and FMBM_TICP registers in DPAARM)
2638 	 *
2639 	 * Also make sure the headroom is a multiple of data_align bytes
2640 	 */
2641 	headroom = (u16)(bl->priv_data_size + DPAA_PARSE_RESULTS_SIZE +
2642 		DPAA_TIME_STAMP_SIZE + DPAA_HASH_RESULTS_SIZE);
2643 
2644 	return DPAA_FD_DATA_ALIGNMENT ? ALIGN(headroom,
2645 					      DPAA_FD_DATA_ALIGNMENT) :
2646 					headroom;
2647 }
2648 
2649 static int dpaa_eth_probe(struct platform_device *pdev)
2650 {
2651 	struct dpaa_bp *dpaa_bps[DPAA_BPS_NUM] = {NULL};
2652 	struct dpaa_percpu_priv *percpu_priv;
2653 	struct net_device *net_dev = NULL;
2654 	struct dpaa_fq *dpaa_fq, *tmp;
2655 	struct dpaa_priv *priv = NULL;
2656 	struct fm_port_fqs port_fqs;
2657 	struct mac_device *mac_dev;
2658 	int err = 0, i, channel;
2659 	struct device *dev;
2660 
2661 	dev = &pdev->dev;
2662 
2663 	/* Allocate this early, so we can store relevant information in
2664 	 * the private area
2665 	 */
2666 	net_dev = alloc_etherdev_mq(sizeof(*priv), DPAA_ETH_TXQ_NUM);
2667 	if (!net_dev) {
2668 		dev_err(dev, "alloc_etherdev_mq() failed\n");
2669 		goto alloc_etherdev_mq_failed;
2670 	}
2671 
2672 	/* Do this here, so we can be verbose early */
2673 	SET_NETDEV_DEV(net_dev, dev);
2674 	dev_set_drvdata(dev, net_dev);
2675 
2676 	priv = netdev_priv(net_dev);
2677 	priv->net_dev = net_dev;
2678 
2679 	priv->msg_enable = netif_msg_init(debug, DPAA_MSG_DEFAULT);
2680 
2681 	mac_dev = dpaa_mac_dev_get(pdev);
2682 	if (IS_ERR(mac_dev)) {
2683 		dev_err(dev, "dpaa_mac_dev_get() failed\n");
2684 		err = PTR_ERR(mac_dev);
2685 		goto mac_probe_failed;
2686 	}
2687 
2688 	/* If fsl_fm_max_frm is set to a higher value than the all-common 1500,
2689 	 * we choose conservatively and let the user explicitly set a higher
2690 	 * MTU via ifconfig. Otherwise, the user may end up with different MTUs
2691 	 * in the same LAN.
2692 	 * If on the other hand fsl_fm_max_frm has been chosen below 1500,
2693 	 * start with the maximum allowed.
2694 	 */
2695 	net_dev->mtu = min(dpaa_get_max_mtu(), ETH_DATA_LEN);
2696 
2697 	netdev_dbg(net_dev, "Setting initial MTU on net device: %d\n",
2698 		   net_dev->mtu);
2699 
2700 	priv->buf_layout[RX].priv_data_size = DPAA_RX_PRIV_DATA_SIZE; /* Rx */
2701 	priv->buf_layout[TX].priv_data_size = DPAA_TX_PRIV_DATA_SIZE; /* Tx */
2702 
2703 	/* device used for DMA mapping */
2704 	set_dma_ops(dev, get_dma_ops(&pdev->dev));
2705 	err = dma_coerce_mask_and_coherent(dev, DMA_BIT_MASK(40));
2706 	if (err) {
2707 		dev_err(dev, "dma_coerce_mask_and_coherent() failed\n");
2708 		goto dev_mask_failed;
2709 	}
2710 
2711 	/* bp init */
2712 	for (i = 0; i < DPAA_BPS_NUM; i++) {
2713 		int err;
2714 
2715 		dpaa_bps[i] = dpaa_bp_alloc(dev);
2716 		if (IS_ERR(dpaa_bps[i]))
2717 			return PTR_ERR(dpaa_bps[i]);
2718 		/* the raw size of the buffers used for reception */
2719 		dpaa_bps[i]->raw_size = bpool_buffer_raw_size(i, DPAA_BPS_NUM);
2720 		/* avoid runtime computations by keeping the usable size here */
2721 		dpaa_bps[i]->size = dpaa_bp_size(dpaa_bps[i]->raw_size);
2722 		dpaa_bps[i]->dev = dev;
2723 
2724 		err = dpaa_bp_alloc_pool(dpaa_bps[i]);
2725 		if (err < 0) {
2726 			dpaa_bps_free(priv);
2727 			priv->dpaa_bps[i] = NULL;
2728 			goto bp_create_failed;
2729 		}
2730 		priv->dpaa_bps[i] = dpaa_bps[i];
2731 	}
2732 
2733 	INIT_LIST_HEAD(&priv->dpaa_fq_list);
2734 
2735 	memset(&port_fqs, 0, sizeof(port_fqs));
2736 
2737 	err = dpaa_alloc_all_fqs(dev, &priv->dpaa_fq_list, &port_fqs);
2738 	if (err < 0) {
2739 		dev_err(dev, "dpaa_alloc_all_fqs() failed\n");
2740 		goto fq_probe_failed;
2741 	}
2742 
2743 	priv->mac_dev = mac_dev;
2744 
2745 	channel = dpaa_get_channel();
2746 	if (channel < 0) {
2747 		dev_err(dev, "dpaa_get_channel() failed\n");
2748 		err = channel;
2749 		goto get_channel_failed;
2750 	}
2751 
2752 	priv->channel = (u16)channel;
2753 
2754 	/* Start a thread that will walk the CPUs with affine portals
2755 	 * and add this pool channel to each's dequeue mask.
2756 	 */
2757 	dpaa_eth_add_channel(priv->channel);
2758 
2759 	dpaa_fq_setup(priv, &dpaa_fq_cbs, priv->mac_dev->port[TX]);
2760 
2761 	/* Create a congestion group for this netdev, with
2762 	 * dynamically-allocated CGR ID.
2763 	 * Must be executed after probing the MAC, but before
2764 	 * assigning the egress FQs to the CGRs.
2765 	 */
2766 	err = dpaa_eth_cgr_init(priv);
2767 	if (err < 0) {
2768 		dev_err(dev, "Error initializing CGR\n");
2769 		goto tx_cgr_init_failed;
2770 	}
2771 
2772 	err = dpaa_ingress_cgr_init(priv);
2773 	if (err < 0) {
2774 		dev_err(dev, "Error initializing ingress CGR\n");
2775 		goto rx_cgr_init_failed;
2776 	}
2777 
2778 	/* Add the FQs to the interface, and make them active */
2779 	list_for_each_entry_safe(dpaa_fq, tmp, &priv->dpaa_fq_list, list) {
2780 		err = dpaa_fq_init(dpaa_fq, false);
2781 		if (err < 0)
2782 			goto fq_alloc_failed;
2783 	}
2784 
2785 	priv->tx_headroom = dpaa_get_headroom(&priv->buf_layout[TX]);
2786 	priv->rx_headroom = dpaa_get_headroom(&priv->buf_layout[RX]);
2787 
2788 	/* All real interfaces need their ports initialized */
2789 	err = dpaa_eth_init_ports(mac_dev, dpaa_bps, DPAA_BPS_NUM, &port_fqs,
2790 				  &priv->buf_layout[0], dev);
2791 	if (err)
2792 		goto init_ports_failed;
2793 
2794 	/* Rx traffic distribution based on keygen hashing defaults to on */
2795 	priv->keygen_in_use = true;
2796 
2797 	priv->percpu_priv = devm_alloc_percpu(dev, *priv->percpu_priv);
2798 	if (!priv->percpu_priv) {
2799 		dev_err(dev, "devm_alloc_percpu() failed\n");
2800 		err = -ENOMEM;
2801 		goto alloc_percpu_failed;
2802 	}
2803 	for_each_possible_cpu(i) {
2804 		percpu_priv = per_cpu_ptr(priv->percpu_priv, i);
2805 		memset(percpu_priv, 0, sizeof(*percpu_priv));
2806 	}
2807 
2808 	priv->num_tc = 1;
2809 	netif_set_real_num_tx_queues(net_dev, priv->num_tc * DPAA_TC_TXQ_NUM);
2810 
2811 	/* Initialize NAPI */
2812 	err = dpaa_napi_add(net_dev);
2813 	if (err < 0)
2814 		goto napi_add_failed;
2815 
2816 	err = dpaa_netdev_init(net_dev, &dpaa_ops, tx_timeout);
2817 	if (err < 0)
2818 		goto netdev_init_failed;
2819 
2820 	dpaa_eth_sysfs_init(&net_dev->dev);
2821 
2822 	netif_info(priv, probe, net_dev, "Probed interface %s\n",
2823 		   net_dev->name);
2824 
2825 	return 0;
2826 
2827 netdev_init_failed:
2828 napi_add_failed:
2829 	dpaa_napi_del(net_dev);
2830 alloc_percpu_failed:
2831 init_ports_failed:
2832 	dpaa_fq_free(dev, &priv->dpaa_fq_list);
2833 fq_alloc_failed:
2834 	qman_delete_cgr_safe(&priv->ingress_cgr);
2835 	qman_release_cgrid(priv->ingress_cgr.cgrid);
2836 rx_cgr_init_failed:
2837 	qman_delete_cgr_safe(&priv->cgr_data.cgr);
2838 	qman_release_cgrid(priv->cgr_data.cgr.cgrid);
2839 tx_cgr_init_failed:
2840 get_channel_failed:
2841 	dpaa_bps_free(priv);
2842 bp_create_failed:
2843 fq_probe_failed:
2844 dev_mask_failed:
2845 mac_probe_failed:
2846 	dev_set_drvdata(dev, NULL);
2847 	free_netdev(net_dev);
2848 alloc_etherdev_mq_failed:
2849 	for (i = 0; i < DPAA_BPS_NUM && dpaa_bps[i]; i++) {
2850 		if (atomic_read(&dpaa_bps[i]->refs) == 0)
2851 			devm_kfree(dev, dpaa_bps[i]);
2852 	}
2853 	return err;
2854 }
2855 
2856 static int dpaa_remove(struct platform_device *pdev)
2857 {
2858 	struct net_device *net_dev;
2859 	struct dpaa_priv *priv;
2860 	struct device *dev;
2861 	int err;
2862 
2863 	dev = &pdev->dev;
2864 	net_dev = dev_get_drvdata(dev);
2865 
2866 	priv = netdev_priv(net_dev);
2867 
2868 	dpaa_eth_sysfs_remove(dev);
2869 
2870 	dev_set_drvdata(dev, NULL);
2871 	unregister_netdev(net_dev);
2872 
2873 	err = dpaa_fq_free(dev, &priv->dpaa_fq_list);
2874 
2875 	qman_delete_cgr_safe(&priv->ingress_cgr);
2876 	qman_release_cgrid(priv->ingress_cgr.cgrid);
2877 	qman_delete_cgr_safe(&priv->cgr_data.cgr);
2878 	qman_release_cgrid(priv->cgr_data.cgr.cgrid);
2879 
2880 	dpaa_napi_del(net_dev);
2881 
2882 	dpaa_bps_free(priv);
2883 
2884 	free_netdev(net_dev);
2885 
2886 	return err;
2887 }
2888 
2889 static const struct platform_device_id dpaa_devtype[] = {
2890 	{
2891 		.name = "dpaa-ethernet",
2892 		.driver_data = 0,
2893 	}, {
2894 	}
2895 };
2896 MODULE_DEVICE_TABLE(platform, dpaa_devtype);
2897 
2898 static struct platform_driver dpaa_driver = {
2899 	.driver = {
2900 		.name = KBUILD_MODNAME,
2901 	},
2902 	.id_table = dpaa_devtype,
2903 	.probe = dpaa_eth_probe,
2904 	.remove = dpaa_remove
2905 };
2906 
2907 static int __init dpaa_load(void)
2908 {
2909 	int err;
2910 
2911 	pr_debug("FSL DPAA Ethernet driver\n");
2912 
2913 	/* initialize dpaa_eth mirror values */
2914 	dpaa_rx_extra_headroom = fman_get_rx_extra_headroom();
2915 	dpaa_max_frm = fman_get_max_frm();
2916 
2917 	err = platform_driver_register(&dpaa_driver);
2918 	if (err < 0)
2919 		pr_err("Error, platform_driver_register() = %d\n", err);
2920 
2921 	return err;
2922 }
2923 module_init(dpaa_load);
2924 
2925 static void __exit dpaa_unload(void)
2926 {
2927 	platform_driver_unregister(&dpaa_driver);
2928 
2929 	/* Only one channel is used and needs to be released after all
2930 	 * interfaces are removed
2931 	 */
2932 	dpaa_release_channel();
2933 }
2934 module_exit(dpaa_unload);
2935 
2936 MODULE_LICENSE("Dual BSD/GPL");
2937 MODULE_DESCRIPTION("FSL DPAA Ethernet driver");
2938