xref: /openbmc/linux/drivers/net/ethernet/freescale/dpaa/dpaa_eth.c (revision 498a1cf902c31c3af398082d65cf150b33b367e6)
1 // SPDX-License-Identifier: BSD-3-Clause OR GPL-2.0-or-later
2 /*
3  * Copyright 2008 - 2016 Freescale Semiconductor Inc.
4  * Copyright 2020 NXP
5  */
6 
7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
8 
9 #include <linux/init.h>
10 #include <linux/module.h>
11 #include <linux/of_platform.h>
12 #include <linux/of_mdio.h>
13 #include <linux/of_net.h>
14 #include <linux/io.h>
15 #include <linux/if_arp.h>
16 #include <linux/if_vlan.h>
17 #include <linux/icmp.h>
18 #include <linux/ip.h>
19 #include <linux/ipv6.h>
20 #include <linux/udp.h>
21 #include <linux/tcp.h>
22 #include <linux/net.h>
23 #include <linux/skbuff.h>
24 #include <linux/etherdevice.h>
25 #include <linux/if_ether.h>
26 #include <linux/highmem.h>
27 #include <linux/percpu.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/sort.h>
30 #include <linux/phy_fixed.h>
31 #include <linux/bpf.h>
32 #include <linux/bpf_trace.h>
33 #include <soc/fsl/bman.h>
34 #include <soc/fsl/qman.h>
35 #include "fman.h"
36 #include "fman_port.h"
37 #include "mac.h"
38 #include "dpaa_eth.h"
39 
40 /* CREATE_TRACE_POINTS only needs to be defined once. Other dpaa files
41  * using trace events only need to #include <trace/events/sched.h>
42  */
43 #define CREATE_TRACE_POINTS
44 #include "dpaa_eth_trace.h"
45 
46 static int debug = -1;
47 module_param(debug, int, 0444);
48 MODULE_PARM_DESC(debug, "Module/Driver verbosity level (0=none,...,16=all)");
49 
50 static u16 tx_timeout = 1000;
51 module_param(tx_timeout, ushort, 0444);
52 MODULE_PARM_DESC(tx_timeout, "The Tx timeout in ms");
53 
54 #define FM_FD_STAT_RX_ERRORS						\
55 	(FM_FD_ERR_DMA | FM_FD_ERR_PHYSICAL	| \
56 	 FM_FD_ERR_SIZE | FM_FD_ERR_CLS_DISCARD | \
57 	 FM_FD_ERR_EXTRACTION | FM_FD_ERR_NO_SCHEME	| \
58 	 FM_FD_ERR_PRS_TIMEOUT | FM_FD_ERR_PRS_ILL_INSTRUCT | \
59 	 FM_FD_ERR_PRS_HDR_ERR)
60 
61 #define FM_FD_STAT_TX_ERRORS \
62 	(FM_FD_ERR_UNSUPPORTED_FORMAT | \
63 	 FM_FD_ERR_LENGTH | FM_FD_ERR_DMA)
64 
65 #define DPAA_MSG_DEFAULT (NETIF_MSG_DRV | NETIF_MSG_PROBE | \
66 			  NETIF_MSG_LINK | NETIF_MSG_IFUP | \
67 			  NETIF_MSG_IFDOWN | NETIF_MSG_HW)
68 
69 #define DPAA_INGRESS_CS_THRESHOLD 0x10000000
70 /* Ingress congestion threshold on FMan ports
71  * The size in bytes of the ingress tail-drop threshold on FMan ports.
72  * Traffic piling up above this value will be rejected by QMan and discarded
73  * by FMan.
74  */
75 
76 /* Size in bytes of the FQ taildrop threshold */
77 #define DPAA_FQ_TD 0x200000
78 
79 #define DPAA_CS_THRESHOLD_1G 0x06000000
80 /* Egress congestion threshold on 1G ports, range 0x1000 .. 0x10000000
81  * The size in bytes of the egress Congestion State notification threshold on
82  * 1G ports. The 1G dTSECs can quite easily be flooded by cores doing Tx in a
83  * tight loop (e.g. by sending UDP datagrams at "while(1) speed"),
84  * and the larger the frame size, the more acute the problem.
85  * So we have to find a balance between these factors:
86  * - avoiding the device staying congested for a prolonged time (risking
87  *   the netdev watchdog to fire - see also the tx_timeout module param);
88  * - affecting performance of protocols such as TCP, which otherwise
89  *   behave well under the congestion notification mechanism;
90  * - preventing the Tx cores from tightly-looping (as if the congestion
91  *   threshold was too low to be effective);
92  * - running out of memory if the CS threshold is set too high.
93  */
94 
95 #define DPAA_CS_THRESHOLD_10G 0x10000000
96 /* The size in bytes of the egress Congestion State notification threshold on
97  * 10G ports, range 0x1000 .. 0x10000000
98  */
99 
100 /* Largest value that the FQD's OAL field can hold */
101 #define FSL_QMAN_MAX_OAL	127
102 
103 /* Default alignment for start of data in an Rx FD */
104 #ifdef CONFIG_DPAA_ERRATUM_A050385
105 /* aligning data start to 64 avoids DMA transaction splits, unless the buffer
106  * is crossing a 4k page boundary
107  */
108 #define DPAA_FD_DATA_ALIGNMENT  (fman_has_errata_a050385() ? 64 : 16)
109 /* aligning to 256 avoids DMA transaction splits caused by 4k page boundary
110  * crossings; also, all SG fragments except the last must have a size multiple
111  * of 256 to avoid DMA transaction splits
112  */
113 #define DPAA_A050385_ALIGN 256
114 #define DPAA_FD_RX_DATA_ALIGNMENT (fman_has_errata_a050385() ? \
115 				   DPAA_A050385_ALIGN : 16)
116 #else
117 #define DPAA_FD_DATA_ALIGNMENT  16
118 #define DPAA_FD_RX_DATA_ALIGNMENT DPAA_FD_DATA_ALIGNMENT
119 #endif
120 
121 /* The DPAA requires 256 bytes reserved and mapped for the SGT */
122 #define DPAA_SGT_SIZE 256
123 
124 /* Values for the L3R field of the FM Parse Results
125  */
126 /* L3 Type field: First IP Present IPv4 */
127 #define FM_L3_PARSE_RESULT_IPV4	0x8000
128 /* L3 Type field: First IP Present IPv6 */
129 #define FM_L3_PARSE_RESULT_IPV6	0x4000
130 /* Values for the L4R field of the FM Parse Results */
131 /* L4 Type field: UDP */
132 #define FM_L4_PARSE_RESULT_UDP	0x40
133 /* L4 Type field: TCP */
134 #define FM_L4_PARSE_RESULT_TCP	0x20
135 
136 /* FD status field indicating whether the FM Parser has attempted to validate
137  * the L4 csum of the frame.
138  * Note that having this bit set doesn't necessarily imply that the checksum
139  * is valid. One would have to check the parse results to find that out.
140  */
141 #define FM_FD_STAT_L4CV         0x00000004
142 
143 #define DPAA_SGT_MAX_ENTRIES 16 /* maximum number of entries in SG Table */
144 #define DPAA_BUFF_RELEASE_MAX 8 /* maximum number of buffers released at once */
145 
146 #define FSL_DPAA_BPID_INV		0xff
147 #define FSL_DPAA_ETH_MAX_BUF_COUNT	128
148 #define FSL_DPAA_ETH_REFILL_THRESHOLD	80
149 
150 #define DPAA_TX_PRIV_DATA_SIZE	16
151 #define DPAA_PARSE_RESULTS_SIZE sizeof(struct fman_prs_result)
152 #define DPAA_TIME_STAMP_SIZE 8
153 #define DPAA_HASH_RESULTS_SIZE 8
154 #define DPAA_HWA_SIZE (DPAA_PARSE_RESULTS_SIZE + DPAA_TIME_STAMP_SIZE \
155 		       + DPAA_HASH_RESULTS_SIZE)
156 #define DPAA_RX_PRIV_DATA_DEFAULT_SIZE (DPAA_TX_PRIV_DATA_SIZE + \
157 					XDP_PACKET_HEADROOM - DPAA_HWA_SIZE)
158 #ifdef CONFIG_DPAA_ERRATUM_A050385
159 #define DPAA_RX_PRIV_DATA_A050385_SIZE (DPAA_A050385_ALIGN - DPAA_HWA_SIZE)
160 #define DPAA_RX_PRIV_DATA_SIZE (fman_has_errata_a050385() ? \
161 				DPAA_RX_PRIV_DATA_A050385_SIZE : \
162 				DPAA_RX_PRIV_DATA_DEFAULT_SIZE)
163 #else
164 #define DPAA_RX_PRIV_DATA_SIZE DPAA_RX_PRIV_DATA_DEFAULT_SIZE
165 #endif
166 
167 #define DPAA_ETH_PCD_RXQ_NUM	128
168 
169 #define DPAA_ENQUEUE_RETRIES	100000
170 
171 enum port_type {RX, TX};
172 
173 struct fm_port_fqs {
174 	struct dpaa_fq *tx_defq;
175 	struct dpaa_fq *tx_errq;
176 	struct dpaa_fq *rx_defq;
177 	struct dpaa_fq *rx_errq;
178 	struct dpaa_fq *rx_pcdq;
179 };
180 
181 /* All the dpa bps in use at any moment */
182 static struct dpaa_bp *dpaa_bp_array[BM_MAX_NUM_OF_POOLS];
183 
184 #define DPAA_BP_RAW_SIZE 4096
185 
186 #ifdef CONFIG_DPAA_ERRATUM_A050385
187 #define dpaa_bp_size(raw_size) (SKB_WITH_OVERHEAD(raw_size) & \
188 				~(DPAA_A050385_ALIGN - 1))
189 #else
190 #define dpaa_bp_size(raw_size) SKB_WITH_OVERHEAD(raw_size)
191 #endif
192 
193 static int dpaa_max_frm;
194 
195 static int dpaa_rx_extra_headroom;
196 
197 #define dpaa_get_max_mtu()	\
198 	(dpaa_max_frm - (VLAN_ETH_HLEN + ETH_FCS_LEN))
199 
200 static void dpaa_eth_cgr_set_speed(struct mac_device *mac_dev, int speed);
201 
202 static int dpaa_netdev_init(struct net_device *net_dev,
203 			    const struct net_device_ops *dpaa_ops,
204 			    u16 tx_timeout)
205 {
206 	struct dpaa_priv *priv = netdev_priv(net_dev);
207 	struct device *dev = net_dev->dev.parent;
208 	struct mac_device *mac_dev = priv->mac_dev;
209 	struct dpaa_percpu_priv *percpu_priv;
210 	const u8 *mac_addr;
211 	int i, err;
212 
213 	/* Although we access another CPU's private data here
214 	 * we do it at initialization so it is safe
215 	 */
216 	for_each_possible_cpu(i) {
217 		percpu_priv = per_cpu_ptr(priv->percpu_priv, i);
218 		percpu_priv->net_dev = net_dev;
219 	}
220 
221 	net_dev->netdev_ops = dpaa_ops;
222 	mac_addr = mac_dev->addr;
223 
224 	net_dev->mem_start = (unsigned long)priv->mac_dev->res->start;
225 	net_dev->mem_end = (unsigned long)priv->mac_dev->res->end;
226 
227 	net_dev->min_mtu = ETH_MIN_MTU;
228 	net_dev->max_mtu = dpaa_get_max_mtu();
229 
230 	net_dev->hw_features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
231 				 NETIF_F_LLTX | NETIF_F_RXHASH);
232 
233 	net_dev->hw_features |= NETIF_F_SG | NETIF_F_HIGHDMA;
234 	/* The kernels enables GSO automatically, if we declare NETIF_F_SG.
235 	 * For conformity, we'll still declare GSO explicitly.
236 	 */
237 	net_dev->features |= NETIF_F_GSO;
238 	net_dev->features |= NETIF_F_RXCSUM;
239 
240 	net_dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
241 	/* we do not want shared skbs on TX */
242 	net_dev->priv_flags &= ~IFF_TX_SKB_SHARING;
243 
244 	net_dev->features |= net_dev->hw_features;
245 	net_dev->vlan_features = net_dev->features;
246 
247 	net_dev->xdp_features = NETDEV_XDP_ACT_BASIC |
248 				NETDEV_XDP_ACT_REDIRECT |
249 				NETDEV_XDP_ACT_NDO_XMIT;
250 
251 	if (is_valid_ether_addr(mac_addr)) {
252 		memcpy(net_dev->perm_addr, mac_addr, net_dev->addr_len);
253 		eth_hw_addr_set(net_dev, mac_addr);
254 	} else {
255 		eth_hw_addr_random(net_dev);
256 		err = mac_dev->change_addr(mac_dev->fman_mac,
257 			(const enet_addr_t *)net_dev->dev_addr);
258 		if (err) {
259 			dev_err(dev, "Failed to set random MAC address\n");
260 			return -EINVAL;
261 		}
262 		dev_info(dev, "Using random MAC address: %pM\n",
263 			 net_dev->dev_addr);
264 	}
265 
266 	net_dev->ethtool_ops = &dpaa_ethtool_ops;
267 
268 	net_dev->needed_headroom = priv->tx_headroom;
269 	net_dev->watchdog_timeo = msecs_to_jiffies(tx_timeout);
270 
271 	/* The rest of the config is filled in by the mac device already */
272 	mac_dev->phylink_config.dev = &net_dev->dev;
273 	mac_dev->phylink_config.type = PHYLINK_NETDEV;
274 	mac_dev->update_speed = dpaa_eth_cgr_set_speed;
275 	mac_dev->phylink = phylink_create(&mac_dev->phylink_config,
276 					  dev_fwnode(mac_dev->dev),
277 					  mac_dev->phy_if,
278 					  mac_dev->phylink_ops);
279 	if (IS_ERR(mac_dev->phylink)) {
280 		err = PTR_ERR(mac_dev->phylink);
281 		dev_err_probe(dev, err, "Could not create phylink\n");
282 		return err;
283 	}
284 
285 	/* start without the RUNNING flag, phylib controls it later */
286 	netif_carrier_off(net_dev);
287 
288 	err = register_netdev(net_dev);
289 	if (err < 0) {
290 		dev_err(dev, "register_netdev() = %d\n", err);
291 		phylink_destroy(mac_dev->phylink);
292 		return err;
293 	}
294 
295 	return 0;
296 }
297 
298 static int dpaa_stop(struct net_device *net_dev)
299 {
300 	struct mac_device *mac_dev;
301 	struct dpaa_priv *priv;
302 	int i, err, error;
303 
304 	priv = netdev_priv(net_dev);
305 	mac_dev = priv->mac_dev;
306 
307 	netif_tx_stop_all_queues(net_dev);
308 	/* Allow the Fman (Tx) port to process in-flight frames before we
309 	 * try switching it off.
310 	 */
311 	msleep(200);
312 
313 	phylink_stop(mac_dev->phylink);
314 	mac_dev->disable(mac_dev->fman_mac);
315 
316 	for (i = 0; i < ARRAY_SIZE(mac_dev->port); i++) {
317 		error = fman_port_disable(mac_dev->port[i]);
318 		if (error)
319 			err = error;
320 	}
321 
322 	phylink_disconnect_phy(mac_dev->phylink);
323 	net_dev->phydev = NULL;
324 
325 	msleep(200);
326 
327 	return err;
328 }
329 
330 static void dpaa_tx_timeout(struct net_device *net_dev, unsigned int txqueue)
331 {
332 	struct dpaa_percpu_priv *percpu_priv;
333 	const struct dpaa_priv	*priv;
334 
335 	priv = netdev_priv(net_dev);
336 	percpu_priv = this_cpu_ptr(priv->percpu_priv);
337 
338 	netif_crit(priv, timer, net_dev, "Transmit timeout latency: %u ms\n",
339 		   jiffies_to_msecs(jiffies - dev_trans_start(net_dev)));
340 
341 	percpu_priv->stats.tx_errors++;
342 }
343 
344 /* Calculates the statistics for the given device by adding the statistics
345  * collected by each CPU.
346  */
347 static void dpaa_get_stats64(struct net_device *net_dev,
348 			     struct rtnl_link_stats64 *s)
349 {
350 	int numstats = sizeof(struct rtnl_link_stats64) / sizeof(u64);
351 	struct dpaa_priv *priv = netdev_priv(net_dev);
352 	struct dpaa_percpu_priv *percpu_priv;
353 	u64 *netstats = (u64 *)s;
354 	u64 *cpustats;
355 	int i, j;
356 
357 	for_each_possible_cpu(i) {
358 		percpu_priv = per_cpu_ptr(priv->percpu_priv, i);
359 
360 		cpustats = (u64 *)&percpu_priv->stats;
361 
362 		/* add stats from all CPUs */
363 		for (j = 0; j < numstats; j++)
364 			netstats[j] += cpustats[j];
365 	}
366 }
367 
368 static int dpaa_setup_tc(struct net_device *net_dev, enum tc_setup_type type,
369 			 void *type_data)
370 {
371 	struct dpaa_priv *priv = netdev_priv(net_dev);
372 	struct tc_mqprio_qopt *mqprio = type_data;
373 	u8 num_tc;
374 	int i;
375 
376 	if (type != TC_SETUP_QDISC_MQPRIO)
377 		return -EOPNOTSUPP;
378 
379 	mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
380 	num_tc = mqprio->num_tc;
381 
382 	if (num_tc == priv->num_tc)
383 		return 0;
384 
385 	if (!num_tc) {
386 		netdev_reset_tc(net_dev);
387 		goto out;
388 	}
389 
390 	if (num_tc > DPAA_TC_NUM) {
391 		netdev_err(net_dev, "Too many traffic classes: max %d supported.\n",
392 			   DPAA_TC_NUM);
393 		return -EINVAL;
394 	}
395 
396 	netdev_set_num_tc(net_dev, num_tc);
397 
398 	for (i = 0; i < num_tc; i++)
399 		netdev_set_tc_queue(net_dev, i, DPAA_TC_TXQ_NUM,
400 				    i * DPAA_TC_TXQ_NUM);
401 
402 out:
403 	priv->num_tc = num_tc ? : 1;
404 	netif_set_real_num_tx_queues(net_dev, priv->num_tc * DPAA_TC_TXQ_NUM);
405 	return 0;
406 }
407 
408 static struct mac_device *dpaa_mac_dev_get(struct platform_device *pdev)
409 {
410 	struct dpaa_eth_data *eth_data;
411 	struct device *dpaa_dev;
412 	struct mac_device *mac_dev;
413 
414 	dpaa_dev = &pdev->dev;
415 	eth_data = dpaa_dev->platform_data;
416 	if (!eth_data) {
417 		dev_err(dpaa_dev, "eth_data missing\n");
418 		return ERR_PTR(-ENODEV);
419 	}
420 	mac_dev = eth_data->mac_dev;
421 	if (!mac_dev) {
422 		dev_err(dpaa_dev, "mac_dev missing\n");
423 		return ERR_PTR(-EINVAL);
424 	}
425 
426 	return mac_dev;
427 }
428 
429 static int dpaa_set_mac_address(struct net_device *net_dev, void *addr)
430 {
431 	const struct dpaa_priv *priv;
432 	struct mac_device *mac_dev;
433 	struct sockaddr old_addr;
434 	int err;
435 
436 	priv = netdev_priv(net_dev);
437 
438 	memcpy(old_addr.sa_data, net_dev->dev_addr,  ETH_ALEN);
439 
440 	err = eth_mac_addr(net_dev, addr);
441 	if (err < 0) {
442 		netif_err(priv, drv, net_dev, "eth_mac_addr() = %d\n", err);
443 		return err;
444 	}
445 
446 	mac_dev = priv->mac_dev;
447 
448 	err = mac_dev->change_addr(mac_dev->fman_mac,
449 				   (const enet_addr_t *)net_dev->dev_addr);
450 	if (err < 0) {
451 		netif_err(priv, drv, net_dev, "mac_dev->change_addr() = %d\n",
452 			  err);
453 		/* reverting to previous address */
454 		eth_mac_addr(net_dev, &old_addr);
455 
456 		return err;
457 	}
458 
459 	return 0;
460 }
461 
462 static void dpaa_set_rx_mode(struct net_device *net_dev)
463 {
464 	const struct dpaa_priv	*priv;
465 	int err;
466 
467 	priv = netdev_priv(net_dev);
468 
469 	if (!!(net_dev->flags & IFF_PROMISC) != priv->mac_dev->promisc) {
470 		priv->mac_dev->promisc = !priv->mac_dev->promisc;
471 		err = priv->mac_dev->set_promisc(priv->mac_dev->fman_mac,
472 						 priv->mac_dev->promisc);
473 		if (err < 0)
474 			netif_err(priv, drv, net_dev,
475 				  "mac_dev->set_promisc() = %d\n",
476 				  err);
477 	}
478 
479 	if (!!(net_dev->flags & IFF_ALLMULTI) != priv->mac_dev->allmulti) {
480 		priv->mac_dev->allmulti = !priv->mac_dev->allmulti;
481 		err = priv->mac_dev->set_allmulti(priv->mac_dev->fman_mac,
482 						  priv->mac_dev->allmulti);
483 		if (err < 0)
484 			netif_err(priv, drv, net_dev,
485 				  "mac_dev->set_allmulti() = %d\n",
486 				  err);
487 	}
488 
489 	err = priv->mac_dev->set_multi(net_dev, priv->mac_dev);
490 	if (err < 0)
491 		netif_err(priv, drv, net_dev, "mac_dev->set_multi() = %d\n",
492 			  err);
493 }
494 
495 static struct dpaa_bp *dpaa_bpid2pool(int bpid)
496 {
497 	if (WARN_ON(bpid < 0 || bpid >= BM_MAX_NUM_OF_POOLS))
498 		return NULL;
499 
500 	return dpaa_bp_array[bpid];
501 }
502 
503 /* checks if this bpool is already allocated */
504 static bool dpaa_bpid2pool_use(int bpid)
505 {
506 	if (dpaa_bpid2pool(bpid)) {
507 		refcount_inc(&dpaa_bp_array[bpid]->refs);
508 		return true;
509 	}
510 
511 	return false;
512 }
513 
514 /* called only once per bpid by dpaa_bp_alloc_pool() */
515 static void dpaa_bpid2pool_map(int bpid, struct dpaa_bp *dpaa_bp)
516 {
517 	dpaa_bp_array[bpid] = dpaa_bp;
518 	refcount_set(&dpaa_bp->refs, 1);
519 }
520 
521 static int dpaa_bp_alloc_pool(struct dpaa_bp *dpaa_bp)
522 {
523 	int err;
524 
525 	if (dpaa_bp->size == 0 || dpaa_bp->config_count == 0) {
526 		pr_err("%s: Buffer pool is not properly initialized! Missing size or initial number of buffers\n",
527 		       __func__);
528 		return -EINVAL;
529 	}
530 
531 	/* If the pool is already specified, we only create one per bpid */
532 	if (dpaa_bp->bpid != FSL_DPAA_BPID_INV &&
533 	    dpaa_bpid2pool_use(dpaa_bp->bpid))
534 		return 0;
535 
536 	if (dpaa_bp->bpid == FSL_DPAA_BPID_INV) {
537 		dpaa_bp->pool = bman_new_pool();
538 		if (!dpaa_bp->pool) {
539 			pr_err("%s: bman_new_pool() failed\n",
540 			       __func__);
541 			return -ENODEV;
542 		}
543 
544 		dpaa_bp->bpid = (u8)bman_get_bpid(dpaa_bp->pool);
545 	}
546 
547 	if (dpaa_bp->seed_cb) {
548 		err = dpaa_bp->seed_cb(dpaa_bp);
549 		if (err)
550 			goto pool_seed_failed;
551 	}
552 
553 	dpaa_bpid2pool_map(dpaa_bp->bpid, dpaa_bp);
554 
555 	return 0;
556 
557 pool_seed_failed:
558 	pr_err("%s: pool seeding failed\n", __func__);
559 	bman_free_pool(dpaa_bp->pool);
560 
561 	return err;
562 }
563 
564 /* remove and free all the buffers from the given buffer pool */
565 static void dpaa_bp_drain(struct dpaa_bp *bp)
566 {
567 	u8 num = 8;
568 	int ret;
569 
570 	do {
571 		struct bm_buffer bmb[8];
572 		int i;
573 
574 		ret = bman_acquire(bp->pool, bmb, num);
575 		if (ret < 0) {
576 			if (num == 8) {
577 				/* we have less than 8 buffers left;
578 				 * drain them one by one
579 				 */
580 				num = 1;
581 				ret = 1;
582 				continue;
583 			} else {
584 				/* Pool is fully drained */
585 				break;
586 			}
587 		}
588 
589 		if (bp->free_buf_cb)
590 			for (i = 0; i < num; i++)
591 				bp->free_buf_cb(bp, &bmb[i]);
592 	} while (ret > 0);
593 }
594 
595 static void dpaa_bp_free(struct dpaa_bp *dpaa_bp)
596 {
597 	struct dpaa_bp *bp = dpaa_bpid2pool(dpaa_bp->bpid);
598 
599 	/* the mapping between bpid and dpaa_bp is done very late in the
600 	 * allocation procedure; if something failed before the mapping, the bp
601 	 * was not configured, therefore we don't need the below instructions
602 	 */
603 	if (!bp)
604 		return;
605 
606 	if (!refcount_dec_and_test(&bp->refs))
607 		return;
608 
609 	if (bp->free_buf_cb)
610 		dpaa_bp_drain(bp);
611 
612 	dpaa_bp_array[bp->bpid] = NULL;
613 	bman_free_pool(bp->pool);
614 }
615 
616 static void dpaa_bps_free(struct dpaa_priv *priv)
617 {
618 	dpaa_bp_free(priv->dpaa_bp);
619 }
620 
621 /* Use multiple WQs for FQ assignment:
622  *	- Tx Confirmation queues go to WQ1.
623  *	- Rx Error and Tx Error queues go to WQ5 (giving them a better chance
624  *	  to be scheduled, in case there are many more FQs in WQ6).
625  *	- Rx Default goes to WQ6.
626  *	- Tx queues go to different WQs depending on their priority. Equal
627  *	  chunks of NR_CPUS queues go to WQ6 (lowest priority), WQ2, WQ1 and
628  *	  WQ0 (highest priority).
629  * This ensures that Tx-confirmed buffers are timely released. In particular,
630  * it avoids congestion on the Tx Confirm FQs, which can pile up PFDRs if they
631  * are greatly outnumbered by other FQs in the system, while
632  * dequeue scheduling is round-robin.
633  */
634 static inline void dpaa_assign_wq(struct dpaa_fq *fq, int idx)
635 {
636 	switch (fq->fq_type) {
637 	case FQ_TYPE_TX_CONFIRM:
638 	case FQ_TYPE_TX_CONF_MQ:
639 		fq->wq = 1;
640 		break;
641 	case FQ_TYPE_RX_ERROR:
642 	case FQ_TYPE_TX_ERROR:
643 		fq->wq = 5;
644 		break;
645 	case FQ_TYPE_RX_DEFAULT:
646 	case FQ_TYPE_RX_PCD:
647 		fq->wq = 6;
648 		break;
649 	case FQ_TYPE_TX:
650 		switch (idx / DPAA_TC_TXQ_NUM) {
651 		case 0:
652 			/* Low priority (best effort) */
653 			fq->wq = 6;
654 			break;
655 		case 1:
656 			/* Medium priority */
657 			fq->wq = 2;
658 			break;
659 		case 2:
660 			/* High priority */
661 			fq->wq = 1;
662 			break;
663 		case 3:
664 			/* Very high priority */
665 			fq->wq = 0;
666 			break;
667 		default:
668 			WARN(1, "Too many TX FQs: more than %d!\n",
669 			     DPAA_ETH_TXQ_NUM);
670 		}
671 		break;
672 	default:
673 		WARN(1, "Invalid FQ type %d for FQID %d!\n",
674 		     fq->fq_type, fq->fqid);
675 	}
676 }
677 
678 static struct dpaa_fq *dpaa_fq_alloc(struct device *dev,
679 				     u32 start, u32 count,
680 				     struct list_head *list,
681 				     enum dpaa_fq_type fq_type)
682 {
683 	struct dpaa_fq *dpaa_fq;
684 	int i;
685 
686 	dpaa_fq = devm_kcalloc(dev, count, sizeof(*dpaa_fq),
687 			       GFP_KERNEL);
688 	if (!dpaa_fq)
689 		return NULL;
690 
691 	for (i = 0; i < count; i++) {
692 		dpaa_fq[i].fq_type = fq_type;
693 		dpaa_fq[i].fqid = start ? start + i : 0;
694 		list_add_tail(&dpaa_fq[i].list, list);
695 	}
696 
697 	for (i = 0; i < count; i++)
698 		dpaa_assign_wq(dpaa_fq + i, i);
699 
700 	return dpaa_fq;
701 }
702 
703 static int dpaa_alloc_all_fqs(struct device *dev, struct list_head *list,
704 			      struct fm_port_fqs *port_fqs)
705 {
706 	struct dpaa_fq *dpaa_fq;
707 	u32 fq_base, fq_base_aligned, i;
708 
709 	dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_RX_ERROR);
710 	if (!dpaa_fq)
711 		goto fq_alloc_failed;
712 
713 	port_fqs->rx_errq = &dpaa_fq[0];
714 
715 	dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_RX_DEFAULT);
716 	if (!dpaa_fq)
717 		goto fq_alloc_failed;
718 
719 	port_fqs->rx_defq = &dpaa_fq[0];
720 
721 	/* the PCD FQIDs range needs to be aligned for correct operation */
722 	if (qman_alloc_fqid_range(&fq_base, 2 * DPAA_ETH_PCD_RXQ_NUM))
723 		goto fq_alloc_failed;
724 
725 	fq_base_aligned = ALIGN(fq_base, DPAA_ETH_PCD_RXQ_NUM);
726 
727 	for (i = fq_base; i < fq_base_aligned; i++)
728 		qman_release_fqid(i);
729 
730 	for (i = fq_base_aligned + DPAA_ETH_PCD_RXQ_NUM;
731 	     i < (fq_base + 2 * DPAA_ETH_PCD_RXQ_NUM); i++)
732 		qman_release_fqid(i);
733 
734 	dpaa_fq = dpaa_fq_alloc(dev, fq_base_aligned, DPAA_ETH_PCD_RXQ_NUM,
735 				list, FQ_TYPE_RX_PCD);
736 	if (!dpaa_fq)
737 		goto fq_alloc_failed;
738 
739 	port_fqs->rx_pcdq = &dpaa_fq[0];
740 
741 	if (!dpaa_fq_alloc(dev, 0, DPAA_ETH_TXQ_NUM, list, FQ_TYPE_TX_CONF_MQ))
742 		goto fq_alloc_failed;
743 
744 	dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_TX_ERROR);
745 	if (!dpaa_fq)
746 		goto fq_alloc_failed;
747 
748 	port_fqs->tx_errq = &dpaa_fq[0];
749 
750 	dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_TX_CONFIRM);
751 	if (!dpaa_fq)
752 		goto fq_alloc_failed;
753 
754 	port_fqs->tx_defq = &dpaa_fq[0];
755 
756 	if (!dpaa_fq_alloc(dev, 0, DPAA_ETH_TXQ_NUM, list, FQ_TYPE_TX))
757 		goto fq_alloc_failed;
758 
759 	return 0;
760 
761 fq_alloc_failed:
762 	dev_err(dev, "dpaa_fq_alloc() failed\n");
763 	return -ENOMEM;
764 }
765 
766 static u32 rx_pool_channel;
767 static DEFINE_SPINLOCK(rx_pool_channel_init);
768 
769 static int dpaa_get_channel(void)
770 {
771 	spin_lock(&rx_pool_channel_init);
772 	if (!rx_pool_channel) {
773 		u32 pool;
774 		int ret;
775 
776 		ret = qman_alloc_pool(&pool);
777 
778 		if (!ret)
779 			rx_pool_channel = pool;
780 	}
781 	spin_unlock(&rx_pool_channel_init);
782 	if (!rx_pool_channel)
783 		return -ENOMEM;
784 	return rx_pool_channel;
785 }
786 
787 static void dpaa_release_channel(void)
788 {
789 	qman_release_pool(rx_pool_channel);
790 }
791 
792 static void dpaa_eth_add_channel(u16 channel, struct device *dev)
793 {
794 	u32 pool = QM_SDQCR_CHANNELS_POOL_CONV(channel);
795 	const cpumask_t *cpus = qman_affine_cpus();
796 	struct qman_portal *portal;
797 	int cpu;
798 
799 	for_each_cpu_and(cpu, cpus, cpu_online_mask) {
800 		portal = qman_get_affine_portal(cpu);
801 		qman_p_static_dequeue_add(portal, pool);
802 		qman_start_using_portal(portal, dev);
803 	}
804 }
805 
806 /* Congestion group state change notification callback.
807  * Stops the device's egress queues while they are congested and
808  * wakes them upon exiting congested state.
809  * Also updates some CGR-related stats.
810  */
811 static void dpaa_eth_cgscn(struct qman_portal *qm, struct qman_cgr *cgr,
812 			   int congested)
813 {
814 	struct dpaa_priv *priv = (struct dpaa_priv *)container_of(cgr,
815 		struct dpaa_priv, cgr_data.cgr);
816 
817 	if (congested) {
818 		priv->cgr_data.congestion_start_jiffies = jiffies;
819 		netif_tx_stop_all_queues(priv->net_dev);
820 		priv->cgr_data.cgr_congested_count++;
821 	} else {
822 		priv->cgr_data.congested_jiffies +=
823 			(jiffies - priv->cgr_data.congestion_start_jiffies);
824 		netif_tx_wake_all_queues(priv->net_dev);
825 	}
826 }
827 
828 static int dpaa_eth_cgr_init(struct dpaa_priv *priv)
829 {
830 	struct qm_mcc_initcgr initcgr;
831 	u32 cs_th;
832 	int err;
833 
834 	err = qman_alloc_cgrid(&priv->cgr_data.cgr.cgrid);
835 	if (err < 0) {
836 		if (netif_msg_drv(priv))
837 			pr_err("%s: Error %d allocating CGR ID\n",
838 			       __func__, err);
839 		goto out_error;
840 	}
841 	priv->cgr_data.cgr.cb = dpaa_eth_cgscn;
842 
843 	/* Enable Congestion State Change Notifications and CS taildrop */
844 	memset(&initcgr, 0, sizeof(initcgr));
845 	initcgr.we_mask = cpu_to_be16(QM_CGR_WE_CSCN_EN | QM_CGR_WE_CS_THRES);
846 	initcgr.cgr.cscn_en = QM_CGR_EN;
847 
848 	/* Set different thresholds based on the configured MAC speed.
849 	 * This may turn suboptimal if the MAC is reconfigured at another
850 	 * speed, so MACs must call dpaa_eth_cgr_set_speed in their link_up
851 	 * callback.
852 	 */
853 	if (priv->mac_dev->phylink_config.mac_capabilities & MAC_10000FD)
854 		cs_th = DPAA_CS_THRESHOLD_10G;
855 	else
856 		cs_th = DPAA_CS_THRESHOLD_1G;
857 	qm_cgr_cs_thres_set64(&initcgr.cgr.cs_thres, cs_th, 1);
858 
859 	initcgr.we_mask |= cpu_to_be16(QM_CGR_WE_CSTD_EN);
860 	initcgr.cgr.cstd_en = QM_CGR_EN;
861 
862 	err = qman_create_cgr(&priv->cgr_data.cgr, QMAN_CGR_FLAG_USE_INIT,
863 			      &initcgr);
864 	if (err < 0) {
865 		if (netif_msg_drv(priv))
866 			pr_err("%s: Error %d creating CGR with ID %d\n",
867 			       __func__, err, priv->cgr_data.cgr.cgrid);
868 		qman_release_cgrid(priv->cgr_data.cgr.cgrid);
869 		goto out_error;
870 	}
871 	if (netif_msg_drv(priv))
872 		pr_debug("Created CGR %d for netdev with hwaddr %pM on QMan channel %d\n",
873 			 priv->cgr_data.cgr.cgrid, priv->mac_dev->addr,
874 			 priv->cgr_data.cgr.chan);
875 
876 out_error:
877 	return err;
878 }
879 
880 static void dpaa_eth_cgr_set_speed(struct mac_device *mac_dev, int speed)
881 {
882 	struct net_device *net_dev = to_net_dev(mac_dev->phylink_config.dev);
883 	struct dpaa_priv *priv = netdev_priv(net_dev);
884 	struct qm_mcc_initcgr opts = { };
885 	u32 cs_th;
886 	int err;
887 
888 	opts.we_mask = cpu_to_be16(QM_CGR_WE_CS_THRES);
889 	switch (speed) {
890 	case SPEED_10000:
891 		cs_th = DPAA_CS_THRESHOLD_10G;
892 		break;
893 	case SPEED_1000:
894 	default:
895 		cs_th = DPAA_CS_THRESHOLD_1G;
896 		break;
897 	}
898 	qm_cgr_cs_thres_set64(&opts.cgr.cs_thres, cs_th, 1);
899 
900 	err = qman_update_cgr_safe(&priv->cgr_data.cgr, &opts);
901 	if (err)
902 		netdev_err(net_dev, "could not update speed: %d\n", err);
903 }
904 
905 static inline void dpaa_setup_ingress(const struct dpaa_priv *priv,
906 				      struct dpaa_fq *fq,
907 				      const struct qman_fq *template)
908 {
909 	fq->fq_base = *template;
910 	fq->net_dev = priv->net_dev;
911 
912 	fq->flags = QMAN_FQ_FLAG_NO_ENQUEUE;
913 	fq->channel = priv->channel;
914 }
915 
916 static inline void dpaa_setup_egress(const struct dpaa_priv *priv,
917 				     struct dpaa_fq *fq,
918 				     struct fman_port *port,
919 				     const struct qman_fq *template)
920 {
921 	fq->fq_base = *template;
922 	fq->net_dev = priv->net_dev;
923 
924 	if (port) {
925 		fq->flags = QMAN_FQ_FLAG_TO_DCPORTAL;
926 		fq->channel = (u16)fman_port_get_qman_channel_id(port);
927 	} else {
928 		fq->flags = QMAN_FQ_FLAG_NO_MODIFY;
929 	}
930 }
931 
932 static void dpaa_fq_setup(struct dpaa_priv *priv,
933 			  const struct dpaa_fq_cbs *fq_cbs,
934 			  struct fman_port *tx_port)
935 {
936 	int egress_cnt = 0, conf_cnt = 0, num_portals = 0, portal_cnt = 0, cpu;
937 	const cpumask_t *affine_cpus = qman_affine_cpus();
938 	u16 channels[NR_CPUS];
939 	struct dpaa_fq *fq;
940 
941 	for_each_cpu_and(cpu, affine_cpus, cpu_online_mask)
942 		channels[num_portals++] = qman_affine_channel(cpu);
943 
944 	if (num_portals == 0)
945 		dev_err(priv->net_dev->dev.parent,
946 			"No Qman software (affine) channels found\n");
947 
948 	/* Initialize each FQ in the list */
949 	list_for_each_entry(fq, &priv->dpaa_fq_list, list) {
950 		switch (fq->fq_type) {
951 		case FQ_TYPE_RX_DEFAULT:
952 			dpaa_setup_ingress(priv, fq, &fq_cbs->rx_defq);
953 			break;
954 		case FQ_TYPE_RX_ERROR:
955 			dpaa_setup_ingress(priv, fq, &fq_cbs->rx_errq);
956 			break;
957 		case FQ_TYPE_RX_PCD:
958 			if (!num_portals)
959 				continue;
960 			dpaa_setup_ingress(priv, fq, &fq_cbs->rx_defq);
961 			fq->channel = channels[portal_cnt++ % num_portals];
962 			break;
963 		case FQ_TYPE_TX:
964 			dpaa_setup_egress(priv, fq, tx_port,
965 					  &fq_cbs->egress_ern);
966 			/* If we have more Tx queues than the number of cores,
967 			 * just ignore the extra ones.
968 			 */
969 			if (egress_cnt < DPAA_ETH_TXQ_NUM)
970 				priv->egress_fqs[egress_cnt++] = &fq->fq_base;
971 			break;
972 		case FQ_TYPE_TX_CONF_MQ:
973 			priv->conf_fqs[conf_cnt++] = &fq->fq_base;
974 			fallthrough;
975 		case FQ_TYPE_TX_CONFIRM:
976 			dpaa_setup_ingress(priv, fq, &fq_cbs->tx_defq);
977 			break;
978 		case FQ_TYPE_TX_ERROR:
979 			dpaa_setup_ingress(priv, fq, &fq_cbs->tx_errq);
980 			break;
981 		default:
982 			dev_warn(priv->net_dev->dev.parent,
983 				 "Unknown FQ type detected!\n");
984 			break;
985 		}
986 	}
987 
988 	 /* Make sure all CPUs receive a corresponding Tx queue. */
989 	while (egress_cnt < DPAA_ETH_TXQ_NUM) {
990 		list_for_each_entry(fq, &priv->dpaa_fq_list, list) {
991 			if (fq->fq_type != FQ_TYPE_TX)
992 				continue;
993 			priv->egress_fqs[egress_cnt++] = &fq->fq_base;
994 			if (egress_cnt == DPAA_ETH_TXQ_NUM)
995 				break;
996 		}
997 	}
998 }
999 
1000 static inline int dpaa_tx_fq_to_id(const struct dpaa_priv *priv,
1001 				   struct qman_fq *tx_fq)
1002 {
1003 	int i;
1004 
1005 	for (i = 0; i < DPAA_ETH_TXQ_NUM; i++)
1006 		if (priv->egress_fqs[i] == tx_fq)
1007 			return i;
1008 
1009 	return -EINVAL;
1010 }
1011 
1012 static int dpaa_fq_init(struct dpaa_fq *dpaa_fq, bool td_enable)
1013 {
1014 	const struct dpaa_priv	*priv;
1015 	struct qman_fq *confq = NULL;
1016 	struct qm_mcc_initfq initfq;
1017 	struct device *dev;
1018 	struct qman_fq *fq;
1019 	int queue_id;
1020 	int err;
1021 
1022 	priv = netdev_priv(dpaa_fq->net_dev);
1023 	dev = dpaa_fq->net_dev->dev.parent;
1024 
1025 	if (dpaa_fq->fqid == 0)
1026 		dpaa_fq->flags |= QMAN_FQ_FLAG_DYNAMIC_FQID;
1027 
1028 	dpaa_fq->init = !(dpaa_fq->flags & QMAN_FQ_FLAG_NO_MODIFY);
1029 
1030 	err = qman_create_fq(dpaa_fq->fqid, dpaa_fq->flags, &dpaa_fq->fq_base);
1031 	if (err) {
1032 		dev_err(dev, "qman_create_fq() failed\n");
1033 		return err;
1034 	}
1035 	fq = &dpaa_fq->fq_base;
1036 
1037 	if (dpaa_fq->init) {
1038 		memset(&initfq, 0, sizeof(initfq));
1039 
1040 		initfq.we_mask = cpu_to_be16(QM_INITFQ_WE_FQCTRL);
1041 		/* Note: we may get to keep an empty FQ in cache */
1042 		initfq.fqd.fq_ctrl = cpu_to_be16(QM_FQCTRL_PREFERINCACHE);
1043 
1044 		/* Try to reduce the number of portal interrupts for
1045 		 * Tx Confirmation FQs.
1046 		 */
1047 		if (dpaa_fq->fq_type == FQ_TYPE_TX_CONFIRM)
1048 			initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_AVOIDBLOCK);
1049 
1050 		/* FQ placement */
1051 		initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_DESTWQ);
1052 
1053 		qm_fqd_set_destwq(&initfq.fqd, dpaa_fq->channel, dpaa_fq->wq);
1054 
1055 		/* Put all egress queues in a congestion group of their own.
1056 		 * Sensu stricto, the Tx confirmation queues are Rx FQs,
1057 		 * rather than Tx - but they nonetheless account for the
1058 		 * memory footprint on behalf of egress traffic. We therefore
1059 		 * place them in the netdev's CGR, along with the Tx FQs.
1060 		 */
1061 		if (dpaa_fq->fq_type == FQ_TYPE_TX ||
1062 		    dpaa_fq->fq_type == FQ_TYPE_TX_CONFIRM ||
1063 		    dpaa_fq->fq_type == FQ_TYPE_TX_CONF_MQ) {
1064 			initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_CGID);
1065 			initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_CGE);
1066 			initfq.fqd.cgid = (u8)priv->cgr_data.cgr.cgrid;
1067 			/* Set a fixed overhead accounting, in an attempt to
1068 			 * reduce the impact of fixed-size skb shells and the
1069 			 * driver's needed headroom on system memory. This is
1070 			 * especially the case when the egress traffic is
1071 			 * composed of small datagrams.
1072 			 * Unfortunately, QMan's OAL value is capped to an
1073 			 * insufficient value, but even that is better than
1074 			 * no overhead accounting at all.
1075 			 */
1076 			initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_OAC);
1077 			qm_fqd_set_oac(&initfq.fqd, QM_OAC_CG);
1078 			qm_fqd_set_oal(&initfq.fqd,
1079 				       min(sizeof(struct sk_buff) +
1080 				       priv->tx_headroom,
1081 				       (size_t)FSL_QMAN_MAX_OAL));
1082 		}
1083 
1084 		if (td_enable) {
1085 			initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_TDTHRESH);
1086 			qm_fqd_set_taildrop(&initfq.fqd, DPAA_FQ_TD, 1);
1087 			initfq.fqd.fq_ctrl = cpu_to_be16(QM_FQCTRL_TDE);
1088 		}
1089 
1090 		if (dpaa_fq->fq_type == FQ_TYPE_TX) {
1091 			queue_id = dpaa_tx_fq_to_id(priv, &dpaa_fq->fq_base);
1092 			if (queue_id >= 0)
1093 				confq = priv->conf_fqs[queue_id];
1094 			if (confq) {
1095 				initfq.we_mask |=
1096 					cpu_to_be16(QM_INITFQ_WE_CONTEXTA);
1097 			/* ContextA: OVOM=1(use contextA2 bits instead of ICAD)
1098 			 *	     A2V=1 (contextA A2 field is valid)
1099 			 *	     A0V=1 (contextA A0 field is valid)
1100 			 *	     B0V=1 (contextB field is valid)
1101 			 * ContextA A2: EBD=1 (deallocate buffers inside FMan)
1102 			 * ContextB B0(ASPID): 0 (absolute Virtual Storage ID)
1103 			 */
1104 				qm_fqd_context_a_set64(&initfq.fqd,
1105 						       0x1e00000080000000ULL);
1106 			}
1107 		}
1108 
1109 		/* Put all the ingress queues in our "ingress CGR". */
1110 		if (priv->use_ingress_cgr &&
1111 		    (dpaa_fq->fq_type == FQ_TYPE_RX_DEFAULT ||
1112 		     dpaa_fq->fq_type == FQ_TYPE_RX_ERROR ||
1113 		     dpaa_fq->fq_type == FQ_TYPE_RX_PCD)) {
1114 			initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_CGID);
1115 			initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_CGE);
1116 			initfq.fqd.cgid = (u8)priv->ingress_cgr.cgrid;
1117 			/* Set a fixed overhead accounting, just like for the
1118 			 * egress CGR.
1119 			 */
1120 			initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_OAC);
1121 			qm_fqd_set_oac(&initfq.fqd, QM_OAC_CG);
1122 			qm_fqd_set_oal(&initfq.fqd,
1123 				       min(sizeof(struct sk_buff) +
1124 				       priv->tx_headroom,
1125 				       (size_t)FSL_QMAN_MAX_OAL));
1126 		}
1127 
1128 		/* Initialization common to all ingress queues */
1129 		if (dpaa_fq->flags & QMAN_FQ_FLAG_NO_ENQUEUE) {
1130 			initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_CONTEXTA);
1131 			initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_HOLDACTIVE |
1132 						QM_FQCTRL_CTXASTASHING);
1133 			initfq.fqd.context_a.stashing.exclusive =
1134 				QM_STASHING_EXCL_DATA | QM_STASHING_EXCL_CTX |
1135 				QM_STASHING_EXCL_ANNOTATION;
1136 			qm_fqd_set_stashing(&initfq.fqd, 1, 2,
1137 					    DIV_ROUND_UP(sizeof(struct qman_fq),
1138 							 64));
1139 		}
1140 
1141 		err = qman_init_fq(fq, QMAN_INITFQ_FLAG_SCHED, &initfq);
1142 		if (err < 0) {
1143 			dev_err(dev, "qman_init_fq(%u) = %d\n",
1144 				qman_fq_fqid(fq), err);
1145 			qman_destroy_fq(fq);
1146 			return err;
1147 		}
1148 	}
1149 
1150 	dpaa_fq->fqid = qman_fq_fqid(fq);
1151 
1152 	if (dpaa_fq->fq_type == FQ_TYPE_RX_DEFAULT ||
1153 	    dpaa_fq->fq_type == FQ_TYPE_RX_PCD) {
1154 		err = xdp_rxq_info_reg(&dpaa_fq->xdp_rxq, dpaa_fq->net_dev,
1155 				       dpaa_fq->fqid, 0);
1156 		if (err) {
1157 			dev_err(dev, "xdp_rxq_info_reg() = %d\n", err);
1158 			return err;
1159 		}
1160 
1161 		err = xdp_rxq_info_reg_mem_model(&dpaa_fq->xdp_rxq,
1162 						 MEM_TYPE_PAGE_ORDER0, NULL);
1163 		if (err) {
1164 			dev_err(dev, "xdp_rxq_info_reg_mem_model() = %d\n",
1165 				err);
1166 			xdp_rxq_info_unreg(&dpaa_fq->xdp_rxq);
1167 			return err;
1168 		}
1169 	}
1170 
1171 	return 0;
1172 }
1173 
1174 static int dpaa_fq_free_entry(struct device *dev, struct qman_fq *fq)
1175 {
1176 	const struct dpaa_priv  *priv;
1177 	struct dpaa_fq *dpaa_fq;
1178 	int err, error;
1179 
1180 	err = 0;
1181 
1182 	dpaa_fq = container_of(fq, struct dpaa_fq, fq_base);
1183 	priv = netdev_priv(dpaa_fq->net_dev);
1184 
1185 	if (dpaa_fq->init) {
1186 		err = qman_retire_fq(fq, NULL);
1187 		if (err < 0 && netif_msg_drv(priv))
1188 			dev_err(dev, "qman_retire_fq(%u) = %d\n",
1189 				qman_fq_fqid(fq), err);
1190 
1191 		error = qman_oos_fq(fq);
1192 		if (error < 0 && netif_msg_drv(priv)) {
1193 			dev_err(dev, "qman_oos_fq(%u) = %d\n",
1194 				qman_fq_fqid(fq), error);
1195 			if (err >= 0)
1196 				err = error;
1197 		}
1198 	}
1199 
1200 	if ((dpaa_fq->fq_type == FQ_TYPE_RX_DEFAULT ||
1201 	     dpaa_fq->fq_type == FQ_TYPE_RX_PCD) &&
1202 	    xdp_rxq_info_is_reg(&dpaa_fq->xdp_rxq))
1203 		xdp_rxq_info_unreg(&dpaa_fq->xdp_rxq);
1204 
1205 	qman_destroy_fq(fq);
1206 	list_del(&dpaa_fq->list);
1207 
1208 	return err;
1209 }
1210 
1211 static int dpaa_fq_free(struct device *dev, struct list_head *list)
1212 {
1213 	struct dpaa_fq *dpaa_fq, *tmp;
1214 	int err, error;
1215 
1216 	err = 0;
1217 	list_for_each_entry_safe(dpaa_fq, tmp, list, list) {
1218 		error = dpaa_fq_free_entry(dev, (struct qman_fq *)dpaa_fq);
1219 		if (error < 0 && err >= 0)
1220 			err = error;
1221 	}
1222 
1223 	return err;
1224 }
1225 
1226 static int dpaa_eth_init_tx_port(struct fman_port *port, struct dpaa_fq *errq,
1227 				 struct dpaa_fq *defq,
1228 				 struct dpaa_buffer_layout *buf_layout)
1229 {
1230 	struct fman_buffer_prefix_content buf_prefix_content;
1231 	struct fman_port_params params;
1232 	int err;
1233 
1234 	memset(&params, 0, sizeof(params));
1235 	memset(&buf_prefix_content, 0, sizeof(buf_prefix_content));
1236 
1237 	buf_prefix_content.priv_data_size = buf_layout->priv_data_size;
1238 	buf_prefix_content.pass_prs_result = true;
1239 	buf_prefix_content.pass_hash_result = true;
1240 	buf_prefix_content.pass_time_stamp = true;
1241 	buf_prefix_content.data_align = DPAA_FD_DATA_ALIGNMENT;
1242 
1243 	params.specific_params.non_rx_params.err_fqid = errq->fqid;
1244 	params.specific_params.non_rx_params.dflt_fqid = defq->fqid;
1245 
1246 	err = fman_port_config(port, &params);
1247 	if (err) {
1248 		pr_err("%s: fman_port_config failed\n", __func__);
1249 		return err;
1250 	}
1251 
1252 	err = fman_port_cfg_buf_prefix_content(port, &buf_prefix_content);
1253 	if (err) {
1254 		pr_err("%s: fman_port_cfg_buf_prefix_content failed\n",
1255 		       __func__);
1256 		return err;
1257 	}
1258 
1259 	err = fman_port_init(port);
1260 	if (err)
1261 		pr_err("%s: fm_port_init failed\n", __func__);
1262 
1263 	return err;
1264 }
1265 
1266 static int dpaa_eth_init_rx_port(struct fman_port *port, struct dpaa_bp *bp,
1267 				 struct dpaa_fq *errq,
1268 				 struct dpaa_fq *defq, struct dpaa_fq *pcdq,
1269 				 struct dpaa_buffer_layout *buf_layout)
1270 {
1271 	struct fman_buffer_prefix_content buf_prefix_content;
1272 	struct fman_port_rx_params *rx_p;
1273 	struct fman_port_params params;
1274 	int err;
1275 
1276 	memset(&params, 0, sizeof(params));
1277 	memset(&buf_prefix_content, 0, sizeof(buf_prefix_content));
1278 
1279 	buf_prefix_content.priv_data_size = buf_layout->priv_data_size;
1280 	buf_prefix_content.pass_prs_result = true;
1281 	buf_prefix_content.pass_hash_result = true;
1282 	buf_prefix_content.pass_time_stamp = true;
1283 	buf_prefix_content.data_align = DPAA_FD_RX_DATA_ALIGNMENT;
1284 
1285 	rx_p = &params.specific_params.rx_params;
1286 	rx_p->err_fqid = errq->fqid;
1287 	rx_p->dflt_fqid = defq->fqid;
1288 	if (pcdq) {
1289 		rx_p->pcd_base_fqid = pcdq->fqid;
1290 		rx_p->pcd_fqs_count = DPAA_ETH_PCD_RXQ_NUM;
1291 	}
1292 
1293 	rx_p->ext_buf_pools.num_of_pools_used = 1;
1294 	rx_p->ext_buf_pools.ext_buf_pool[0].id =  bp->bpid;
1295 	rx_p->ext_buf_pools.ext_buf_pool[0].size = (u16)bp->size;
1296 
1297 	err = fman_port_config(port, &params);
1298 	if (err) {
1299 		pr_err("%s: fman_port_config failed\n", __func__);
1300 		return err;
1301 	}
1302 
1303 	err = fman_port_cfg_buf_prefix_content(port, &buf_prefix_content);
1304 	if (err) {
1305 		pr_err("%s: fman_port_cfg_buf_prefix_content failed\n",
1306 		       __func__);
1307 		return err;
1308 	}
1309 
1310 	err = fman_port_init(port);
1311 	if (err)
1312 		pr_err("%s: fm_port_init failed\n", __func__);
1313 
1314 	return err;
1315 }
1316 
1317 static int dpaa_eth_init_ports(struct mac_device *mac_dev,
1318 			       struct dpaa_bp *bp,
1319 			       struct fm_port_fqs *port_fqs,
1320 			       struct dpaa_buffer_layout *buf_layout,
1321 			       struct device *dev)
1322 {
1323 	struct fman_port *rxport = mac_dev->port[RX];
1324 	struct fman_port *txport = mac_dev->port[TX];
1325 	int err;
1326 
1327 	err = dpaa_eth_init_tx_port(txport, port_fqs->tx_errq,
1328 				    port_fqs->tx_defq, &buf_layout[TX]);
1329 	if (err)
1330 		return err;
1331 
1332 	err = dpaa_eth_init_rx_port(rxport, bp, port_fqs->rx_errq,
1333 				    port_fqs->rx_defq, port_fqs->rx_pcdq,
1334 				    &buf_layout[RX]);
1335 
1336 	return err;
1337 }
1338 
1339 static int dpaa_bman_release(const struct dpaa_bp *dpaa_bp,
1340 			     struct bm_buffer *bmb, int cnt)
1341 {
1342 	int err;
1343 
1344 	err = bman_release(dpaa_bp->pool, bmb, cnt);
1345 	/* Should never occur, address anyway to avoid leaking the buffers */
1346 	if (WARN_ON(err) && dpaa_bp->free_buf_cb)
1347 		while (cnt-- > 0)
1348 			dpaa_bp->free_buf_cb(dpaa_bp, &bmb[cnt]);
1349 
1350 	return cnt;
1351 }
1352 
1353 static void dpaa_release_sgt_members(struct qm_sg_entry *sgt)
1354 {
1355 	struct bm_buffer bmb[DPAA_BUFF_RELEASE_MAX];
1356 	struct dpaa_bp *dpaa_bp;
1357 	int i = 0, j;
1358 
1359 	memset(bmb, 0, sizeof(bmb));
1360 
1361 	do {
1362 		dpaa_bp = dpaa_bpid2pool(sgt[i].bpid);
1363 		if (!dpaa_bp)
1364 			return;
1365 
1366 		j = 0;
1367 		do {
1368 			WARN_ON(qm_sg_entry_is_ext(&sgt[i]));
1369 
1370 			bm_buffer_set64(&bmb[j], qm_sg_entry_get64(&sgt[i]));
1371 
1372 			j++; i++;
1373 		} while (j < ARRAY_SIZE(bmb) &&
1374 				!qm_sg_entry_is_final(&sgt[i - 1]) &&
1375 				sgt[i - 1].bpid == sgt[i].bpid);
1376 
1377 		dpaa_bman_release(dpaa_bp, bmb, j);
1378 	} while (!qm_sg_entry_is_final(&sgt[i - 1]));
1379 }
1380 
1381 static void dpaa_fd_release(const struct net_device *net_dev,
1382 			    const struct qm_fd *fd)
1383 {
1384 	struct qm_sg_entry *sgt;
1385 	struct dpaa_bp *dpaa_bp;
1386 	struct bm_buffer bmb;
1387 	dma_addr_t addr;
1388 	void *vaddr;
1389 
1390 	bmb.data = 0;
1391 	bm_buffer_set64(&bmb, qm_fd_addr(fd));
1392 
1393 	dpaa_bp = dpaa_bpid2pool(fd->bpid);
1394 	if (!dpaa_bp)
1395 		return;
1396 
1397 	if (qm_fd_get_format(fd) == qm_fd_sg) {
1398 		vaddr = phys_to_virt(qm_fd_addr(fd));
1399 		sgt = vaddr + qm_fd_get_offset(fd);
1400 
1401 		dma_unmap_page(dpaa_bp->priv->rx_dma_dev, qm_fd_addr(fd),
1402 			       DPAA_BP_RAW_SIZE, DMA_FROM_DEVICE);
1403 
1404 		dpaa_release_sgt_members(sgt);
1405 
1406 		addr = dma_map_page(dpaa_bp->priv->rx_dma_dev,
1407 				    virt_to_page(vaddr), 0, DPAA_BP_RAW_SIZE,
1408 				    DMA_FROM_DEVICE);
1409 		if (dma_mapping_error(dpaa_bp->priv->rx_dma_dev, addr)) {
1410 			netdev_err(net_dev, "DMA mapping failed\n");
1411 			return;
1412 		}
1413 		bm_buffer_set64(&bmb, addr);
1414 	}
1415 
1416 	dpaa_bman_release(dpaa_bp, &bmb, 1);
1417 }
1418 
1419 static void count_ern(struct dpaa_percpu_priv *percpu_priv,
1420 		      const union qm_mr_entry *msg)
1421 {
1422 	switch (msg->ern.rc & QM_MR_RC_MASK) {
1423 	case QM_MR_RC_CGR_TAILDROP:
1424 		percpu_priv->ern_cnt.cg_tdrop++;
1425 		break;
1426 	case QM_MR_RC_WRED:
1427 		percpu_priv->ern_cnt.wred++;
1428 		break;
1429 	case QM_MR_RC_ERROR:
1430 		percpu_priv->ern_cnt.err_cond++;
1431 		break;
1432 	case QM_MR_RC_ORPWINDOW_EARLY:
1433 		percpu_priv->ern_cnt.early_window++;
1434 		break;
1435 	case QM_MR_RC_ORPWINDOW_LATE:
1436 		percpu_priv->ern_cnt.late_window++;
1437 		break;
1438 	case QM_MR_RC_FQ_TAILDROP:
1439 		percpu_priv->ern_cnt.fq_tdrop++;
1440 		break;
1441 	case QM_MR_RC_ORPWINDOW_RETIRED:
1442 		percpu_priv->ern_cnt.fq_retired++;
1443 		break;
1444 	case QM_MR_RC_ORP_ZERO:
1445 		percpu_priv->ern_cnt.orp_zero++;
1446 		break;
1447 	}
1448 }
1449 
1450 /* Turn on HW checksum computation for this outgoing frame.
1451  * If the current protocol is not something we support in this regard
1452  * (or if the stack has already computed the SW checksum), we do nothing.
1453  *
1454  * Returns 0 if all goes well (or HW csum doesn't apply), and a negative value
1455  * otherwise.
1456  *
1457  * Note that this function may modify the fd->cmd field and the skb data buffer
1458  * (the Parse Results area).
1459  */
1460 static int dpaa_enable_tx_csum(struct dpaa_priv *priv,
1461 			       struct sk_buff *skb,
1462 			       struct qm_fd *fd,
1463 			       void *parse_results)
1464 {
1465 	struct fman_prs_result *parse_result;
1466 	u16 ethertype = ntohs(skb->protocol);
1467 	struct ipv6hdr *ipv6h = NULL;
1468 	struct iphdr *iph;
1469 	int retval = 0;
1470 	u8 l4_proto;
1471 
1472 	if (skb->ip_summed != CHECKSUM_PARTIAL)
1473 		return 0;
1474 
1475 	/* Note: L3 csum seems to be already computed in sw, but we can't choose
1476 	 * L4 alone from the FM configuration anyway.
1477 	 */
1478 
1479 	/* Fill in some fields of the Parse Results array, so the FMan
1480 	 * can find them as if they came from the FMan Parser.
1481 	 */
1482 	parse_result = (struct fman_prs_result *)parse_results;
1483 
1484 	/* If we're dealing with VLAN, get the real Ethernet type */
1485 	if (ethertype == ETH_P_8021Q) {
1486 		/* We can't always assume the MAC header is set correctly
1487 		 * by the stack, so reset to beginning of skb->data
1488 		 */
1489 		skb_reset_mac_header(skb);
1490 		ethertype = ntohs(vlan_eth_hdr(skb)->h_vlan_encapsulated_proto);
1491 	}
1492 
1493 	/* Fill in the relevant L3 parse result fields
1494 	 * and read the L4 protocol type
1495 	 */
1496 	switch (ethertype) {
1497 	case ETH_P_IP:
1498 		parse_result->l3r = cpu_to_be16(FM_L3_PARSE_RESULT_IPV4);
1499 		iph = ip_hdr(skb);
1500 		WARN_ON(!iph);
1501 		l4_proto = iph->protocol;
1502 		break;
1503 	case ETH_P_IPV6:
1504 		parse_result->l3r = cpu_to_be16(FM_L3_PARSE_RESULT_IPV6);
1505 		ipv6h = ipv6_hdr(skb);
1506 		WARN_ON(!ipv6h);
1507 		l4_proto = ipv6h->nexthdr;
1508 		break;
1509 	default:
1510 		/* We shouldn't even be here */
1511 		if (net_ratelimit())
1512 			netif_alert(priv, tx_err, priv->net_dev,
1513 				    "Can't compute HW csum for L3 proto 0x%x\n",
1514 				    ntohs(skb->protocol));
1515 		retval = -EIO;
1516 		goto return_error;
1517 	}
1518 
1519 	/* Fill in the relevant L4 parse result fields */
1520 	switch (l4_proto) {
1521 	case IPPROTO_UDP:
1522 		parse_result->l4r = FM_L4_PARSE_RESULT_UDP;
1523 		break;
1524 	case IPPROTO_TCP:
1525 		parse_result->l4r = FM_L4_PARSE_RESULT_TCP;
1526 		break;
1527 	default:
1528 		if (net_ratelimit())
1529 			netif_alert(priv, tx_err, priv->net_dev,
1530 				    "Can't compute HW csum for L4 proto 0x%x\n",
1531 				    l4_proto);
1532 		retval = -EIO;
1533 		goto return_error;
1534 	}
1535 
1536 	/* At index 0 is IPOffset_1 as defined in the Parse Results */
1537 	parse_result->ip_off[0] = (u8)skb_network_offset(skb);
1538 	parse_result->l4_off = (u8)skb_transport_offset(skb);
1539 
1540 	/* Enable L3 (and L4, if TCP or UDP) HW checksum. */
1541 	fd->cmd |= cpu_to_be32(FM_FD_CMD_RPD | FM_FD_CMD_DTC);
1542 
1543 	/* On P1023 and similar platforms fd->cmd interpretation could
1544 	 * be disabled by setting CONTEXT_A bit ICMD; currently this bit
1545 	 * is not set so we do not need to check; in the future, if/when
1546 	 * using context_a we need to check this bit
1547 	 */
1548 
1549 return_error:
1550 	return retval;
1551 }
1552 
1553 static int dpaa_bp_add_8_bufs(const struct dpaa_bp *dpaa_bp)
1554 {
1555 	struct net_device *net_dev = dpaa_bp->priv->net_dev;
1556 	struct bm_buffer bmb[8];
1557 	dma_addr_t addr;
1558 	struct page *p;
1559 	u8 i;
1560 
1561 	for (i = 0; i < 8; i++) {
1562 		p = dev_alloc_pages(0);
1563 		if (unlikely(!p)) {
1564 			netdev_err(net_dev, "dev_alloc_pages() failed\n");
1565 			goto release_previous_buffs;
1566 		}
1567 
1568 		addr = dma_map_page(dpaa_bp->priv->rx_dma_dev, p, 0,
1569 				    DPAA_BP_RAW_SIZE, DMA_FROM_DEVICE);
1570 		if (unlikely(dma_mapping_error(dpaa_bp->priv->rx_dma_dev,
1571 					       addr))) {
1572 			netdev_err(net_dev, "DMA map failed\n");
1573 			goto release_previous_buffs;
1574 		}
1575 
1576 		bmb[i].data = 0;
1577 		bm_buffer_set64(&bmb[i], addr);
1578 	}
1579 
1580 release_bufs:
1581 	return dpaa_bman_release(dpaa_bp, bmb, i);
1582 
1583 release_previous_buffs:
1584 	WARN_ONCE(1, "dpaa_eth: failed to add buffers on Rx\n");
1585 
1586 	bm_buffer_set64(&bmb[i], 0);
1587 	/* Avoid releasing a completely null buffer; bman_release() requires
1588 	 * at least one buffer.
1589 	 */
1590 	if (likely(i))
1591 		goto release_bufs;
1592 
1593 	return 0;
1594 }
1595 
1596 static int dpaa_bp_seed(struct dpaa_bp *dpaa_bp)
1597 {
1598 	int i;
1599 
1600 	/* Give each CPU an allotment of "config_count" buffers */
1601 	for_each_possible_cpu(i) {
1602 		int *count_ptr = per_cpu_ptr(dpaa_bp->percpu_count, i);
1603 		int j;
1604 
1605 		/* Although we access another CPU's counters here
1606 		 * we do it at boot time so it is safe
1607 		 */
1608 		for (j = 0; j < dpaa_bp->config_count; j += 8)
1609 			*count_ptr += dpaa_bp_add_8_bufs(dpaa_bp);
1610 	}
1611 	return 0;
1612 }
1613 
1614 /* Add buffers/(pages) for Rx processing whenever bpool count falls below
1615  * REFILL_THRESHOLD.
1616  */
1617 static int dpaa_eth_refill_bpool(struct dpaa_bp *dpaa_bp, int *countptr)
1618 {
1619 	int count = *countptr;
1620 	int new_bufs;
1621 
1622 	if (unlikely(count < FSL_DPAA_ETH_REFILL_THRESHOLD)) {
1623 		do {
1624 			new_bufs = dpaa_bp_add_8_bufs(dpaa_bp);
1625 			if (unlikely(!new_bufs)) {
1626 				/* Avoid looping forever if we've temporarily
1627 				 * run out of memory. We'll try again at the
1628 				 * next NAPI cycle.
1629 				 */
1630 				break;
1631 			}
1632 			count += new_bufs;
1633 		} while (count < FSL_DPAA_ETH_MAX_BUF_COUNT);
1634 
1635 		*countptr = count;
1636 		if (unlikely(count < FSL_DPAA_ETH_MAX_BUF_COUNT))
1637 			return -ENOMEM;
1638 	}
1639 
1640 	return 0;
1641 }
1642 
1643 static int dpaa_eth_refill_bpools(struct dpaa_priv *priv)
1644 {
1645 	struct dpaa_bp *dpaa_bp;
1646 	int *countptr;
1647 
1648 	dpaa_bp = priv->dpaa_bp;
1649 	if (!dpaa_bp)
1650 		return -EINVAL;
1651 	countptr = this_cpu_ptr(dpaa_bp->percpu_count);
1652 
1653 	return dpaa_eth_refill_bpool(dpaa_bp, countptr);
1654 }
1655 
1656 /* Cleanup function for outgoing frame descriptors that were built on Tx path,
1657  * either contiguous frames or scatter/gather ones.
1658  * Skb freeing is not handled here.
1659  *
1660  * This function may be called on error paths in the Tx function, so guard
1661  * against cases when not all fd relevant fields were filled in. To avoid
1662  * reading the invalid transmission timestamp for the error paths set ts to
1663  * false.
1664  *
1665  * Return the skb backpointer, since for S/G frames the buffer containing it
1666  * gets freed here.
1667  *
1668  * No skb backpointer is set when transmitting XDP frames. Cleanup the buffer
1669  * and return NULL in this case.
1670  */
1671 static struct sk_buff *dpaa_cleanup_tx_fd(const struct dpaa_priv *priv,
1672 					  const struct qm_fd *fd, bool ts)
1673 {
1674 	const enum dma_data_direction dma_dir = DMA_TO_DEVICE;
1675 	struct device *dev = priv->net_dev->dev.parent;
1676 	struct skb_shared_hwtstamps shhwtstamps;
1677 	dma_addr_t addr = qm_fd_addr(fd);
1678 	void *vaddr = phys_to_virt(addr);
1679 	const struct qm_sg_entry *sgt;
1680 	struct dpaa_eth_swbp *swbp;
1681 	struct sk_buff *skb;
1682 	u64 ns;
1683 	int i;
1684 
1685 	if (unlikely(qm_fd_get_format(fd) == qm_fd_sg)) {
1686 		dma_unmap_page(priv->tx_dma_dev, addr,
1687 			       qm_fd_get_offset(fd) + DPAA_SGT_SIZE,
1688 			       dma_dir);
1689 
1690 		/* The sgt buffer has been allocated with netdev_alloc_frag(),
1691 		 * it's from lowmem.
1692 		 */
1693 		sgt = vaddr + qm_fd_get_offset(fd);
1694 
1695 		/* sgt[0] is from lowmem, was dma_map_single()-ed */
1696 		dma_unmap_single(priv->tx_dma_dev, qm_sg_addr(&sgt[0]),
1697 				 qm_sg_entry_get_len(&sgt[0]), dma_dir);
1698 
1699 		/* remaining pages were mapped with skb_frag_dma_map() */
1700 		for (i = 1; (i < DPAA_SGT_MAX_ENTRIES) &&
1701 		     !qm_sg_entry_is_final(&sgt[i - 1]); i++) {
1702 			WARN_ON(qm_sg_entry_is_ext(&sgt[i]));
1703 
1704 			dma_unmap_page(priv->tx_dma_dev, qm_sg_addr(&sgt[i]),
1705 				       qm_sg_entry_get_len(&sgt[i]), dma_dir);
1706 		}
1707 	} else {
1708 		dma_unmap_single(priv->tx_dma_dev, addr,
1709 				 qm_fd_get_offset(fd) + qm_fd_get_length(fd),
1710 				 dma_dir);
1711 	}
1712 
1713 	swbp = (struct dpaa_eth_swbp *)vaddr;
1714 	skb = swbp->skb;
1715 
1716 	/* No skb backpointer is set when running XDP. An xdp_frame
1717 	 * backpointer is saved instead.
1718 	 */
1719 	if (!skb) {
1720 		xdp_return_frame(swbp->xdpf);
1721 		return NULL;
1722 	}
1723 
1724 	/* DMA unmapping is required before accessing the HW provided info */
1725 	if (ts && priv->tx_tstamp &&
1726 	    skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) {
1727 		memset(&shhwtstamps, 0, sizeof(shhwtstamps));
1728 
1729 		if (!fman_port_get_tstamp(priv->mac_dev->port[TX], vaddr,
1730 					  &ns)) {
1731 			shhwtstamps.hwtstamp = ns_to_ktime(ns);
1732 			skb_tstamp_tx(skb, &shhwtstamps);
1733 		} else {
1734 			dev_warn(dev, "fman_port_get_tstamp failed!\n");
1735 		}
1736 	}
1737 
1738 	if (qm_fd_get_format(fd) == qm_fd_sg)
1739 		/* Free the page that we allocated on Tx for the SGT */
1740 		free_pages((unsigned long)vaddr, 0);
1741 
1742 	return skb;
1743 }
1744 
1745 static u8 rx_csum_offload(const struct dpaa_priv *priv, const struct qm_fd *fd)
1746 {
1747 	/* The parser has run and performed L4 checksum validation.
1748 	 * We know there were no parser errors (and implicitly no
1749 	 * L4 csum error), otherwise we wouldn't be here.
1750 	 */
1751 	if ((priv->net_dev->features & NETIF_F_RXCSUM) &&
1752 	    (be32_to_cpu(fd->status) & FM_FD_STAT_L4CV))
1753 		return CHECKSUM_UNNECESSARY;
1754 
1755 	/* We're here because either the parser didn't run or the L4 checksum
1756 	 * was not verified. This may include the case of a UDP frame with
1757 	 * checksum zero or an L4 proto other than TCP/UDP
1758 	 */
1759 	return CHECKSUM_NONE;
1760 }
1761 
1762 #define PTR_IS_ALIGNED(x, a) (IS_ALIGNED((unsigned long)(x), (a)))
1763 
1764 /* Build a linear skb around the received buffer.
1765  * We are guaranteed there is enough room at the end of the data buffer to
1766  * accommodate the shared info area of the skb.
1767  */
1768 static struct sk_buff *contig_fd_to_skb(const struct dpaa_priv *priv,
1769 					const struct qm_fd *fd)
1770 {
1771 	ssize_t fd_off = qm_fd_get_offset(fd);
1772 	dma_addr_t addr = qm_fd_addr(fd);
1773 	struct dpaa_bp *dpaa_bp;
1774 	struct sk_buff *skb;
1775 	void *vaddr;
1776 
1777 	vaddr = phys_to_virt(addr);
1778 	WARN_ON(!IS_ALIGNED((unsigned long)vaddr, SMP_CACHE_BYTES));
1779 
1780 	dpaa_bp = dpaa_bpid2pool(fd->bpid);
1781 	if (!dpaa_bp)
1782 		goto free_buffer;
1783 
1784 	skb = build_skb(vaddr, dpaa_bp->size +
1785 			SKB_DATA_ALIGN(sizeof(struct skb_shared_info)));
1786 	if (WARN_ONCE(!skb, "Build skb failure on Rx\n"))
1787 		goto free_buffer;
1788 	skb_reserve(skb, fd_off);
1789 	skb_put(skb, qm_fd_get_length(fd));
1790 
1791 	skb->ip_summed = rx_csum_offload(priv, fd);
1792 
1793 	return skb;
1794 
1795 free_buffer:
1796 	free_pages((unsigned long)vaddr, 0);
1797 	return NULL;
1798 }
1799 
1800 /* Build an skb with the data of the first S/G entry in the linear portion and
1801  * the rest of the frame as skb fragments.
1802  *
1803  * The page fragment holding the S/G Table is recycled here.
1804  */
1805 static struct sk_buff *sg_fd_to_skb(const struct dpaa_priv *priv,
1806 				    const struct qm_fd *fd)
1807 {
1808 	ssize_t fd_off = qm_fd_get_offset(fd);
1809 	dma_addr_t addr = qm_fd_addr(fd);
1810 	const struct qm_sg_entry *sgt;
1811 	struct page *page, *head_page;
1812 	struct dpaa_bp *dpaa_bp;
1813 	void *vaddr, *sg_vaddr;
1814 	int frag_off, frag_len;
1815 	struct sk_buff *skb;
1816 	dma_addr_t sg_addr;
1817 	int page_offset;
1818 	unsigned int sz;
1819 	int *count_ptr;
1820 	int i, j;
1821 
1822 	vaddr = phys_to_virt(addr);
1823 	WARN_ON(!IS_ALIGNED((unsigned long)vaddr, SMP_CACHE_BYTES));
1824 
1825 	/* Iterate through the SGT entries and add data buffers to the skb */
1826 	sgt = vaddr + fd_off;
1827 	skb = NULL;
1828 	for (i = 0; i < DPAA_SGT_MAX_ENTRIES; i++) {
1829 		/* Extension bit is not supported */
1830 		WARN_ON(qm_sg_entry_is_ext(&sgt[i]));
1831 
1832 		sg_addr = qm_sg_addr(&sgt[i]);
1833 		sg_vaddr = phys_to_virt(sg_addr);
1834 		WARN_ON(!PTR_IS_ALIGNED(sg_vaddr, SMP_CACHE_BYTES));
1835 
1836 		dma_unmap_page(priv->rx_dma_dev, sg_addr,
1837 			       DPAA_BP_RAW_SIZE, DMA_FROM_DEVICE);
1838 
1839 		/* We may use multiple Rx pools */
1840 		dpaa_bp = dpaa_bpid2pool(sgt[i].bpid);
1841 		if (!dpaa_bp)
1842 			goto free_buffers;
1843 
1844 		if (!skb) {
1845 			sz = dpaa_bp->size +
1846 				SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
1847 			skb = build_skb(sg_vaddr, sz);
1848 			if (WARN_ON(!skb))
1849 				goto free_buffers;
1850 
1851 			skb->ip_summed = rx_csum_offload(priv, fd);
1852 
1853 			/* Make sure forwarded skbs will have enough space
1854 			 * on Tx, if extra headers are added.
1855 			 */
1856 			WARN_ON(fd_off != priv->rx_headroom);
1857 			skb_reserve(skb, fd_off);
1858 			skb_put(skb, qm_sg_entry_get_len(&sgt[i]));
1859 		} else {
1860 			/* Not the first S/G entry; all data from buffer will
1861 			 * be added in an skb fragment; fragment index is offset
1862 			 * by one since first S/G entry was incorporated in the
1863 			 * linear part of the skb.
1864 			 *
1865 			 * Caution: 'page' may be a tail page.
1866 			 */
1867 			page = virt_to_page(sg_vaddr);
1868 			head_page = virt_to_head_page(sg_vaddr);
1869 
1870 			/* Compute offset in (possibly tail) page */
1871 			page_offset = ((unsigned long)sg_vaddr &
1872 					(PAGE_SIZE - 1)) +
1873 				(page_address(page) - page_address(head_page));
1874 			/* page_offset only refers to the beginning of sgt[i];
1875 			 * but the buffer itself may have an internal offset.
1876 			 */
1877 			frag_off = qm_sg_entry_get_off(&sgt[i]) + page_offset;
1878 			frag_len = qm_sg_entry_get_len(&sgt[i]);
1879 			/* skb_add_rx_frag() does no checking on the page; if
1880 			 * we pass it a tail page, we'll end up with
1881 			 * bad page accounting and eventually with segafults.
1882 			 */
1883 			skb_add_rx_frag(skb, i - 1, head_page, frag_off,
1884 					frag_len, dpaa_bp->size);
1885 		}
1886 
1887 		/* Update the pool count for the current {cpu x bpool} */
1888 		count_ptr = this_cpu_ptr(dpaa_bp->percpu_count);
1889 		(*count_ptr)--;
1890 
1891 		if (qm_sg_entry_is_final(&sgt[i]))
1892 			break;
1893 	}
1894 	WARN_ONCE(i == DPAA_SGT_MAX_ENTRIES, "No final bit on SGT\n");
1895 
1896 	/* free the SG table buffer */
1897 	free_pages((unsigned long)vaddr, 0);
1898 
1899 	return skb;
1900 
1901 free_buffers:
1902 	/* free all the SG entries */
1903 	for (j = 0; j < DPAA_SGT_MAX_ENTRIES ; j++) {
1904 		sg_addr = qm_sg_addr(&sgt[j]);
1905 		sg_vaddr = phys_to_virt(sg_addr);
1906 		/* all pages 0..i were unmaped */
1907 		if (j > i)
1908 			dma_unmap_page(priv->rx_dma_dev, qm_sg_addr(&sgt[j]),
1909 				       DPAA_BP_RAW_SIZE, DMA_FROM_DEVICE);
1910 		free_pages((unsigned long)sg_vaddr, 0);
1911 		/* counters 0..i-1 were decremented */
1912 		if (j >= i) {
1913 			dpaa_bp = dpaa_bpid2pool(sgt[j].bpid);
1914 			if (dpaa_bp) {
1915 				count_ptr = this_cpu_ptr(dpaa_bp->percpu_count);
1916 				(*count_ptr)--;
1917 			}
1918 		}
1919 
1920 		if (qm_sg_entry_is_final(&sgt[j]))
1921 			break;
1922 	}
1923 	/* free the SGT fragment */
1924 	free_pages((unsigned long)vaddr, 0);
1925 
1926 	return NULL;
1927 }
1928 
1929 static int skb_to_contig_fd(struct dpaa_priv *priv,
1930 			    struct sk_buff *skb, struct qm_fd *fd,
1931 			    int *offset)
1932 {
1933 	struct net_device *net_dev = priv->net_dev;
1934 	enum dma_data_direction dma_dir;
1935 	struct dpaa_eth_swbp *swbp;
1936 	unsigned char *buff_start;
1937 	dma_addr_t addr;
1938 	int err;
1939 
1940 	/* We are guaranteed to have at least tx_headroom bytes
1941 	 * available, so just use that for offset.
1942 	 */
1943 	fd->bpid = FSL_DPAA_BPID_INV;
1944 	buff_start = skb->data - priv->tx_headroom;
1945 	dma_dir = DMA_TO_DEVICE;
1946 
1947 	swbp = (struct dpaa_eth_swbp *)buff_start;
1948 	swbp->skb = skb;
1949 
1950 	/* Enable L3/L4 hardware checksum computation.
1951 	 *
1952 	 * We must do this before dma_map_single(DMA_TO_DEVICE), because we may
1953 	 * need to write into the skb.
1954 	 */
1955 	err = dpaa_enable_tx_csum(priv, skb, fd,
1956 				  buff_start + DPAA_TX_PRIV_DATA_SIZE);
1957 	if (unlikely(err < 0)) {
1958 		if (net_ratelimit())
1959 			netif_err(priv, tx_err, net_dev, "HW csum error: %d\n",
1960 				  err);
1961 		return err;
1962 	}
1963 
1964 	/* Fill in the rest of the FD fields */
1965 	qm_fd_set_contig(fd, priv->tx_headroom, skb->len);
1966 	fd->cmd |= cpu_to_be32(FM_FD_CMD_FCO);
1967 
1968 	/* Map the entire buffer size that may be seen by FMan, but no more */
1969 	addr = dma_map_single(priv->tx_dma_dev, buff_start,
1970 			      priv->tx_headroom + skb->len, dma_dir);
1971 	if (unlikely(dma_mapping_error(priv->tx_dma_dev, addr))) {
1972 		if (net_ratelimit())
1973 			netif_err(priv, tx_err, net_dev, "dma_map_single() failed\n");
1974 		return -EINVAL;
1975 	}
1976 	qm_fd_addr_set64(fd, addr);
1977 
1978 	return 0;
1979 }
1980 
1981 static int skb_to_sg_fd(struct dpaa_priv *priv,
1982 			struct sk_buff *skb, struct qm_fd *fd)
1983 {
1984 	const enum dma_data_direction dma_dir = DMA_TO_DEVICE;
1985 	const int nr_frags = skb_shinfo(skb)->nr_frags;
1986 	struct net_device *net_dev = priv->net_dev;
1987 	struct dpaa_eth_swbp *swbp;
1988 	struct qm_sg_entry *sgt;
1989 	void *buff_start;
1990 	skb_frag_t *frag;
1991 	dma_addr_t addr;
1992 	size_t frag_len;
1993 	struct page *p;
1994 	int i, j, err;
1995 
1996 	/* get a page to store the SGTable */
1997 	p = dev_alloc_pages(0);
1998 	if (unlikely(!p)) {
1999 		netdev_err(net_dev, "dev_alloc_pages() failed\n");
2000 		return -ENOMEM;
2001 	}
2002 	buff_start = page_address(p);
2003 
2004 	/* Enable L3/L4 hardware checksum computation.
2005 	 *
2006 	 * We must do this before dma_map_single(DMA_TO_DEVICE), because we may
2007 	 * need to write into the skb.
2008 	 */
2009 	err = dpaa_enable_tx_csum(priv, skb, fd,
2010 				  buff_start + DPAA_TX_PRIV_DATA_SIZE);
2011 	if (unlikely(err < 0)) {
2012 		if (net_ratelimit())
2013 			netif_err(priv, tx_err, net_dev, "HW csum error: %d\n",
2014 				  err);
2015 		goto csum_failed;
2016 	}
2017 
2018 	/* SGT[0] is used by the linear part */
2019 	sgt = (struct qm_sg_entry *)(buff_start + priv->tx_headroom);
2020 	frag_len = skb_headlen(skb);
2021 	qm_sg_entry_set_len(&sgt[0], frag_len);
2022 	sgt[0].bpid = FSL_DPAA_BPID_INV;
2023 	sgt[0].offset = 0;
2024 	addr = dma_map_single(priv->tx_dma_dev, skb->data,
2025 			      skb_headlen(skb), dma_dir);
2026 	if (unlikely(dma_mapping_error(priv->tx_dma_dev, addr))) {
2027 		netdev_err(priv->net_dev, "DMA mapping failed\n");
2028 		err = -EINVAL;
2029 		goto sg0_map_failed;
2030 	}
2031 	qm_sg_entry_set64(&sgt[0], addr);
2032 
2033 	/* populate the rest of SGT entries */
2034 	for (i = 0; i < nr_frags; i++) {
2035 		frag = &skb_shinfo(skb)->frags[i];
2036 		frag_len = skb_frag_size(frag);
2037 		WARN_ON(!skb_frag_page(frag));
2038 		addr = skb_frag_dma_map(priv->tx_dma_dev, frag, 0,
2039 					frag_len, dma_dir);
2040 		if (unlikely(dma_mapping_error(priv->tx_dma_dev, addr))) {
2041 			netdev_err(priv->net_dev, "DMA mapping failed\n");
2042 			err = -EINVAL;
2043 			goto sg_map_failed;
2044 		}
2045 
2046 		qm_sg_entry_set_len(&sgt[i + 1], frag_len);
2047 		sgt[i + 1].bpid = FSL_DPAA_BPID_INV;
2048 		sgt[i + 1].offset = 0;
2049 
2050 		/* keep the offset in the address */
2051 		qm_sg_entry_set64(&sgt[i + 1], addr);
2052 	}
2053 
2054 	/* Set the final bit in the last used entry of the SGT */
2055 	qm_sg_entry_set_f(&sgt[nr_frags], frag_len);
2056 
2057 	/* set fd offset to priv->tx_headroom */
2058 	qm_fd_set_sg(fd, priv->tx_headroom, skb->len);
2059 
2060 	/* DMA map the SGT page */
2061 	swbp = (struct dpaa_eth_swbp *)buff_start;
2062 	swbp->skb = skb;
2063 
2064 	addr = dma_map_page(priv->tx_dma_dev, p, 0,
2065 			    priv->tx_headroom + DPAA_SGT_SIZE, dma_dir);
2066 	if (unlikely(dma_mapping_error(priv->tx_dma_dev, addr))) {
2067 		netdev_err(priv->net_dev, "DMA mapping failed\n");
2068 		err = -EINVAL;
2069 		goto sgt_map_failed;
2070 	}
2071 
2072 	fd->bpid = FSL_DPAA_BPID_INV;
2073 	fd->cmd |= cpu_to_be32(FM_FD_CMD_FCO);
2074 	qm_fd_addr_set64(fd, addr);
2075 
2076 	return 0;
2077 
2078 sgt_map_failed:
2079 sg_map_failed:
2080 	for (j = 0; j < i; j++)
2081 		dma_unmap_page(priv->tx_dma_dev, qm_sg_addr(&sgt[j]),
2082 			       qm_sg_entry_get_len(&sgt[j]), dma_dir);
2083 sg0_map_failed:
2084 csum_failed:
2085 	free_pages((unsigned long)buff_start, 0);
2086 
2087 	return err;
2088 }
2089 
2090 static inline int dpaa_xmit(struct dpaa_priv *priv,
2091 			    struct rtnl_link_stats64 *percpu_stats,
2092 			    int queue,
2093 			    struct qm_fd *fd)
2094 {
2095 	struct qman_fq *egress_fq;
2096 	int err, i;
2097 
2098 	egress_fq = priv->egress_fqs[queue];
2099 	if (fd->bpid == FSL_DPAA_BPID_INV)
2100 		fd->cmd |= cpu_to_be32(qman_fq_fqid(priv->conf_fqs[queue]));
2101 
2102 	/* Trace this Tx fd */
2103 	trace_dpaa_tx_fd(priv->net_dev, egress_fq, fd);
2104 
2105 	for (i = 0; i < DPAA_ENQUEUE_RETRIES; i++) {
2106 		err = qman_enqueue(egress_fq, fd);
2107 		if (err != -EBUSY)
2108 			break;
2109 	}
2110 
2111 	if (unlikely(err < 0)) {
2112 		percpu_stats->tx_fifo_errors++;
2113 		return err;
2114 	}
2115 
2116 	percpu_stats->tx_packets++;
2117 	percpu_stats->tx_bytes += qm_fd_get_length(fd);
2118 
2119 	return 0;
2120 }
2121 
2122 #ifdef CONFIG_DPAA_ERRATUM_A050385
2123 static int dpaa_a050385_wa_skb(struct net_device *net_dev, struct sk_buff **s)
2124 {
2125 	struct dpaa_priv *priv = netdev_priv(net_dev);
2126 	struct sk_buff *new_skb, *skb = *s;
2127 	unsigned char *start, i;
2128 
2129 	/* check linear buffer alignment */
2130 	if (!PTR_IS_ALIGNED(skb->data, DPAA_A050385_ALIGN))
2131 		goto workaround;
2132 
2133 	/* linear buffers just need to have an aligned start */
2134 	if (!skb_is_nonlinear(skb))
2135 		return 0;
2136 
2137 	/* linear data size for nonlinear skbs needs to be aligned */
2138 	if (!IS_ALIGNED(skb_headlen(skb), DPAA_A050385_ALIGN))
2139 		goto workaround;
2140 
2141 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2142 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2143 
2144 		/* all fragments need to have aligned start addresses */
2145 		if (!IS_ALIGNED(skb_frag_off(frag), DPAA_A050385_ALIGN))
2146 			goto workaround;
2147 
2148 		/* all but last fragment need to have aligned sizes */
2149 		if (!IS_ALIGNED(skb_frag_size(frag), DPAA_A050385_ALIGN) &&
2150 		    (i < skb_shinfo(skb)->nr_frags - 1))
2151 			goto workaround;
2152 	}
2153 
2154 	return 0;
2155 
2156 workaround:
2157 	/* copy all the skb content into a new linear buffer */
2158 	new_skb = netdev_alloc_skb(net_dev, skb->len + DPAA_A050385_ALIGN - 1 +
2159 						priv->tx_headroom);
2160 	if (!new_skb)
2161 		return -ENOMEM;
2162 
2163 	/* NET_SKB_PAD bytes already reserved, adding up to tx_headroom */
2164 	skb_reserve(new_skb, priv->tx_headroom - NET_SKB_PAD);
2165 
2166 	/* Workaround for DPAA_A050385 requires data start to be aligned */
2167 	start = PTR_ALIGN(new_skb->data, DPAA_A050385_ALIGN);
2168 	if (start - new_skb->data)
2169 		skb_reserve(new_skb, start - new_skb->data);
2170 
2171 	skb_put(new_skb, skb->len);
2172 	skb_copy_bits(skb, 0, new_skb->data, skb->len);
2173 	skb_copy_header(new_skb, skb);
2174 	new_skb->dev = skb->dev;
2175 
2176 	/* Copy relevant timestamp info from the old skb to the new */
2177 	if (priv->tx_tstamp) {
2178 		skb_shinfo(new_skb)->tx_flags = skb_shinfo(skb)->tx_flags;
2179 		skb_shinfo(new_skb)->hwtstamps = skb_shinfo(skb)->hwtstamps;
2180 		skb_shinfo(new_skb)->tskey = skb_shinfo(skb)->tskey;
2181 		if (skb->sk)
2182 			skb_set_owner_w(new_skb, skb->sk);
2183 	}
2184 
2185 	/* We move the headroom when we align it so we have to reset the
2186 	 * network and transport header offsets relative to the new data
2187 	 * pointer. The checksum offload relies on these offsets.
2188 	 */
2189 	skb_set_network_header(new_skb, skb_network_offset(skb));
2190 	skb_set_transport_header(new_skb, skb_transport_offset(skb));
2191 
2192 	dev_kfree_skb(skb);
2193 	*s = new_skb;
2194 
2195 	return 0;
2196 }
2197 
2198 static int dpaa_a050385_wa_xdpf(struct dpaa_priv *priv,
2199 				struct xdp_frame **init_xdpf)
2200 {
2201 	struct xdp_frame *new_xdpf, *xdpf = *init_xdpf;
2202 	void *new_buff, *aligned_data;
2203 	struct page *p;
2204 	u32 data_shift;
2205 	int headroom;
2206 
2207 	/* Check the data alignment and make sure the headroom is large
2208 	 * enough to store the xdpf backpointer. Use an aligned headroom
2209 	 * value.
2210 	 *
2211 	 * Due to alignment constraints, we give XDP access to the full 256
2212 	 * byte frame headroom. If the XDP program uses all of it, copy the
2213 	 * data to a new buffer and make room for storing the backpointer.
2214 	 */
2215 	if (PTR_IS_ALIGNED(xdpf->data, DPAA_FD_DATA_ALIGNMENT) &&
2216 	    xdpf->headroom >= priv->tx_headroom) {
2217 		xdpf->headroom = priv->tx_headroom;
2218 		return 0;
2219 	}
2220 
2221 	/* Try to move the data inside the buffer just enough to align it and
2222 	 * store the xdpf backpointer. If the available headroom isn't large
2223 	 * enough, resort to allocating a new buffer and copying the data.
2224 	 */
2225 	aligned_data = PTR_ALIGN_DOWN(xdpf->data, DPAA_FD_DATA_ALIGNMENT);
2226 	data_shift = xdpf->data - aligned_data;
2227 
2228 	/* The XDP frame's headroom needs to be large enough to accommodate
2229 	 * shifting the data as well as storing the xdpf backpointer.
2230 	 */
2231 	if (xdpf->headroom  >= data_shift + priv->tx_headroom) {
2232 		memmove(aligned_data, xdpf->data, xdpf->len);
2233 		xdpf->data = aligned_data;
2234 		xdpf->headroom = priv->tx_headroom;
2235 		return 0;
2236 	}
2237 
2238 	/* The new xdp_frame is stored in the new buffer. Reserve enough space
2239 	 * in the headroom for storing it along with the driver's private
2240 	 * info. The headroom needs to be aligned to DPAA_FD_DATA_ALIGNMENT to
2241 	 * guarantee the data's alignment in the buffer.
2242 	 */
2243 	headroom = ALIGN(sizeof(*new_xdpf) + priv->tx_headroom,
2244 			 DPAA_FD_DATA_ALIGNMENT);
2245 
2246 	/* Assure the extended headroom and data don't overflow the buffer,
2247 	 * while maintaining the mandatory tailroom.
2248 	 */
2249 	if (headroom + xdpf->len > DPAA_BP_RAW_SIZE -
2250 			SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
2251 		return -ENOMEM;
2252 
2253 	p = dev_alloc_pages(0);
2254 	if (unlikely(!p))
2255 		return -ENOMEM;
2256 
2257 	/* Copy the data to the new buffer at a properly aligned offset */
2258 	new_buff = page_address(p);
2259 	memcpy(new_buff + headroom, xdpf->data, xdpf->len);
2260 
2261 	/* Create an XDP frame around the new buffer in a similar fashion
2262 	 * to xdp_convert_buff_to_frame.
2263 	 */
2264 	new_xdpf = new_buff;
2265 	new_xdpf->data = new_buff + headroom;
2266 	new_xdpf->len = xdpf->len;
2267 	new_xdpf->headroom = priv->tx_headroom;
2268 	new_xdpf->frame_sz = DPAA_BP_RAW_SIZE;
2269 	new_xdpf->mem.type = MEM_TYPE_PAGE_ORDER0;
2270 
2271 	/* Release the initial buffer */
2272 	xdp_return_frame_rx_napi(xdpf);
2273 
2274 	*init_xdpf = new_xdpf;
2275 	return 0;
2276 }
2277 #endif
2278 
2279 static netdev_tx_t
2280 dpaa_start_xmit(struct sk_buff *skb, struct net_device *net_dev)
2281 {
2282 	const int queue_mapping = skb_get_queue_mapping(skb);
2283 	bool nonlinear = skb_is_nonlinear(skb);
2284 	struct rtnl_link_stats64 *percpu_stats;
2285 	struct dpaa_percpu_priv *percpu_priv;
2286 	struct netdev_queue *txq;
2287 	struct dpaa_priv *priv;
2288 	struct qm_fd fd;
2289 	int offset = 0;
2290 	int err = 0;
2291 
2292 	priv = netdev_priv(net_dev);
2293 	percpu_priv = this_cpu_ptr(priv->percpu_priv);
2294 	percpu_stats = &percpu_priv->stats;
2295 
2296 	qm_fd_clear_fd(&fd);
2297 
2298 	if (!nonlinear) {
2299 		/* We're going to store the skb backpointer at the beginning
2300 		 * of the data buffer, so we need a privately owned skb
2301 		 *
2302 		 * We've made sure skb is not shared in dev->priv_flags,
2303 		 * we need to verify the skb head is not cloned
2304 		 */
2305 		if (skb_cow_head(skb, priv->tx_headroom))
2306 			goto enomem;
2307 
2308 		WARN_ON(skb_is_nonlinear(skb));
2309 	}
2310 
2311 	/* MAX_SKB_FRAGS is equal or larger than our dpaa_SGT_MAX_ENTRIES;
2312 	 * make sure we don't feed FMan with more fragments than it supports.
2313 	 */
2314 	if (unlikely(nonlinear &&
2315 		     (skb_shinfo(skb)->nr_frags >= DPAA_SGT_MAX_ENTRIES))) {
2316 		/* If the egress skb contains more fragments than we support
2317 		 * we have no choice but to linearize it ourselves.
2318 		 */
2319 		if (__skb_linearize(skb))
2320 			goto enomem;
2321 
2322 		nonlinear = skb_is_nonlinear(skb);
2323 	}
2324 
2325 #ifdef CONFIG_DPAA_ERRATUM_A050385
2326 	if (unlikely(fman_has_errata_a050385())) {
2327 		if (dpaa_a050385_wa_skb(net_dev, &skb))
2328 			goto enomem;
2329 		nonlinear = skb_is_nonlinear(skb);
2330 	}
2331 #endif
2332 
2333 	if (nonlinear) {
2334 		/* Just create a S/G fd based on the skb */
2335 		err = skb_to_sg_fd(priv, skb, &fd);
2336 		percpu_priv->tx_frag_skbuffs++;
2337 	} else {
2338 		/* Create a contig FD from this skb */
2339 		err = skb_to_contig_fd(priv, skb, &fd, &offset);
2340 	}
2341 	if (unlikely(err < 0))
2342 		goto skb_to_fd_failed;
2343 
2344 	txq = netdev_get_tx_queue(net_dev, queue_mapping);
2345 
2346 	/* LLTX requires to do our own update of trans_start */
2347 	txq_trans_cond_update(txq);
2348 
2349 	if (priv->tx_tstamp && skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) {
2350 		fd.cmd |= cpu_to_be32(FM_FD_CMD_UPD);
2351 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2352 	}
2353 
2354 	if (likely(dpaa_xmit(priv, percpu_stats, queue_mapping, &fd) == 0))
2355 		return NETDEV_TX_OK;
2356 
2357 	dpaa_cleanup_tx_fd(priv, &fd, false);
2358 skb_to_fd_failed:
2359 enomem:
2360 	percpu_stats->tx_errors++;
2361 	dev_kfree_skb(skb);
2362 	return NETDEV_TX_OK;
2363 }
2364 
2365 static void dpaa_rx_error(struct net_device *net_dev,
2366 			  const struct dpaa_priv *priv,
2367 			  struct dpaa_percpu_priv *percpu_priv,
2368 			  const struct qm_fd *fd,
2369 			  u32 fqid)
2370 {
2371 	if (net_ratelimit())
2372 		netif_err(priv, hw, net_dev, "Err FD status = 0x%08x\n",
2373 			  be32_to_cpu(fd->status) & FM_FD_STAT_RX_ERRORS);
2374 
2375 	percpu_priv->stats.rx_errors++;
2376 
2377 	if (be32_to_cpu(fd->status) & FM_FD_ERR_DMA)
2378 		percpu_priv->rx_errors.dme++;
2379 	if (be32_to_cpu(fd->status) & FM_FD_ERR_PHYSICAL)
2380 		percpu_priv->rx_errors.fpe++;
2381 	if (be32_to_cpu(fd->status) & FM_FD_ERR_SIZE)
2382 		percpu_priv->rx_errors.fse++;
2383 	if (be32_to_cpu(fd->status) & FM_FD_ERR_PRS_HDR_ERR)
2384 		percpu_priv->rx_errors.phe++;
2385 
2386 	dpaa_fd_release(net_dev, fd);
2387 }
2388 
2389 static void dpaa_tx_error(struct net_device *net_dev,
2390 			  const struct dpaa_priv *priv,
2391 			  struct dpaa_percpu_priv *percpu_priv,
2392 			  const struct qm_fd *fd,
2393 			  u32 fqid)
2394 {
2395 	struct sk_buff *skb;
2396 
2397 	if (net_ratelimit())
2398 		netif_warn(priv, hw, net_dev, "FD status = 0x%08x\n",
2399 			   be32_to_cpu(fd->status) & FM_FD_STAT_TX_ERRORS);
2400 
2401 	percpu_priv->stats.tx_errors++;
2402 
2403 	skb = dpaa_cleanup_tx_fd(priv, fd, false);
2404 	dev_kfree_skb(skb);
2405 }
2406 
2407 static int dpaa_eth_poll(struct napi_struct *napi, int budget)
2408 {
2409 	struct dpaa_napi_portal *np =
2410 			container_of(napi, struct dpaa_napi_portal, napi);
2411 	int cleaned;
2412 
2413 	np->xdp_act = 0;
2414 
2415 	cleaned = qman_p_poll_dqrr(np->p, budget);
2416 
2417 	if (np->xdp_act & XDP_REDIRECT)
2418 		xdp_do_flush();
2419 
2420 	if (cleaned < budget) {
2421 		napi_complete_done(napi, cleaned);
2422 		qman_p_irqsource_add(np->p, QM_PIRQ_DQRI);
2423 	} else if (np->down) {
2424 		qman_p_irqsource_add(np->p, QM_PIRQ_DQRI);
2425 	}
2426 
2427 	return cleaned;
2428 }
2429 
2430 static void dpaa_tx_conf(struct net_device *net_dev,
2431 			 const struct dpaa_priv *priv,
2432 			 struct dpaa_percpu_priv *percpu_priv,
2433 			 const struct qm_fd *fd,
2434 			 u32 fqid)
2435 {
2436 	struct sk_buff	*skb;
2437 
2438 	if (unlikely(be32_to_cpu(fd->status) & FM_FD_STAT_TX_ERRORS)) {
2439 		if (net_ratelimit())
2440 			netif_warn(priv, hw, net_dev, "FD status = 0x%08x\n",
2441 				   be32_to_cpu(fd->status) &
2442 				   FM_FD_STAT_TX_ERRORS);
2443 
2444 		percpu_priv->stats.tx_errors++;
2445 	}
2446 
2447 	percpu_priv->tx_confirm++;
2448 
2449 	skb = dpaa_cleanup_tx_fd(priv, fd, true);
2450 
2451 	consume_skb(skb);
2452 }
2453 
2454 static inline int dpaa_eth_napi_schedule(struct dpaa_percpu_priv *percpu_priv,
2455 					 struct qman_portal *portal, bool sched_napi)
2456 {
2457 	if (sched_napi) {
2458 		/* Disable QMan IRQ and invoke NAPI */
2459 		qman_p_irqsource_remove(portal, QM_PIRQ_DQRI);
2460 
2461 		percpu_priv->np.p = portal;
2462 		napi_schedule(&percpu_priv->np.napi);
2463 		percpu_priv->in_interrupt++;
2464 		return 1;
2465 	}
2466 	return 0;
2467 }
2468 
2469 static enum qman_cb_dqrr_result rx_error_dqrr(struct qman_portal *portal,
2470 					      struct qman_fq *fq,
2471 					      const struct qm_dqrr_entry *dq,
2472 					      bool sched_napi)
2473 {
2474 	struct dpaa_fq *dpaa_fq = container_of(fq, struct dpaa_fq, fq_base);
2475 	struct dpaa_percpu_priv *percpu_priv;
2476 	struct net_device *net_dev;
2477 	struct dpaa_bp *dpaa_bp;
2478 	struct dpaa_priv *priv;
2479 
2480 	net_dev = dpaa_fq->net_dev;
2481 	priv = netdev_priv(net_dev);
2482 	dpaa_bp = dpaa_bpid2pool(dq->fd.bpid);
2483 	if (!dpaa_bp)
2484 		return qman_cb_dqrr_consume;
2485 
2486 	percpu_priv = this_cpu_ptr(priv->percpu_priv);
2487 
2488 	if (dpaa_eth_napi_schedule(percpu_priv, portal, sched_napi))
2489 		return qman_cb_dqrr_stop;
2490 
2491 	dpaa_eth_refill_bpools(priv);
2492 	dpaa_rx_error(net_dev, priv, percpu_priv, &dq->fd, fq->fqid);
2493 
2494 	return qman_cb_dqrr_consume;
2495 }
2496 
2497 static int dpaa_xdp_xmit_frame(struct net_device *net_dev,
2498 			       struct xdp_frame *xdpf)
2499 {
2500 	struct dpaa_priv *priv = netdev_priv(net_dev);
2501 	struct rtnl_link_stats64 *percpu_stats;
2502 	struct dpaa_percpu_priv *percpu_priv;
2503 	struct dpaa_eth_swbp *swbp;
2504 	struct netdev_queue *txq;
2505 	void *buff_start;
2506 	struct qm_fd fd;
2507 	dma_addr_t addr;
2508 	int err;
2509 
2510 	percpu_priv = this_cpu_ptr(priv->percpu_priv);
2511 	percpu_stats = &percpu_priv->stats;
2512 
2513 #ifdef CONFIG_DPAA_ERRATUM_A050385
2514 	if (unlikely(fman_has_errata_a050385())) {
2515 		if (dpaa_a050385_wa_xdpf(priv, &xdpf)) {
2516 			err = -ENOMEM;
2517 			goto out_error;
2518 		}
2519 	}
2520 #endif
2521 
2522 	if (xdpf->headroom < DPAA_TX_PRIV_DATA_SIZE) {
2523 		err = -EINVAL;
2524 		goto out_error;
2525 	}
2526 
2527 	buff_start = xdpf->data - xdpf->headroom;
2528 
2529 	/* Leave empty the skb backpointer at the start of the buffer.
2530 	 * Save the XDP frame for easy cleanup on confirmation.
2531 	 */
2532 	swbp = (struct dpaa_eth_swbp *)buff_start;
2533 	swbp->skb = NULL;
2534 	swbp->xdpf = xdpf;
2535 
2536 	qm_fd_clear_fd(&fd);
2537 	fd.bpid = FSL_DPAA_BPID_INV;
2538 	fd.cmd |= cpu_to_be32(FM_FD_CMD_FCO);
2539 	qm_fd_set_contig(&fd, xdpf->headroom, xdpf->len);
2540 
2541 	addr = dma_map_single(priv->tx_dma_dev, buff_start,
2542 			      xdpf->headroom + xdpf->len,
2543 			      DMA_TO_DEVICE);
2544 	if (unlikely(dma_mapping_error(priv->tx_dma_dev, addr))) {
2545 		err = -EINVAL;
2546 		goto out_error;
2547 	}
2548 
2549 	qm_fd_addr_set64(&fd, addr);
2550 
2551 	/* Bump the trans_start */
2552 	txq = netdev_get_tx_queue(net_dev, smp_processor_id());
2553 	txq_trans_cond_update(txq);
2554 
2555 	err = dpaa_xmit(priv, percpu_stats, smp_processor_id(), &fd);
2556 	if (err) {
2557 		dma_unmap_single(priv->tx_dma_dev, addr,
2558 				 qm_fd_get_offset(&fd) + qm_fd_get_length(&fd),
2559 				 DMA_TO_DEVICE);
2560 		goto out_error;
2561 	}
2562 
2563 	return 0;
2564 
2565 out_error:
2566 	percpu_stats->tx_errors++;
2567 	return err;
2568 }
2569 
2570 static u32 dpaa_run_xdp(struct dpaa_priv *priv, struct qm_fd *fd, void *vaddr,
2571 			struct dpaa_fq *dpaa_fq, unsigned int *xdp_meta_len)
2572 {
2573 	ssize_t fd_off = qm_fd_get_offset(fd);
2574 	struct bpf_prog *xdp_prog;
2575 	struct xdp_frame *xdpf;
2576 	struct xdp_buff xdp;
2577 	u32 xdp_act;
2578 	int err;
2579 
2580 	xdp_prog = READ_ONCE(priv->xdp_prog);
2581 	if (!xdp_prog)
2582 		return XDP_PASS;
2583 
2584 	xdp_init_buff(&xdp, DPAA_BP_RAW_SIZE - DPAA_TX_PRIV_DATA_SIZE,
2585 		      &dpaa_fq->xdp_rxq);
2586 	xdp_prepare_buff(&xdp, vaddr + fd_off - XDP_PACKET_HEADROOM,
2587 			 XDP_PACKET_HEADROOM, qm_fd_get_length(fd), true);
2588 
2589 	/* We reserve a fixed headroom of 256 bytes under the erratum and we
2590 	 * offer it all to XDP programs to use. If no room is left for the
2591 	 * xdpf backpointer on TX, we will need to copy the data.
2592 	 * Disable metadata support since data realignments might be required
2593 	 * and the information can be lost.
2594 	 */
2595 #ifdef CONFIG_DPAA_ERRATUM_A050385
2596 	if (unlikely(fman_has_errata_a050385())) {
2597 		xdp_set_data_meta_invalid(&xdp);
2598 		xdp.data_hard_start = vaddr;
2599 		xdp.frame_sz = DPAA_BP_RAW_SIZE;
2600 	}
2601 #endif
2602 
2603 	xdp_act = bpf_prog_run_xdp(xdp_prog, &xdp);
2604 
2605 	/* Update the length and the offset of the FD */
2606 	qm_fd_set_contig(fd, xdp.data - vaddr, xdp.data_end - xdp.data);
2607 
2608 	switch (xdp_act) {
2609 	case XDP_PASS:
2610 #ifdef CONFIG_DPAA_ERRATUM_A050385
2611 		*xdp_meta_len = xdp_data_meta_unsupported(&xdp) ? 0 :
2612 				xdp.data - xdp.data_meta;
2613 #else
2614 		*xdp_meta_len = xdp.data - xdp.data_meta;
2615 #endif
2616 		break;
2617 	case XDP_TX:
2618 		/* We can access the full headroom when sending the frame
2619 		 * back out
2620 		 */
2621 		xdp.data_hard_start = vaddr;
2622 		xdp.frame_sz = DPAA_BP_RAW_SIZE;
2623 		xdpf = xdp_convert_buff_to_frame(&xdp);
2624 		if (unlikely(!xdpf)) {
2625 			free_pages((unsigned long)vaddr, 0);
2626 			break;
2627 		}
2628 
2629 		if (dpaa_xdp_xmit_frame(priv->net_dev, xdpf))
2630 			xdp_return_frame_rx_napi(xdpf);
2631 
2632 		break;
2633 	case XDP_REDIRECT:
2634 		/* Allow redirect to use the full headroom */
2635 		xdp.data_hard_start = vaddr;
2636 		xdp.frame_sz = DPAA_BP_RAW_SIZE;
2637 
2638 		err = xdp_do_redirect(priv->net_dev, &xdp, xdp_prog);
2639 		if (err) {
2640 			trace_xdp_exception(priv->net_dev, xdp_prog, xdp_act);
2641 			free_pages((unsigned long)vaddr, 0);
2642 		}
2643 		break;
2644 	default:
2645 		bpf_warn_invalid_xdp_action(priv->net_dev, xdp_prog, xdp_act);
2646 		fallthrough;
2647 	case XDP_ABORTED:
2648 		trace_xdp_exception(priv->net_dev, xdp_prog, xdp_act);
2649 		fallthrough;
2650 	case XDP_DROP:
2651 		/* Free the buffer */
2652 		free_pages((unsigned long)vaddr, 0);
2653 		break;
2654 	}
2655 
2656 	return xdp_act;
2657 }
2658 
2659 static enum qman_cb_dqrr_result rx_default_dqrr(struct qman_portal *portal,
2660 						struct qman_fq *fq,
2661 						const struct qm_dqrr_entry *dq,
2662 						bool sched_napi)
2663 {
2664 	bool ts_valid = false, hash_valid = false;
2665 	struct skb_shared_hwtstamps *shhwtstamps;
2666 	unsigned int skb_len, xdp_meta_len = 0;
2667 	struct rtnl_link_stats64 *percpu_stats;
2668 	struct dpaa_percpu_priv *percpu_priv;
2669 	const struct qm_fd *fd = &dq->fd;
2670 	dma_addr_t addr = qm_fd_addr(fd);
2671 	struct dpaa_napi_portal *np;
2672 	enum qm_fd_format fd_format;
2673 	struct net_device *net_dev;
2674 	u32 fd_status, hash_offset;
2675 	struct qm_sg_entry *sgt;
2676 	struct dpaa_bp *dpaa_bp;
2677 	struct dpaa_fq *dpaa_fq;
2678 	struct dpaa_priv *priv;
2679 	struct sk_buff *skb;
2680 	int *count_ptr;
2681 	u32 xdp_act;
2682 	void *vaddr;
2683 	u32 hash;
2684 	u64 ns;
2685 
2686 	dpaa_fq = container_of(fq, struct dpaa_fq, fq_base);
2687 	fd_status = be32_to_cpu(fd->status);
2688 	fd_format = qm_fd_get_format(fd);
2689 	net_dev = dpaa_fq->net_dev;
2690 	priv = netdev_priv(net_dev);
2691 	dpaa_bp = dpaa_bpid2pool(dq->fd.bpid);
2692 	if (!dpaa_bp)
2693 		return qman_cb_dqrr_consume;
2694 
2695 	/* Trace the Rx fd */
2696 	trace_dpaa_rx_fd(net_dev, fq, &dq->fd);
2697 
2698 	percpu_priv = this_cpu_ptr(priv->percpu_priv);
2699 	percpu_stats = &percpu_priv->stats;
2700 	np = &percpu_priv->np;
2701 
2702 	if (unlikely(dpaa_eth_napi_schedule(percpu_priv, portal, sched_napi)))
2703 		return qman_cb_dqrr_stop;
2704 
2705 	/* Make sure we didn't run out of buffers */
2706 	if (unlikely(dpaa_eth_refill_bpools(priv))) {
2707 		/* Unable to refill the buffer pool due to insufficient
2708 		 * system memory. Just release the frame back into the pool,
2709 		 * otherwise we'll soon end up with an empty buffer pool.
2710 		 */
2711 		dpaa_fd_release(net_dev, &dq->fd);
2712 		return qman_cb_dqrr_consume;
2713 	}
2714 
2715 	if (unlikely(fd_status & FM_FD_STAT_RX_ERRORS) != 0) {
2716 		if (net_ratelimit())
2717 			netif_warn(priv, hw, net_dev, "FD status = 0x%08x\n",
2718 				   fd_status & FM_FD_STAT_RX_ERRORS);
2719 
2720 		percpu_stats->rx_errors++;
2721 		dpaa_fd_release(net_dev, fd);
2722 		return qman_cb_dqrr_consume;
2723 	}
2724 
2725 	dma_unmap_page(dpaa_bp->priv->rx_dma_dev, addr, DPAA_BP_RAW_SIZE,
2726 		       DMA_FROM_DEVICE);
2727 
2728 	/* prefetch the first 64 bytes of the frame or the SGT start */
2729 	vaddr = phys_to_virt(addr);
2730 	prefetch(vaddr + qm_fd_get_offset(fd));
2731 
2732 	/* The only FD types that we may receive are contig and S/G */
2733 	WARN_ON((fd_format != qm_fd_contig) && (fd_format != qm_fd_sg));
2734 
2735 	/* Account for either the contig buffer or the SGT buffer (depending on
2736 	 * which case we were in) having been removed from the pool.
2737 	 */
2738 	count_ptr = this_cpu_ptr(dpaa_bp->percpu_count);
2739 	(*count_ptr)--;
2740 
2741 	/* Extract the timestamp stored in the headroom before running XDP */
2742 	if (priv->rx_tstamp) {
2743 		if (!fman_port_get_tstamp(priv->mac_dev->port[RX], vaddr, &ns))
2744 			ts_valid = true;
2745 		else
2746 			WARN_ONCE(1, "fman_port_get_tstamp failed!\n");
2747 	}
2748 
2749 	/* Extract the hash stored in the headroom before running XDP */
2750 	if (net_dev->features & NETIF_F_RXHASH && priv->keygen_in_use &&
2751 	    !fman_port_get_hash_result_offset(priv->mac_dev->port[RX],
2752 					      &hash_offset)) {
2753 		hash = be32_to_cpu(*(u32 *)(vaddr + hash_offset));
2754 		hash_valid = true;
2755 	}
2756 
2757 	if (likely(fd_format == qm_fd_contig)) {
2758 		xdp_act = dpaa_run_xdp(priv, (struct qm_fd *)fd, vaddr,
2759 				       dpaa_fq, &xdp_meta_len);
2760 		np->xdp_act |= xdp_act;
2761 		if (xdp_act != XDP_PASS) {
2762 			percpu_stats->rx_packets++;
2763 			percpu_stats->rx_bytes += qm_fd_get_length(fd);
2764 			return qman_cb_dqrr_consume;
2765 		}
2766 		skb = contig_fd_to_skb(priv, fd);
2767 	} else {
2768 		/* XDP doesn't support S/G frames. Return the fragments to the
2769 		 * buffer pool and release the SGT.
2770 		 */
2771 		if (READ_ONCE(priv->xdp_prog)) {
2772 			WARN_ONCE(1, "S/G frames not supported under XDP\n");
2773 			sgt = vaddr + qm_fd_get_offset(fd);
2774 			dpaa_release_sgt_members(sgt);
2775 			free_pages((unsigned long)vaddr, 0);
2776 			return qman_cb_dqrr_consume;
2777 		}
2778 		skb = sg_fd_to_skb(priv, fd);
2779 	}
2780 	if (!skb)
2781 		return qman_cb_dqrr_consume;
2782 
2783 	if (xdp_meta_len)
2784 		skb_metadata_set(skb, xdp_meta_len);
2785 
2786 	/* Set the previously extracted timestamp */
2787 	if (ts_valid) {
2788 		shhwtstamps = skb_hwtstamps(skb);
2789 		memset(shhwtstamps, 0, sizeof(*shhwtstamps));
2790 		shhwtstamps->hwtstamp = ns_to_ktime(ns);
2791 	}
2792 
2793 	skb->protocol = eth_type_trans(skb, net_dev);
2794 
2795 	/* Set the previously extracted hash */
2796 	if (hash_valid) {
2797 		enum pkt_hash_types type;
2798 
2799 		/* if L4 exists, it was used in the hash generation */
2800 		type = be32_to_cpu(fd->status) & FM_FD_STAT_L4CV ?
2801 			PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3;
2802 		skb_set_hash(skb, hash, type);
2803 	}
2804 
2805 	skb_len = skb->len;
2806 
2807 	if (unlikely(netif_receive_skb(skb) == NET_RX_DROP)) {
2808 		percpu_stats->rx_dropped++;
2809 		return qman_cb_dqrr_consume;
2810 	}
2811 
2812 	percpu_stats->rx_packets++;
2813 	percpu_stats->rx_bytes += skb_len;
2814 
2815 	return qman_cb_dqrr_consume;
2816 }
2817 
2818 static enum qman_cb_dqrr_result conf_error_dqrr(struct qman_portal *portal,
2819 						struct qman_fq *fq,
2820 						const struct qm_dqrr_entry *dq,
2821 						bool sched_napi)
2822 {
2823 	struct dpaa_percpu_priv *percpu_priv;
2824 	struct net_device *net_dev;
2825 	struct dpaa_priv *priv;
2826 
2827 	net_dev = ((struct dpaa_fq *)fq)->net_dev;
2828 	priv = netdev_priv(net_dev);
2829 
2830 	percpu_priv = this_cpu_ptr(priv->percpu_priv);
2831 
2832 	if (dpaa_eth_napi_schedule(percpu_priv, portal, sched_napi))
2833 		return qman_cb_dqrr_stop;
2834 
2835 	dpaa_tx_error(net_dev, priv, percpu_priv, &dq->fd, fq->fqid);
2836 
2837 	return qman_cb_dqrr_consume;
2838 }
2839 
2840 static enum qman_cb_dqrr_result conf_dflt_dqrr(struct qman_portal *portal,
2841 					       struct qman_fq *fq,
2842 					       const struct qm_dqrr_entry *dq,
2843 					       bool sched_napi)
2844 {
2845 	struct dpaa_percpu_priv *percpu_priv;
2846 	struct net_device *net_dev;
2847 	struct dpaa_priv *priv;
2848 
2849 	net_dev = ((struct dpaa_fq *)fq)->net_dev;
2850 	priv = netdev_priv(net_dev);
2851 
2852 	/* Trace the fd */
2853 	trace_dpaa_tx_conf_fd(net_dev, fq, &dq->fd);
2854 
2855 	percpu_priv = this_cpu_ptr(priv->percpu_priv);
2856 
2857 	if (dpaa_eth_napi_schedule(percpu_priv, portal, sched_napi))
2858 		return qman_cb_dqrr_stop;
2859 
2860 	dpaa_tx_conf(net_dev, priv, percpu_priv, &dq->fd, fq->fqid);
2861 
2862 	return qman_cb_dqrr_consume;
2863 }
2864 
2865 static void egress_ern(struct qman_portal *portal,
2866 		       struct qman_fq *fq,
2867 		       const union qm_mr_entry *msg)
2868 {
2869 	const struct qm_fd *fd = &msg->ern.fd;
2870 	struct dpaa_percpu_priv *percpu_priv;
2871 	const struct dpaa_priv *priv;
2872 	struct net_device *net_dev;
2873 	struct sk_buff *skb;
2874 
2875 	net_dev = ((struct dpaa_fq *)fq)->net_dev;
2876 	priv = netdev_priv(net_dev);
2877 	percpu_priv = this_cpu_ptr(priv->percpu_priv);
2878 
2879 	percpu_priv->stats.tx_dropped++;
2880 	percpu_priv->stats.tx_fifo_errors++;
2881 	count_ern(percpu_priv, msg);
2882 
2883 	skb = dpaa_cleanup_tx_fd(priv, fd, false);
2884 	dev_kfree_skb_any(skb);
2885 }
2886 
2887 static const struct dpaa_fq_cbs dpaa_fq_cbs = {
2888 	.rx_defq = { .cb = { .dqrr = rx_default_dqrr } },
2889 	.tx_defq = { .cb = { .dqrr = conf_dflt_dqrr } },
2890 	.rx_errq = { .cb = { .dqrr = rx_error_dqrr } },
2891 	.tx_errq = { .cb = { .dqrr = conf_error_dqrr } },
2892 	.egress_ern = { .cb = { .ern = egress_ern } }
2893 };
2894 
2895 static void dpaa_eth_napi_enable(struct dpaa_priv *priv)
2896 {
2897 	struct dpaa_percpu_priv *percpu_priv;
2898 	int i;
2899 
2900 	for_each_online_cpu(i) {
2901 		percpu_priv = per_cpu_ptr(priv->percpu_priv, i);
2902 
2903 		percpu_priv->np.down = false;
2904 		napi_enable(&percpu_priv->np.napi);
2905 	}
2906 }
2907 
2908 static void dpaa_eth_napi_disable(struct dpaa_priv *priv)
2909 {
2910 	struct dpaa_percpu_priv *percpu_priv;
2911 	int i;
2912 
2913 	for_each_online_cpu(i) {
2914 		percpu_priv = per_cpu_ptr(priv->percpu_priv, i);
2915 
2916 		percpu_priv->np.down = true;
2917 		napi_disable(&percpu_priv->np.napi);
2918 	}
2919 }
2920 
2921 static int dpaa_open(struct net_device *net_dev)
2922 {
2923 	struct mac_device *mac_dev;
2924 	struct dpaa_priv *priv;
2925 	int err, i;
2926 
2927 	priv = netdev_priv(net_dev);
2928 	mac_dev = priv->mac_dev;
2929 	dpaa_eth_napi_enable(priv);
2930 
2931 	err = phylink_of_phy_connect(mac_dev->phylink,
2932 				     mac_dev->dev->of_node, 0);
2933 	if (err)
2934 		goto phy_init_failed;
2935 
2936 	for (i = 0; i < ARRAY_SIZE(mac_dev->port); i++) {
2937 		err = fman_port_enable(mac_dev->port[i]);
2938 		if (err)
2939 			goto mac_start_failed;
2940 	}
2941 
2942 	err = priv->mac_dev->enable(mac_dev->fman_mac);
2943 	if (err < 0) {
2944 		netif_err(priv, ifup, net_dev, "mac_dev->enable() = %d\n", err);
2945 		goto mac_start_failed;
2946 	}
2947 	phylink_start(mac_dev->phylink);
2948 
2949 	netif_tx_start_all_queues(net_dev);
2950 
2951 	return 0;
2952 
2953 mac_start_failed:
2954 	for (i = 0; i < ARRAY_SIZE(mac_dev->port); i++)
2955 		fman_port_disable(mac_dev->port[i]);
2956 	phylink_disconnect_phy(mac_dev->phylink);
2957 
2958 phy_init_failed:
2959 	dpaa_eth_napi_disable(priv);
2960 
2961 	return err;
2962 }
2963 
2964 static int dpaa_eth_stop(struct net_device *net_dev)
2965 {
2966 	struct dpaa_priv *priv;
2967 	int err;
2968 
2969 	err = dpaa_stop(net_dev);
2970 
2971 	priv = netdev_priv(net_dev);
2972 	dpaa_eth_napi_disable(priv);
2973 
2974 	return err;
2975 }
2976 
2977 static bool xdp_validate_mtu(struct dpaa_priv *priv, int mtu)
2978 {
2979 	int max_contig_data = priv->dpaa_bp->size - priv->rx_headroom;
2980 
2981 	/* We do not support S/G fragments when XDP is enabled.
2982 	 * Limit the MTU in relation to the buffer size.
2983 	 */
2984 	if (mtu + VLAN_ETH_HLEN + ETH_FCS_LEN > max_contig_data) {
2985 		dev_warn(priv->net_dev->dev.parent,
2986 			 "The maximum MTU for XDP is %d\n",
2987 			 max_contig_data - VLAN_ETH_HLEN - ETH_FCS_LEN);
2988 		return false;
2989 	}
2990 
2991 	return true;
2992 }
2993 
2994 static int dpaa_change_mtu(struct net_device *net_dev, int new_mtu)
2995 {
2996 	struct dpaa_priv *priv = netdev_priv(net_dev);
2997 
2998 	if (priv->xdp_prog && !xdp_validate_mtu(priv, new_mtu))
2999 		return -EINVAL;
3000 
3001 	net_dev->mtu = new_mtu;
3002 	return 0;
3003 }
3004 
3005 static int dpaa_setup_xdp(struct net_device *net_dev, struct netdev_bpf *bpf)
3006 {
3007 	struct dpaa_priv *priv = netdev_priv(net_dev);
3008 	struct bpf_prog *old_prog;
3009 	int err;
3010 	bool up;
3011 
3012 	/* S/G fragments are not supported in XDP-mode */
3013 	if (bpf->prog && !xdp_validate_mtu(priv, net_dev->mtu)) {
3014 		NL_SET_ERR_MSG_MOD(bpf->extack, "MTU too large for XDP");
3015 		return -EINVAL;
3016 	}
3017 
3018 	up = netif_running(net_dev);
3019 
3020 	if (up)
3021 		dpaa_eth_stop(net_dev);
3022 
3023 	old_prog = xchg(&priv->xdp_prog, bpf->prog);
3024 	if (old_prog)
3025 		bpf_prog_put(old_prog);
3026 
3027 	if (up) {
3028 		err = dpaa_open(net_dev);
3029 		if (err) {
3030 			NL_SET_ERR_MSG_MOD(bpf->extack, "dpaa_open() failed");
3031 			return err;
3032 		}
3033 	}
3034 
3035 	return 0;
3036 }
3037 
3038 static int dpaa_xdp(struct net_device *net_dev, struct netdev_bpf *xdp)
3039 {
3040 	switch (xdp->command) {
3041 	case XDP_SETUP_PROG:
3042 		return dpaa_setup_xdp(net_dev, xdp);
3043 	default:
3044 		return -EINVAL;
3045 	}
3046 }
3047 
3048 static int dpaa_xdp_xmit(struct net_device *net_dev, int n,
3049 			 struct xdp_frame **frames, u32 flags)
3050 {
3051 	struct xdp_frame *xdpf;
3052 	int i, nxmit = 0;
3053 
3054 	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
3055 		return -EINVAL;
3056 
3057 	if (!netif_running(net_dev))
3058 		return -ENETDOWN;
3059 
3060 	for (i = 0; i < n; i++) {
3061 		xdpf = frames[i];
3062 		if (dpaa_xdp_xmit_frame(net_dev, xdpf))
3063 			break;
3064 		nxmit++;
3065 	}
3066 
3067 	return nxmit;
3068 }
3069 
3070 static int dpaa_ts_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
3071 {
3072 	struct dpaa_priv *priv = netdev_priv(dev);
3073 	struct hwtstamp_config config;
3074 
3075 	if (copy_from_user(&config, rq->ifr_data, sizeof(config)))
3076 		return -EFAULT;
3077 
3078 	switch (config.tx_type) {
3079 	case HWTSTAMP_TX_OFF:
3080 		/* Couldn't disable rx/tx timestamping separately.
3081 		 * Do nothing here.
3082 		 */
3083 		priv->tx_tstamp = false;
3084 		break;
3085 	case HWTSTAMP_TX_ON:
3086 		priv->mac_dev->set_tstamp(priv->mac_dev->fman_mac, true);
3087 		priv->tx_tstamp = true;
3088 		break;
3089 	default:
3090 		return -ERANGE;
3091 	}
3092 
3093 	if (config.rx_filter == HWTSTAMP_FILTER_NONE) {
3094 		/* Couldn't disable rx/tx timestamping separately.
3095 		 * Do nothing here.
3096 		 */
3097 		priv->rx_tstamp = false;
3098 	} else {
3099 		priv->mac_dev->set_tstamp(priv->mac_dev->fman_mac, true);
3100 		priv->rx_tstamp = true;
3101 		/* TS is set for all frame types, not only those requested */
3102 		config.rx_filter = HWTSTAMP_FILTER_ALL;
3103 	}
3104 
3105 	return copy_to_user(rq->ifr_data, &config, sizeof(config)) ?
3106 			-EFAULT : 0;
3107 }
3108 
3109 static int dpaa_ioctl(struct net_device *net_dev, struct ifreq *rq, int cmd)
3110 {
3111 	int ret = -EINVAL;
3112 	struct dpaa_priv *priv = netdev_priv(net_dev);
3113 
3114 	if (cmd == SIOCGMIIREG) {
3115 		if (net_dev->phydev)
3116 			return phylink_mii_ioctl(priv->mac_dev->phylink, rq,
3117 						 cmd);
3118 	}
3119 
3120 	if (cmd == SIOCSHWTSTAMP)
3121 		return dpaa_ts_ioctl(net_dev, rq, cmd);
3122 
3123 	return ret;
3124 }
3125 
3126 static const struct net_device_ops dpaa_ops = {
3127 	.ndo_open = dpaa_open,
3128 	.ndo_start_xmit = dpaa_start_xmit,
3129 	.ndo_stop = dpaa_eth_stop,
3130 	.ndo_tx_timeout = dpaa_tx_timeout,
3131 	.ndo_get_stats64 = dpaa_get_stats64,
3132 	.ndo_change_carrier = fixed_phy_change_carrier,
3133 	.ndo_set_mac_address = dpaa_set_mac_address,
3134 	.ndo_validate_addr = eth_validate_addr,
3135 	.ndo_set_rx_mode = dpaa_set_rx_mode,
3136 	.ndo_eth_ioctl = dpaa_ioctl,
3137 	.ndo_setup_tc = dpaa_setup_tc,
3138 	.ndo_change_mtu = dpaa_change_mtu,
3139 	.ndo_bpf = dpaa_xdp,
3140 	.ndo_xdp_xmit = dpaa_xdp_xmit,
3141 };
3142 
3143 static int dpaa_napi_add(struct net_device *net_dev)
3144 {
3145 	struct dpaa_priv *priv = netdev_priv(net_dev);
3146 	struct dpaa_percpu_priv *percpu_priv;
3147 	int cpu;
3148 
3149 	for_each_possible_cpu(cpu) {
3150 		percpu_priv = per_cpu_ptr(priv->percpu_priv, cpu);
3151 
3152 		netif_napi_add(net_dev, &percpu_priv->np.napi, dpaa_eth_poll);
3153 	}
3154 
3155 	return 0;
3156 }
3157 
3158 static void dpaa_napi_del(struct net_device *net_dev)
3159 {
3160 	struct dpaa_priv *priv = netdev_priv(net_dev);
3161 	struct dpaa_percpu_priv *percpu_priv;
3162 	int cpu;
3163 
3164 	for_each_possible_cpu(cpu) {
3165 		percpu_priv = per_cpu_ptr(priv->percpu_priv, cpu);
3166 
3167 		netif_napi_del(&percpu_priv->np.napi);
3168 	}
3169 }
3170 
3171 static inline void dpaa_bp_free_pf(const struct dpaa_bp *bp,
3172 				   struct bm_buffer *bmb)
3173 {
3174 	dma_addr_t addr = bm_buf_addr(bmb);
3175 
3176 	dma_unmap_page(bp->priv->rx_dma_dev, addr, DPAA_BP_RAW_SIZE,
3177 		       DMA_FROM_DEVICE);
3178 
3179 	skb_free_frag(phys_to_virt(addr));
3180 }
3181 
3182 /* Alloc the dpaa_bp struct and configure default values */
3183 static struct dpaa_bp *dpaa_bp_alloc(struct device *dev)
3184 {
3185 	struct dpaa_bp *dpaa_bp;
3186 
3187 	dpaa_bp = devm_kzalloc(dev, sizeof(*dpaa_bp), GFP_KERNEL);
3188 	if (!dpaa_bp)
3189 		return ERR_PTR(-ENOMEM);
3190 
3191 	dpaa_bp->bpid = FSL_DPAA_BPID_INV;
3192 	dpaa_bp->percpu_count = devm_alloc_percpu(dev, *dpaa_bp->percpu_count);
3193 	if (!dpaa_bp->percpu_count)
3194 		return ERR_PTR(-ENOMEM);
3195 
3196 	dpaa_bp->config_count = FSL_DPAA_ETH_MAX_BUF_COUNT;
3197 
3198 	dpaa_bp->seed_cb = dpaa_bp_seed;
3199 	dpaa_bp->free_buf_cb = dpaa_bp_free_pf;
3200 
3201 	return dpaa_bp;
3202 }
3203 
3204 /* Place all ingress FQs (Rx Default, Rx Error) in a dedicated CGR.
3205  * We won't be sending congestion notifications to FMan; for now, we just use
3206  * this CGR to generate enqueue rejections to FMan in order to drop the frames
3207  * before they reach our ingress queues and eat up memory.
3208  */
3209 static int dpaa_ingress_cgr_init(struct dpaa_priv *priv)
3210 {
3211 	struct qm_mcc_initcgr initcgr;
3212 	u32 cs_th;
3213 	int err;
3214 
3215 	err = qman_alloc_cgrid(&priv->ingress_cgr.cgrid);
3216 	if (err < 0) {
3217 		if (netif_msg_drv(priv))
3218 			pr_err("Error %d allocating CGR ID\n", err);
3219 		goto out_error;
3220 	}
3221 
3222 	/* Enable CS TD, but disable Congestion State Change Notifications. */
3223 	memset(&initcgr, 0, sizeof(initcgr));
3224 	initcgr.we_mask = cpu_to_be16(QM_CGR_WE_CS_THRES);
3225 	initcgr.cgr.cscn_en = QM_CGR_EN;
3226 	cs_th = DPAA_INGRESS_CS_THRESHOLD;
3227 	qm_cgr_cs_thres_set64(&initcgr.cgr.cs_thres, cs_th, 1);
3228 
3229 	initcgr.we_mask |= cpu_to_be16(QM_CGR_WE_CSTD_EN);
3230 	initcgr.cgr.cstd_en = QM_CGR_EN;
3231 
3232 	/* This CGR will be associated with the SWP affined to the current CPU.
3233 	 * However, we'll place all our ingress FQs in it.
3234 	 */
3235 	err = qman_create_cgr(&priv->ingress_cgr, QMAN_CGR_FLAG_USE_INIT,
3236 			      &initcgr);
3237 	if (err < 0) {
3238 		if (netif_msg_drv(priv))
3239 			pr_err("Error %d creating ingress CGR with ID %d\n",
3240 			       err, priv->ingress_cgr.cgrid);
3241 		qman_release_cgrid(priv->ingress_cgr.cgrid);
3242 		goto out_error;
3243 	}
3244 	if (netif_msg_drv(priv))
3245 		pr_debug("Created ingress CGR %d for netdev with hwaddr %pM\n",
3246 			 priv->ingress_cgr.cgrid, priv->mac_dev->addr);
3247 
3248 	priv->use_ingress_cgr = true;
3249 
3250 out_error:
3251 	return err;
3252 }
3253 
3254 static u16 dpaa_get_headroom(struct dpaa_buffer_layout *bl,
3255 			     enum port_type port)
3256 {
3257 	u16 headroom;
3258 
3259 	/* The frame headroom must accommodate:
3260 	 * - the driver private data area
3261 	 * - parse results, hash results, timestamp if selected
3262 	 * If either hash results or time stamp are selected, both will
3263 	 * be copied to/from the frame headroom, as TS is located between PR and
3264 	 * HR in the IC and IC copy size has a granularity of 16bytes
3265 	 * (see description of FMBM_RICP and FMBM_TICP registers in DPAARM)
3266 	 *
3267 	 * Also make sure the headroom is a multiple of data_align bytes
3268 	 */
3269 	headroom = (u16)(bl[port].priv_data_size + DPAA_HWA_SIZE);
3270 
3271 	if (port == RX) {
3272 #ifdef CONFIG_DPAA_ERRATUM_A050385
3273 		if (unlikely(fman_has_errata_a050385()))
3274 			headroom = XDP_PACKET_HEADROOM;
3275 #endif
3276 
3277 		return ALIGN(headroom, DPAA_FD_RX_DATA_ALIGNMENT);
3278 	} else {
3279 		return ALIGN(headroom, DPAA_FD_DATA_ALIGNMENT);
3280 	}
3281 }
3282 
3283 static int dpaa_eth_probe(struct platform_device *pdev)
3284 {
3285 	struct net_device *net_dev = NULL;
3286 	struct dpaa_bp *dpaa_bp = NULL;
3287 	struct dpaa_fq *dpaa_fq, *tmp;
3288 	struct dpaa_priv *priv = NULL;
3289 	struct fm_port_fqs port_fqs;
3290 	struct mac_device *mac_dev;
3291 	int err = 0, channel;
3292 	struct device *dev;
3293 
3294 	dev = &pdev->dev;
3295 
3296 	err = bman_is_probed();
3297 	if (!err)
3298 		return -EPROBE_DEFER;
3299 	if (err < 0) {
3300 		dev_err(dev, "failing probe due to bman probe error\n");
3301 		return -ENODEV;
3302 	}
3303 	err = qman_is_probed();
3304 	if (!err)
3305 		return -EPROBE_DEFER;
3306 	if (err < 0) {
3307 		dev_err(dev, "failing probe due to qman probe error\n");
3308 		return -ENODEV;
3309 	}
3310 	err = bman_portals_probed();
3311 	if (!err)
3312 		return -EPROBE_DEFER;
3313 	if (err < 0) {
3314 		dev_err(dev,
3315 			"failing probe due to bman portals probe error\n");
3316 		return -ENODEV;
3317 	}
3318 	err = qman_portals_probed();
3319 	if (!err)
3320 		return -EPROBE_DEFER;
3321 	if (err < 0) {
3322 		dev_err(dev,
3323 			"failing probe due to qman portals probe error\n");
3324 		return -ENODEV;
3325 	}
3326 
3327 	/* Allocate this early, so we can store relevant information in
3328 	 * the private area
3329 	 */
3330 	net_dev = alloc_etherdev_mq(sizeof(*priv), DPAA_ETH_TXQ_NUM);
3331 	if (!net_dev) {
3332 		dev_err(dev, "alloc_etherdev_mq() failed\n");
3333 		return -ENOMEM;
3334 	}
3335 
3336 	/* Do this here, so we can be verbose early */
3337 	SET_NETDEV_DEV(net_dev, dev->parent);
3338 	dev_set_drvdata(dev, net_dev);
3339 
3340 	priv = netdev_priv(net_dev);
3341 	priv->net_dev = net_dev;
3342 
3343 	priv->msg_enable = netif_msg_init(debug, DPAA_MSG_DEFAULT);
3344 
3345 	mac_dev = dpaa_mac_dev_get(pdev);
3346 	if (IS_ERR(mac_dev)) {
3347 		netdev_err(net_dev, "dpaa_mac_dev_get() failed\n");
3348 		err = PTR_ERR(mac_dev);
3349 		goto free_netdev;
3350 	}
3351 
3352 	/* Devices used for DMA mapping */
3353 	priv->rx_dma_dev = fman_port_get_device(mac_dev->port[RX]);
3354 	priv->tx_dma_dev = fman_port_get_device(mac_dev->port[TX]);
3355 	err = dma_coerce_mask_and_coherent(priv->rx_dma_dev, DMA_BIT_MASK(40));
3356 	if (!err)
3357 		err = dma_coerce_mask_and_coherent(priv->tx_dma_dev,
3358 						   DMA_BIT_MASK(40));
3359 	if (err) {
3360 		netdev_err(net_dev, "dma_coerce_mask_and_coherent() failed\n");
3361 		goto free_netdev;
3362 	}
3363 
3364 	/* If fsl_fm_max_frm is set to a higher value than the all-common 1500,
3365 	 * we choose conservatively and let the user explicitly set a higher
3366 	 * MTU via ifconfig. Otherwise, the user may end up with different MTUs
3367 	 * in the same LAN.
3368 	 * If on the other hand fsl_fm_max_frm has been chosen below 1500,
3369 	 * start with the maximum allowed.
3370 	 */
3371 	net_dev->mtu = min(dpaa_get_max_mtu(), ETH_DATA_LEN);
3372 
3373 	netdev_dbg(net_dev, "Setting initial MTU on net device: %d\n",
3374 		   net_dev->mtu);
3375 
3376 	priv->buf_layout[RX].priv_data_size = DPAA_RX_PRIV_DATA_SIZE; /* Rx */
3377 	priv->buf_layout[TX].priv_data_size = DPAA_TX_PRIV_DATA_SIZE; /* Tx */
3378 
3379 	/* bp init */
3380 	dpaa_bp = dpaa_bp_alloc(dev);
3381 	if (IS_ERR(dpaa_bp)) {
3382 		err = PTR_ERR(dpaa_bp);
3383 		goto free_dpaa_bps;
3384 	}
3385 	/* the raw size of the buffers used for reception */
3386 	dpaa_bp->raw_size = DPAA_BP_RAW_SIZE;
3387 	/* avoid runtime computations by keeping the usable size here */
3388 	dpaa_bp->size = dpaa_bp_size(dpaa_bp->raw_size);
3389 	dpaa_bp->priv = priv;
3390 
3391 	err = dpaa_bp_alloc_pool(dpaa_bp);
3392 	if (err < 0)
3393 		goto free_dpaa_bps;
3394 	priv->dpaa_bp = dpaa_bp;
3395 
3396 	INIT_LIST_HEAD(&priv->dpaa_fq_list);
3397 
3398 	memset(&port_fqs, 0, sizeof(port_fqs));
3399 
3400 	err = dpaa_alloc_all_fqs(dev, &priv->dpaa_fq_list, &port_fqs);
3401 	if (err < 0) {
3402 		dev_err(dev, "dpaa_alloc_all_fqs() failed\n");
3403 		goto free_dpaa_bps;
3404 	}
3405 
3406 	priv->mac_dev = mac_dev;
3407 
3408 	channel = dpaa_get_channel();
3409 	if (channel < 0) {
3410 		dev_err(dev, "dpaa_get_channel() failed\n");
3411 		err = channel;
3412 		goto free_dpaa_bps;
3413 	}
3414 
3415 	priv->channel = (u16)channel;
3416 
3417 	/* Walk the CPUs with affine portals
3418 	 * and add this pool channel to each's dequeue mask.
3419 	 */
3420 	dpaa_eth_add_channel(priv->channel, &pdev->dev);
3421 
3422 	dpaa_fq_setup(priv, &dpaa_fq_cbs, priv->mac_dev->port[TX]);
3423 
3424 	/* Create a congestion group for this netdev, with
3425 	 * dynamically-allocated CGR ID.
3426 	 * Must be executed after probing the MAC, but before
3427 	 * assigning the egress FQs to the CGRs.
3428 	 */
3429 	err = dpaa_eth_cgr_init(priv);
3430 	if (err < 0) {
3431 		dev_err(dev, "Error initializing CGR\n");
3432 		goto free_dpaa_bps;
3433 	}
3434 
3435 	err = dpaa_ingress_cgr_init(priv);
3436 	if (err < 0) {
3437 		dev_err(dev, "Error initializing ingress CGR\n");
3438 		goto delete_egress_cgr;
3439 	}
3440 
3441 	/* Add the FQs to the interface, and make them active */
3442 	list_for_each_entry_safe(dpaa_fq, tmp, &priv->dpaa_fq_list, list) {
3443 		err = dpaa_fq_init(dpaa_fq, false);
3444 		if (err < 0)
3445 			goto free_dpaa_fqs;
3446 	}
3447 
3448 	priv->tx_headroom = dpaa_get_headroom(priv->buf_layout, TX);
3449 	priv->rx_headroom = dpaa_get_headroom(priv->buf_layout, RX);
3450 
3451 	/* All real interfaces need their ports initialized */
3452 	err = dpaa_eth_init_ports(mac_dev, dpaa_bp, &port_fqs,
3453 				  &priv->buf_layout[0], dev);
3454 	if (err)
3455 		goto free_dpaa_fqs;
3456 
3457 	/* Rx traffic distribution based on keygen hashing defaults to on */
3458 	priv->keygen_in_use = true;
3459 
3460 	priv->percpu_priv = devm_alloc_percpu(dev, *priv->percpu_priv);
3461 	if (!priv->percpu_priv) {
3462 		dev_err(dev, "devm_alloc_percpu() failed\n");
3463 		err = -ENOMEM;
3464 		goto free_dpaa_fqs;
3465 	}
3466 
3467 	priv->num_tc = 1;
3468 	netif_set_real_num_tx_queues(net_dev, priv->num_tc * DPAA_TC_TXQ_NUM);
3469 
3470 	/* Initialize NAPI */
3471 	err = dpaa_napi_add(net_dev);
3472 	if (err < 0)
3473 		goto delete_dpaa_napi;
3474 
3475 	err = dpaa_netdev_init(net_dev, &dpaa_ops, tx_timeout);
3476 	if (err < 0)
3477 		goto delete_dpaa_napi;
3478 
3479 	dpaa_eth_sysfs_init(&net_dev->dev);
3480 
3481 	netif_info(priv, probe, net_dev, "Probed interface %s\n",
3482 		   net_dev->name);
3483 
3484 	return 0;
3485 
3486 delete_dpaa_napi:
3487 	dpaa_napi_del(net_dev);
3488 free_dpaa_fqs:
3489 	dpaa_fq_free(dev, &priv->dpaa_fq_list);
3490 	qman_delete_cgr_safe(&priv->ingress_cgr);
3491 	qman_release_cgrid(priv->ingress_cgr.cgrid);
3492 delete_egress_cgr:
3493 	qman_delete_cgr_safe(&priv->cgr_data.cgr);
3494 	qman_release_cgrid(priv->cgr_data.cgr.cgrid);
3495 free_dpaa_bps:
3496 	dpaa_bps_free(priv);
3497 free_netdev:
3498 	dev_set_drvdata(dev, NULL);
3499 	free_netdev(net_dev);
3500 
3501 	return err;
3502 }
3503 
3504 static int dpaa_remove(struct platform_device *pdev)
3505 {
3506 	struct net_device *net_dev;
3507 	struct dpaa_priv *priv;
3508 	struct device *dev;
3509 	int err;
3510 
3511 	dev = &pdev->dev;
3512 	net_dev = dev_get_drvdata(dev);
3513 
3514 	priv = netdev_priv(net_dev);
3515 
3516 	dpaa_eth_sysfs_remove(dev);
3517 
3518 	dev_set_drvdata(dev, NULL);
3519 	unregister_netdev(net_dev);
3520 	phylink_destroy(priv->mac_dev->phylink);
3521 
3522 	err = dpaa_fq_free(dev, &priv->dpaa_fq_list);
3523 
3524 	qman_delete_cgr_safe(&priv->ingress_cgr);
3525 	qman_release_cgrid(priv->ingress_cgr.cgrid);
3526 	qman_delete_cgr_safe(&priv->cgr_data.cgr);
3527 	qman_release_cgrid(priv->cgr_data.cgr.cgrid);
3528 
3529 	dpaa_napi_del(net_dev);
3530 
3531 	dpaa_bps_free(priv);
3532 
3533 	free_netdev(net_dev);
3534 
3535 	return err;
3536 }
3537 
3538 static const struct platform_device_id dpaa_devtype[] = {
3539 	{
3540 		.name = "dpaa-ethernet",
3541 		.driver_data = 0,
3542 	}, {
3543 	}
3544 };
3545 MODULE_DEVICE_TABLE(platform, dpaa_devtype);
3546 
3547 static struct platform_driver dpaa_driver = {
3548 	.driver = {
3549 		.name = KBUILD_MODNAME,
3550 	},
3551 	.id_table = dpaa_devtype,
3552 	.probe = dpaa_eth_probe,
3553 	.remove = dpaa_remove
3554 };
3555 
3556 static int __init dpaa_load(void)
3557 {
3558 	int err;
3559 
3560 	pr_debug("FSL DPAA Ethernet driver\n");
3561 
3562 	/* initialize dpaa_eth mirror values */
3563 	dpaa_rx_extra_headroom = fman_get_rx_extra_headroom();
3564 	dpaa_max_frm = fman_get_max_frm();
3565 
3566 	err = platform_driver_register(&dpaa_driver);
3567 	if (err < 0)
3568 		pr_err("Error, platform_driver_register() = %d\n", err);
3569 
3570 	return err;
3571 }
3572 module_init(dpaa_load);
3573 
3574 static void __exit dpaa_unload(void)
3575 {
3576 	platform_driver_unregister(&dpaa_driver);
3577 
3578 	/* Only one channel is used and needs to be released after all
3579 	 * interfaces are removed
3580 	 */
3581 	dpaa_release_channel();
3582 }
3583 module_exit(dpaa_unload);
3584 
3585 MODULE_LICENSE("Dual BSD/GPL");
3586 MODULE_DESCRIPTION("FSL DPAA Ethernet driver");
3587