1 // SPDX-License-Identifier: BSD-3-Clause OR GPL-2.0-or-later 2 /* 3 * Copyright 2008 - 2016 Freescale Semiconductor Inc. 4 * Copyright 2020 NXP 5 */ 6 7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 8 9 #include <linux/init.h> 10 #include <linux/mod_devicetable.h> 11 #include <linux/module.h> 12 #include <linux/of_mdio.h> 13 #include <linux/of_net.h> 14 #include <linux/io.h> 15 #include <linux/if_arp.h> 16 #include <linux/if_vlan.h> 17 #include <linux/icmp.h> 18 #include <linux/ip.h> 19 #include <linux/ipv6.h> 20 #include <linux/platform_device.h> 21 #include <linux/udp.h> 22 #include <linux/tcp.h> 23 #include <linux/net.h> 24 #include <linux/skbuff.h> 25 #include <linux/etherdevice.h> 26 #include <linux/if_ether.h> 27 #include <linux/highmem.h> 28 #include <linux/percpu.h> 29 #include <linux/dma-mapping.h> 30 #include <linux/sort.h> 31 #include <linux/phy_fixed.h> 32 #include <linux/bpf.h> 33 #include <linux/bpf_trace.h> 34 #include <soc/fsl/bman.h> 35 #include <soc/fsl/qman.h> 36 #include "fman.h" 37 #include "fman_port.h" 38 #include "mac.h" 39 #include "dpaa_eth.h" 40 41 /* CREATE_TRACE_POINTS only needs to be defined once. Other dpaa files 42 * using trace events only need to #include <trace/events/sched.h> 43 */ 44 #define CREATE_TRACE_POINTS 45 #include "dpaa_eth_trace.h" 46 47 static int debug = -1; 48 module_param(debug, int, 0444); 49 MODULE_PARM_DESC(debug, "Module/Driver verbosity level (0=none,...,16=all)"); 50 51 static u16 tx_timeout = 1000; 52 module_param(tx_timeout, ushort, 0444); 53 MODULE_PARM_DESC(tx_timeout, "The Tx timeout in ms"); 54 55 #define FM_FD_STAT_RX_ERRORS \ 56 (FM_FD_ERR_DMA | FM_FD_ERR_PHYSICAL | \ 57 FM_FD_ERR_SIZE | FM_FD_ERR_CLS_DISCARD | \ 58 FM_FD_ERR_EXTRACTION | FM_FD_ERR_NO_SCHEME | \ 59 FM_FD_ERR_PRS_TIMEOUT | FM_FD_ERR_PRS_ILL_INSTRUCT | \ 60 FM_FD_ERR_PRS_HDR_ERR) 61 62 #define FM_FD_STAT_TX_ERRORS \ 63 (FM_FD_ERR_UNSUPPORTED_FORMAT | \ 64 FM_FD_ERR_LENGTH | FM_FD_ERR_DMA) 65 66 #define DPAA_MSG_DEFAULT (NETIF_MSG_DRV | NETIF_MSG_PROBE | \ 67 NETIF_MSG_LINK | NETIF_MSG_IFUP | \ 68 NETIF_MSG_IFDOWN | NETIF_MSG_HW) 69 70 #define DPAA_INGRESS_CS_THRESHOLD 0x10000000 71 /* Ingress congestion threshold on FMan ports 72 * The size in bytes of the ingress tail-drop threshold on FMan ports. 73 * Traffic piling up above this value will be rejected by QMan and discarded 74 * by FMan. 75 */ 76 77 /* Size in bytes of the FQ taildrop threshold */ 78 #define DPAA_FQ_TD 0x200000 79 80 #define DPAA_CS_THRESHOLD_1G 0x06000000 81 /* Egress congestion threshold on 1G ports, range 0x1000 .. 0x10000000 82 * The size in bytes of the egress Congestion State notification threshold on 83 * 1G ports. The 1G dTSECs can quite easily be flooded by cores doing Tx in a 84 * tight loop (e.g. by sending UDP datagrams at "while(1) speed"), 85 * and the larger the frame size, the more acute the problem. 86 * So we have to find a balance between these factors: 87 * - avoiding the device staying congested for a prolonged time (risking 88 * the netdev watchdog to fire - see also the tx_timeout module param); 89 * - affecting performance of protocols such as TCP, which otherwise 90 * behave well under the congestion notification mechanism; 91 * - preventing the Tx cores from tightly-looping (as if the congestion 92 * threshold was too low to be effective); 93 * - running out of memory if the CS threshold is set too high. 94 */ 95 96 #define DPAA_CS_THRESHOLD_10G 0x10000000 97 /* The size in bytes of the egress Congestion State notification threshold on 98 * 10G ports, range 0x1000 .. 0x10000000 99 */ 100 101 /* Largest value that the FQD's OAL field can hold */ 102 #define FSL_QMAN_MAX_OAL 127 103 104 /* Default alignment for start of data in an Rx FD */ 105 #ifdef CONFIG_DPAA_ERRATUM_A050385 106 /* aligning data start to 64 avoids DMA transaction splits, unless the buffer 107 * is crossing a 4k page boundary 108 */ 109 #define DPAA_FD_DATA_ALIGNMENT (fman_has_errata_a050385() ? 64 : 16) 110 /* aligning to 256 avoids DMA transaction splits caused by 4k page boundary 111 * crossings; also, all SG fragments except the last must have a size multiple 112 * of 256 to avoid DMA transaction splits 113 */ 114 #define DPAA_A050385_ALIGN 256 115 #define DPAA_FD_RX_DATA_ALIGNMENT (fman_has_errata_a050385() ? \ 116 DPAA_A050385_ALIGN : 16) 117 #else 118 #define DPAA_FD_DATA_ALIGNMENT 16 119 #define DPAA_FD_RX_DATA_ALIGNMENT DPAA_FD_DATA_ALIGNMENT 120 #endif 121 122 /* The DPAA requires 256 bytes reserved and mapped for the SGT */ 123 #define DPAA_SGT_SIZE 256 124 125 /* Values for the L3R field of the FM Parse Results 126 */ 127 /* L3 Type field: First IP Present IPv4 */ 128 #define FM_L3_PARSE_RESULT_IPV4 0x8000 129 /* L3 Type field: First IP Present IPv6 */ 130 #define FM_L3_PARSE_RESULT_IPV6 0x4000 131 /* Values for the L4R field of the FM Parse Results */ 132 /* L4 Type field: UDP */ 133 #define FM_L4_PARSE_RESULT_UDP 0x40 134 /* L4 Type field: TCP */ 135 #define FM_L4_PARSE_RESULT_TCP 0x20 136 137 /* FD status field indicating whether the FM Parser has attempted to validate 138 * the L4 csum of the frame. 139 * Note that having this bit set doesn't necessarily imply that the checksum 140 * is valid. One would have to check the parse results to find that out. 141 */ 142 #define FM_FD_STAT_L4CV 0x00000004 143 144 #define DPAA_SGT_MAX_ENTRIES 16 /* maximum number of entries in SG Table */ 145 #define DPAA_BUFF_RELEASE_MAX 8 /* maximum number of buffers released at once */ 146 147 #define FSL_DPAA_BPID_INV 0xff 148 #define FSL_DPAA_ETH_MAX_BUF_COUNT 128 149 #define FSL_DPAA_ETH_REFILL_THRESHOLD 80 150 151 #define DPAA_TX_PRIV_DATA_SIZE 16 152 #define DPAA_PARSE_RESULTS_SIZE sizeof(struct fman_prs_result) 153 #define DPAA_TIME_STAMP_SIZE 8 154 #define DPAA_HASH_RESULTS_SIZE 8 155 #define DPAA_HWA_SIZE (DPAA_PARSE_RESULTS_SIZE + DPAA_TIME_STAMP_SIZE \ 156 + DPAA_HASH_RESULTS_SIZE) 157 #define DPAA_RX_PRIV_DATA_DEFAULT_SIZE (DPAA_TX_PRIV_DATA_SIZE + \ 158 XDP_PACKET_HEADROOM - DPAA_HWA_SIZE) 159 #ifdef CONFIG_DPAA_ERRATUM_A050385 160 #define DPAA_RX_PRIV_DATA_A050385_SIZE (DPAA_A050385_ALIGN - DPAA_HWA_SIZE) 161 #define DPAA_RX_PRIV_DATA_SIZE (fman_has_errata_a050385() ? \ 162 DPAA_RX_PRIV_DATA_A050385_SIZE : \ 163 DPAA_RX_PRIV_DATA_DEFAULT_SIZE) 164 #else 165 #define DPAA_RX_PRIV_DATA_SIZE DPAA_RX_PRIV_DATA_DEFAULT_SIZE 166 #endif 167 168 #define DPAA_ETH_PCD_RXQ_NUM 128 169 170 #define DPAA_ENQUEUE_RETRIES 100000 171 172 enum port_type {RX, TX}; 173 174 struct fm_port_fqs { 175 struct dpaa_fq *tx_defq; 176 struct dpaa_fq *tx_errq; 177 struct dpaa_fq *rx_defq; 178 struct dpaa_fq *rx_errq; 179 struct dpaa_fq *rx_pcdq; 180 }; 181 182 /* All the dpa bps in use at any moment */ 183 static struct dpaa_bp *dpaa_bp_array[BM_MAX_NUM_OF_POOLS]; 184 185 #define DPAA_BP_RAW_SIZE 4096 186 187 #ifdef CONFIG_DPAA_ERRATUM_A050385 188 #define dpaa_bp_size(raw_size) (SKB_WITH_OVERHEAD(raw_size) & \ 189 ~(DPAA_A050385_ALIGN - 1)) 190 #else 191 #define dpaa_bp_size(raw_size) SKB_WITH_OVERHEAD(raw_size) 192 #endif 193 194 static int dpaa_max_frm; 195 196 static int dpaa_rx_extra_headroom; 197 198 #define dpaa_get_max_mtu() \ 199 (dpaa_max_frm - (VLAN_ETH_HLEN + ETH_FCS_LEN)) 200 201 static void dpaa_eth_cgr_set_speed(struct mac_device *mac_dev, int speed); 202 203 static int dpaa_netdev_init(struct net_device *net_dev, 204 const struct net_device_ops *dpaa_ops, 205 u16 tx_timeout) 206 { 207 struct dpaa_priv *priv = netdev_priv(net_dev); 208 struct device *dev = net_dev->dev.parent; 209 struct mac_device *mac_dev = priv->mac_dev; 210 struct dpaa_percpu_priv *percpu_priv; 211 const u8 *mac_addr; 212 int i, err; 213 214 /* Although we access another CPU's private data here 215 * we do it at initialization so it is safe 216 */ 217 for_each_possible_cpu(i) { 218 percpu_priv = per_cpu_ptr(priv->percpu_priv, i); 219 percpu_priv->net_dev = net_dev; 220 } 221 222 net_dev->netdev_ops = dpaa_ops; 223 mac_addr = mac_dev->addr; 224 225 net_dev->mem_start = (unsigned long)priv->mac_dev->res->start; 226 net_dev->mem_end = (unsigned long)priv->mac_dev->res->end; 227 228 net_dev->min_mtu = ETH_MIN_MTU; 229 net_dev->max_mtu = dpaa_get_max_mtu(); 230 231 net_dev->hw_features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | 232 NETIF_F_LLTX | NETIF_F_RXHASH); 233 234 net_dev->hw_features |= NETIF_F_SG | NETIF_F_HIGHDMA; 235 /* The kernels enables GSO automatically, if we declare NETIF_F_SG. 236 * For conformity, we'll still declare GSO explicitly. 237 */ 238 net_dev->features |= NETIF_F_GSO; 239 net_dev->features |= NETIF_F_RXCSUM; 240 241 net_dev->priv_flags |= IFF_LIVE_ADDR_CHANGE; 242 /* we do not want shared skbs on TX */ 243 net_dev->priv_flags &= ~IFF_TX_SKB_SHARING; 244 245 net_dev->features |= net_dev->hw_features; 246 net_dev->vlan_features = net_dev->features; 247 248 net_dev->xdp_features = NETDEV_XDP_ACT_BASIC | 249 NETDEV_XDP_ACT_REDIRECT | 250 NETDEV_XDP_ACT_NDO_XMIT; 251 252 if (is_valid_ether_addr(mac_addr)) { 253 memcpy(net_dev->perm_addr, mac_addr, net_dev->addr_len); 254 eth_hw_addr_set(net_dev, mac_addr); 255 } else { 256 eth_hw_addr_random(net_dev); 257 err = mac_dev->change_addr(mac_dev->fman_mac, 258 (const enet_addr_t *)net_dev->dev_addr); 259 if (err) { 260 dev_err(dev, "Failed to set random MAC address\n"); 261 return -EINVAL; 262 } 263 dev_info(dev, "Using random MAC address: %pM\n", 264 net_dev->dev_addr); 265 } 266 267 net_dev->ethtool_ops = &dpaa_ethtool_ops; 268 269 net_dev->needed_headroom = priv->tx_headroom; 270 net_dev->watchdog_timeo = msecs_to_jiffies(tx_timeout); 271 272 /* The rest of the config is filled in by the mac device already */ 273 mac_dev->phylink_config.dev = &net_dev->dev; 274 mac_dev->phylink_config.type = PHYLINK_NETDEV; 275 mac_dev->update_speed = dpaa_eth_cgr_set_speed; 276 mac_dev->phylink = phylink_create(&mac_dev->phylink_config, 277 dev_fwnode(mac_dev->dev), 278 mac_dev->phy_if, 279 mac_dev->phylink_ops); 280 if (IS_ERR(mac_dev->phylink)) { 281 err = PTR_ERR(mac_dev->phylink); 282 dev_err_probe(dev, err, "Could not create phylink\n"); 283 return err; 284 } 285 286 /* start without the RUNNING flag, phylib controls it later */ 287 netif_carrier_off(net_dev); 288 289 err = register_netdev(net_dev); 290 if (err < 0) { 291 dev_err(dev, "register_netdev() = %d\n", err); 292 phylink_destroy(mac_dev->phylink); 293 return err; 294 } 295 296 return 0; 297 } 298 299 static int dpaa_stop(struct net_device *net_dev) 300 { 301 struct mac_device *mac_dev; 302 struct dpaa_priv *priv; 303 int i, error; 304 int err = 0; 305 306 priv = netdev_priv(net_dev); 307 mac_dev = priv->mac_dev; 308 309 netif_tx_stop_all_queues(net_dev); 310 /* Allow the Fman (Tx) port to process in-flight frames before we 311 * try switching it off. 312 */ 313 msleep(200); 314 315 phylink_stop(mac_dev->phylink); 316 mac_dev->disable(mac_dev->fman_mac); 317 318 for (i = 0; i < ARRAY_SIZE(mac_dev->port); i++) { 319 error = fman_port_disable(mac_dev->port[i]); 320 if (error) 321 err = error; 322 } 323 324 phylink_disconnect_phy(mac_dev->phylink); 325 net_dev->phydev = NULL; 326 327 msleep(200); 328 329 return err; 330 } 331 332 static void dpaa_tx_timeout(struct net_device *net_dev, unsigned int txqueue) 333 { 334 struct dpaa_percpu_priv *percpu_priv; 335 const struct dpaa_priv *priv; 336 337 priv = netdev_priv(net_dev); 338 percpu_priv = this_cpu_ptr(priv->percpu_priv); 339 340 netif_crit(priv, timer, net_dev, "Transmit timeout latency: %u ms\n", 341 jiffies_to_msecs(jiffies - dev_trans_start(net_dev))); 342 343 percpu_priv->stats.tx_errors++; 344 } 345 346 /* Calculates the statistics for the given device by adding the statistics 347 * collected by each CPU. 348 */ 349 static void dpaa_get_stats64(struct net_device *net_dev, 350 struct rtnl_link_stats64 *s) 351 { 352 int numstats = sizeof(struct rtnl_link_stats64) / sizeof(u64); 353 struct dpaa_priv *priv = netdev_priv(net_dev); 354 struct dpaa_percpu_priv *percpu_priv; 355 u64 *netstats = (u64 *)s; 356 u64 *cpustats; 357 int i, j; 358 359 for_each_possible_cpu(i) { 360 percpu_priv = per_cpu_ptr(priv->percpu_priv, i); 361 362 cpustats = (u64 *)&percpu_priv->stats; 363 364 /* add stats from all CPUs */ 365 for (j = 0; j < numstats; j++) 366 netstats[j] += cpustats[j]; 367 } 368 } 369 370 static int dpaa_setup_tc(struct net_device *net_dev, enum tc_setup_type type, 371 void *type_data) 372 { 373 struct dpaa_priv *priv = netdev_priv(net_dev); 374 struct tc_mqprio_qopt *mqprio = type_data; 375 u8 num_tc; 376 int i; 377 378 if (type != TC_SETUP_QDISC_MQPRIO) 379 return -EOPNOTSUPP; 380 381 mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS; 382 num_tc = mqprio->num_tc; 383 384 if (num_tc == priv->num_tc) 385 return 0; 386 387 if (!num_tc) { 388 netdev_reset_tc(net_dev); 389 goto out; 390 } 391 392 if (num_tc > DPAA_TC_NUM) { 393 netdev_err(net_dev, "Too many traffic classes: max %d supported.\n", 394 DPAA_TC_NUM); 395 return -EINVAL; 396 } 397 398 netdev_set_num_tc(net_dev, num_tc); 399 400 for (i = 0; i < num_tc; i++) 401 netdev_set_tc_queue(net_dev, i, DPAA_TC_TXQ_NUM, 402 i * DPAA_TC_TXQ_NUM); 403 404 out: 405 priv->num_tc = num_tc ? : 1; 406 netif_set_real_num_tx_queues(net_dev, priv->num_tc * DPAA_TC_TXQ_NUM); 407 return 0; 408 } 409 410 static struct mac_device *dpaa_mac_dev_get(struct platform_device *pdev) 411 { 412 struct dpaa_eth_data *eth_data; 413 struct device *dpaa_dev; 414 struct mac_device *mac_dev; 415 416 dpaa_dev = &pdev->dev; 417 eth_data = dpaa_dev->platform_data; 418 if (!eth_data) { 419 dev_err(dpaa_dev, "eth_data missing\n"); 420 return ERR_PTR(-ENODEV); 421 } 422 mac_dev = eth_data->mac_dev; 423 if (!mac_dev) { 424 dev_err(dpaa_dev, "mac_dev missing\n"); 425 return ERR_PTR(-EINVAL); 426 } 427 428 return mac_dev; 429 } 430 431 static int dpaa_set_mac_address(struct net_device *net_dev, void *addr) 432 { 433 const struct dpaa_priv *priv; 434 struct mac_device *mac_dev; 435 struct sockaddr old_addr; 436 int err; 437 438 priv = netdev_priv(net_dev); 439 440 memcpy(old_addr.sa_data, net_dev->dev_addr, ETH_ALEN); 441 442 err = eth_mac_addr(net_dev, addr); 443 if (err < 0) { 444 netif_err(priv, drv, net_dev, "eth_mac_addr() = %d\n", err); 445 return err; 446 } 447 448 mac_dev = priv->mac_dev; 449 450 err = mac_dev->change_addr(mac_dev->fman_mac, 451 (const enet_addr_t *)net_dev->dev_addr); 452 if (err < 0) { 453 netif_err(priv, drv, net_dev, "mac_dev->change_addr() = %d\n", 454 err); 455 /* reverting to previous address */ 456 eth_mac_addr(net_dev, &old_addr); 457 458 return err; 459 } 460 461 return 0; 462 } 463 464 static void dpaa_set_rx_mode(struct net_device *net_dev) 465 { 466 const struct dpaa_priv *priv; 467 int err; 468 469 priv = netdev_priv(net_dev); 470 471 if (!!(net_dev->flags & IFF_PROMISC) != priv->mac_dev->promisc) { 472 priv->mac_dev->promisc = !priv->mac_dev->promisc; 473 err = priv->mac_dev->set_promisc(priv->mac_dev->fman_mac, 474 priv->mac_dev->promisc); 475 if (err < 0) 476 netif_err(priv, drv, net_dev, 477 "mac_dev->set_promisc() = %d\n", 478 err); 479 } 480 481 if (!!(net_dev->flags & IFF_ALLMULTI) != priv->mac_dev->allmulti) { 482 priv->mac_dev->allmulti = !priv->mac_dev->allmulti; 483 err = priv->mac_dev->set_allmulti(priv->mac_dev->fman_mac, 484 priv->mac_dev->allmulti); 485 if (err < 0) 486 netif_err(priv, drv, net_dev, 487 "mac_dev->set_allmulti() = %d\n", 488 err); 489 } 490 491 err = priv->mac_dev->set_multi(net_dev, priv->mac_dev); 492 if (err < 0) 493 netif_err(priv, drv, net_dev, "mac_dev->set_multi() = %d\n", 494 err); 495 } 496 497 static struct dpaa_bp *dpaa_bpid2pool(int bpid) 498 { 499 if (WARN_ON(bpid < 0 || bpid >= BM_MAX_NUM_OF_POOLS)) 500 return NULL; 501 502 return dpaa_bp_array[bpid]; 503 } 504 505 /* checks if this bpool is already allocated */ 506 static bool dpaa_bpid2pool_use(int bpid) 507 { 508 if (dpaa_bpid2pool(bpid)) { 509 refcount_inc(&dpaa_bp_array[bpid]->refs); 510 return true; 511 } 512 513 return false; 514 } 515 516 /* called only once per bpid by dpaa_bp_alloc_pool() */ 517 static void dpaa_bpid2pool_map(int bpid, struct dpaa_bp *dpaa_bp) 518 { 519 dpaa_bp_array[bpid] = dpaa_bp; 520 refcount_set(&dpaa_bp->refs, 1); 521 } 522 523 static int dpaa_bp_alloc_pool(struct dpaa_bp *dpaa_bp) 524 { 525 int err; 526 527 if (dpaa_bp->size == 0 || dpaa_bp->config_count == 0) { 528 pr_err("%s: Buffer pool is not properly initialized! Missing size or initial number of buffers\n", 529 __func__); 530 return -EINVAL; 531 } 532 533 /* If the pool is already specified, we only create one per bpid */ 534 if (dpaa_bp->bpid != FSL_DPAA_BPID_INV && 535 dpaa_bpid2pool_use(dpaa_bp->bpid)) 536 return 0; 537 538 if (dpaa_bp->bpid == FSL_DPAA_BPID_INV) { 539 dpaa_bp->pool = bman_new_pool(); 540 if (!dpaa_bp->pool) { 541 pr_err("%s: bman_new_pool() failed\n", 542 __func__); 543 return -ENODEV; 544 } 545 546 dpaa_bp->bpid = (u8)bman_get_bpid(dpaa_bp->pool); 547 } 548 549 if (dpaa_bp->seed_cb) { 550 err = dpaa_bp->seed_cb(dpaa_bp); 551 if (err) 552 goto pool_seed_failed; 553 } 554 555 dpaa_bpid2pool_map(dpaa_bp->bpid, dpaa_bp); 556 557 return 0; 558 559 pool_seed_failed: 560 pr_err("%s: pool seeding failed\n", __func__); 561 bman_free_pool(dpaa_bp->pool); 562 563 return err; 564 } 565 566 /* remove and free all the buffers from the given buffer pool */ 567 static void dpaa_bp_drain(struct dpaa_bp *bp) 568 { 569 u8 num = 8; 570 int ret; 571 572 do { 573 struct bm_buffer bmb[8]; 574 int i; 575 576 ret = bman_acquire(bp->pool, bmb, num); 577 if (ret < 0) { 578 if (num == 8) { 579 /* we have less than 8 buffers left; 580 * drain them one by one 581 */ 582 num = 1; 583 ret = 1; 584 continue; 585 } else { 586 /* Pool is fully drained */ 587 break; 588 } 589 } 590 591 if (bp->free_buf_cb) 592 for (i = 0; i < num; i++) 593 bp->free_buf_cb(bp, &bmb[i]); 594 } while (ret > 0); 595 } 596 597 static void dpaa_bp_free(struct dpaa_bp *dpaa_bp) 598 { 599 struct dpaa_bp *bp = dpaa_bpid2pool(dpaa_bp->bpid); 600 601 /* the mapping between bpid and dpaa_bp is done very late in the 602 * allocation procedure; if something failed before the mapping, the bp 603 * was not configured, therefore we don't need the below instructions 604 */ 605 if (!bp) 606 return; 607 608 if (!refcount_dec_and_test(&bp->refs)) 609 return; 610 611 if (bp->free_buf_cb) 612 dpaa_bp_drain(bp); 613 614 dpaa_bp_array[bp->bpid] = NULL; 615 bman_free_pool(bp->pool); 616 } 617 618 static void dpaa_bps_free(struct dpaa_priv *priv) 619 { 620 dpaa_bp_free(priv->dpaa_bp); 621 } 622 623 /* Use multiple WQs for FQ assignment: 624 * - Tx Confirmation queues go to WQ1. 625 * - Rx Error and Tx Error queues go to WQ5 (giving them a better chance 626 * to be scheduled, in case there are many more FQs in WQ6). 627 * - Rx Default goes to WQ6. 628 * - Tx queues go to different WQs depending on their priority. Equal 629 * chunks of NR_CPUS queues go to WQ6 (lowest priority), WQ2, WQ1 and 630 * WQ0 (highest priority). 631 * This ensures that Tx-confirmed buffers are timely released. In particular, 632 * it avoids congestion on the Tx Confirm FQs, which can pile up PFDRs if they 633 * are greatly outnumbered by other FQs in the system, while 634 * dequeue scheduling is round-robin. 635 */ 636 static inline void dpaa_assign_wq(struct dpaa_fq *fq, int idx) 637 { 638 switch (fq->fq_type) { 639 case FQ_TYPE_TX_CONFIRM: 640 case FQ_TYPE_TX_CONF_MQ: 641 fq->wq = 1; 642 break; 643 case FQ_TYPE_RX_ERROR: 644 case FQ_TYPE_TX_ERROR: 645 fq->wq = 5; 646 break; 647 case FQ_TYPE_RX_DEFAULT: 648 case FQ_TYPE_RX_PCD: 649 fq->wq = 6; 650 break; 651 case FQ_TYPE_TX: 652 switch (idx / DPAA_TC_TXQ_NUM) { 653 case 0: 654 /* Low priority (best effort) */ 655 fq->wq = 6; 656 break; 657 case 1: 658 /* Medium priority */ 659 fq->wq = 2; 660 break; 661 case 2: 662 /* High priority */ 663 fq->wq = 1; 664 break; 665 case 3: 666 /* Very high priority */ 667 fq->wq = 0; 668 break; 669 default: 670 WARN(1, "Too many TX FQs: more than %d!\n", 671 DPAA_ETH_TXQ_NUM); 672 } 673 break; 674 default: 675 WARN(1, "Invalid FQ type %d for FQID %d!\n", 676 fq->fq_type, fq->fqid); 677 } 678 } 679 680 static struct dpaa_fq *dpaa_fq_alloc(struct device *dev, 681 u32 start, u32 count, 682 struct list_head *list, 683 enum dpaa_fq_type fq_type) 684 { 685 struct dpaa_fq *dpaa_fq; 686 int i; 687 688 dpaa_fq = devm_kcalloc(dev, count, sizeof(*dpaa_fq), 689 GFP_KERNEL); 690 if (!dpaa_fq) 691 return NULL; 692 693 for (i = 0; i < count; i++) { 694 dpaa_fq[i].fq_type = fq_type; 695 dpaa_fq[i].fqid = start ? start + i : 0; 696 list_add_tail(&dpaa_fq[i].list, list); 697 } 698 699 for (i = 0; i < count; i++) 700 dpaa_assign_wq(dpaa_fq + i, i); 701 702 return dpaa_fq; 703 } 704 705 static int dpaa_alloc_all_fqs(struct device *dev, struct list_head *list, 706 struct fm_port_fqs *port_fqs) 707 { 708 struct dpaa_fq *dpaa_fq; 709 u32 fq_base, fq_base_aligned, i; 710 711 dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_RX_ERROR); 712 if (!dpaa_fq) 713 goto fq_alloc_failed; 714 715 port_fqs->rx_errq = &dpaa_fq[0]; 716 717 dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_RX_DEFAULT); 718 if (!dpaa_fq) 719 goto fq_alloc_failed; 720 721 port_fqs->rx_defq = &dpaa_fq[0]; 722 723 /* the PCD FQIDs range needs to be aligned for correct operation */ 724 if (qman_alloc_fqid_range(&fq_base, 2 * DPAA_ETH_PCD_RXQ_NUM)) 725 goto fq_alloc_failed; 726 727 fq_base_aligned = ALIGN(fq_base, DPAA_ETH_PCD_RXQ_NUM); 728 729 for (i = fq_base; i < fq_base_aligned; i++) 730 qman_release_fqid(i); 731 732 for (i = fq_base_aligned + DPAA_ETH_PCD_RXQ_NUM; 733 i < (fq_base + 2 * DPAA_ETH_PCD_RXQ_NUM); i++) 734 qman_release_fqid(i); 735 736 dpaa_fq = dpaa_fq_alloc(dev, fq_base_aligned, DPAA_ETH_PCD_RXQ_NUM, 737 list, FQ_TYPE_RX_PCD); 738 if (!dpaa_fq) 739 goto fq_alloc_failed; 740 741 port_fqs->rx_pcdq = &dpaa_fq[0]; 742 743 if (!dpaa_fq_alloc(dev, 0, DPAA_ETH_TXQ_NUM, list, FQ_TYPE_TX_CONF_MQ)) 744 goto fq_alloc_failed; 745 746 dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_TX_ERROR); 747 if (!dpaa_fq) 748 goto fq_alloc_failed; 749 750 port_fqs->tx_errq = &dpaa_fq[0]; 751 752 dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_TX_CONFIRM); 753 if (!dpaa_fq) 754 goto fq_alloc_failed; 755 756 port_fqs->tx_defq = &dpaa_fq[0]; 757 758 if (!dpaa_fq_alloc(dev, 0, DPAA_ETH_TXQ_NUM, list, FQ_TYPE_TX)) 759 goto fq_alloc_failed; 760 761 return 0; 762 763 fq_alloc_failed: 764 dev_err(dev, "dpaa_fq_alloc() failed\n"); 765 return -ENOMEM; 766 } 767 768 static u32 rx_pool_channel; 769 static DEFINE_SPINLOCK(rx_pool_channel_init); 770 771 static int dpaa_get_channel(void) 772 { 773 spin_lock(&rx_pool_channel_init); 774 if (!rx_pool_channel) { 775 u32 pool; 776 int ret; 777 778 ret = qman_alloc_pool(&pool); 779 780 if (!ret) 781 rx_pool_channel = pool; 782 } 783 spin_unlock(&rx_pool_channel_init); 784 if (!rx_pool_channel) 785 return -ENOMEM; 786 return rx_pool_channel; 787 } 788 789 static void dpaa_release_channel(void) 790 { 791 qman_release_pool(rx_pool_channel); 792 } 793 794 static void dpaa_eth_add_channel(u16 channel, struct device *dev) 795 { 796 u32 pool = QM_SDQCR_CHANNELS_POOL_CONV(channel); 797 const cpumask_t *cpus = qman_affine_cpus(); 798 struct qman_portal *portal; 799 int cpu; 800 801 for_each_cpu_and(cpu, cpus, cpu_online_mask) { 802 portal = qman_get_affine_portal(cpu); 803 qman_p_static_dequeue_add(portal, pool); 804 qman_start_using_portal(portal, dev); 805 } 806 } 807 808 /* Congestion group state change notification callback. 809 * Stops the device's egress queues while they are congested and 810 * wakes them upon exiting congested state. 811 * Also updates some CGR-related stats. 812 */ 813 static void dpaa_eth_cgscn(struct qman_portal *qm, struct qman_cgr *cgr, 814 int congested) 815 { 816 struct dpaa_priv *priv = (struct dpaa_priv *)container_of(cgr, 817 struct dpaa_priv, cgr_data.cgr); 818 819 if (congested) { 820 priv->cgr_data.congestion_start_jiffies = jiffies; 821 netif_tx_stop_all_queues(priv->net_dev); 822 priv->cgr_data.cgr_congested_count++; 823 } else { 824 priv->cgr_data.congested_jiffies += 825 (jiffies - priv->cgr_data.congestion_start_jiffies); 826 netif_tx_wake_all_queues(priv->net_dev); 827 } 828 } 829 830 static int dpaa_eth_cgr_init(struct dpaa_priv *priv) 831 { 832 struct qm_mcc_initcgr initcgr; 833 u32 cs_th; 834 int err; 835 836 err = qman_alloc_cgrid(&priv->cgr_data.cgr.cgrid); 837 if (err < 0) { 838 if (netif_msg_drv(priv)) 839 pr_err("%s: Error %d allocating CGR ID\n", 840 __func__, err); 841 goto out_error; 842 } 843 priv->cgr_data.cgr.cb = dpaa_eth_cgscn; 844 845 /* Enable Congestion State Change Notifications and CS taildrop */ 846 memset(&initcgr, 0, sizeof(initcgr)); 847 initcgr.we_mask = cpu_to_be16(QM_CGR_WE_CSCN_EN | QM_CGR_WE_CS_THRES); 848 initcgr.cgr.cscn_en = QM_CGR_EN; 849 850 /* Set different thresholds based on the configured MAC speed. 851 * This may turn suboptimal if the MAC is reconfigured at another 852 * speed, so MACs must call dpaa_eth_cgr_set_speed in their link_up 853 * callback. 854 */ 855 if (priv->mac_dev->phylink_config.mac_capabilities & MAC_10000FD) 856 cs_th = DPAA_CS_THRESHOLD_10G; 857 else 858 cs_th = DPAA_CS_THRESHOLD_1G; 859 qm_cgr_cs_thres_set64(&initcgr.cgr.cs_thres, cs_th, 1); 860 861 initcgr.we_mask |= cpu_to_be16(QM_CGR_WE_CSTD_EN); 862 initcgr.cgr.cstd_en = QM_CGR_EN; 863 864 err = qman_create_cgr(&priv->cgr_data.cgr, QMAN_CGR_FLAG_USE_INIT, 865 &initcgr); 866 if (err < 0) { 867 if (netif_msg_drv(priv)) 868 pr_err("%s: Error %d creating CGR with ID %d\n", 869 __func__, err, priv->cgr_data.cgr.cgrid); 870 qman_release_cgrid(priv->cgr_data.cgr.cgrid); 871 goto out_error; 872 } 873 if (netif_msg_drv(priv)) 874 pr_debug("Created CGR %d for netdev with hwaddr %pM on QMan channel %d\n", 875 priv->cgr_data.cgr.cgrid, priv->mac_dev->addr, 876 priv->cgr_data.cgr.chan); 877 878 out_error: 879 return err; 880 } 881 882 static void dpaa_eth_cgr_set_speed(struct mac_device *mac_dev, int speed) 883 { 884 struct net_device *net_dev = to_net_dev(mac_dev->phylink_config.dev); 885 struct dpaa_priv *priv = netdev_priv(net_dev); 886 struct qm_mcc_initcgr opts = { }; 887 u32 cs_th; 888 int err; 889 890 opts.we_mask = cpu_to_be16(QM_CGR_WE_CS_THRES); 891 switch (speed) { 892 case SPEED_10000: 893 cs_th = DPAA_CS_THRESHOLD_10G; 894 break; 895 case SPEED_1000: 896 default: 897 cs_th = DPAA_CS_THRESHOLD_1G; 898 break; 899 } 900 qm_cgr_cs_thres_set64(&opts.cgr.cs_thres, cs_th, 1); 901 902 err = qman_update_cgr_safe(&priv->cgr_data.cgr, &opts); 903 if (err) 904 netdev_err(net_dev, "could not update speed: %d\n", err); 905 } 906 907 static inline void dpaa_setup_ingress(const struct dpaa_priv *priv, 908 struct dpaa_fq *fq, 909 const struct qman_fq *template) 910 { 911 fq->fq_base = *template; 912 fq->net_dev = priv->net_dev; 913 914 fq->flags = QMAN_FQ_FLAG_NO_ENQUEUE; 915 fq->channel = priv->channel; 916 } 917 918 static inline void dpaa_setup_egress(const struct dpaa_priv *priv, 919 struct dpaa_fq *fq, 920 struct fman_port *port, 921 const struct qman_fq *template) 922 { 923 fq->fq_base = *template; 924 fq->net_dev = priv->net_dev; 925 926 if (port) { 927 fq->flags = QMAN_FQ_FLAG_TO_DCPORTAL; 928 fq->channel = (u16)fman_port_get_qman_channel_id(port); 929 } else { 930 fq->flags = QMAN_FQ_FLAG_NO_MODIFY; 931 } 932 } 933 934 static int dpaa_fq_setup(struct dpaa_priv *priv, 935 const struct dpaa_fq_cbs *fq_cbs, 936 struct fman_port *tx_port) 937 { 938 int egress_cnt = 0, conf_cnt = 0, num_portals = 0, portal_cnt = 0, cpu; 939 const cpumask_t *affine_cpus = qman_affine_cpus(); 940 struct dpaa_fq *fq; 941 u16 *channels; 942 943 channels = kcalloc(num_possible_cpus(), sizeof(u16), GFP_KERNEL); 944 if (!channels) 945 return -ENOMEM; 946 947 for_each_cpu_and(cpu, affine_cpus, cpu_online_mask) 948 channels[num_portals++] = qman_affine_channel(cpu); 949 950 if (num_portals == 0) 951 dev_err(priv->net_dev->dev.parent, 952 "No Qman software (affine) channels found\n"); 953 954 /* Initialize each FQ in the list */ 955 list_for_each_entry(fq, &priv->dpaa_fq_list, list) { 956 switch (fq->fq_type) { 957 case FQ_TYPE_RX_DEFAULT: 958 dpaa_setup_ingress(priv, fq, &fq_cbs->rx_defq); 959 break; 960 case FQ_TYPE_RX_ERROR: 961 dpaa_setup_ingress(priv, fq, &fq_cbs->rx_errq); 962 break; 963 case FQ_TYPE_RX_PCD: 964 if (!num_portals) 965 continue; 966 dpaa_setup_ingress(priv, fq, &fq_cbs->rx_defq); 967 fq->channel = channels[portal_cnt++ % num_portals]; 968 break; 969 case FQ_TYPE_TX: 970 dpaa_setup_egress(priv, fq, tx_port, 971 &fq_cbs->egress_ern); 972 /* If we have more Tx queues than the number of cores, 973 * just ignore the extra ones. 974 */ 975 if (egress_cnt < DPAA_ETH_TXQ_NUM) 976 priv->egress_fqs[egress_cnt++] = &fq->fq_base; 977 break; 978 case FQ_TYPE_TX_CONF_MQ: 979 priv->conf_fqs[conf_cnt++] = &fq->fq_base; 980 fallthrough; 981 case FQ_TYPE_TX_CONFIRM: 982 dpaa_setup_ingress(priv, fq, &fq_cbs->tx_defq); 983 break; 984 case FQ_TYPE_TX_ERROR: 985 dpaa_setup_ingress(priv, fq, &fq_cbs->tx_errq); 986 break; 987 default: 988 dev_warn(priv->net_dev->dev.parent, 989 "Unknown FQ type detected!\n"); 990 break; 991 } 992 } 993 994 /* Make sure all CPUs receive a corresponding Tx queue. */ 995 while (egress_cnt < DPAA_ETH_TXQ_NUM) { 996 list_for_each_entry(fq, &priv->dpaa_fq_list, list) { 997 if (fq->fq_type != FQ_TYPE_TX) 998 continue; 999 priv->egress_fqs[egress_cnt++] = &fq->fq_base; 1000 if (egress_cnt == DPAA_ETH_TXQ_NUM) 1001 break; 1002 } 1003 } 1004 1005 kfree(channels); 1006 1007 return 0; 1008 } 1009 1010 static inline int dpaa_tx_fq_to_id(const struct dpaa_priv *priv, 1011 struct qman_fq *tx_fq) 1012 { 1013 int i; 1014 1015 for (i = 0; i < DPAA_ETH_TXQ_NUM; i++) 1016 if (priv->egress_fqs[i] == tx_fq) 1017 return i; 1018 1019 return -EINVAL; 1020 } 1021 1022 static int dpaa_fq_init(struct dpaa_fq *dpaa_fq, bool td_enable) 1023 { 1024 const struct dpaa_priv *priv; 1025 struct qman_fq *confq = NULL; 1026 struct qm_mcc_initfq initfq; 1027 struct device *dev; 1028 struct qman_fq *fq; 1029 int queue_id; 1030 int err; 1031 1032 priv = netdev_priv(dpaa_fq->net_dev); 1033 dev = dpaa_fq->net_dev->dev.parent; 1034 1035 if (dpaa_fq->fqid == 0) 1036 dpaa_fq->flags |= QMAN_FQ_FLAG_DYNAMIC_FQID; 1037 1038 dpaa_fq->init = !(dpaa_fq->flags & QMAN_FQ_FLAG_NO_MODIFY); 1039 1040 err = qman_create_fq(dpaa_fq->fqid, dpaa_fq->flags, &dpaa_fq->fq_base); 1041 if (err) { 1042 dev_err(dev, "qman_create_fq() failed\n"); 1043 return err; 1044 } 1045 fq = &dpaa_fq->fq_base; 1046 1047 if (dpaa_fq->init) { 1048 memset(&initfq, 0, sizeof(initfq)); 1049 1050 initfq.we_mask = cpu_to_be16(QM_INITFQ_WE_FQCTRL); 1051 /* Note: we may get to keep an empty FQ in cache */ 1052 initfq.fqd.fq_ctrl = cpu_to_be16(QM_FQCTRL_PREFERINCACHE); 1053 1054 /* Try to reduce the number of portal interrupts for 1055 * Tx Confirmation FQs. 1056 */ 1057 if (dpaa_fq->fq_type == FQ_TYPE_TX_CONFIRM) 1058 initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_AVOIDBLOCK); 1059 1060 /* FQ placement */ 1061 initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_DESTWQ); 1062 1063 qm_fqd_set_destwq(&initfq.fqd, dpaa_fq->channel, dpaa_fq->wq); 1064 1065 /* Put all egress queues in a congestion group of their own. 1066 * Sensu stricto, the Tx confirmation queues are Rx FQs, 1067 * rather than Tx - but they nonetheless account for the 1068 * memory footprint on behalf of egress traffic. We therefore 1069 * place them in the netdev's CGR, along with the Tx FQs. 1070 */ 1071 if (dpaa_fq->fq_type == FQ_TYPE_TX || 1072 dpaa_fq->fq_type == FQ_TYPE_TX_CONFIRM || 1073 dpaa_fq->fq_type == FQ_TYPE_TX_CONF_MQ) { 1074 initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_CGID); 1075 initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_CGE); 1076 initfq.fqd.cgid = (u8)priv->cgr_data.cgr.cgrid; 1077 /* Set a fixed overhead accounting, in an attempt to 1078 * reduce the impact of fixed-size skb shells and the 1079 * driver's needed headroom on system memory. This is 1080 * especially the case when the egress traffic is 1081 * composed of small datagrams. 1082 * Unfortunately, QMan's OAL value is capped to an 1083 * insufficient value, but even that is better than 1084 * no overhead accounting at all. 1085 */ 1086 initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_OAC); 1087 qm_fqd_set_oac(&initfq.fqd, QM_OAC_CG); 1088 qm_fqd_set_oal(&initfq.fqd, 1089 min(sizeof(struct sk_buff) + 1090 priv->tx_headroom, 1091 (size_t)FSL_QMAN_MAX_OAL)); 1092 } 1093 1094 if (td_enable) { 1095 initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_TDTHRESH); 1096 qm_fqd_set_taildrop(&initfq.fqd, DPAA_FQ_TD, 1); 1097 initfq.fqd.fq_ctrl = cpu_to_be16(QM_FQCTRL_TDE); 1098 } 1099 1100 if (dpaa_fq->fq_type == FQ_TYPE_TX) { 1101 queue_id = dpaa_tx_fq_to_id(priv, &dpaa_fq->fq_base); 1102 if (queue_id >= 0) 1103 confq = priv->conf_fqs[queue_id]; 1104 if (confq) { 1105 initfq.we_mask |= 1106 cpu_to_be16(QM_INITFQ_WE_CONTEXTA); 1107 /* ContextA: OVOM=1(use contextA2 bits instead of ICAD) 1108 * A2V=1 (contextA A2 field is valid) 1109 * A0V=1 (contextA A0 field is valid) 1110 * B0V=1 (contextB field is valid) 1111 * ContextA A2: EBD=1 (deallocate buffers inside FMan) 1112 * ContextB B0(ASPID): 0 (absolute Virtual Storage ID) 1113 */ 1114 qm_fqd_context_a_set64(&initfq.fqd, 1115 0x1e00000080000000ULL); 1116 } 1117 } 1118 1119 /* Put all the ingress queues in our "ingress CGR". */ 1120 if (priv->use_ingress_cgr && 1121 (dpaa_fq->fq_type == FQ_TYPE_RX_DEFAULT || 1122 dpaa_fq->fq_type == FQ_TYPE_RX_ERROR || 1123 dpaa_fq->fq_type == FQ_TYPE_RX_PCD)) { 1124 initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_CGID); 1125 initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_CGE); 1126 initfq.fqd.cgid = (u8)priv->ingress_cgr.cgrid; 1127 /* Set a fixed overhead accounting, just like for the 1128 * egress CGR. 1129 */ 1130 initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_OAC); 1131 qm_fqd_set_oac(&initfq.fqd, QM_OAC_CG); 1132 qm_fqd_set_oal(&initfq.fqd, 1133 min(sizeof(struct sk_buff) + 1134 priv->tx_headroom, 1135 (size_t)FSL_QMAN_MAX_OAL)); 1136 } 1137 1138 /* Initialization common to all ingress queues */ 1139 if (dpaa_fq->flags & QMAN_FQ_FLAG_NO_ENQUEUE) { 1140 initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_CONTEXTA); 1141 initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_HOLDACTIVE | 1142 QM_FQCTRL_CTXASTASHING); 1143 initfq.fqd.context_a.stashing.exclusive = 1144 QM_STASHING_EXCL_DATA | QM_STASHING_EXCL_CTX | 1145 QM_STASHING_EXCL_ANNOTATION; 1146 qm_fqd_set_stashing(&initfq.fqd, 1, 2, 1147 DIV_ROUND_UP(sizeof(struct qman_fq), 1148 64)); 1149 } 1150 1151 err = qman_init_fq(fq, QMAN_INITFQ_FLAG_SCHED, &initfq); 1152 if (err < 0) { 1153 dev_err(dev, "qman_init_fq(%u) = %d\n", 1154 qman_fq_fqid(fq), err); 1155 qman_destroy_fq(fq); 1156 return err; 1157 } 1158 } 1159 1160 dpaa_fq->fqid = qman_fq_fqid(fq); 1161 1162 if (dpaa_fq->fq_type == FQ_TYPE_RX_DEFAULT || 1163 dpaa_fq->fq_type == FQ_TYPE_RX_PCD) { 1164 err = xdp_rxq_info_reg(&dpaa_fq->xdp_rxq, dpaa_fq->net_dev, 1165 dpaa_fq->fqid, 0); 1166 if (err) { 1167 dev_err(dev, "xdp_rxq_info_reg() = %d\n", err); 1168 return err; 1169 } 1170 1171 err = xdp_rxq_info_reg_mem_model(&dpaa_fq->xdp_rxq, 1172 MEM_TYPE_PAGE_ORDER0, NULL); 1173 if (err) { 1174 dev_err(dev, "xdp_rxq_info_reg_mem_model() = %d\n", 1175 err); 1176 xdp_rxq_info_unreg(&dpaa_fq->xdp_rxq); 1177 return err; 1178 } 1179 } 1180 1181 return 0; 1182 } 1183 1184 static int dpaa_fq_free_entry(struct device *dev, struct qman_fq *fq) 1185 { 1186 const struct dpaa_priv *priv; 1187 struct dpaa_fq *dpaa_fq; 1188 int err, error; 1189 1190 err = 0; 1191 1192 dpaa_fq = container_of(fq, struct dpaa_fq, fq_base); 1193 priv = netdev_priv(dpaa_fq->net_dev); 1194 1195 if (dpaa_fq->init) { 1196 err = qman_retire_fq(fq, NULL); 1197 if (err < 0 && netif_msg_drv(priv)) 1198 dev_err(dev, "qman_retire_fq(%u) = %d\n", 1199 qman_fq_fqid(fq), err); 1200 1201 error = qman_oos_fq(fq); 1202 if (error < 0 && netif_msg_drv(priv)) { 1203 dev_err(dev, "qman_oos_fq(%u) = %d\n", 1204 qman_fq_fqid(fq), error); 1205 if (err >= 0) 1206 err = error; 1207 } 1208 } 1209 1210 if ((dpaa_fq->fq_type == FQ_TYPE_RX_DEFAULT || 1211 dpaa_fq->fq_type == FQ_TYPE_RX_PCD) && 1212 xdp_rxq_info_is_reg(&dpaa_fq->xdp_rxq)) 1213 xdp_rxq_info_unreg(&dpaa_fq->xdp_rxq); 1214 1215 qman_destroy_fq(fq); 1216 list_del(&dpaa_fq->list); 1217 1218 return err; 1219 } 1220 1221 static int dpaa_fq_free(struct device *dev, struct list_head *list) 1222 { 1223 struct dpaa_fq *dpaa_fq, *tmp; 1224 int err, error; 1225 1226 err = 0; 1227 list_for_each_entry_safe(dpaa_fq, tmp, list, list) { 1228 error = dpaa_fq_free_entry(dev, (struct qman_fq *)dpaa_fq); 1229 if (error < 0 && err >= 0) 1230 err = error; 1231 } 1232 1233 return err; 1234 } 1235 1236 static int dpaa_eth_init_tx_port(struct fman_port *port, struct dpaa_fq *errq, 1237 struct dpaa_fq *defq, 1238 struct dpaa_buffer_layout *buf_layout) 1239 { 1240 struct fman_buffer_prefix_content buf_prefix_content; 1241 struct fman_port_params params; 1242 int err; 1243 1244 memset(¶ms, 0, sizeof(params)); 1245 memset(&buf_prefix_content, 0, sizeof(buf_prefix_content)); 1246 1247 buf_prefix_content.priv_data_size = buf_layout->priv_data_size; 1248 buf_prefix_content.pass_prs_result = true; 1249 buf_prefix_content.pass_hash_result = true; 1250 buf_prefix_content.pass_time_stamp = true; 1251 buf_prefix_content.data_align = DPAA_FD_DATA_ALIGNMENT; 1252 1253 params.specific_params.non_rx_params.err_fqid = errq->fqid; 1254 params.specific_params.non_rx_params.dflt_fqid = defq->fqid; 1255 1256 err = fman_port_config(port, ¶ms); 1257 if (err) { 1258 pr_err("%s: fman_port_config failed\n", __func__); 1259 return err; 1260 } 1261 1262 err = fman_port_cfg_buf_prefix_content(port, &buf_prefix_content); 1263 if (err) { 1264 pr_err("%s: fman_port_cfg_buf_prefix_content failed\n", 1265 __func__); 1266 return err; 1267 } 1268 1269 err = fman_port_init(port); 1270 if (err) 1271 pr_err("%s: fm_port_init failed\n", __func__); 1272 1273 return err; 1274 } 1275 1276 static int dpaa_eth_init_rx_port(struct fman_port *port, struct dpaa_bp *bp, 1277 struct dpaa_fq *errq, 1278 struct dpaa_fq *defq, struct dpaa_fq *pcdq, 1279 struct dpaa_buffer_layout *buf_layout) 1280 { 1281 struct fman_buffer_prefix_content buf_prefix_content; 1282 struct fman_port_rx_params *rx_p; 1283 struct fman_port_params params; 1284 int err; 1285 1286 memset(¶ms, 0, sizeof(params)); 1287 memset(&buf_prefix_content, 0, sizeof(buf_prefix_content)); 1288 1289 buf_prefix_content.priv_data_size = buf_layout->priv_data_size; 1290 buf_prefix_content.pass_prs_result = true; 1291 buf_prefix_content.pass_hash_result = true; 1292 buf_prefix_content.pass_time_stamp = true; 1293 buf_prefix_content.data_align = DPAA_FD_RX_DATA_ALIGNMENT; 1294 1295 rx_p = ¶ms.specific_params.rx_params; 1296 rx_p->err_fqid = errq->fqid; 1297 rx_p->dflt_fqid = defq->fqid; 1298 if (pcdq) { 1299 rx_p->pcd_base_fqid = pcdq->fqid; 1300 rx_p->pcd_fqs_count = DPAA_ETH_PCD_RXQ_NUM; 1301 } 1302 1303 rx_p->ext_buf_pools.num_of_pools_used = 1; 1304 rx_p->ext_buf_pools.ext_buf_pool[0].id = bp->bpid; 1305 rx_p->ext_buf_pools.ext_buf_pool[0].size = (u16)bp->size; 1306 1307 err = fman_port_config(port, ¶ms); 1308 if (err) { 1309 pr_err("%s: fman_port_config failed\n", __func__); 1310 return err; 1311 } 1312 1313 err = fman_port_cfg_buf_prefix_content(port, &buf_prefix_content); 1314 if (err) { 1315 pr_err("%s: fman_port_cfg_buf_prefix_content failed\n", 1316 __func__); 1317 return err; 1318 } 1319 1320 err = fman_port_init(port); 1321 if (err) 1322 pr_err("%s: fm_port_init failed\n", __func__); 1323 1324 return err; 1325 } 1326 1327 static int dpaa_eth_init_ports(struct mac_device *mac_dev, 1328 struct dpaa_bp *bp, 1329 struct fm_port_fqs *port_fqs, 1330 struct dpaa_buffer_layout *buf_layout, 1331 struct device *dev) 1332 { 1333 struct fman_port *rxport = mac_dev->port[RX]; 1334 struct fman_port *txport = mac_dev->port[TX]; 1335 int err; 1336 1337 err = dpaa_eth_init_tx_port(txport, port_fqs->tx_errq, 1338 port_fqs->tx_defq, &buf_layout[TX]); 1339 if (err) 1340 return err; 1341 1342 err = dpaa_eth_init_rx_port(rxport, bp, port_fqs->rx_errq, 1343 port_fqs->rx_defq, port_fqs->rx_pcdq, 1344 &buf_layout[RX]); 1345 1346 return err; 1347 } 1348 1349 static int dpaa_bman_release(const struct dpaa_bp *dpaa_bp, 1350 struct bm_buffer *bmb, int cnt) 1351 { 1352 int err; 1353 1354 err = bman_release(dpaa_bp->pool, bmb, cnt); 1355 /* Should never occur, address anyway to avoid leaking the buffers */ 1356 if (WARN_ON(err) && dpaa_bp->free_buf_cb) 1357 while (cnt-- > 0) 1358 dpaa_bp->free_buf_cb(dpaa_bp, &bmb[cnt]); 1359 1360 return cnt; 1361 } 1362 1363 static void dpaa_release_sgt_members(struct qm_sg_entry *sgt) 1364 { 1365 struct bm_buffer bmb[DPAA_BUFF_RELEASE_MAX]; 1366 struct dpaa_bp *dpaa_bp; 1367 int i = 0, j; 1368 1369 memset(bmb, 0, sizeof(bmb)); 1370 1371 do { 1372 dpaa_bp = dpaa_bpid2pool(sgt[i].bpid); 1373 if (!dpaa_bp) 1374 return; 1375 1376 j = 0; 1377 do { 1378 WARN_ON(qm_sg_entry_is_ext(&sgt[i])); 1379 1380 bm_buffer_set64(&bmb[j], qm_sg_entry_get64(&sgt[i])); 1381 1382 j++; i++; 1383 } while (j < ARRAY_SIZE(bmb) && 1384 !qm_sg_entry_is_final(&sgt[i - 1]) && 1385 sgt[i - 1].bpid == sgt[i].bpid); 1386 1387 dpaa_bman_release(dpaa_bp, bmb, j); 1388 } while (!qm_sg_entry_is_final(&sgt[i - 1])); 1389 } 1390 1391 static void dpaa_fd_release(const struct net_device *net_dev, 1392 const struct qm_fd *fd) 1393 { 1394 struct qm_sg_entry *sgt; 1395 struct dpaa_bp *dpaa_bp; 1396 struct bm_buffer bmb; 1397 dma_addr_t addr; 1398 void *vaddr; 1399 1400 bmb.data = 0; 1401 bm_buffer_set64(&bmb, qm_fd_addr(fd)); 1402 1403 dpaa_bp = dpaa_bpid2pool(fd->bpid); 1404 if (!dpaa_bp) 1405 return; 1406 1407 if (qm_fd_get_format(fd) == qm_fd_sg) { 1408 vaddr = phys_to_virt(qm_fd_addr(fd)); 1409 sgt = vaddr + qm_fd_get_offset(fd); 1410 1411 dma_unmap_page(dpaa_bp->priv->rx_dma_dev, qm_fd_addr(fd), 1412 DPAA_BP_RAW_SIZE, DMA_FROM_DEVICE); 1413 1414 dpaa_release_sgt_members(sgt); 1415 1416 addr = dma_map_page(dpaa_bp->priv->rx_dma_dev, 1417 virt_to_page(vaddr), 0, DPAA_BP_RAW_SIZE, 1418 DMA_FROM_DEVICE); 1419 if (dma_mapping_error(dpaa_bp->priv->rx_dma_dev, addr)) { 1420 netdev_err(net_dev, "DMA mapping failed\n"); 1421 return; 1422 } 1423 bm_buffer_set64(&bmb, addr); 1424 } 1425 1426 dpaa_bman_release(dpaa_bp, &bmb, 1); 1427 } 1428 1429 static void count_ern(struct dpaa_percpu_priv *percpu_priv, 1430 const union qm_mr_entry *msg) 1431 { 1432 switch (msg->ern.rc & QM_MR_RC_MASK) { 1433 case QM_MR_RC_CGR_TAILDROP: 1434 percpu_priv->ern_cnt.cg_tdrop++; 1435 break; 1436 case QM_MR_RC_WRED: 1437 percpu_priv->ern_cnt.wred++; 1438 break; 1439 case QM_MR_RC_ERROR: 1440 percpu_priv->ern_cnt.err_cond++; 1441 break; 1442 case QM_MR_RC_ORPWINDOW_EARLY: 1443 percpu_priv->ern_cnt.early_window++; 1444 break; 1445 case QM_MR_RC_ORPWINDOW_LATE: 1446 percpu_priv->ern_cnt.late_window++; 1447 break; 1448 case QM_MR_RC_FQ_TAILDROP: 1449 percpu_priv->ern_cnt.fq_tdrop++; 1450 break; 1451 case QM_MR_RC_ORPWINDOW_RETIRED: 1452 percpu_priv->ern_cnt.fq_retired++; 1453 break; 1454 case QM_MR_RC_ORP_ZERO: 1455 percpu_priv->ern_cnt.orp_zero++; 1456 break; 1457 } 1458 } 1459 1460 /* Turn on HW checksum computation for this outgoing frame. 1461 * If the current protocol is not something we support in this regard 1462 * (or if the stack has already computed the SW checksum), we do nothing. 1463 * 1464 * Returns 0 if all goes well (or HW csum doesn't apply), and a negative value 1465 * otherwise. 1466 * 1467 * Note that this function may modify the fd->cmd field and the skb data buffer 1468 * (the Parse Results area). 1469 */ 1470 static int dpaa_enable_tx_csum(struct dpaa_priv *priv, 1471 struct sk_buff *skb, 1472 struct qm_fd *fd, 1473 void *parse_results) 1474 { 1475 struct fman_prs_result *parse_result; 1476 u16 ethertype = ntohs(skb->protocol); 1477 struct ipv6hdr *ipv6h = NULL; 1478 struct iphdr *iph; 1479 int retval = 0; 1480 u8 l4_proto; 1481 1482 if (skb->ip_summed != CHECKSUM_PARTIAL) 1483 return 0; 1484 1485 /* Note: L3 csum seems to be already computed in sw, but we can't choose 1486 * L4 alone from the FM configuration anyway. 1487 */ 1488 1489 /* Fill in some fields of the Parse Results array, so the FMan 1490 * can find them as if they came from the FMan Parser. 1491 */ 1492 parse_result = (struct fman_prs_result *)parse_results; 1493 1494 /* If we're dealing with VLAN, get the real Ethernet type */ 1495 if (ethertype == ETH_P_8021Q) 1496 ethertype = ntohs(skb_vlan_eth_hdr(skb)->h_vlan_encapsulated_proto); 1497 1498 /* Fill in the relevant L3 parse result fields 1499 * and read the L4 protocol type 1500 */ 1501 switch (ethertype) { 1502 case ETH_P_IP: 1503 parse_result->l3r = cpu_to_be16(FM_L3_PARSE_RESULT_IPV4); 1504 iph = ip_hdr(skb); 1505 WARN_ON(!iph); 1506 l4_proto = iph->protocol; 1507 break; 1508 case ETH_P_IPV6: 1509 parse_result->l3r = cpu_to_be16(FM_L3_PARSE_RESULT_IPV6); 1510 ipv6h = ipv6_hdr(skb); 1511 WARN_ON(!ipv6h); 1512 l4_proto = ipv6h->nexthdr; 1513 break; 1514 default: 1515 /* We shouldn't even be here */ 1516 if (net_ratelimit()) 1517 netif_alert(priv, tx_err, priv->net_dev, 1518 "Can't compute HW csum for L3 proto 0x%x\n", 1519 ntohs(skb->protocol)); 1520 retval = -EIO; 1521 goto return_error; 1522 } 1523 1524 /* Fill in the relevant L4 parse result fields */ 1525 switch (l4_proto) { 1526 case IPPROTO_UDP: 1527 parse_result->l4r = FM_L4_PARSE_RESULT_UDP; 1528 break; 1529 case IPPROTO_TCP: 1530 parse_result->l4r = FM_L4_PARSE_RESULT_TCP; 1531 break; 1532 default: 1533 if (net_ratelimit()) 1534 netif_alert(priv, tx_err, priv->net_dev, 1535 "Can't compute HW csum for L4 proto 0x%x\n", 1536 l4_proto); 1537 retval = -EIO; 1538 goto return_error; 1539 } 1540 1541 /* At index 0 is IPOffset_1 as defined in the Parse Results */ 1542 parse_result->ip_off[0] = (u8)skb_network_offset(skb); 1543 parse_result->l4_off = (u8)skb_transport_offset(skb); 1544 1545 /* Enable L3 (and L4, if TCP or UDP) HW checksum. */ 1546 fd->cmd |= cpu_to_be32(FM_FD_CMD_RPD | FM_FD_CMD_DTC); 1547 1548 /* On P1023 and similar platforms fd->cmd interpretation could 1549 * be disabled by setting CONTEXT_A bit ICMD; currently this bit 1550 * is not set so we do not need to check; in the future, if/when 1551 * using context_a we need to check this bit 1552 */ 1553 1554 return_error: 1555 return retval; 1556 } 1557 1558 static int dpaa_bp_add_8_bufs(const struct dpaa_bp *dpaa_bp) 1559 { 1560 struct net_device *net_dev = dpaa_bp->priv->net_dev; 1561 struct bm_buffer bmb[8]; 1562 dma_addr_t addr; 1563 struct page *p; 1564 u8 i; 1565 1566 for (i = 0; i < 8; i++) { 1567 p = dev_alloc_pages(0); 1568 if (unlikely(!p)) { 1569 netdev_err(net_dev, "dev_alloc_pages() failed\n"); 1570 goto release_previous_buffs; 1571 } 1572 1573 addr = dma_map_page(dpaa_bp->priv->rx_dma_dev, p, 0, 1574 DPAA_BP_RAW_SIZE, DMA_FROM_DEVICE); 1575 if (unlikely(dma_mapping_error(dpaa_bp->priv->rx_dma_dev, 1576 addr))) { 1577 netdev_err(net_dev, "DMA map failed\n"); 1578 goto release_previous_buffs; 1579 } 1580 1581 bmb[i].data = 0; 1582 bm_buffer_set64(&bmb[i], addr); 1583 } 1584 1585 release_bufs: 1586 return dpaa_bman_release(dpaa_bp, bmb, i); 1587 1588 release_previous_buffs: 1589 WARN_ONCE(1, "dpaa_eth: failed to add buffers on Rx\n"); 1590 1591 bm_buffer_set64(&bmb[i], 0); 1592 /* Avoid releasing a completely null buffer; bman_release() requires 1593 * at least one buffer. 1594 */ 1595 if (likely(i)) 1596 goto release_bufs; 1597 1598 return 0; 1599 } 1600 1601 static int dpaa_bp_seed(struct dpaa_bp *dpaa_bp) 1602 { 1603 int i; 1604 1605 /* Give each CPU an allotment of "config_count" buffers */ 1606 for_each_possible_cpu(i) { 1607 int *count_ptr = per_cpu_ptr(dpaa_bp->percpu_count, i); 1608 int j; 1609 1610 /* Although we access another CPU's counters here 1611 * we do it at boot time so it is safe 1612 */ 1613 for (j = 0; j < dpaa_bp->config_count; j += 8) 1614 *count_ptr += dpaa_bp_add_8_bufs(dpaa_bp); 1615 } 1616 return 0; 1617 } 1618 1619 /* Add buffers/(pages) for Rx processing whenever bpool count falls below 1620 * REFILL_THRESHOLD. 1621 */ 1622 static int dpaa_eth_refill_bpool(struct dpaa_bp *dpaa_bp, int *countptr) 1623 { 1624 int count = *countptr; 1625 int new_bufs; 1626 1627 if (unlikely(count < FSL_DPAA_ETH_REFILL_THRESHOLD)) { 1628 do { 1629 new_bufs = dpaa_bp_add_8_bufs(dpaa_bp); 1630 if (unlikely(!new_bufs)) { 1631 /* Avoid looping forever if we've temporarily 1632 * run out of memory. We'll try again at the 1633 * next NAPI cycle. 1634 */ 1635 break; 1636 } 1637 count += new_bufs; 1638 } while (count < FSL_DPAA_ETH_MAX_BUF_COUNT); 1639 1640 *countptr = count; 1641 if (unlikely(count < FSL_DPAA_ETH_MAX_BUF_COUNT)) 1642 return -ENOMEM; 1643 } 1644 1645 return 0; 1646 } 1647 1648 static int dpaa_eth_refill_bpools(struct dpaa_priv *priv) 1649 { 1650 struct dpaa_bp *dpaa_bp; 1651 int *countptr; 1652 1653 dpaa_bp = priv->dpaa_bp; 1654 if (!dpaa_bp) 1655 return -EINVAL; 1656 countptr = this_cpu_ptr(dpaa_bp->percpu_count); 1657 1658 return dpaa_eth_refill_bpool(dpaa_bp, countptr); 1659 } 1660 1661 /* Cleanup function for outgoing frame descriptors that were built on Tx path, 1662 * either contiguous frames or scatter/gather ones. 1663 * Skb freeing is not handled here. 1664 * 1665 * This function may be called on error paths in the Tx function, so guard 1666 * against cases when not all fd relevant fields were filled in. To avoid 1667 * reading the invalid transmission timestamp for the error paths set ts to 1668 * false. 1669 * 1670 * Return the skb backpointer, since for S/G frames the buffer containing it 1671 * gets freed here. 1672 * 1673 * No skb backpointer is set when transmitting XDP frames. Cleanup the buffer 1674 * and return NULL in this case. 1675 */ 1676 static struct sk_buff *dpaa_cleanup_tx_fd(const struct dpaa_priv *priv, 1677 const struct qm_fd *fd, bool ts) 1678 { 1679 const enum dma_data_direction dma_dir = DMA_TO_DEVICE; 1680 struct device *dev = priv->net_dev->dev.parent; 1681 struct skb_shared_hwtstamps shhwtstamps; 1682 dma_addr_t addr = qm_fd_addr(fd); 1683 void *vaddr = phys_to_virt(addr); 1684 const struct qm_sg_entry *sgt; 1685 struct dpaa_eth_swbp *swbp; 1686 struct sk_buff *skb; 1687 u64 ns; 1688 int i; 1689 1690 if (unlikely(qm_fd_get_format(fd) == qm_fd_sg)) { 1691 dma_unmap_page(priv->tx_dma_dev, addr, 1692 qm_fd_get_offset(fd) + DPAA_SGT_SIZE, 1693 dma_dir); 1694 1695 /* The sgt buffer has been allocated with netdev_alloc_frag(), 1696 * it's from lowmem. 1697 */ 1698 sgt = vaddr + qm_fd_get_offset(fd); 1699 1700 /* sgt[0] is from lowmem, was dma_map_single()-ed */ 1701 dma_unmap_single(priv->tx_dma_dev, qm_sg_addr(&sgt[0]), 1702 qm_sg_entry_get_len(&sgt[0]), dma_dir); 1703 1704 /* remaining pages were mapped with skb_frag_dma_map() */ 1705 for (i = 1; (i < DPAA_SGT_MAX_ENTRIES) && 1706 !qm_sg_entry_is_final(&sgt[i - 1]); i++) { 1707 WARN_ON(qm_sg_entry_is_ext(&sgt[i])); 1708 1709 dma_unmap_page(priv->tx_dma_dev, qm_sg_addr(&sgt[i]), 1710 qm_sg_entry_get_len(&sgt[i]), dma_dir); 1711 } 1712 } else { 1713 dma_unmap_single(priv->tx_dma_dev, addr, 1714 qm_fd_get_offset(fd) + qm_fd_get_length(fd), 1715 dma_dir); 1716 } 1717 1718 swbp = (struct dpaa_eth_swbp *)vaddr; 1719 skb = swbp->skb; 1720 1721 /* No skb backpointer is set when running XDP. An xdp_frame 1722 * backpointer is saved instead. 1723 */ 1724 if (!skb) { 1725 xdp_return_frame(swbp->xdpf); 1726 return NULL; 1727 } 1728 1729 /* DMA unmapping is required before accessing the HW provided info */ 1730 if (ts && priv->tx_tstamp && 1731 skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) { 1732 memset(&shhwtstamps, 0, sizeof(shhwtstamps)); 1733 1734 if (!fman_port_get_tstamp(priv->mac_dev->port[TX], vaddr, 1735 &ns)) { 1736 shhwtstamps.hwtstamp = ns_to_ktime(ns); 1737 skb_tstamp_tx(skb, &shhwtstamps); 1738 } else { 1739 dev_warn(dev, "fman_port_get_tstamp failed!\n"); 1740 } 1741 } 1742 1743 if (qm_fd_get_format(fd) == qm_fd_sg) 1744 /* Free the page that we allocated on Tx for the SGT */ 1745 free_pages((unsigned long)vaddr, 0); 1746 1747 return skb; 1748 } 1749 1750 static u8 rx_csum_offload(const struct dpaa_priv *priv, const struct qm_fd *fd) 1751 { 1752 /* The parser has run and performed L4 checksum validation. 1753 * We know there were no parser errors (and implicitly no 1754 * L4 csum error), otherwise we wouldn't be here. 1755 */ 1756 if ((priv->net_dev->features & NETIF_F_RXCSUM) && 1757 (be32_to_cpu(fd->status) & FM_FD_STAT_L4CV)) 1758 return CHECKSUM_UNNECESSARY; 1759 1760 /* We're here because either the parser didn't run or the L4 checksum 1761 * was not verified. This may include the case of a UDP frame with 1762 * checksum zero or an L4 proto other than TCP/UDP 1763 */ 1764 return CHECKSUM_NONE; 1765 } 1766 1767 #define PTR_IS_ALIGNED(x, a) (IS_ALIGNED((unsigned long)(x), (a))) 1768 1769 /* Build a linear skb around the received buffer. 1770 * We are guaranteed there is enough room at the end of the data buffer to 1771 * accommodate the shared info area of the skb. 1772 */ 1773 static struct sk_buff *contig_fd_to_skb(const struct dpaa_priv *priv, 1774 const struct qm_fd *fd) 1775 { 1776 ssize_t fd_off = qm_fd_get_offset(fd); 1777 dma_addr_t addr = qm_fd_addr(fd); 1778 struct dpaa_bp *dpaa_bp; 1779 struct sk_buff *skb; 1780 void *vaddr; 1781 1782 vaddr = phys_to_virt(addr); 1783 WARN_ON(!IS_ALIGNED((unsigned long)vaddr, SMP_CACHE_BYTES)); 1784 1785 dpaa_bp = dpaa_bpid2pool(fd->bpid); 1786 if (!dpaa_bp) 1787 goto free_buffer; 1788 1789 skb = build_skb(vaddr, dpaa_bp->size + 1790 SKB_DATA_ALIGN(sizeof(struct skb_shared_info))); 1791 if (WARN_ONCE(!skb, "Build skb failure on Rx\n")) 1792 goto free_buffer; 1793 skb_reserve(skb, fd_off); 1794 skb_put(skb, qm_fd_get_length(fd)); 1795 1796 skb->ip_summed = rx_csum_offload(priv, fd); 1797 1798 return skb; 1799 1800 free_buffer: 1801 free_pages((unsigned long)vaddr, 0); 1802 return NULL; 1803 } 1804 1805 /* Build an skb with the data of the first S/G entry in the linear portion and 1806 * the rest of the frame as skb fragments. 1807 * 1808 * The page fragment holding the S/G Table is recycled here. 1809 */ 1810 static struct sk_buff *sg_fd_to_skb(const struct dpaa_priv *priv, 1811 const struct qm_fd *fd) 1812 { 1813 ssize_t fd_off = qm_fd_get_offset(fd); 1814 dma_addr_t addr = qm_fd_addr(fd); 1815 const struct qm_sg_entry *sgt; 1816 struct page *page, *head_page; 1817 struct dpaa_bp *dpaa_bp; 1818 void *vaddr, *sg_vaddr; 1819 int frag_off, frag_len; 1820 struct sk_buff *skb; 1821 dma_addr_t sg_addr; 1822 int page_offset; 1823 unsigned int sz; 1824 int *count_ptr; 1825 int i, j; 1826 1827 vaddr = phys_to_virt(addr); 1828 WARN_ON(!IS_ALIGNED((unsigned long)vaddr, SMP_CACHE_BYTES)); 1829 1830 /* Iterate through the SGT entries and add data buffers to the skb */ 1831 sgt = vaddr + fd_off; 1832 skb = NULL; 1833 for (i = 0; i < DPAA_SGT_MAX_ENTRIES; i++) { 1834 /* Extension bit is not supported */ 1835 WARN_ON(qm_sg_entry_is_ext(&sgt[i])); 1836 1837 sg_addr = qm_sg_addr(&sgt[i]); 1838 sg_vaddr = phys_to_virt(sg_addr); 1839 WARN_ON(!PTR_IS_ALIGNED(sg_vaddr, SMP_CACHE_BYTES)); 1840 1841 dma_unmap_page(priv->rx_dma_dev, sg_addr, 1842 DPAA_BP_RAW_SIZE, DMA_FROM_DEVICE); 1843 1844 /* We may use multiple Rx pools */ 1845 dpaa_bp = dpaa_bpid2pool(sgt[i].bpid); 1846 if (!dpaa_bp) 1847 goto free_buffers; 1848 1849 if (!skb) { 1850 sz = dpaa_bp->size + 1851 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); 1852 skb = build_skb(sg_vaddr, sz); 1853 if (WARN_ON(!skb)) 1854 goto free_buffers; 1855 1856 skb->ip_summed = rx_csum_offload(priv, fd); 1857 1858 /* Make sure forwarded skbs will have enough space 1859 * on Tx, if extra headers are added. 1860 */ 1861 WARN_ON(fd_off != priv->rx_headroom); 1862 skb_reserve(skb, fd_off); 1863 skb_put(skb, qm_sg_entry_get_len(&sgt[i])); 1864 } else { 1865 /* Not the first S/G entry; all data from buffer will 1866 * be added in an skb fragment; fragment index is offset 1867 * by one since first S/G entry was incorporated in the 1868 * linear part of the skb. 1869 * 1870 * Caution: 'page' may be a tail page. 1871 */ 1872 page = virt_to_page(sg_vaddr); 1873 head_page = virt_to_head_page(sg_vaddr); 1874 1875 /* Compute offset in (possibly tail) page */ 1876 page_offset = ((unsigned long)sg_vaddr & 1877 (PAGE_SIZE - 1)) + 1878 (page_address(page) - page_address(head_page)); 1879 /* page_offset only refers to the beginning of sgt[i]; 1880 * but the buffer itself may have an internal offset. 1881 */ 1882 frag_off = qm_sg_entry_get_off(&sgt[i]) + page_offset; 1883 frag_len = qm_sg_entry_get_len(&sgt[i]); 1884 /* skb_add_rx_frag() does no checking on the page; if 1885 * we pass it a tail page, we'll end up with 1886 * bad page accounting and eventually with segafults. 1887 */ 1888 skb_add_rx_frag(skb, i - 1, head_page, frag_off, 1889 frag_len, dpaa_bp->size); 1890 } 1891 1892 /* Update the pool count for the current {cpu x bpool} */ 1893 count_ptr = this_cpu_ptr(dpaa_bp->percpu_count); 1894 (*count_ptr)--; 1895 1896 if (qm_sg_entry_is_final(&sgt[i])) 1897 break; 1898 } 1899 WARN_ONCE(i == DPAA_SGT_MAX_ENTRIES, "No final bit on SGT\n"); 1900 1901 /* free the SG table buffer */ 1902 free_pages((unsigned long)vaddr, 0); 1903 1904 return skb; 1905 1906 free_buffers: 1907 /* free all the SG entries */ 1908 for (j = 0; j < DPAA_SGT_MAX_ENTRIES ; j++) { 1909 sg_addr = qm_sg_addr(&sgt[j]); 1910 sg_vaddr = phys_to_virt(sg_addr); 1911 /* all pages 0..i were unmaped */ 1912 if (j > i) 1913 dma_unmap_page(priv->rx_dma_dev, qm_sg_addr(&sgt[j]), 1914 DPAA_BP_RAW_SIZE, DMA_FROM_DEVICE); 1915 free_pages((unsigned long)sg_vaddr, 0); 1916 /* counters 0..i-1 were decremented */ 1917 if (j >= i) { 1918 dpaa_bp = dpaa_bpid2pool(sgt[j].bpid); 1919 if (dpaa_bp) { 1920 count_ptr = this_cpu_ptr(dpaa_bp->percpu_count); 1921 (*count_ptr)--; 1922 } 1923 } 1924 1925 if (qm_sg_entry_is_final(&sgt[j])) 1926 break; 1927 } 1928 /* free the SGT fragment */ 1929 free_pages((unsigned long)vaddr, 0); 1930 1931 return NULL; 1932 } 1933 1934 static int skb_to_contig_fd(struct dpaa_priv *priv, 1935 struct sk_buff *skb, struct qm_fd *fd, 1936 int *offset) 1937 { 1938 struct net_device *net_dev = priv->net_dev; 1939 enum dma_data_direction dma_dir; 1940 struct dpaa_eth_swbp *swbp; 1941 unsigned char *buff_start; 1942 dma_addr_t addr; 1943 int err; 1944 1945 /* We are guaranteed to have at least tx_headroom bytes 1946 * available, so just use that for offset. 1947 */ 1948 fd->bpid = FSL_DPAA_BPID_INV; 1949 buff_start = skb->data - priv->tx_headroom; 1950 dma_dir = DMA_TO_DEVICE; 1951 1952 swbp = (struct dpaa_eth_swbp *)buff_start; 1953 swbp->skb = skb; 1954 1955 /* Enable L3/L4 hardware checksum computation. 1956 * 1957 * We must do this before dma_map_single(DMA_TO_DEVICE), because we may 1958 * need to write into the skb. 1959 */ 1960 err = dpaa_enable_tx_csum(priv, skb, fd, 1961 buff_start + DPAA_TX_PRIV_DATA_SIZE); 1962 if (unlikely(err < 0)) { 1963 if (net_ratelimit()) 1964 netif_err(priv, tx_err, net_dev, "HW csum error: %d\n", 1965 err); 1966 return err; 1967 } 1968 1969 /* Fill in the rest of the FD fields */ 1970 qm_fd_set_contig(fd, priv->tx_headroom, skb->len); 1971 fd->cmd |= cpu_to_be32(FM_FD_CMD_FCO); 1972 1973 /* Map the entire buffer size that may be seen by FMan, but no more */ 1974 addr = dma_map_single(priv->tx_dma_dev, buff_start, 1975 priv->tx_headroom + skb->len, dma_dir); 1976 if (unlikely(dma_mapping_error(priv->tx_dma_dev, addr))) { 1977 if (net_ratelimit()) 1978 netif_err(priv, tx_err, net_dev, "dma_map_single() failed\n"); 1979 return -EINVAL; 1980 } 1981 qm_fd_addr_set64(fd, addr); 1982 1983 return 0; 1984 } 1985 1986 static int skb_to_sg_fd(struct dpaa_priv *priv, 1987 struct sk_buff *skb, struct qm_fd *fd) 1988 { 1989 const enum dma_data_direction dma_dir = DMA_TO_DEVICE; 1990 const int nr_frags = skb_shinfo(skb)->nr_frags; 1991 struct net_device *net_dev = priv->net_dev; 1992 struct dpaa_eth_swbp *swbp; 1993 struct qm_sg_entry *sgt; 1994 void *buff_start; 1995 skb_frag_t *frag; 1996 dma_addr_t addr; 1997 size_t frag_len; 1998 struct page *p; 1999 int i, j, err; 2000 2001 /* get a page to store the SGTable */ 2002 p = dev_alloc_pages(0); 2003 if (unlikely(!p)) { 2004 netdev_err(net_dev, "dev_alloc_pages() failed\n"); 2005 return -ENOMEM; 2006 } 2007 buff_start = page_address(p); 2008 2009 /* Enable L3/L4 hardware checksum computation. 2010 * 2011 * We must do this before dma_map_single(DMA_TO_DEVICE), because we may 2012 * need to write into the skb. 2013 */ 2014 err = dpaa_enable_tx_csum(priv, skb, fd, 2015 buff_start + DPAA_TX_PRIV_DATA_SIZE); 2016 if (unlikely(err < 0)) { 2017 if (net_ratelimit()) 2018 netif_err(priv, tx_err, net_dev, "HW csum error: %d\n", 2019 err); 2020 goto csum_failed; 2021 } 2022 2023 /* SGT[0] is used by the linear part */ 2024 sgt = (struct qm_sg_entry *)(buff_start + priv->tx_headroom); 2025 frag_len = skb_headlen(skb); 2026 qm_sg_entry_set_len(&sgt[0], frag_len); 2027 sgt[0].bpid = FSL_DPAA_BPID_INV; 2028 sgt[0].offset = 0; 2029 addr = dma_map_single(priv->tx_dma_dev, skb->data, 2030 skb_headlen(skb), dma_dir); 2031 if (unlikely(dma_mapping_error(priv->tx_dma_dev, addr))) { 2032 netdev_err(priv->net_dev, "DMA mapping failed\n"); 2033 err = -EINVAL; 2034 goto sg0_map_failed; 2035 } 2036 qm_sg_entry_set64(&sgt[0], addr); 2037 2038 /* populate the rest of SGT entries */ 2039 for (i = 0; i < nr_frags; i++) { 2040 frag = &skb_shinfo(skb)->frags[i]; 2041 frag_len = skb_frag_size(frag); 2042 WARN_ON(!skb_frag_page(frag)); 2043 addr = skb_frag_dma_map(priv->tx_dma_dev, frag, 0, 2044 frag_len, dma_dir); 2045 if (unlikely(dma_mapping_error(priv->tx_dma_dev, addr))) { 2046 netdev_err(priv->net_dev, "DMA mapping failed\n"); 2047 err = -EINVAL; 2048 goto sg_map_failed; 2049 } 2050 2051 qm_sg_entry_set_len(&sgt[i + 1], frag_len); 2052 sgt[i + 1].bpid = FSL_DPAA_BPID_INV; 2053 sgt[i + 1].offset = 0; 2054 2055 /* keep the offset in the address */ 2056 qm_sg_entry_set64(&sgt[i + 1], addr); 2057 } 2058 2059 /* Set the final bit in the last used entry of the SGT */ 2060 qm_sg_entry_set_f(&sgt[nr_frags], frag_len); 2061 2062 /* set fd offset to priv->tx_headroom */ 2063 qm_fd_set_sg(fd, priv->tx_headroom, skb->len); 2064 2065 /* DMA map the SGT page */ 2066 swbp = (struct dpaa_eth_swbp *)buff_start; 2067 swbp->skb = skb; 2068 2069 addr = dma_map_page(priv->tx_dma_dev, p, 0, 2070 priv->tx_headroom + DPAA_SGT_SIZE, dma_dir); 2071 if (unlikely(dma_mapping_error(priv->tx_dma_dev, addr))) { 2072 netdev_err(priv->net_dev, "DMA mapping failed\n"); 2073 err = -EINVAL; 2074 goto sgt_map_failed; 2075 } 2076 2077 fd->bpid = FSL_DPAA_BPID_INV; 2078 fd->cmd |= cpu_to_be32(FM_FD_CMD_FCO); 2079 qm_fd_addr_set64(fd, addr); 2080 2081 return 0; 2082 2083 sgt_map_failed: 2084 sg_map_failed: 2085 for (j = 0; j < i; j++) 2086 dma_unmap_page(priv->tx_dma_dev, qm_sg_addr(&sgt[j]), 2087 qm_sg_entry_get_len(&sgt[j]), dma_dir); 2088 sg0_map_failed: 2089 csum_failed: 2090 free_pages((unsigned long)buff_start, 0); 2091 2092 return err; 2093 } 2094 2095 static inline int dpaa_xmit(struct dpaa_priv *priv, 2096 struct rtnl_link_stats64 *percpu_stats, 2097 int queue, 2098 struct qm_fd *fd) 2099 { 2100 struct qman_fq *egress_fq; 2101 int err, i; 2102 2103 egress_fq = priv->egress_fqs[queue]; 2104 if (fd->bpid == FSL_DPAA_BPID_INV) 2105 fd->cmd |= cpu_to_be32(qman_fq_fqid(priv->conf_fqs[queue])); 2106 2107 /* Trace this Tx fd */ 2108 trace_dpaa_tx_fd(priv->net_dev, egress_fq, fd); 2109 2110 for (i = 0; i < DPAA_ENQUEUE_RETRIES; i++) { 2111 err = qman_enqueue(egress_fq, fd); 2112 if (err != -EBUSY) 2113 break; 2114 } 2115 2116 if (unlikely(err < 0)) { 2117 percpu_stats->tx_fifo_errors++; 2118 return err; 2119 } 2120 2121 percpu_stats->tx_packets++; 2122 percpu_stats->tx_bytes += qm_fd_get_length(fd); 2123 2124 return 0; 2125 } 2126 2127 #ifdef CONFIG_DPAA_ERRATUM_A050385 2128 static int dpaa_a050385_wa_skb(struct net_device *net_dev, struct sk_buff **s) 2129 { 2130 struct dpaa_priv *priv = netdev_priv(net_dev); 2131 struct sk_buff *new_skb, *skb = *s; 2132 unsigned char *start, i; 2133 2134 /* check linear buffer alignment */ 2135 if (!PTR_IS_ALIGNED(skb->data, DPAA_A050385_ALIGN)) 2136 goto workaround; 2137 2138 /* linear buffers just need to have an aligned start */ 2139 if (!skb_is_nonlinear(skb)) 2140 return 0; 2141 2142 /* linear data size for nonlinear skbs needs to be aligned */ 2143 if (!IS_ALIGNED(skb_headlen(skb), DPAA_A050385_ALIGN)) 2144 goto workaround; 2145 2146 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2147 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2148 2149 /* all fragments need to have aligned start addresses */ 2150 if (!IS_ALIGNED(skb_frag_off(frag), DPAA_A050385_ALIGN)) 2151 goto workaround; 2152 2153 /* all but last fragment need to have aligned sizes */ 2154 if (!IS_ALIGNED(skb_frag_size(frag), DPAA_A050385_ALIGN) && 2155 (i < skb_shinfo(skb)->nr_frags - 1)) 2156 goto workaround; 2157 } 2158 2159 return 0; 2160 2161 workaround: 2162 /* copy all the skb content into a new linear buffer */ 2163 new_skb = netdev_alloc_skb(net_dev, skb->len + DPAA_A050385_ALIGN - 1 + 2164 priv->tx_headroom); 2165 if (!new_skb) 2166 return -ENOMEM; 2167 2168 /* NET_SKB_PAD bytes already reserved, adding up to tx_headroom */ 2169 skb_reserve(new_skb, priv->tx_headroom - NET_SKB_PAD); 2170 2171 /* Workaround for DPAA_A050385 requires data start to be aligned */ 2172 start = PTR_ALIGN(new_skb->data, DPAA_A050385_ALIGN); 2173 if (start - new_skb->data) 2174 skb_reserve(new_skb, start - new_skb->data); 2175 2176 skb_put(new_skb, skb->len); 2177 skb_copy_bits(skb, 0, new_skb->data, skb->len); 2178 skb_copy_header(new_skb, skb); 2179 new_skb->dev = skb->dev; 2180 2181 /* Copy relevant timestamp info from the old skb to the new */ 2182 if (priv->tx_tstamp) { 2183 skb_shinfo(new_skb)->tx_flags = skb_shinfo(skb)->tx_flags; 2184 skb_shinfo(new_skb)->hwtstamps = skb_shinfo(skb)->hwtstamps; 2185 skb_shinfo(new_skb)->tskey = skb_shinfo(skb)->tskey; 2186 if (skb->sk) 2187 skb_set_owner_w(new_skb, skb->sk); 2188 } 2189 2190 /* We move the headroom when we align it so we have to reset the 2191 * network and transport header offsets relative to the new data 2192 * pointer. The checksum offload relies on these offsets. 2193 */ 2194 skb_set_network_header(new_skb, skb_network_offset(skb)); 2195 skb_set_transport_header(new_skb, skb_transport_offset(skb)); 2196 2197 dev_kfree_skb(skb); 2198 *s = new_skb; 2199 2200 return 0; 2201 } 2202 2203 static int dpaa_a050385_wa_xdpf(struct dpaa_priv *priv, 2204 struct xdp_frame **init_xdpf) 2205 { 2206 struct xdp_frame *new_xdpf, *xdpf = *init_xdpf; 2207 void *new_buff, *aligned_data; 2208 struct page *p; 2209 u32 data_shift; 2210 int headroom; 2211 2212 /* Check the data alignment and make sure the headroom is large 2213 * enough to store the xdpf backpointer. Use an aligned headroom 2214 * value. 2215 * 2216 * Due to alignment constraints, we give XDP access to the full 256 2217 * byte frame headroom. If the XDP program uses all of it, copy the 2218 * data to a new buffer and make room for storing the backpointer. 2219 */ 2220 if (PTR_IS_ALIGNED(xdpf->data, DPAA_FD_DATA_ALIGNMENT) && 2221 xdpf->headroom >= priv->tx_headroom) { 2222 xdpf->headroom = priv->tx_headroom; 2223 return 0; 2224 } 2225 2226 /* Try to move the data inside the buffer just enough to align it and 2227 * store the xdpf backpointer. If the available headroom isn't large 2228 * enough, resort to allocating a new buffer and copying the data. 2229 */ 2230 aligned_data = PTR_ALIGN_DOWN(xdpf->data, DPAA_FD_DATA_ALIGNMENT); 2231 data_shift = xdpf->data - aligned_data; 2232 2233 /* The XDP frame's headroom needs to be large enough to accommodate 2234 * shifting the data as well as storing the xdpf backpointer. 2235 */ 2236 if (xdpf->headroom >= data_shift + priv->tx_headroom) { 2237 memmove(aligned_data, xdpf->data, xdpf->len); 2238 xdpf->data = aligned_data; 2239 xdpf->headroom = priv->tx_headroom; 2240 return 0; 2241 } 2242 2243 /* The new xdp_frame is stored in the new buffer. Reserve enough space 2244 * in the headroom for storing it along with the driver's private 2245 * info. The headroom needs to be aligned to DPAA_FD_DATA_ALIGNMENT to 2246 * guarantee the data's alignment in the buffer. 2247 */ 2248 headroom = ALIGN(sizeof(*new_xdpf) + priv->tx_headroom, 2249 DPAA_FD_DATA_ALIGNMENT); 2250 2251 /* Assure the extended headroom and data don't overflow the buffer, 2252 * while maintaining the mandatory tailroom. 2253 */ 2254 if (headroom + xdpf->len > DPAA_BP_RAW_SIZE - 2255 SKB_DATA_ALIGN(sizeof(struct skb_shared_info))) 2256 return -ENOMEM; 2257 2258 p = dev_alloc_pages(0); 2259 if (unlikely(!p)) 2260 return -ENOMEM; 2261 2262 /* Copy the data to the new buffer at a properly aligned offset */ 2263 new_buff = page_address(p); 2264 memcpy(new_buff + headroom, xdpf->data, xdpf->len); 2265 2266 /* Create an XDP frame around the new buffer in a similar fashion 2267 * to xdp_convert_buff_to_frame. 2268 */ 2269 new_xdpf = new_buff; 2270 new_xdpf->data = new_buff + headroom; 2271 new_xdpf->len = xdpf->len; 2272 new_xdpf->headroom = priv->tx_headroom; 2273 new_xdpf->frame_sz = DPAA_BP_RAW_SIZE; 2274 new_xdpf->mem.type = MEM_TYPE_PAGE_ORDER0; 2275 2276 /* Release the initial buffer */ 2277 xdp_return_frame_rx_napi(xdpf); 2278 2279 *init_xdpf = new_xdpf; 2280 return 0; 2281 } 2282 #endif 2283 2284 static netdev_tx_t 2285 dpaa_start_xmit(struct sk_buff *skb, struct net_device *net_dev) 2286 { 2287 const int queue_mapping = skb_get_queue_mapping(skb); 2288 struct rtnl_link_stats64 *percpu_stats; 2289 struct dpaa_percpu_priv *percpu_priv; 2290 struct netdev_queue *txq; 2291 struct dpaa_priv *priv; 2292 struct qm_fd fd; 2293 bool nonlinear; 2294 int offset = 0; 2295 int err = 0; 2296 2297 priv = netdev_priv(net_dev); 2298 percpu_priv = this_cpu_ptr(priv->percpu_priv); 2299 percpu_stats = &percpu_priv->stats; 2300 2301 qm_fd_clear_fd(&fd); 2302 2303 /* Packet data is always read as 32-bit words, so zero out any part of 2304 * the skb which might be sent if we have to pad the packet 2305 */ 2306 if (__skb_put_padto(skb, ETH_ZLEN, false)) 2307 goto enomem; 2308 2309 nonlinear = skb_is_nonlinear(skb); 2310 if (!nonlinear) { 2311 /* We're going to store the skb backpointer at the beginning 2312 * of the data buffer, so we need a privately owned skb 2313 * 2314 * We've made sure skb is not shared in dev->priv_flags, 2315 * we need to verify the skb head is not cloned 2316 */ 2317 if (skb_cow_head(skb, priv->tx_headroom)) 2318 goto enomem; 2319 2320 WARN_ON(skb_is_nonlinear(skb)); 2321 } 2322 2323 /* MAX_SKB_FRAGS is equal or larger than our dpaa_SGT_MAX_ENTRIES; 2324 * make sure we don't feed FMan with more fragments than it supports. 2325 */ 2326 if (unlikely(nonlinear && 2327 (skb_shinfo(skb)->nr_frags >= DPAA_SGT_MAX_ENTRIES))) { 2328 /* If the egress skb contains more fragments than we support 2329 * we have no choice but to linearize it ourselves. 2330 */ 2331 if (__skb_linearize(skb)) 2332 goto enomem; 2333 2334 nonlinear = skb_is_nonlinear(skb); 2335 } 2336 2337 #ifdef CONFIG_DPAA_ERRATUM_A050385 2338 if (unlikely(fman_has_errata_a050385())) { 2339 if (dpaa_a050385_wa_skb(net_dev, &skb)) 2340 goto enomem; 2341 nonlinear = skb_is_nonlinear(skb); 2342 } 2343 #endif 2344 2345 if (nonlinear) { 2346 /* Just create a S/G fd based on the skb */ 2347 err = skb_to_sg_fd(priv, skb, &fd); 2348 percpu_priv->tx_frag_skbuffs++; 2349 } else { 2350 /* Create a contig FD from this skb */ 2351 err = skb_to_contig_fd(priv, skb, &fd, &offset); 2352 } 2353 if (unlikely(err < 0)) 2354 goto skb_to_fd_failed; 2355 2356 txq = netdev_get_tx_queue(net_dev, queue_mapping); 2357 2358 /* LLTX requires to do our own update of trans_start */ 2359 txq_trans_cond_update(txq); 2360 2361 if (priv->tx_tstamp && skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) { 2362 fd.cmd |= cpu_to_be32(FM_FD_CMD_UPD); 2363 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; 2364 } 2365 2366 if (likely(dpaa_xmit(priv, percpu_stats, queue_mapping, &fd) == 0)) 2367 return NETDEV_TX_OK; 2368 2369 dpaa_cleanup_tx_fd(priv, &fd, false); 2370 skb_to_fd_failed: 2371 enomem: 2372 percpu_stats->tx_errors++; 2373 dev_kfree_skb(skb); 2374 return NETDEV_TX_OK; 2375 } 2376 2377 static void dpaa_rx_error(struct net_device *net_dev, 2378 const struct dpaa_priv *priv, 2379 struct dpaa_percpu_priv *percpu_priv, 2380 const struct qm_fd *fd, 2381 u32 fqid) 2382 { 2383 if (net_ratelimit()) 2384 netif_err(priv, hw, net_dev, "Err FD status = 0x%08x\n", 2385 be32_to_cpu(fd->status) & FM_FD_STAT_RX_ERRORS); 2386 2387 percpu_priv->stats.rx_errors++; 2388 2389 if (be32_to_cpu(fd->status) & FM_FD_ERR_DMA) 2390 percpu_priv->rx_errors.dme++; 2391 if (be32_to_cpu(fd->status) & FM_FD_ERR_PHYSICAL) 2392 percpu_priv->rx_errors.fpe++; 2393 if (be32_to_cpu(fd->status) & FM_FD_ERR_SIZE) 2394 percpu_priv->rx_errors.fse++; 2395 if (be32_to_cpu(fd->status) & FM_FD_ERR_PRS_HDR_ERR) 2396 percpu_priv->rx_errors.phe++; 2397 2398 dpaa_fd_release(net_dev, fd); 2399 } 2400 2401 static void dpaa_tx_error(struct net_device *net_dev, 2402 const struct dpaa_priv *priv, 2403 struct dpaa_percpu_priv *percpu_priv, 2404 const struct qm_fd *fd, 2405 u32 fqid) 2406 { 2407 struct sk_buff *skb; 2408 2409 if (net_ratelimit()) 2410 netif_warn(priv, hw, net_dev, "FD status = 0x%08x\n", 2411 be32_to_cpu(fd->status) & FM_FD_STAT_TX_ERRORS); 2412 2413 percpu_priv->stats.tx_errors++; 2414 2415 skb = dpaa_cleanup_tx_fd(priv, fd, false); 2416 dev_kfree_skb(skb); 2417 } 2418 2419 static int dpaa_eth_poll(struct napi_struct *napi, int budget) 2420 { 2421 struct dpaa_napi_portal *np = 2422 container_of(napi, struct dpaa_napi_portal, napi); 2423 int cleaned; 2424 2425 np->xdp_act = 0; 2426 2427 cleaned = qman_p_poll_dqrr(np->p, budget); 2428 2429 if (np->xdp_act & XDP_REDIRECT) 2430 xdp_do_flush(); 2431 2432 if (cleaned < budget) { 2433 napi_complete_done(napi, cleaned); 2434 qman_p_irqsource_add(np->p, QM_PIRQ_DQRI); 2435 } else if (np->down) { 2436 qman_p_irqsource_add(np->p, QM_PIRQ_DQRI); 2437 } 2438 2439 return cleaned; 2440 } 2441 2442 static void dpaa_tx_conf(struct net_device *net_dev, 2443 const struct dpaa_priv *priv, 2444 struct dpaa_percpu_priv *percpu_priv, 2445 const struct qm_fd *fd, 2446 u32 fqid) 2447 { 2448 struct sk_buff *skb; 2449 2450 if (unlikely(be32_to_cpu(fd->status) & FM_FD_STAT_TX_ERRORS)) { 2451 if (net_ratelimit()) 2452 netif_warn(priv, hw, net_dev, "FD status = 0x%08x\n", 2453 be32_to_cpu(fd->status) & 2454 FM_FD_STAT_TX_ERRORS); 2455 2456 percpu_priv->stats.tx_errors++; 2457 } 2458 2459 percpu_priv->tx_confirm++; 2460 2461 skb = dpaa_cleanup_tx_fd(priv, fd, true); 2462 2463 consume_skb(skb); 2464 } 2465 2466 static inline int dpaa_eth_napi_schedule(struct dpaa_percpu_priv *percpu_priv, 2467 struct qman_portal *portal, bool sched_napi) 2468 { 2469 if (sched_napi) { 2470 /* Disable QMan IRQ and invoke NAPI */ 2471 qman_p_irqsource_remove(portal, QM_PIRQ_DQRI); 2472 2473 percpu_priv->np.p = portal; 2474 napi_schedule(&percpu_priv->np.napi); 2475 percpu_priv->in_interrupt++; 2476 return 1; 2477 } 2478 return 0; 2479 } 2480 2481 static enum qman_cb_dqrr_result rx_error_dqrr(struct qman_portal *portal, 2482 struct qman_fq *fq, 2483 const struct qm_dqrr_entry *dq, 2484 bool sched_napi) 2485 { 2486 struct dpaa_fq *dpaa_fq = container_of(fq, struct dpaa_fq, fq_base); 2487 struct dpaa_percpu_priv *percpu_priv; 2488 struct net_device *net_dev; 2489 struct dpaa_bp *dpaa_bp; 2490 struct dpaa_priv *priv; 2491 2492 net_dev = dpaa_fq->net_dev; 2493 priv = netdev_priv(net_dev); 2494 dpaa_bp = dpaa_bpid2pool(dq->fd.bpid); 2495 if (!dpaa_bp) 2496 return qman_cb_dqrr_consume; 2497 2498 percpu_priv = this_cpu_ptr(priv->percpu_priv); 2499 2500 if (dpaa_eth_napi_schedule(percpu_priv, portal, sched_napi)) 2501 return qman_cb_dqrr_stop; 2502 2503 dpaa_eth_refill_bpools(priv); 2504 dpaa_rx_error(net_dev, priv, percpu_priv, &dq->fd, fq->fqid); 2505 2506 return qman_cb_dqrr_consume; 2507 } 2508 2509 static int dpaa_xdp_xmit_frame(struct net_device *net_dev, 2510 struct xdp_frame *xdpf) 2511 { 2512 struct dpaa_priv *priv = netdev_priv(net_dev); 2513 struct rtnl_link_stats64 *percpu_stats; 2514 struct dpaa_percpu_priv *percpu_priv; 2515 struct dpaa_eth_swbp *swbp; 2516 struct netdev_queue *txq; 2517 void *buff_start; 2518 struct qm_fd fd; 2519 dma_addr_t addr; 2520 int err; 2521 2522 percpu_priv = this_cpu_ptr(priv->percpu_priv); 2523 percpu_stats = &percpu_priv->stats; 2524 2525 #ifdef CONFIG_DPAA_ERRATUM_A050385 2526 if (unlikely(fman_has_errata_a050385())) { 2527 if (dpaa_a050385_wa_xdpf(priv, &xdpf)) { 2528 err = -ENOMEM; 2529 goto out_error; 2530 } 2531 } 2532 #endif 2533 2534 if (xdpf->headroom < DPAA_TX_PRIV_DATA_SIZE) { 2535 err = -EINVAL; 2536 goto out_error; 2537 } 2538 2539 buff_start = xdpf->data - xdpf->headroom; 2540 2541 /* Leave empty the skb backpointer at the start of the buffer. 2542 * Save the XDP frame for easy cleanup on confirmation. 2543 */ 2544 swbp = (struct dpaa_eth_swbp *)buff_start; 2545 swbp->skb = NULL; 2546 swbp->xdpf = xdpf; 2547 2548 qm_fd_clear_fd(&fd); 2549 fd.bpid = FSL_DPAA_BPID_INV; 2550 fd.cmd |= cpu_to_be32(FM_FD_CMD_FCO); 2551 qm_fd_set_contig(&fd, xdpf->headroom, xdpf->len); 2552 2553 addr = dma_map_single(priv->tx_dma_dev, buff_start, 2554 xdpf->headroom + xdpf->len, 2555 DMA_TO_DEVICE); 2556 if (unlikely(dma_mapping_error(priv->tx_dma_dev, addr))) { 2557 err = -EINVAL; 2558 goto out_error; 2559 } 2560 2561 qm_fd_addr_set64(&fd, addr); 2562 2563 /* Bump the trans_start */ 2564 txq = netdev_get_tx_queue(net_dev, smp_processor_id()); 2565 txq_trans_cond_update(txq); 2566 2567 err = dpaa_xmit(priv, percpu_stats, smp_processor_id(), &fd); 2568 if (err) { 2569 dma_unmap_single(priv->tx_dma_dev, addr, 2570 qm_fd_get_offset(&fd) + qm_fd_get_length(&fd), 2571 DMA_TO_DEVICE); 2572 goto out_error; 2573 } 2574 2575 return 0; 2576 2577 out_error: 2578 percpu_stats->tx_errors++; 2579 return err; 2580 } 2581 2582 static u32 dpaa_run_xdp(struct dpaa_priv *priv, struct qm_fd *fd, void *vaddr, 2583 struct dpaa_fq *dpaa_fq, unsigned int *xdp_meta_len) 2584 { 2585 ssize_t fd_off = qm_fd_get_offset(fd); 2586 struct bpf_prog *xdp_prog; 2587 struct xdp_frame *xdpf; 2588 struct xdp_buff xdp; 2589 u32 xdp_act; 2590 int err; 2591 2592 xdp_prog = READ_ONCE(priv->xdp_prog); 2593 if (!xdp_prog) 2594 return XDP_PASS; 2595 2596 xdp_init_buff(&xdp, DPAA_BP_RAW_SIZE - DPAA_TX_PRIV_DATA_SIZE, 2597 &dpaa_fq->xdp_rxq); 2598 xdp_prepare_buff(&xdp, vaddr + fd_off - XDP_PACKET_HEADROOM, 2599 XDP_PACKET_HEADROOM, qm_fd_get_length(fd), true); 2600 2601 /* We reserve a fixed headroom of 256 bytes under the erratum and we 2602 * offer it all to XDP programs to use. If no room is left for the 2603 * xdpf backpointer on TX, we will need to copy the data. 2604 * Disable metadata support since data realignments might be required 2605 * and the information can be lost. 2606 */ 2607 #ifdef CONFIG_DPAA_ERRATUM_A050385 2608 if (unlikely(fman_has_errata_a050385())) { 2609 xdp_set_data_meta_invalid(&xdp); 2610 xdp.data_hard_start = vaddr; 2611 xdp.frame_sz = DPAA_BP_RAW_SIZE; 2612 } 2613 #endif 2614 2615 xdp_act = bpf_prog_run_xdp(xdp_prog, &xdp); 2616 2617 /* Update the length and the offset of the FD */ 2618 qm_fd_set_contig(fd, xdp.data - vaddr, xdp.data_end - xdp.data); 2619 2620 switch (xdp_act) { 2621 case XDP_PASS: 2622 #ifdef CONFIG_DPAA_ERRATUM_A050385 2623 *xdp_meta_len = xdp_data_meta_unsupported(&xdp) ? 0 : 2624 xdp.data - xdp.data_meta; 2625 #else 2626 *xdp_meta_len = xdp.data - xdp.data_meta; 2627 #endif 2628 break; 2629 case XDP_TX: 2630 /* We can access the full headroom when sending the frame 2631 * back out 2632 */ 2633 xdp.data_hard_start = vaddr; 2634 xdp.frame_sz = DPAA_BP_RAW_SIZE; 2635 xdpf = xdp_convert_buff_to_frame(&xdp); 2636 if (unlikely(!xdpf)) { 2637 free_pages((unsigned long)vaddr, 0); 2638 break; 2639 } 2640 2641 if (dpaa_xdp_xmit_frame(priv->net_dev, xdpf)) 2642 xdp_return_frame_rx_napi(xdpf); 2643 2644 break; 2645 case XDP_REDIRECT: 2646 /* Allow redirect to use the full headroom */ 2647 xdp.data_hard_start = vaddr; 2648 xdp.frame_sz = DPAA_BP_RAW_SIZE; 2649 2650 err = xdp_do_redirect(priv->net_dev, &xdp, xdp_prog); 2651 if (err) { 2652 trace_xdp_exception(priv->net_dev, xdp_prog, xdp_act); 2653 free_pages((unsigned long)vaddr, 0); 2654 } 2655 break; 2656 default: 2657 bpf_warn_invalid_xdp_action(priv->net_dev, xdp_prog, xdp_act); 2658 fallthrough; 2659 case XDP_ABORTED: 2660 trace_xdp_exception(priv->net_dev, xdp_prog, xdp_act); 2661 fallthrough; 2662 case XDP_DROP: 2663 /* Free the buffer */ 2664 free_pages((unsigned long)vaddr, 0); 2665 break; 2666 } 2667 2668 return xdp_act; 2669 } 2670 2671 static enum qman_cb_dqrr_result rx_default_dqrr(struct qman_portal *portal, 2672 struct qman_fq *fq, 2673 const struct qm_dqrr_entry *dq, 2674 bool sched_napi) 2675 { 2676 bool ts_valid = false, hash_valid = false; 2677 struct skb_shared_hwtstamps *shhwtstamps; 2678 unsigned int skb_len, xdp_meta_len = 0; 2679 struct rtnl_link_stats64 *percpu_stats; 2680 struct dpaa_percpu_priv *percpu_priv; 2681 const struct qm_fd *fd = &dq->fd; 2682 dma_addr_t addr = qm_fd_addr(fd); 2683 struct dpaa_napi_portal *np; 2684 enum qm_fd_format fd_format; 2685 struct net_device *net_dev; 2686 u32 fd_status, hash_offset; 2687 struct qm_sg_entry *sgt; 2688 struct dpaa_bp *dpaa_bp; 2689 struct dpaa_fq *dpaa_fq; 2690 struct dpaa_priv *priv; 2691 struct sk_buff *skb; 2692 int *count_ptr; 2693 u32 xdp_act; 2694 void *vaddr; 2695 u32 hash; 2696 u64 ns; 2697 2698 dpaa_fq = container_of(fq, struct dpaa_fq, fq_base); 2699 fd_status = be32_to_cpu(fd->status); 2700 fd_format = qm_fd_get_format(fd); 2701 net_dev = dpaa_fq->net_dev; 2702 priv = netdev_priv(net_dev); 2703 dpaa_bp = dpaa_bpid2pool(dq->fd.bpid); 2704 if (!dpaa_bp) 2705 return qman_cb_dqrr_consume; 2706 2707 /* Trace the Rx fd */ 2708 trace_dpaa_rx_fd(net_dev, fq, &dq->fd); 2709 2710 percpu_priv = this_cpu_ptr(priv->percpu_priv); 2711 percpu_stats = &percpu_priv->stats; 2712 np = &percpu_priv->np; 2713 2714 if (unlikely(dpaa_eth_napi_schedule(percpu_priv, portal, sched_napi))) 2715 return qman_cb_dqrr_stop; 2716 2717 /* Make sure we didn't run out of buffers */ 2718 if (unlikely(dpaa_eth_refill_bpools(priv))) { 2719 /* Unable to refill the buffer pool due to insufficient 2720 * system memory. Just release the frame back into the pool, 2721 * otherwise we'll soon end up with an empty buffer pool. 2722 */ 2723 dpaa_fd_release(net_dev, &dq->fd); 2724 return qman_cb_dqrr_consume; 2725 } 2726 2727 if (unlikely(fd_status & FM_FD_STAT_RX_ERRORS) != 0) { 2728 if (net_ratelimit()) 2729 netif_warn(priv, hw, net_dev, "FD status = 0x%08x\n", 2730 fd_status & FM_FD_STAT_RX_ERRORS); 2731 2732 percpu_stats->rx_errors++; 2733 dpaa_fd_release(net_dev, fd); 2734 return qman_cb_dqrr_consume; 2735 } 2736 2737 dma_unmap_page(dpaa_bp->priv->rx_dma_dev, addr, DPAA_BP_RAW_SIZE, 2738 DMA_FROM_DEVICE); 2739 2740 /* prefetch the first 64 bytes of the frame or the SGT start */ 2741 vaddr = phys_to_virt(addr); 2742 prefetch(vaddr + qm_fd_get_offset(fd)); 2743 2744 /* The only FD types that we may receive are contig and S/G */ 2745 WARN_ON((fd_format != qm_fd_contig) && (fd_format != qm_fd_sg)); 2746 2747 /* Account for either the contig buffer or the SGT buffer (depending on 2748 * which case we were in) having been removed from the pool. 2749 */ 2750 count_ptr = this_cpu_ptr(dpaa_bp->percpu_count); 2751 (*count_ptr)--; 2752 2753 /* Extract the timestamp stored in the headroom before running XDP */ 2754 if (priv->rx_tstamp) { 2755 if (!fman_port_get_tstamp(priv->mac_dev->port[RX], vaddr, &ns)) 2756 ts_valid = true; 2757 else 2758 WARN_ONCE(1, "fman_port_get_tstamp failed!\n"); 2759 } 2760 2761 /* Extract the hash stored in the headroom before running XDP */ 2762 if (net_dev->features & NETIF_F_RXHASH && priv->keygen_in_use && 2763 !fman_port_get_hash_result_offset(priv->mac_dev->port[RX], 2764 &hash_offset)) { 2765 hash = be32_to_cpu(*(u32 *)(vaddr + hash_offset)); 2766 hash_valid = true; 2767 } 2768 2769 if (likely(fd_format == qm_fd_contig)) { 2770 xdp_act = dpaa_run_xdp(priv, (struct qm_fd *)fd, vaddr, 2771 dpaa_fq, &xdp_meta_len); 2772 np->xdp_act |= xdp_act; 2773 if (xdp_act != XDP_PASS) { 2774 percpu_stats->rx_packets++; 2775 percpu_stats->rx_bytes += qm_fd_get_length(fd); 2776 return qman_cb_dqrr_consume; 2777 } 2778 skb = contig_fd_to_skb(priv, fd); 2779 } else { 2780 /* XDP doesn't support S/G frames. Return the fragments to the 2781 * buffer pool and release the SGT. 2782 */ 2783 if (READ_ONCE(priv->xdp_prog)) { 2784 WARN_ONCE(1, "S/G frames not supported under XDP\n"); 2785 sgt = vaddr + qm_fd_get_offset(fd); 2786 dpaa_release_sgt_members(sgt); 2787 free_pages((unsigned long)vaddr, 0); 2788 return qman_cb_dqrr_consume; 2789 } 2790 skb = sg_fd_to_skb(priv, fd); 2791 } 2792 if (!skb) 2793 return qman_cb_dqrr_consume; 2794 2795 if (xdp_meta_len) 2796 skb_metadata_set(skb, xdp_meta_len); 2797 2798 /* Set the previously extracted timestamp */ 2799 if (ts_valid) { 2800 shhwtstamps = skb_hwtstamps(skb); 2801 memset(shhwtstamps, 0, sizeof(*shhwtstamps)); 2802 shhwtstamps->hwtstamp = ns_to_ktime(ns); 2803 } 2804 2805 skb->protocol = eth_type_trans(skb, net_dev); 2806 2807 /* Set the previously extracted hash */ 2808 if (hash_valid) { 2809 enum pkt_hash_types type; 2810 2811 /* if L4 exists, it was used in the hash generation */ 2812 type = be32_to_cpu(fd->status) & FM_FD_STAT_L4CV ? 2813 PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3; 2814 skb_set_hash(skb, hash, type); 2815 } 2816 2817 skb_len = skb->len; 2818 2819 if (unlikely(netif_receive_skb(skb) == NET_RX_DROP)) { 2820 percpu_stats->rx_dropped++; 2821 return qman_cb_dqrr_consume; 2822 } 2823 2824 percpu_stats->rx_packets++; 2825 percpu_stats->rx_bytes += skb_len; 2826 2827 return qman_cb_dqrr_consume; 2828 } 2829 2830 static enum qman_cb_dqrr_result conf_error_dqrr(struct qman_portal *portal, 2831 struct qman_fq *fq, 2832 const struct qm_dqrr_entry *dq, 2833 bool sched_napi) 2834 { 2835 struct dpaa_percpu_priv *percpu_priv; 2836 struct net_device *net_dev; 2837 struct dpaa_priv *priv; 2838 2839 net_dev = ((struct dpaa_fq *)fq)->net_dev; 2840 priv = netdev_priv(net_dev); 2841 2842 percpu_priv = this_cpu_ptr(priv->percpu_priv); 2843 2844 if (dpaa_eth_napi_schedule(percpu_priv, portal, sched_napi)) 2845 return qman_cb_dqrr_stop; 2846 2847 dpaa_tx_error(net_dev, priv, percpu_priv, &dq->fd, fq->fqid); 2848 2849 return qman_cb_dqrr_consume; 2850 } 2851 2852 static enum qman_cb_dqrr_result conf_dflt_dqrr(struct qman_portal *portal, 2853 struct qman_fq *fq, 2854 const struct qm_dqrr_entry *dq, 2855 bool sched_napi) 2856 { 2857 struct dpaa_percpu_priv *percpu_priv; 2858 struct net_device *net_dev; 2859 struct dpaa_priv *priv; 2860 2861 net_dev = ((struct dpaa_fq *)fq)->net_dev; 2862 priv = netdev_priv(net_dev); 2863 2864 /* Trace the fd */ 2865 trace_dpaa_tx_conf_fd(net_dev, fq, &dq->fd); 2866 2867 percpu_priv = this_cpu_ptr(priv->percpu_priv); 2868 2869 if (dpaa_eth_napi_schedule(percpu_priv, portal, sched_napi)) 2870 return qman_cb_dqrr_stop; 2871 2872 dpaa_tx_conf(net_dev, priv, percpu_priv, &dq->fd, fq->fqid); 2873 2874 return qman_cb_dqrr_consume; 2875 } 2876 2877 static void egress_ern(struct qman_portal *portal, 2878 struct qman_fq *fq, 2879 const union qm_mr_entry *msg) 2880 { 2881 const struct qm_fd *fd = &msg->ern.fd; 2882 struct dpaa_percpu_priv *percpu_priv; 2883 const struct dpaa_priv *priv; 2884 struct net_device *net_dev; 2885 struct sk_buff *skb; 2886 2887 net_dev = ((struct dpaa_fq *)fq)->net_dev; 2888 priv = netdev_priv(net_dev); 2889 percpu_priv = this_cpu_ptr(priv->percpu_priv); 2890 2891 percpu_priv->stats.tx_dropped++; 2892 percpu_priv->stats.tx_fifo_errors++; 2893 count_ern(percpu_priv, msg); 2894 2895 skb = dpaa_cleanup_tx_fd(priv, fd, false); 2896 dev_kfree_skb_any(skb); 2897 } 2898 2899 static const struct dpaa_fq_cbs dpaa_fq_cbs = { 2900 .rx_defq = { .cb = { .dqrr = rx_default_dqrr } }, 2901 .tx_defq = { .cb = { .dqrr = conf_dflt_dqrr } }, 2902 .rx_errq = { .cb = { .dqrr = rx_error_dqrr } }, 2903 .tx_errq = { .cb = { .dqrr = conf_error_dqrr } }, 2904 .egress_ern = { .cb = { .ern = egress_ern } } 2905 }; 2906 2907 static void dpaa_eth_napi_enable(struct dpaa_priv *priv) 2908 { 2909 struct dpaa_percpu_priv *percpu_priv; 2910 int i; 2911 2912 for_each_online_cpu(i) { 2913 percpu_priv = per_cpu_ptr(priv->percpu_priv, i); 2914 2915 percpu_priv->np.down = false; 2916 napi_enable(&percpu_priv->np.napi); 2917 } 2918 } 2919 2920 static void dpaa_eth_napi_disable(struct dpaa_priv *priv) 2921 { 2922 struct dpaa_percpu_priv *percpu_priv; 2923 int i; 2924 2925 for_each_online_cpu(i) { 2926 percpu_priv = per_cpu_ptr(priv->percpu_priv, i); 2927 2928 percpu_priv->np.down = true; 2929 napi_disable(&percpu_priv->np.napi); 2930 } 2931 } 2932 2933 static int dpaa_open(struct net_device *net_dev) 2934 { 2935 struct mac_device *mac_dev; 2936 struct dpaa_priv *priv; 2937 int err, i; 2938 2939 priv = netdev_priv(net_dev); 2940 mac_dev = priv->mac_dev; 2941 dpaa_eth_napi_enable(priv); 2942 2943 err = phylink_of_phy_connect(mac_dev->phylink, 2944 mac_dev->dev->of_node, 0); 2945 if (err) 2946 goto phy_init_failed; 2947 2948 for (i = 0; i < ARRAY_SIZE(mac_dev->port); i++) { 2949 err = fman_port_enable(mac_dev->port[i]); 2950 if (err) 2951 goto mac_start_failed; 2952 } 2953 2954 err = priv->mac_dev->enable(mac_dev->fman_mac); 2955 if (err < 0) { 2956 netif_err(priv, ifup, net_dev, "mac_dev->enable() = %d\n", err); 2957 goto mac_start_failed; 2958 } 2959 phylink_start(mac_dev->phylink); 2960 2961 netif_tx_start_all_queues(net_dev); 2962 2963 return 0; 2964 2965 mac_start_failed: 2966 for (i = 0; i < ARRAY_SIZE(mac_dev->port); i++) 2967 fman_port_disable(mac_dev->port[i]); 2968 phylink_disconnect_phy(mac_dev->phylink); 2969 2970 phy_init_failed: 2971 dpaa_eth_napi_disable(priv); 2972 2973 return err; 2974 } 2975 2976 static int dpaa_eth_stop(struct net_device *net_dev) 2977 { 2978 struct dpaa_priv *priv; 2979 int err; 2980 2981 err = dpaa_stop(net_dev); 2982 2983 priv = netdev_priv(net_dev); 2984 dpaa_eth_napi_disable(priv); 2985 2986 return err; 2987 } 2988 2989 static bool xdp_validate_mtu(struct dpaa_priv *priv, int mtu) 2990 { 2991 int max_contig_data = priv->dpaa_bp->size - priv->rx_headroom; 2992 2993 /* We do not support S/G fragments when XDP is enabled. 2994 * Limit the MTU in relation to the buffer size. 2995 */ 2996 if (mtu + VLAN_ETH_HLEN + ETH_FCS_LEN > max_contig_data) { 2997 dev_warn(priv->net_dev->dev.parent, 2998 "The maximum MTU for XDP is %d\n", 2999 max_contig_data - VLAN_ETH_HLEN - ETH_FCS_LEN); 3000 return false; 3001 } 3002 3003 return true; 3004 } 3005 3006 static int dpaa_change_mtu(struct net_device *net_dev, int new_mtu) 3007 { 3008 struct dpaa_priv *priv = netdev_priv(net_dev); 3009 3010 if (priv->xdp_prog && !xdp_validate_mtu(priv, new_mtu)) 3011 return -EINVAL; 3012 3013 net_dev->mtu = new_mtu; 3014 return 0; 3015 } 3016 3017 static int dpaa_setup_xdp(struct net_device *net_dev, struct netdev_bpf *bpf) 3018 { 3019 struct dpaa_priv *priv = netdev_priv(net_dev); 3020 struct bpf_prog *old_prog; 3021 int err; 3022 bool up; 3023 3024 /* S/G fragments are not supported in XDP-mode */ 3025 if (bpf->prog && !xdp_validate_mtu(priv, net_dev->mtu)) { 3026 NL_SET_ERR_MSG_MOD(bpf->extack, "MTU too large for XDP"); 3027 return -EINVAL; 3028 } 3029 3030 up = netif_running(net_dev); 3031 3032 if (up) 3033 dpaa_eth_stop(net_dev); 3034 3035 old_prog = xchg(&priv->xdp_prog, bpf->prog); 3036 if (old_prog) 3037 bpf_prog_put(old_prog); 3038 3039 if (up) { 3040 err = dpaa_open(net_dev); 3041 if (err) { 3042 NL_SET_ERR_MSG_MOD(bpf->extack, "dpaa_open() failed"); 3043 return err; 3044 } 3045 } 3046 3047 return 0; 3048 } 3049 3050 static int dpaa_xdp(struct net_device *net_dev, struct netdev_bpf *xdp) 3051 { 3052 switch (xdp->command) { 3053 case XDP_SETUP_PROG: 3054 return dpaa_setup_xdp(net_dev, xdp); 3055 default: 3056 return -EINVAL; 3057 } 3058 } 3059 3060 static int dpaa_xdp_xmit(struct net_device *net_dev, int n, 3061 struct xdp_frame **frames, u32 flags) 3062 { 3063 struct xdp_frame *xdpf; 3064 int i, nxmit = 0; 3065 3066 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK)) 3067 return -EINVAL; 3068 3069 if (!netif_running(net_dev)) 3070 return -ENETDOWN; 3071 3072 for (i = 0; i < n; i++) { 3073 xdpf = frames[i]; 3074 if (dpaa_xdp_xmit_frame(net_dev, xdpf)) 3075 break; 3076 nxmit++; 3077 } 3078 3079 return nxmit; 3080 } 3081 3082 static int dpaa_ts_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 3083 { 3084 struct dpaa_priv *priv = netdev_priv(dev); 3085 struct hwtstamp_config config; 3086 3087 if (copy_from_user(&config, rq->ifr_data, sizeof(config))) 3088 return -EFAULT; 3089 3090 switch (config.tx_type) { 3091 case HWTSTAMP_TX_OFF: 3092 /* Couldn't disable rx/tx timestamping separately. 3093 * Do nothing here. 3094 */ 3095 priv->tx_tstamp = false; 3096 break; 3097 case HWTSTAMP_TX_ON: 3098 priv->mac_dev->set_tstamp(priv->mac_dev->fman_mac, true); 3099 priv->tx_tstamp = true; 3100 break; 3101 default: 3102 return -ERANGE; 3103 } 3104 3105 if (config.rx_filter == HWTSTAMP_FILTER_NONE) { 3106 /* Couldn't disable rx/tx timestamping separately. 3107 * Do nothing here. 3108 */ 3109 priv->rx_tstamp = false; 3110 } else { 3111 priv->mac_dev->set_tstamp(priv->mac_dev->fman_mac, true); 3112 priv->rx_tstamp = true; 3113 /* TS is set for all frame types, not only those requested */ 3114 config.rx_filter = HWTSTAMP_FILTER_ALL; 3115 } 3116 3117 return copy_to_user(rq->ifr_data, &config, sizeof(config)) ? 3118 -EFAULT : 0; 3119 } 3120 3121 static int dpaa_ioctl(struct net_device *net_dev, struct ifreq *rq, int cmd) 3122 { 3123 int ret = -EINVAL; 3124 struct dpaa_priv *priv = netdev_priv(net_dev); 3125 3126 if (cmd == SIOCGMIIREG) { 3127 if (net_dev->phydev) 3128 return phylink_mii_ioctl(priv->mac_dev->phylink, rq, 3129 cmd); 3130 } 3131 3132 if (cmd == SIOCSHWTSTAMP) 3133 return dpaa_ts_ioctl(net_dev, rq, cmd); 3134 3135 return ret; 3136 } 3137 3138 static const struct net_device_ops dpaa_ops = { 3139 .ndo_open = dpaa_open, 3140 .ndo_start_xmit = dpaa_start_xmit, 3141 .ndo_stop = dpaa_eth_stop, 3142 .ndo_tx_timeout = dpaa_tx_timeout, 3143 .ndo_get_stats64 = dpaa_get_stats64, 3144 .ndo_change_carrier = fixed_phy_change_carrier, 3145 .ndo_set_mac_address = dpaa_set_mac_address, 3146 .ndo_validate_addr = eth_validate_addr, 3147 .ndo_set_rx_mode = dpaa_set_rx_mode, 3148 .ndo_eth_ioctl = dpaa_ioctl, 3149 .ndo_setup_tc = dpaa_setup_tc, 3150 .ndo_change_mtu = dpaa_change_mtu, 3151 .ndo_bpf = dpaa_xdp, 3152 .ndo_xdp_xmit = dpaa_xdp_xmit, 3153 }; 3154 3155 static int dpaa_napi_add(struct net_device *net_dev) 3156 { 3157 struct dpaa_priv *priv = netdev_priv(net_dev); 3158 struct dpaa_percpu_priv *percpu_priv; 3159 int cpu; 3160 3161 for_each_possible_cpu(cpu) { 3162 percpu_priv = per_cpu_ptr(priv->percpu_priv, cpu); 3163 3164 netif_napi_add(net_dev, &percpu_priv->np.napi, dpaa_eth_poll); 3165 } 3166 3167 return 0; 3168 } 3169 3170 static void dpaa_napi_del(struct net_device *net_dev) 3171 { 3172 struct dpaa_priv *priv = netdev_priv(net_dev); 3173 struct dpaa_percpu_priv *percpu_priv; 3174 int cpu; 3175 3176 for_each_possible_cpu(cpu) { 3177 percpu_priv = per_cpu_ptr(priv->percpu_priv, cpu); 3178 3179 netif_napi_del(&percpu_priv->np.napi); 3180 } 3181 } 3182 3183 static inline void dpaa_bp_free_pf(const struct dpaa_bp *bp, 3184 struct bm_buffer *bmb) 3185 { 3186 dma_addr_t addr = bm_buf_addr(bmb); 3187 3188 dma_unmap_page(bp->priv->rx_dma_dev, addr, DPAA_BP_RAW_SIZE, 3189 DMA_FROM_DEVICE); 3190 3191 skb_free_frag(phys_to_virt(addr)); 3192 } 3193 3194 /* Alloc the dpaa_bp struct and configure default values */ 3195 static struct dpaa_bp *dpaa_bp_alloc(struct device *dev) 3196 { 3197 struct dpaa_bp *dpaa_bp; 3198 3199 dpaa_bp = devm_kzalloc(dev, sizeof(*dpaa_bp), GFP_KERNEL); 3200 if (!dpaa_bp) 3201 return ERR_PTR(-ENOMEM); 3202 3203 dpaa_bp->bpid = FSL_DPAA_BPID_INV; 3204 dpaa_bp->percpu_count = devm_alloc_percpu(dev, *dpaa_bp->percpu_count); 3205 if (!dpaa_bp->percpu_count) 3206 return ERR_PTR(-ENOMEM); 3207 3208 dpaa_bp->config_count = FSL_DPAA_ETH_MAX_BUF_COUNT; 3209 3210 dpaa_bp->seed_cb = dpaa_bp_seed; 3211 dpaa_bp->free_buf_cb = dpaa_bp_free_pf; 3212 3213 return dpaa_bp; 3214 } 3215 3216 /* Place all ingress FQs (Rx Default, Rx Error) in a dedicated CGR. 3217 * We won't be sending congestion notifications to FMan; for now, we just use 3218 * this CGR to generate enqueue rejections to FMan in order to drop the frames 3219 * before they reach our ingress queues and eat up memory. 3220 */ 3221 static int dpaa_ingress_cgr_init(struct dpaa_priv *priv) 3222 { 3223 struct qm_mcc_initcgr initcgr; 3224 u32 cs_th; 3225 int err; 3226 3227 err = qman_alloc_cgrid(&priv->ingress_cgr.cgrid); 3228 if (err < 0) { 3229 if (netif_msg_drv(priv)) 3230 pr_err("Error %d allocating CGR ID\n", err); 3231 goto out_error; 3232 } 3233 3234 /* Enable CS TD, but disable Congestion State Change Notifications. */ 3235 memset(&initcgr, 0, sizeof(initcgr)); 3236 initcgr.we_mask = cpu_to_be16(QM_CGR_WE_CS_THRES); 3237 initcgr.cgr.cscn_en = QM_CGR_EN; 3238 cs_th = DPAA_INGRESS_CS_THRESHOLD; 3239 qm_cgr_cs_thres_set64(&initcgr.cgr.cs_thres, cs_th, 1); 3240 3241 initcgr.we_mask |= cpu_to_be16(QM_CGR_WE_CSTD_EN); 3242 initcgr.cgr.cstd_en = QM_CGR_EN; 3243 3244 /* This CGR will be associated with the SWP affined to the current CPU. 3245 * However, we'll place all our ingress FQs in it. 3246 */ 3247 err = qman_create_cgr(&priv->ingress_cgr, QMAN_CGR_FLAG_USE_INIT, 3248 &initcgr); 3249 if (err < 0) { 3250 if (netif_msg_drv(priv)) 3251 pr_err("Error %d creating ingress CGR with ID %d\n", 3252 err, priv->ingress_cgr.cgrid); 3253 qman_release_cgrid(priv->ingress_cgr.cgrid); 3254 goto out_error; 3255 } 3256 if (netif_msg_drv(priv)) 3257 pr_debug("Created ingress CGR %d for netdev with hwaddr %pM\n", 3258 priv->ingress_cgr.cgrid, priv->mac_dev->addr); 3259 3260 priv->use_ingress_cgr = true; 3261 3262 out_error: 3263 return err; 3264 } 3265 3266 static u16 dpaa_get_headroom(struct dpaa_buffer_layout *bl, 3267 enum port_type port) 3268 { 3269 u16 headroom; 3270 3271 /* The frame headroom must accommodate: 3272 * - the driver private data area 3273 * - parse results, hash results, timestamp if selected 3274 * If either hash results or time stamp are selected, both will 3275 * be copied to/from the frame headroom, as TS is located between PR and 3276 * HR in the IC and IC copy size has a granularity of 16bytes 3277 * (see description of FMBM_RICP and FMBM_TICP registers in DPAARM) 3278 * 3279 * Also make sure the headroom is a multiple of data_align bytes 3280 */ 3281 headroom = (u16)(bl[port].priv_data_size + DPAA_HWA_SIZE); 3282 3283 if (port == RX) { 3284 #ifdef CONFIG_DPAA_ERRATUM_A050385 3285 if (unlikely(fman_has_errata_a050385())) 3286 headroom = XDP_PACKET_HEADROOM; 3287 #endif 3288 3289 return ALIGN(headroom, DPAA_FD_RX_DATA_ALIGNMENT); 3290 } else { 3291 return ALIGN(headroom, DPAA_FD_DATA_ALIGNMENT); 3292 } 3293 } 3294 3295 static int dpaa_eth_probe(struct platform_device *pdev) 3296 { 3297 struct net_device *net_dev = NULL; 3298 struct dpaa_bp *dpaa_bp = NULL; 3299 struct dpaa_fq *dpaa_fq, *tmp; 3300 struct dpaa_priv *priv = NULL; 3301 struct fm_port_fqs port_fqs; 3302 struct mac_device *mac_dev; 3303 int err = 0, channel; 3304 struct device *dev; 3305 3306 dev = &pdev->dev; 3307 3308 err = bman_is_probed(); 3309 if (!err) 3310 return -EPROBE_DEFER; 3311 if (err < 0) { 3312 dev_err(dev, "failing probe due to bman probe error\n"); 3313 return -ENODEV; 3314 } 3315 err = qman_is_probed(); 3316 if (!err) 3317 return -EPROBE_DEFER; 3318 if (err < 0) { 3319 dev_err(dev, "failing probe due to qman probe error\n"); 3320 return -ENODEV; 3321 } 3322 err = bman_portals_probed(); 3323 if (!err) 3324 return -EPROBE_DEFER; 3325 if (err < 0) { 3326 dev_err(dev, 3327 "failing probe due to bman portals probe error\n"); 3328 return -ENODEV; 3329 } 3330 err = qman_portals_probed(); 3331 if (!err) 3332 return -EPROBE_DEFER; 3333 if (err < 0) { 3334 dev_err(dev, 3335 "failing probe due to qman portals probe error\n"); 3336 return -ENODEV; 3337 } 3338 3339 /* Allocate this early, so we can store relevant information in 3340 * the private area 3341 */ 3342 net_dev = alloc_etherdev_mq(sizeof(*priv), DPAA_ETH_TXQ_NUM); 3343 if (!net_dev) { 3344 dev_err(dev, "alloc_etherdev_mq() failed\n"); 3345 return -ENOMEM; 3346 } 3347 3348 /* Do this here, so we can be verbose early */ 3349 SET_NETDEV_DEV(net_dev, dev->parent); 3350 dev_set_drvdata(dev, net_dev); 3351 3352 priv = netdev_priv(net_dev); 3353 priv->net_dev = net_dev; 3354 3355 priv->msg_enable = netif_msg_init(debug, DPAA_MSG_DEFAULT); 3356 3357 mac_dev = dpaa_mac_dev_get(pdev); 3358 if (IS_ERR(mac_dev)) { 3359 netdev_err(net_dev, "dpaa_mac_dev_get() failed\n"); 3360 err = PTR_ERR(mac_dev); 3361 goto free_netdev; 3362 } 3363 3364 /* Devices used for DMA mapping */ 3365 priv->rx_dma_dev = fman_port_get_device(mac_dev->port[RX]); 3366 priv->tx_dma_dev = fman_port_get_device(mac_dev->port[TX]); 3367 err = dma_coerce_mask_and_coherent(priv->rx_dma_dev, DMA_BIT_MASK(40)); 3368 if (!err) 3369 err = dma_coerce_mask_and_coherent(priv->tx_dma_dev, 3370 DMA_BIT_MASK(40)); 3371 if (err) { 3372 netdev_err(net_dev, "dma_coerce_mask_and_coherent() failed\n"); 3373 goto free_netdev; 3374 } 3375 3376 /* If fsl_fm_max_frm is set to a higher value than the all-common 1500, 3377 * we choose conservatively and let the user explicitly set a higher 3378 * MTU via ifconfig. Otherwise, the user may end up with different MTUs 3379 * in the same LAN. 3380 * If on the other hand fsl_fm_max_frm has been chosen below 1500, 3381 * start with the maximum allowed. 3382 */ 3383 net_dev->mtu = min(dpaa_get_max_mtu(), ETH_DATA_LEN); 3384 3385 netdev_dbg(net_dev, "Setting initial MTU on net device: %d\n", 3386 net_dev->mtu); 3387 3388 priv->buf_layout[RX].priv_data_size = DPAA_RX_PRIV_DATA_SIZE; /* Rx */ 3389 priv->buf_layout[TX].priv_data_size = DPAA_TX_PRIV_DATA_SIZE; /* Tx */ 3390 3391 /* bp init */ 3392 dpaa_bp = dpaa_bp_alloc(dev); 3393 if (IS_ERR(dpaa_bp)) { 3394 err = PTR_ERR(dpaa_bp); 3395 goto free_dpaa_bps; 3396 } 3397 /* the raw size of the buffers used for reception */ 3398 dpaa_bp->raw_size = DPAA_BP_RAW_SIZE; 3399 /* avoid runtime computations by keeping the usable size here */ 3400 dpaa_bp->size = dpaa_bp_size(dpaa_bp->raw_size); 3401 dpaa_bp->priv = priv; 3402 3403 err = dpaa_bp_alloc_pool(dpaa_bp); 3404 if (err < 0) 3405 goto free_dpaa_bps; 3406 priv->dpaa_bp = dpaa_bp; 3407 3408 INIT_LIST_HEAD(&priv->dpaa_fq_list); 3409 3410 memset(&port_fqs, 0, sizeof(port_fqs)); 3411 3412 err = dpaa_alloc_all_fqs(dev, &priv->dpaa_fq_list, &port_fqs); 3413 if (err < 0) { 3414 dev_err(dev, "dpaa_alloc_all_fqs() failed\n"); 3415 goto free_dpaa_bps; 3416 } 3417 3418 priv->mac_dev = mac_dev; 3419 3420 channel = dpaa_get_channel(); 3421 if (channel < 0) { 3422 dev_err(dev, "dpaa_get_channel() failed\n"); 3423 err = channel; 3424 goto free_dpaa_bps; 3425 } 3426 3427 priv->channel = (u16)channel; 3428 3429 /* Walk the CPUs with affine portals 3430 * and add this pool channel to each's dequeue mask. 3431 */ 3432 dpaa_eth_add_channel(priv->channel, &pdev->dev); 3433 3434 err = dpaa_fq_setup(priv, &dpaa_fq_cbs, priv->mac_dev->port[TX]); 3435 if (err) 3436 goto free_dpaa_bps; 3437 3438 /* Create a congestion group for this netdev, with 3439 * dynamically-allocated CGR ID. 3440 * Must be executed after probing the MAC, but before 3441 * assigning the egress FQs to the CGRs. 3442 */ 3443 err = dpaa_eth_cgr_init(priv); 3444 if (err < 0) { 3445 dev_err(dev, "Error initializing CGR\n"); 3446 goto free_dpaa_bps; 3447 } 3448 3449 err = dpaa_ingress_cgr_init(priv); 3450 if (err < 0) { 3451 dev_err(dev, "Error initializing ingress CGR\n"); 3452 goto delete_egress_cgr; 3453 } 3454 3455 /* Add the FQs to the interface, and make them active */ 3456 list_for_each_entry_safe(dpaa_fq, tmp, &priv->dpaa_fq_list, list) { 3457 err = dpaa_fq_init(dpaa_fq, false); 3458 if (err < 0) 3459 goto free_dpaa_fqs; 3460 } 3461 3462 priv->tx_headroom = dpaa_get_headroom(priv->buf_layout, TX); 3463 priv->rx_headroom = dpaa_get_headroom(priv->buf_layout, RX); 3464 3465 /* All real interfaces need their ports initialized */ 3466 err = dpaa_eth_init_ports(mac_dev, dpaa_bp, &port_fqs, 3467 &priv->buf_layout[0], dev); 3468 if (err) 3469 goto free_dpaa_fqs; 3470 3471 /* Rx traffic distribution based on keygen hashing defaults to on */ 3472 priv->keygen_in_use = true; 3473 3474 priv->percpu_priv = devm_alloc_percpu(dev, *priv->percpu_priv); 3475 if (!priv->percpu_priv) { 3476 dev_err(dev, "devm_alloc_percpu() failed\n"); 3477 err = -ENOMEM; 3478 goto free_dpaa_fqs; 3479 } 3480 3481 priv->num_tc = 1; 3482 netif_set_real_num_tx_queues(net_dev, priv->num_tc * DPAA_TC_TXQ_NUM); 3483 3484 /* Initialize NAPI */ 3485 err = dpaa_napi_add(net_dev); 3486 if (err < 0) 3487 goto delete_dpaa_napi; 3488 3489 err = dpaa_netdev_init(net_dev, &dpaa_ops, tx_timeout); 3490 if (err < 0) 3491 goto delete_dpaa_napi; 3492 3493 dpaa_eth_sysfs_init(&net_dev->dev); 3494 3495 netif_info(priv, probe, net_dev, "Probed interface %s\n", 3496 net_dev->name); 3497 3498 return 0; 3499 3500 delete_dpaa_napi: 3501 dpaa_napi_del(net_dev); 3502 free_dpaa_fqs: 3503 dpaa_fq_free(dev, &priv->dpaa_fq_list); 3504 qman_delete_cgr_safe(&priv->ingress_cgr); 3505 qman_release_cgrid(priv->ingress_cgr.cgrid); 3506 delete_egress_cgr: 3507 qman_delete_cgr_safe(&priv->cgr_data.cgr); 3508 qman_release_cgrid(priv->cgr_data.cgr.cgrid); 3509 free_dpaa_bps: 3510 dpaa_bps_free(priv); 3511 free_netdev: 3512 dev_set_drvdata(dev, NULL); 3513 free_netdev(net_dev); 3514 3515 return err; 3516 } 3517 3518 static void dpaa_remove(struct platform_device *pdev) 3519 { 3520 struct net_device *net_dev; 3521 struct dpaa_priv *priv; 3522 struct device *dev; 3523 int err; 3524 3525 dev = &pdev->dev; 3526 net_dev = dev_get_drvdata(dev); 3527 3528 priv = netdev_priv(net_dev); 3529 3530 dpaa_eth_sysfs_remove(dev); 3531 3532 dev_set_drvdata(dev, NULL); 3533 unregister_netdev(net_dev); 3534 phylink_destroy(priv->mac_dev->phylink); 3535 3536 err = dpaa_fq_free(dev, &priv->dpaa_fq_list); 3537 if (err) 3538 dev_err(dev, "Failed to free FQs on remove (%pE)\n", 3539 ERR_PTR(err)); 3540 3541 qman_delete_cgr_safe(&priv->ingress_cgr); 3542 qman_release_cgrid(priv->ingress_cgr.cgrid); 3543 qman_delete_cgr_safe(&priv->cgr_data.cgr); 3544 qman_release_cgrid(priv->cgr_data.cgr.cgrid); 3545 3546 dpaa_napi_del(net_dev); 3547 3548 dpaa_bps_free(priv); 3549 3550 free_netdev(net_dev); 3551 } 3552 3553 static const struct platform_device_id dpaa_devtype[] = { 3554 { 3555 .name = "dpaa-ethernet", 3556 .driver_data = 0, 3557 }, { 3558 } 3559 }; 3560 MODULE_DEVICE_TABLE(platform, dpaa_devtype); 3561 3562 static struct platform_driver dpaa_driver = { 3563 .driver = { 3564 .name = KBUILD_MODNAME, 3565 }, 3566 .id_table = dpaa_devtype, 3567 .probe = dpaa_eth_probe, 3568 .remove_new = dpaa_remove 3569 }; 3570 3571 static int __init dpaa_load(void) 3572 { 3573 int err; 3574 3575 pr_debug("FSL DPAA Ethernet driver\n"); 3576 3577 /* initialize dpaa_eth mirror values */ 3578 dpaa_rx_extra_headroom = fman_get_rx_extra_headroom(); 3579 dpaa_max_frm = fman_get_max_frm(); 3580 3581 err = platform_driver_register(&dpaa_driver); 3582 if (err < 0) 3583 pr_err("Error, platform_driver_register() = %d\n", err); 3584 3585 return err; 3586 } 3587 module_init(dpaa_load); 3588 3589 static void __exit dpaa_unload(void) 3590 { 3591 platform_driver_unregister(&dpaa_driver); 3592 3593 /* Only one channel is used and needs to be released after all 3594 * interfaces are removed 3595 */ 3596 dpaa_release_channel(); 3597 } 3598 module_exit(dpaa_unload); 3599 3600 MODULE_LICENSE("Dual BSD/GPL"); 3601 MODULE_DESCRIPTION("FSL DPAA Ethernet driver"); 3602