1 /* 2 Written 1998-2000 by Donald Becker. 3 4 This software may be used and distributed according to the terms of 5 the GNU General Public License (GPL), incorporated herein by reference. 6 Drivers based on or derived from this code fall under the GPL and must 7 retain the authorship, copyright and license notice. This file is not 8 a complete program and may only be used when the entire operating 9 system is licensed under the GPL. 10 11 The author may be reached as becker@scyld.com, or C/O 12 Scyld Computing Corporation 13 410 Severn Ave., Suite 210 14 Annapolis MD 21403 15 16 Support information and updates available at 17 http://www.scyld.com/network/pci-skeleton.html 18 19 Linux kernel updates: 20 21 Version 2.51, Nov 17, 2001 (jgarzik): 22 - Add ethtool support 23 - Replace some MII-related magic numbers with constants 24 25 */ 26 27 #define DRV_NAME "fealnx" 28 #define DRV_VERSION "2.52" 29 #define DRV_RELDATE "Sep-11-2006" 30 31 static int debug; /* 1-> print debug message */ 32 static int max_interrupt_work = 20; 33 34 /* Maximum number of multicast addresses to filter (vs. Rx-all-multicast). */ 35 static int multicast_filter_limit = 32; 36 37 /* Set the copy breakpoint for the copy-only-tiny-frames scheme. */ 38 /* Setting to > 1518 effectively disables this feature. */ 39 static int rx_copybreak; 40 41 /* Used to pass the media type, etc. */ 42 /* Both 'options[]' and 'full_duplex[]' should exist for driver */ 43 /* interoperability. */ 44 /* The media type is usually passed in 'options[]'. */ 45 #define MAX_UNITS 8 /* More are supported, limit only on options */ 46 static int options[MAX_UNITS] = { -1, -1, -1, -1, -1, -1, -1, -1 }; 47 static int full_duplex[MAX_UNITS] = { -1, -1, -1, -1, -1, -1, -1, -1 }; 48 49 /* Operational parameters that are set at compile time. */ 50 /* Keep the ring sizes a power of two for compile efficiency. */ 51 /* The compiler will convert <unsigned>'%'<2^N> into a bit mask. */ 52 /* Making the Tx ring too large decreases the effectiveness of channel */ 53 /* bonding and packet priority. */ 54 /* There are no ill effects from too-large receive rings. */ 55 // 88-12-9 modify, 56 // #define TX_RING_SIZE 16 57 // #define RX_RING_SIZE 32 58 #define TX_RING_SIZE 6 59 #define RX_RING_SIZE 12 60 #define TX_TOTAL_SIZE TX_RING_SIZE*sizeof(struct fealnx_desc) 61 #define RX_TOTAL_SIZE RX_RING_SIZE*sizeof(struct fealnx_desc) 62 63 /* Operational parameters that usually are not changed. */ 64 /* Time in jiffies before concluding the transmitter is hung. */ 65 #define TX_TIMEOUT (2*HZ) 66 67 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer. */ 68 69 70 /* Include files, designed to support most kernel versions 2.0.0 and later. */ 71 #include <linux/module.h> 72 #include <linux/kernel.h> 73 #include <linux/string.h> 74 #include <linux/timer.h> 75 #include <linux/errno.h> 76 #include <linux/ioport.h> 77 #include <linux/interrupt.h> 78 #include <linux/pci.h> 79 #include <linux/netdevice.h> 80 #include <linux/etherdevice.h> 81 #include <linux/skbuff.h> 82 #include <linux/init.h> 83 #include <linux/mii.h> 84 #include <linux/ethtool.h> 85 #include <linux/crc32.h> 86 #include <linux/delay.h> 87 #include <linux/bitops.h> 88 89 #include <asm/processor.h> /* Processor type for cache alignment. */ 90 #include <asm/io.h> 91 #include <linux/uaccess.h> 92 #include <asm/byteorder.h> 93 94 /* These identify the driver base version and may not be removed. */ 95 static const char version[] = 96 KERN_INFO DRV_NAME ".c:v" DRV_VERSION " " DRV_RELDATE "\n"; 97 98 99 /* This driver was written to use PCI memory space, however some x86 systems 100 work only with I/O space accesses. */ 101 #ifndef __alpha__ 102 #define USE_IO_OPS 103 #endif 104 105 /* Kernel compatibility defines, some common to David Hinds' PCMCIA package. */ 106 /* This is only in the support-all-kernels source code. */ 107 108 #define RUN_AT(x) (jiffies + (x)) 109 110 MODULE_AUTHOR("Myson or whoever"); 111 MODULE_DESCRIPTION("Myson MTD-8xx 100/10M Ethernet PCI Adapter Driver"); 112 MODULE_LICENSE("GPL"); 113 module_param(max_interrupt_work, int, 0); 114 module_param(debug, int, 0); 115 module_param(rx_copybreak, int, 0); 116 module_param(multicast_filter_limit, int, 0); 117 module_param_array(options, int, NULL, 0); 118 module_param_array(full_duplex, int, NULL, 0); 119 MODULE_PARM_DESC(max_interrupt_work, "fealnx maximum events handled per interrupt"); 120 MODULE_PARM_DESC(debug, "fealnx enable debugging (0-1)"); 121 MODULE_PARM_DESC(rx_copybreak, "fealnx copy breakpoint for copy-only-tiny-frames"); 122 MODULE_PARM_DESC(multicast_filter_limit, "fealnx maximum number of filtered multicast addresses"); 123 MODULE_PARM_DESC(options, "fealnx: Bits 0-3: media type, bit 17: full duplex"); 124 MODULE_PARM_DESC(full_duplex, "fealnx full duplex setting(s) (1)"); 125 126 enum { 127 MIN_REGION_SIZE = 136, 128 }; 129 130 /* A chip capabilities table, matching the entries in pci_tbl[] above. */ 131 enum chip_capability_flags { 132 HAS_MII_XCVR, 133 HAS_CHIP_XCVR, 134 }; 135 136 /* 89/6/13 add, */ 137 /* for different PHY */ 138 enum phy_type_flags { 139 MysonPHY = 1, 140 AhdocPHY = 2, 141 SeeqPHY = 3, 142 MarvellPHY = 4, 143 Myson981 = 5, 144 LevelOnePHY = 6, 145 OtherPHY = 10, 146 }; 147 148 struct chip_info { 149 char *chip_name; 150 int flags; 151 }; 152 153 static const struct chip_info skel_netdrv_tbl[] = { 154 { "100/10M Ethernet PCI Adapter", HAS_MII_XCVR }, 155 { "100/10M Ethernet PCI Adapter", HAS_CHIP_XCVR }, 156 { "1000/100/10M Ethernet PCI Adapter", HAS_MII_XCVR }, 157 }; 158 159 /* Offsets to the Command and Status Registers. */ 160 enum fealnx_offsets { 161 PAR0 = 0x0, /* physical address 0-3 */ 162 PAR1 = 0x04, /* physical address 4-5 */ 163 MAR0 = 0x08, /* multicast address 0-3 */ 164 MAR1 = 0x0C, /* multicast address 4-7 */ 165 FAR0 = 0x10, /* flow-control address 0-3 */ 166 FAR1 = 0x14, /* flow-control address 4-5 */ 167 TCRRCR = 0x18, /* receive & transmit configuration */ 168 BCR = 0x1C, /* bus command */ 169 TXPDR = 0x20, /* transmit polling demand */ 170 RXPDR = 0x24, /* receive polling demand */ 171 RXCWP = 0x28, /* receive current word pointer */ 172 TXLBA = 0x2C, /* transmit list base address */ 173 RXLBA = 0x30, /* receive list base address */ 174 ISR = 0x34, /* interrupt status */ 175 IMR = 0x38, /* interrupt mask */ 176 FTH = 0x3C, /* flow control high/low threshold */ 177 MANAGEMENT = 0x40, /* bootrom/eeprom and mii management */ 178 TALLY = 0x44, /* tally counters for crc and mpa */ 179 TSR = 0x48, /* tally counter for transmit status */ 180 BMCRSR = 0x4c, /* basic mode control and status */ 181 PHYIDENTIFIER = 0x50, /* phy identifier */ 182 ANARANLPAR = 0x54, /* auto-negotiation advertisement and link 183 partner ability */ 184 ANEROCR = 0x58, /* auto-negotiation expansion and pci conf. */ 185 BPREMRPSR = 0x5c, /* bypass & receive error mask and phy status */ 186 }; 187 188 /* Bits in the interrupt status/enable registers. */ 189 /* The bits in the Intr Status/Enable registers, mostly interrupt sources. */ 190 enum intr_status_bits { 191 RFCON = 0x00020000, /* receive flow control xon packet */ 192 RFCOFF = 0x00010000, /* receive flow control xoff packet */ 193 LSCStatus = 0x00008000, /* link status change */ 194 ANCStatus = 0x00004000, /* autonegotiation completed */ 195 FBE = 0x00002000, /* fatal bus error */ 196 FBEMask = 0x00001800, /* mask bit12-11 */ 197 ParityErr = 0x00000000, /* parity error */ 198 TargetErr = 0x00001000, /* target abort */ 199 MasterErr = 0x00000800, /* master error */ 200 TUNF = 0x00000400, /* transmit underflow */ 201 ROVF = 0x00000200, /* receive overflow */ 202 ETI = 0x00000100, /* transmit early int */ 203 ERI = 0x00000080, /* receive early int */ 204 CNTOVF = 0x00000040, /* counter overflow */ 205 RBU = 0x00000020, /* receive buffer unavailable */ 206 TBU = 0x00000010, /* transmit buffer unavilable */ 207 TI = 0x00000008, /* transmit interrupt */ 208 RI = 0x00000004, /* receive interrupt */ 209 RxErr = 0x00000002, /* receive error */ 210 }; 211 212 /* Bits in the NetworkConfig register, W for writing, R for reading */ 213 /* FIXME: some names are invented by me. Marked with (name?) */ 214 /* If you have docs and know bit names, please fix 'em */ 215 enum rx_mode_bits { 216 CR_W_ENH = 0x02000000, /* enhanced mode (name?) */ 217 CR_W_FD = 0x00100000, /* full duplex */ 218 CR_W_PS10 = 0x00080000, /* 10 mbit */ 219 CR_W_TXEN = 0x00040000, /* tx enable (name?) */ 220 CR_W_PS1000 = 0x00010000, /* 1000 mbit */ 221 /* CR_W_RXBURSTMASK= 0x00000e00, Im unsure about this */ 222 CR_W_RXMODEMASK = 0x000000e0, 223 CR_W_PROM = 0x00000080, /* promiscuous mode */ 224 CR_W_AB = 0x00000040, /* accept broadcast */ 225 CR_W_AM = 0x00000020, /* accept mutlicast */ 226 CR_W_ARP = 0x00000008, /* receive runt pkt */ 227 CR_W_ALP = 0x00000004, /* receive long pkt */ 228 CR_W_SEP = 0x00000002, /* receive error pkt */ 229 CR_W_RXEN = 0x00000001, /* rx enable (unicast?) (name?) */ 230 231 CR_R_TXSTOP = 0x04000000, /* tx stopped (name?) */ 232 CR_R_FD = 0x00100000, /* full duplex detected */ 233 CR_R_PS10 = 0x00080000, /* 10 mbit detected */ 234 CR_R_RXSTOP = 0x00008000, /* rx stopped (name?) */ 235 }; 236 237 /* The Tulip Rx and Tx buffer descriptors. */ 238 struct fealnx_desc { 239 s32 status; 240 s32 control; 241 u32 buffer; 242 u32 next_desc; 243 struct fealnx_desc *next_desc_logical; 244 struct sk_buff *skbuff; 245 u32 reserved1; 246 u32 reserved2; 247 }; 248 249 /* Bits in network_desc.status */ 250 enum rx_desc_status_bits { 251 RXOWN = 0x80000000, /* own bit */ 252 FLNGMASK = 0x0fff0000, /* frame length */ 253 FLNGShift = 16, 254 MARSTATUS = 0x00004000, /* multicast address received */ 255 BARSTATUS = 0x00002000, /* broadcast address received */ 256 PHYSTATUS = 0x00001000, /* physical address received */ 257 RXFSD = 0x00000800, /* first descriptor */ 258 RXLSD = 0x00000400, /* last descriptor */ 259 ErrorSummary = 0x80, /* error summary */ 260 RUNTPKT = 0x40, /* runt packet received */ 261 LONGPKT = 0x20, /* long packet received */ 262 FAE = 0x10, /* frame align error */ 263 CRC = 0x08, /* crc error */ 264 RXER = 0x04, /* receive error */ 265 }; 266 267 enum rx_desc_control_bits { 268 RXIC = 0x00800000, /* interrupt control */ 269 RBSShift = 0, 270 }; 271 272 enum tx_desc_status_bits { 273 TXOWN = 0x80000000, /* own bit */ 274 JABTO = 0x00004000, /* jabber timeout */ 275 CSL = 0x00002000, /* carrier sense lost */ 276 LC = 0x00001000, /* late collision */ 277 EC = 0x00000800, /* excessive collision */ 278 UDF = 0x00000400, /* fifo underflow */ 279 DFR = 0x00000200, /* deferred */ 280 HF = 0x00000100, /* heartbeat fail */ 281 NCRMask = 0x000000ff, /* collision retry count */ 282 NCRShift = 0, 283 }; 284 285 enum tx_desc_control_bits { 286 TXIC = 0x80000000, /* interrupt control */ 287 ETIControl = 0x40000000, /* early transmit interrupt */ 288 TXLD = 0x20000000, /* last descriptor */ 289 TXFD = 0x10000000, /* first descriptor */ 290 CRCEnable = 0x08000000, /* crc control */ 291 PADEnable = 0x04000000, /* padding control */ 292 RetryTxLC = 0x02000000, /* retry late collision */ 293 PKTSMask = 0x3ff800, /* packet size bit21-11 */ 294 PKTSShift = 11, 295 TBSMask = 0x000007ff, /* transmit buffer bit 10-0 */ 296 TBSShift = 0, 297 }; 298 299 /* BootROM/EEPROM/MII Management Register */ 300 #define MASK_MIIR_MII_READ 0x00000000 301 #define MASK_MIIR_MII_WRITE 0x00000008 302 #define MASK_MIIR_MII_MDO 0x00000004 303 #define MASK_MIIR_MII_MDI 0x00000002 304 #define MASK_MIIR_MII_MDC 0x00000001 305 306 /* ST+OP+PHYAD+REGAD+TA */ 307 #define OP_READ 0x6000 /* ST:01+OP:10+PHYAD+REGAD+TA:Z0 */ 308 #define OP_WRITE 0x5002 /* ST:01+OP:01+PHYAD+REGAD+TA:10 */ 309 310 /* ------------------------------------------------------------------------- */ 311 /* Constants for Myson PHY */ 312 /* ------------------------------------------------------------------------- */ 313 #define MysonPHYID 0xd0000302 314 /* 89-7-27 add, (begin) */ 315 #define MysonPHYID0 0x0302 316 #define StatusRegister 18 317 #define SPEED100 0x0400 // bit10 318 #define FULLMODE 0x0800 // bit11 319 /* 89-7-27 add, (end) */ 320 321 /* ------------------------------------------------------------------------- */ 322 /* Constants for Seeq 80225 PHY */ 323 /* ------------------------------------------------------------------------- */ 324 #define SeeqPHYID0 0x0016 325 326 #define MIIRegister18 18 327 #define SPD_DET_100 0x80 328 #define DPLX_DET_FULL 0x40 329 330 /* ------------------------------------------------------------------------- */ 331 /* Constants for Ahdoc 101 PHY */ 332 /* ------------------------------------------------------------------------- */ 333 #define AhdocPHYID0 0x0022 334 335 #define DiagnosticReg 18 336 #define DPLX_FULL 0x0800 337 #define Speed_100 0x0400 338 339 /* 89/6/13 add, */ 340 /* -------------------------------------------------------------------------- */ 341 /* Constants */ 342 /* -------------------------------------------------------------------------- */ 343 #define MarvellPHYID0 0x0141 344 #define LevelOnePHYID0 0x0013 345 346 #define MII1000BaseTControlReg 9 347 #define MII1000BaseTStatusReg 10 348 #define SpecificReg 17 349 350 /* for 1000BaseT Control Register */ 351 #define PHYAbletoPerform1000FullDuplex 0x0200 352 #define PHYAbletoPerform1000HalfDuplex 0x0100 353 #define PHY1000AbilityMask 0x300 354 355 // for phy specific status register, marvell phy. 356 #define SpeedMask 0x0c000 357 #define Speed_1000M 0x08000 358 #define Speed_100M 0x4000 359 #define Speed_10M 0 360 #define Full_Duplex 0x2000 361 362 // 89/12/29 add, for phy specific status register, levelone phy, (begin) 363 #define LXT1000_100M 0x08000 364 #define LXT1000_1000M 0x0c000 365 #define LXT1000_Full 0x200 366 // 89/12/29 add, for phy specific status register, levelone phy, (end) 367 368 /* for 3-in-1 case, BMCRSR register */ 369 #define LinkIsUp2 0x00040000 370 371 /* for PHY */ 372 #define LinkIsUp 0x0004 373 374 375 struct netdev_private { 376 /* Descriptor rings first for alignment. */ 377 struct fealnx_desc *rx_ring; 378 struct fealnx_desc *tx_ring; 379 380 dma_addr_t rx_ring_dma; 381 dma_addr_t tx_ring_dma; 382 383 spinlock_t lock; 384 385 /* Media monitoring timer. */ 386 struct timer_list timer; 387 388 /* Reset timer */ 389 struct timer_list reset_timer; 390 int reset_timer_armed; 391 unsigned long crvalue_sv; 392 unsigned long imrvalue_sv; 393 394 /* Frequently used values: keep some adjacent for cache effect. */ 395 int flags; 396 struct pci_dev *pci_dev; 397 unsigned long crvalue; 398 unsigned long bcrvalue; 399 unsigned long imrvalue; 400 struct fealnx_desc *cur_rx; 401 struct fealnx_desc *lack_rxbuf; 402 int really_rx_count; 403 struct fealnx_desc *cur_tx; 404 struct fealnx_desc *cur_tx_copy; 405 int really_tx_count; 406 int free_tx_count; 407 unsigned int rx_buf_sz; /* Based on MTU+slack. */ 408 409 /* These values are keep track of the transceiver/media in use. */ 410 unsigned int linkok; 411 unsigned int line_speed; 412 unsigned int duplexmode; 413 unsigned int default_port:4; /* Last dev->if_port value. */ 414 unsigned int PHYType; 415 416 /* MII transceiver section. */ 417 int mii_cnt; /* MII device addresses. */ 418 unsigned char phys[2]; /* MII device addresses. */ 419 struct mii_if_info mii; 420 void __iomem *mem; 421 }; 422 423 424 static int mdio_read(struct net_device *dev, int phy_id, int location); 425 static void mdio_write(struct net_device *dev, int phy_id, int location, int value); 426 static int netdev_open(struct net_device *dev); 427 static void getlinktype(struct net_device *dev); 428 static void getlinkstatus(struct net_device *dev); 429 static void netdev_timer(struct timer_list *t); 430 static void reset_timer(struct timer_list *t); 431 static void fealnx_tx_timeout(struct net_device *dev); 432 static void init_ring(struct net_device *dev); 433 static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev); 434 static irqreturn_t intr_handler(int irq, void *dev_instance); 435 static int netdev_rx(struct net_device *dev); 436 static void set_rx_mode(struct net_device *dev); 437 static void __set_rx_mode(struct net_device *dev); 438 static struct net_device_stats *get_stats(struct net_device *dev); 439 static int mii_ioctl(struct net_device *dev, struct ifreq *rq, int cmd); 440 static const struct ethtool_ops netdev_ethtool_ops; 441 static int netdev_close(struct net_device *dev); 442 static void reset_rx_descriptors(struct net_device *dev); 443 static void reset_tx_descriptors(struct net_device *dev); 444 445 static void stop_nic_rx(void __iomem *ioaddr, long crvalue) 446 { 447 int delay = 0x1000; 448 iowrite32(crvalue & ~(CR_W_RXEN), ioaddr + TCRRCR); 449 while (--delay) { 450 if ( (ioread32(ioaddr + TCRRCR) & CR_R_RXSTOP) == CR_R_RXSTOP) 451 break; 452 } 453 } 454 455 456 static void stop_nic_rxtx(void __iomem *ioaddr, long crvalue) 457 { 458 int delay = 0x1000; 459 iowrite32(crvalue & ~(CR_W_RXEN+CR_W_TXEN), ioaddr + TCRRCR); 460 while (--delay) { 461 if ( (ioread32(ioaddr + TCRRCR) & (CR_R_RXSTOP+CR_R_TXSTOP)) 462 == (CR_R_RXSTOP+CR_R_TXSTOP) ) 463 break; 464 } 465 } 466 467 static const struct net_device_ops netdev_ops = { 468 .ndo_open = netdev_open, 469 .ndo_stop = netdev_close, 470 .ndo_start_xmit = start_tx, 471 .ndo_get_stats = get_stats, 472 .ndo_set_rx_mode = set_rx_mode, 473 .ndo_do_ioctl = mii_ioctl, 474 .ndo_tx_timeout = fealnx_tx_timeout, 475 .ndo_set_mac_address = eth_mac_addr, 476 .ndo_validate_addr = eth_validate_addr, 477 }; 478 479 static int fealnx_init_one(struct pci_dev *pdev, 480 const struct pci_device_id *ent) 481 { 482 struct netdev_private *np; 483 int i, option, err, irq; 484 static int card_idx = -1; 485 char boardname[12]; 486 void __iomem *ioaddr; 487 unsigned long len; 488 unsigned int chip_id = ent->driver_data; 489 struct net_device *dev; 490 void *ring_space; 491 dma_addr_t ring_dma; 492 #ifdef USE_IO_OPS 493 int bar = 0; 494 #else 495 int bar = 1; 496 #endif 497 498 /* when built into the kernel, we only print version if device is found */ 499 #ifndef MODULE 500 static int printed_version; 501 if (!printed_version++) 502 printk(version); 503 #endif 504 505 card_idx++; 506 sprintf(boardname, "fealnx%d", card_idx); 507 508 option = card_idx < MAX_UNITS ? options[card_idx] : 0; 509 510 i = pci_enable_device(pdev); 511 if (i) return i; 512 pci_set_master(pdev); 513 514 len = pci_resource_len(pdev, bar); 515 if (len < MIN_REGION_SIZE) { 516 dev_err(&pdev->dev, 517 "region size %ld too small, aborting\n", len); 518 return -ENODEV; 519 } 520 521 i = pci_request_regions(pdev, boardname); 522 if (i) 523 return i; 524 525 irq = pdev->irq; 526 527 ioaddr = pci_iomap(pdev, bar, len); 528 if (!ioaddr) { 529 err = -ENOMEM; 530 goto err_out_res; 531 } 532 533 dev = alloc_etherdev(sizeof(struct netdev_private)); 534 if (!dev) { 535 err = -ENOMEM; 536 goto err_out_unmap; 537 } 538 SET_NETDEV_DEV(dev, &pdev->dev); 539 540 /* read ethernet id */ 541 for (i = 0; i < 6; ++i) 542 dev->dev_addr[i] = ioread8(ioaddr + PAR0 + i); 543 544 /* Reset the chip to erase previous misconfiguration. */ 545 iowrite32(0x00000001, ioaddr + BCR); 546 547 /* Make certain the descriptor lists are aligned. */ 548 np = netdev_priv(dev); 549 np->mem = ioaddr; 550 spin_lock_init(&np->lock); 551 np->pci_dev = pdev; 552 np->flags = skel_netdrv_tbl[chip_id].flags; 553 pci_set_drvdata(pdev, dev); 554 np->mii.dev = dev; 555 np->mii.mdio_read = mdio_read; 556 np->mii.mdio_write = mdio_write; 557 np->mii.phy_id_mask = 0x1f; 558 np->mii.reg_num_mask = 0x1f; 559 560 ring_space = pci_alloc_consistent(pdev, RX_TOTAL_SIZE, &ring_dma); 561 if (!ring_space) { 562 err = -ENOMEM; 563 goto err_out_free_dev; 564 } 565 np->rx_ring = ring_space; 566 np->rx_ring_dma = ring_dma; 567 568 ring_space = pci_alloc_consistent(pdev, TX_TOTAL_SIZE, &ring_dma); 569 if (!ring_space) { 570 err = -ENOMEM; 571 goto err_out_free_rx; 572 } 573 np->tx_ring = ring_space; 574 np->tx_ring_dma = ring_dma; 575 576 /* find the connected MII xcvrs */ 577 if (np->flags == HAS_MII_XCVR) { 578 int phy, phy_idx = 0; 579 580 for (phy = 1; phy < 32 && phy_idx < ARRAY_SIZE(np->phys); 581 phy++) { 582 int mii_status = mdio_read(dev, phy, 1); 583 584 if (mii_status != 0xffff && mii_status != 0x0000) { 585 np->phys[phy_idx++] = phy; 586 dev_info(&pdev->dev, 587 "MII PHY found at address %d, status " 588 "0x%4.4x.\n", phy, mii_status); 589 /* get phy type */ 590 { 591 unsigned int data; 592 593 data = mdio_read(dev, np->phys[0], 2); 594 if (data == SeeqPHYID0) 595 np->PHYType = SeeqPHY; 596 else if (data == AhdocPHYID0) 597 np->PHYType = AhdocPHY; 598 else if (data == MarvellPHYID0) 599 np->PHYType = MarvellPHY; 600 else if (data == MysonPHYID0) 601 np->PHYType = Myson981; 602 else if (data == LevelOnePHYID0) 603 np->PHYType = LevelOnePHY; 604 else 605 np->PHYType = OtherPHY; 606 } 607 } 608 } 609 610 np->mii_cnt = phy_idx; 611 if (phy_idx == 0) 612 dev_warn(&pdev->dev, 613 "MII PHY not found -- this device may " 614 "not operate correctly.\n"); 615 } else { 616 np->phys[0] = 32; 617 /* 89/6/23 add, (begin) */ 618 /* get phy type */ 619 if (ioread32(ioaddr + PHYIDENTIFIER) == MysonPHYID) 620 np->PHYType = MysonPHY; 621 else 622 np->PHYType = OtherPHY; 623 } 624 np->mii.phy_id = np->phys[0]; 625 626 if (dev->mem_start) 627 option = dev->mem_start; 628 629 /* The lower four bits are the media type. */ 630 if (option > 0) { 631 if (option & 0x200) 632 np->mii.full_duplex = 1; 633 np->default_port = option & 15; 634 } 635 636 if (card_idx < MAX_UNITS && full_duplex[card_idx] > 0) 637 np->mii.full_duplex = full_duplex[card_idx]; 638 639 if (np->mii.full_duplex) { 640 dev_info(&pdev->dev, "Media type forced to Full Duplex.\n"); 641 /* 89/6/13 add, (begin) */ 642 // if (np->PHYType==MarvellPHY) 643 if ((np->PHYType == MarvellPHY) || (np->PHYType == LevelOnePHY)) { 644 unsigned int data; 645 646 data = mdio_read(dev, np->phys[0], 9); 647 data = (data & 0xfcff) | 0x0200; 648 mdio_write(dev, np->phys[0], 9, data); 649 } 650 /* 89/6/13 add, (end) */ 651 if (np->flags == HAS_MII_XCVR) 652 mdio_write(dev, np->phys[0], MII_ADVERTISE, ADVERTISE_FULL); 653 else 654 iowrite32(ADVERTISE_FULL, ioaddr + ANARANLPAR); 655 np->mii.force_media = 1; 656 } 657 658 dev->netdev_ops = &netdev_ops; 659 dev->ethtool_ops = &netdev_ethtool_ops; 660 dev->watchdog_timeo = TX_TIMEOUT; 661 662 err = register_netdev(dev); 663 if (err) 664 goto err_out_free_tx; 665 666 printk(KERN_INFO "%s: %s at %p, %pM, IRQ %d.\n", 667 dev->name, skel_netdrv_tbl[chip_id].chip_name, ioaddr, 668 dev->dev_addr, irq); 669 670 return 0; 671 672 err_out_free_tx: 673 pci_free_consistent(pdev, TX_TOTAL_SIZE, np->tx_ring, np->tx_ring_dma); 674 err_out_free_rx: 675 pci_free_consistent(pdev, RX_TOTAL_SIZE, np->rx_ring, np->rx_ring_dma); 676 err_out_free_dev: 677 free_netdev(dev); 678 err_out_unmap: 679 pci_iounmap(pdev, ioaddr); 680 err_out_res: 681 pci_release_regions(pdev); 682 return err; 683 } 684 685 686 static void fealnx_remove_one(struct pci_dev *pdev) 687 { 688 struct net_device *dev = pci_get_drvdata(pdev); 689 690 if (dev) { 691 struct netdev_private *np = netdev_priv(dev); 692 693 pci_free_consistent(pdev, TX_TOTAL_SIZE, np->tx_ring, 694 np->tx_ring_dma); 695 pci_free_consistent(pdev, RX_TOTAL_SIZE, np->rx_ring, 696 np->rx_ring_dma); 697 unregister_netdev(dev); 698 pci_iounmap(pdev, np->mem); 699 free_netdev(dev); 700 pci_release_regions(pdev); 701 } else 702 printk(KERN_ERR "fealnx: remove for unknown device\n"); 703 } 704 705 706 static ulong m80x_send_cmd_to_phy(void __iomem *miiport, int opcode, int phyad, int regad) 707 { 708 ulong miir; 709 int i; 710 unsigned int mask, data; 711 712 /* enable MII output */ 713 miir = (ulong) ioread32(miiport); 714 miir &= 0xfffffff0; 715 716 miir |= MASK_MIIR_MII_WRITE + MASK_MIIR_MII_MDO; 717 718 /* send 32 1's preamble */ 719 for (i = 0; i < 32; i++) { 720 /* low MDC; MDO is already high (miir) */ 721 miir &= ~MASK_MIIR_MII_MDC; 722 iowrite32(miir, miiport); 723 724 /* high MDC */ 725 miir |= MASK_MIIR_MII_MDC; 726 iowrite32(miir, miiport); 727 } 728 729 /* calculate ST+OP+PHYAD+REGAD+TA */ 730 data = opcode | (phyad << 7) | (regad << 2); 731 732 /* sent out */ 733 mask = 0x8000; 734 while (mask) { 735 /* low MDC, prepare MDO */ 736 miir &= ~(MASK_MIIR_MII_MDC + MASK_MIIR_MII_MDO); 737 if (mask & data) 738 miir |= MASK_MIIR_MII_MDO; 739 740 iowrite32(miir, miiport); 741 /* high MDC */ 742 miir |= MASK_MIIR_MII_MDC; 743 iowrite32(miir, miiport); 744 udelay(30); 745 746 /* next */ 747 mask >>= 1; 748 if (mask == 0x2 && opcode == OP_READ) 749 miir &= ~MASK_MIIR_MII_WRITE; 750 } 751 return miir; 752 } 753 754 755 static int mdio_read(struct net_device *dev, int phyad, int regad) 756 { 757 struct netdev_private *np = netdev_priv(dev); 758 void __iomem *miiport = np->mem + MANAGEMENT; 759 ulong miir; 760 unsigned int mask, data; 761 762 miir = m80x_send_cmd_to_phy(miiport, OP_READ, phyad, regad); 763 764 /* read data */ 765 mask = 0x8000; 766 data = 0; 767 while (mask) { 768 /* low MDC */ 769 miir &= ~MASK_MIIR_MII_MDC; 770 iowrite32(miir, miiport); 771 772 /* read MDI */ 773 miir = ioread32(miiport); 774 if (miir & MASK_MIIR_MII_MDI) 775 data |= mask; 776 777 /* high MDC, and wait */ 778 miir |= MASK_MIIR_MII_MDC; 779 iowrite32(miir, miiport); 780 udelay(30); 781 782 /* next */ 783 mask >>= 1; 784 } 785 786 /* low MDC */ 787 miir &= ~MASK_MIIR_MII_MDC; 788 iowrite32(miir, miiport); 789 790 return data & 0xffff; 791 } 792 793 794 static void mdio_write(struct net_device *dev, int phyad, int regad, int data) 795 { 796 struct netdev_private *np = netdev_priv(dev); 797 void __iomem *miiport = np->mem + MANAGEMENT; 798 ulong miir; 799 unsigned int mask; 800 801 miir = m80x_send_cmd_to_phy(miiport, OP_WRITE, phyad, regad); 802 803 /* write data */ 804 mask = 0x8000; 805 while (mask) { 806 /* low MDC, prepare MDO */ 807 miir &= ~(MASK_MIIR_MII_MDC + MASK_MIIR_MII_MDO); 808 if (mask & data) 809 miir |= MASK_MIIR_MII_MDO; 810 iowrite32(miir, miiport); 811 812 /* high MDC */ 813 miir |= MASK_MIIR_MII_MDC; 814 iowrite32(miir, miiport); 815 816 /* next */ 817 mask >>= 1; 818 } 819 820 /* low MDC */ 821 miir &= ~MASK_MIIR_MII_MDC; 822 iowrite32(miir, miiport); 823 } 824 825 826 static int netdev_open(struct net_device *dev) 827 { 828 struct netdev_private *np = netdev_priv(dev); 829 void __iomem *ioaddr = np->mem; 830 const int irq = np->pci_dev->irq; 831 int rc, i; 832 833 iowrite32(0x00000001, ioaddr + BCR); /* Reset */ 834 835 rc = request_irq(irq, intr_handler, IRQF_SHARED, dev->name, dev); 836 if (rc) 837 return -EAGAIN; 838 839 for (i = 0; i < 3; i++) 840 iowrite16(((unsigned short*)dev->dev_addr)[i], 841 ioaddr + PAR0 + i*2); 842 843 init_ring(dev); 844 845 iowrite32(np->rx_ring_dma, ioaddr + RXLBA); 846 iowrite32(np->tx_ring_dma, ioaddr + TXLBA); 847 848 /* Initialize other registers. */ 849 /* Configure the PCI bus bursts and FIFO thresholds. 850 486: Set 8 longword burst. 851 586: no burst limit. 852 Burst length 5:3 853 0 0 0 1 854 0 0 1 4 855 0 1 0 8 856 0 1 1 16 857 1 0 0 32 858 1 0 1 64 859 1 1 0 128 860 1 1 1 256 861 Wait the specified 50 PCI cycles after a reset by initializing 862 Tx and Rx queues and the address filter list. 863 FIXME (Ueimor): optimistic for alpha + posted writes ? */ 864 865 np->bcrvalue = 0x10; /* little-endian, 8 burst length */ 866 #ifdef __BIG_ENDIAN 867 np->bcrvalue |= 0x04; /* big-endian */ 868 #endif 869 870 #if defined(__i386__) && !defined(MODULE) 871 if (boot_cpu_data.x86 <= 4) 872 np->crvalue = 0xa00; 873 else 874 #endif 875 np->crvalue = 0xe00; /* rx 128 burst length */ 876 877 878 // 89/12/29 add, 879 // 90/1/16 modify, 880 // np->imrvalue=FBE|TUNF|CNTOVF|RBU|TI|RI; 881 np->imrvalue = TUNF | CNTOVF | RBU | TI | RI; 882 if (np->pci_dev->device == 0x891) { 883 np->bcrvalue |= 0x200; /* set PROG bit */ 884 np->crvalue |= CR_W_ENH; /* set enhanced bit */ 885 np->imrvalue |= ETI; 886 } 887 iowrite32(np->bcrvalue, ioaddr + BCR); 888 889 if (dev->if_port == 0) 890 dev->if_port = np->default_port; 891 892 iowrite32(0, ioaddr + RXPDR); 893 // 89/9/1 modify, 894 // np->crvalue = 0x00e40001; /* tx store and forward, tx/rx enable */ 895 np->crvalue |= 0x00e40001; /* tx store and forward, tx/rx enable */ 896 np->mii.full_duplex = np->mii.force_media; 897 getlinkstatus(dev); 898 if (np->linkok) 899 getlinktype(dev); 900 __set_rx_mode(dev); 901 902 netif_start_queue(dev); 903 904 /* Clear and Enable interrupts by setting the interrupt mask. */ 905 iowrite32(FBE | TUNF | CNTOVF | RBU | TI | RI, ioaddr + ISR); 906 iowrite32(np->imrvalue, ioaddr + IMR); 907 908 if (debug) 909 printk(KERN_DEBUG "%s: Done netdev_open().\n", dev->name); 910 911 /* Set the timer to check for link beat. */ 912 timer_setup(&np->timer, netdev_timer, 0); 913 np->timer.expires = RUN_AT(3 * HZ); 914 915 /* timer handler */ 916 add_timer(&np->timer); 917 918 timer_setup(&np->reset_timer, reset_timer, 0); 919 np->reset_timer_armed = 0; 920 return rc; 921 } 922 923 924 static void getlinkstatus(struct net_device *dev) 925 /* function: Routine will read MII Status Register to get link status. */ 926 /* input : dev... pointer to the adapter block. */ 927 /* output : none. */ 928 { 929 struct netdev_private *np = netdev_priv(dev); 930 unsigned int i, DelayTime = 0x1000; 931 932 np->linkok = 0; 933 934 if (np->PHYType == MysonPHY) { 935 for (i = 0; i < DelayTime; ++i) { 936 if (ioread32(np->mem + BMCRSR) & LinkIsUp2) { 937 np->linkok = 1; 938 return; 939 } 940 udelay(100); 941 } 942 } else { 943 for (i = 0; i < DelayTime; ++i) { 944 if (mdio_read(dev, np->phys[0], MII_BMSR) & BMSR_LSTATUS) { 945 np->linkok = 1; 946 return; 947 } 948 udelay(100); 949 } 950 } 951 } 952 953 954 static void getlinktype(struct net_device *dev) 955 { 956 struct netdev_private *np = netdev_priv(dev); 957 958 if (np->PHYType == MysonPHY) { /* 3-in-1 case */ 959 if (ioread32(np->mem + TCRRCR) & CR_R_FD) 960 np->duplexmode = 2; /* full duplex */ 961 else 962 np->duplexmode = 1; /* half duplex */ 963 if (ioread32(np->mem + TCRRCR) & CR_R_PS10) 964 np->line_speed = 1; /* 10M */ 965 else 966 np->line_speed = 2; /* 100M */ 967 } else { 968 if (np->PHYType == SeeqPHY) { /* this PHY is SEEQ 80225 */ 969 unsigned int data; 970 971 data = mdio_read(dev, np->phys[0], MIIRegister18); 972 if (data & SPD_DET_100) 973 np->line_speed = 2; /* 100M */ 974 else 975 np->line_speed = 1; /* 10M */ 976 if (data & DPLX_DET_FULL) 977 np->duplexmode = 2; /* full duplex mode */ 978 else 979 np->duplexmode = 1; /* half duplex mode */ 980 } else if (np->PHYType == AhdocPHY) { 981 unsigned int data; 982 983 data = mdio_read(dev, np->phys[0], DiagnosticReg); 984 if (data & Speed_100) 985 np->line_speed = 2; /* 100M */ 986 else 987 np->line_speed = 1; /* 10M */ 988 if (data & DPLX_FULL) 989 np->duplexmode = 2; /* full duplex mode */ 990 else 991 np->duplexmode = 1; /* half duplex mode */ 992 } 993 /* 89/6/13 add, (begin) */ 994 else if (np->PHYType == MarvellPHY) { 995 unsigned int data; 996 997 data = mdio_read(dev, np->phys[0], SpecificReg); 998 if (data & Full_Duplex) 999 np->duplexmode = 2; /* full duplex mode */ 1000 else 1001 np->duplexmode = 1; /* half duplex mode */ 1002 data &= SpeedMask; 1003 if (data == Speed_1000M) 1004 np->line_speed = 3; /* 1000M */ 1005 else if (data == Speed_100M) 1006 np->line_speed = 2; /* 100M */ 1007 else 1008 np->line_speed = 1; /* 10M */ 1009 } 1010 /* 89/6/13 add, (end) */ 1011 /* 89/7/27 add, (begin) */ 1012 else if (np->PHYType == Myson981) { 1013 unsigned int data; 1014 1015 data = mdio_read(dev, np->phys[0], StatusRegister); 1016 1017 if (data & SPEED100) 1018 np->line_speed = 2; 1019 else 1020 np->line_speed = 1; 1021 1022 if (data & FULLMODE) 1023 np->duplexmode = 2; 1024 else 1025 np->duplexmode = 1; 1026 } 1027 /* 89/7/27 add, (end) */ 1028 /* 89/12/29 add */ 1029 else if (np->PHYType == LevelOnePHY) { 1030 unsigned int data; 1031 1032 data = mdio_read(dev, np->phys[0], SpecificReg); 1033 if (data & LXT1000_Full) 1034 np->duplexmode = 2; /* full duplex mode */ 1035 else 1036 np->duplexmode = 1; /* half duplex mode */ 1037 data &= SpeedMask; 1038 if (data == LXT1000_1000M) 1039 np->line_speed = 3; /* 1000M */ 1040 else if (data == LXT1000_100M) 1041 np->line_speed = 2; /* 100M */ 1042 else 1043 np->line_speed = 1; /* 10M */ 1044 } 1045 np->crvalue &= (~CR_W_PS10) & (~CR_W_FD) & (~CR_W_PS1000); 1046 if (np->line_speed == 1) 1047 np->crvalue |= CR_W_PS10; 1048 else if (np->line_speed == 3) 1049 np->crvalue |= CR_W_PS1000; 1050 if (np->duplexmode == 2) 1051 np->crvalue |= CR_W_FD; 1052 } 1053 } 1054 1055 1056 /* Take lock before calling this */ 1057 static void allocate_rx_buffers(struct net_device *dev) 1058 { 1059 struct netdev_private *np = netdev_priv(dev); 1060 1061 /* allocate skb for rx buffers */ 1062 while (np->really_rx_count != RX_RING_SIZE) { 1063 struct sk_buff *skb; 1064 1065 skb = netdev_alloc_skb(dev, np->rx_buf_sz); 1066 if (skb == NULL) 1067 break; /* Better luck next round. */ 1068 1069 while (np->lack_rxbuf->skbuff) 1070 np->lack_rxbuf = np->lack_rxbuf->next_desc_logical; 1071 1072 np->lack_rxbuf->skbuff = skb; 1073 np->lack_rxbuf->buffer = pci_map_single(np->pci_dev, skb->data, 1074 np->rx_buf_sz, PCI_DMA_FROMDEVICE); 1075 np->lack_rxbuf->status = RXOWN; 1076 ++np->really_rx_count; 1077 } 1078 } 1079 1080 1081 static void netdev_timer(struct timer_list *t) 1082 { 1083 struct netdev_private *np = from_timer(np, t, timer); 1084 struct net_device *dev = np->mii.dev; 1085 void __iomem *ioaddr = np->mem; 1086 int old_crvalue = np->crvalue; 1087 unsigned int old_linkok = np->linkok; 1088 unsigned long flags; 1089 1090 if (debug) 1091 printk(KERN_DEBUG "%s: Media selection timer tick, status %8.8x " 1092 "config %8.8x.\n", dev->name, ioread32(ioaddr + ISR), 1093 ioread32(ioaddr + TCRRCR)); 1094 1095 spin_lock_irqsave(&np->lock, flags); 1096 1097 if (np->flags == HAS_MII_XCVR) { 1098 getlinkstatus(dev); 1099 if ((old_linkok == 0) && (np->linkok == 1)) { /* we need to detect the media type again */ 1100 getlinktype(dev); 1101 if (np->crvalue != old_crvalue) { 1102 stop_nic_rxtx(ioaddr, np->crvalue); 1103 iowrite32(np->crvalue, ioaddr + TCRRCR); 1104 } 1105 } 1106 } 1107 1108 allocate_rx_buffers(dev); 1109 1110 spin_unlock_irqrestore(&np->lock, flags); 1111 1112 np->timer.expires = RUN_AT(10 * HZ); 1113 add_timer(&np->timer); 1114 } 1115 1116 1117 /* Take lock before calling */ 1118 /* Reset chip and disable rx, tx and interrupts */ 1119 static void reset_and_disable_rxtx(struct net_device *dev) 1120 { 1121 struct netdev_private *np = netdev_priv(dev); 1122 void __iomem *ioaddr = np->mem; 1123 int delay=51; 1124 1125 /* Reset the chip's Tx and Rx processes. */ 1126 stop_nic_rxtx(ioaddr, 0); 1127 1128 /* Disable interrupts by clearing the interrupt mask. */ 1129 iowrite32(0, ioaddr + IMR); 1130 1131 /* Reset the chip to erase previous misconfiguration. */ 1132 iowrite32(0x00000001, ioaddr + BCR); 1133 1134 /* Ueimor: wait for 50 PCI cycles (and flush posted writes btw). 1135 We surely wait too long (address+data phase). Who cares? */ 1136 while (--delay) { 1137 ioread32(ioaddr + BCR); 1138 rmb(); 1139 } 1140 } 1141 1142 1143 /* Take lock before calling */ 1144 /* Restore chip after reset */ 1145 static void enable_rxtx(struct net_device *dev) 1146 { 1147 struct netdev_private *np = netdev_priv(dev); 1148 void __iomem *ioaddr = np->mem; 1149 1150 reset_rx_descriptors(dev); 1151 1152 iowrite32(np->tx_ring_dma + ((char*)np->cur_tx - (char*)np->tx_ring), 1153 ioaddr + TXLBA); 1154 iowrite32(np->rx_ring_dma + ((char*)np->cur_rx - (char*)np->rx_ring), 1155 ioaddr + RXLBA); 1156 1157 iowrite32(np->bcrvalue, ioaddr + BCR); 1158 1159 iowrite32(0, ioaddr + RXPDR); 1160 __set_rx_mode(dev); /* changes np->crvalue, writes it into TCRRCR */ 1161 1162 /* Clear and Enable interrupts by setting the interrupt mask. */ 1163 iowrite32(FBE | TUNF | CNTOVF | RBU | TI | RI, ioaddr + ISR); 1164 iowrite32(np->imrvalue, ioaddr + IMR); 1165 1166 iowrite32(0, ioaddr + TXPDR); 1167 } 1168 1169 1170 static void reset_timer(struct timer_list *t) 1171 { 1172 struct netdev_private *np = from_timer(np, t, reset_timer); 1173 struct net_device *dev = np->mii.dev; 1174 unsigned long flags; 1175 1176 printk(KERN_WARNING "%s: resetting tx and rx machinery\n", dev->name); 1177 1178 spin_lock_irqsave(&np->lock, flags); 1179 np->crvalue = np->crvalue_sv; 1180 np->imrvalue = np->imrvalue_sv; 1181 1182 reset_and_disable_rxtx(dev); 1183 /* works for me without this: 1184 reset_tx_descriptors(dev); */ 1185 enable_rxtx(dev); 1186 netif_start_queue(dev); /* FIXME: or netif_wake_queue(dev); ? */ 1187 1188 np->reset_timer_armed = 0; 1189 1190 spin_unlock_irqrestore(&np->lock, flags); 1191 } 1192 1193 1194 static void fealnx_tx_timeout(struct net_device *dev) 1195 { 1196 struct netdev_private *np = netdev_priv(dev); 1197 void __iomem *ioaddr = np->mem; 1198 unsigned long flags; 1199 int i; 1200 1201 printk(KERN_WARNING 1202 "%s: Transmit timed out, status %8.8x, resetting...\n", 1203 dev->name, ioread32(ioaddr + ISR)); 1204 1205 { 1206 printk(KERN_DEBUG " Rx ring %p: ", np->rx_ring); 1207 for (i = 0; i < RX_RING_SIZE; i++) 1208 printk(KERN_CONT " %8.8x", 1209 (unsigned int) np->rx_ring[i].status); 1210 printk(KERN_CONT "\n"); 1211 printk(KERN_DEBUG " Tx ring %p: ", np->tx_ring); 1212 for (i = 0; i < TX_RING_SIZE; i++) 1213 printk(KERN_CONT " %4.4x", np->tx_ring[i].status); 1214 printk(KERN_CONT "\n"); 1215 } 1216 1217 spin_lock_irqsave(&np->lock, flags); 1218 1219 reset_and_disable_rxtx(dev); 1220 reset_tx_descriptors(dev); 1221 enable_rxtx(dev); 1222 1223 spin_unlock_irqrestore(&np->lock, flags); 1224 1225 netif_trans_update(dev); /* prevent tx timeout */ 1226 dev->stats.tx_errors++; 1227 netif_wake_queue(dev); /* or .._start_.. ?? */ 1228 } 1229 1230 1231 /* Initialize the Rx and Tx rings, along with various 'dev' bits. */ 1232 static void init_ring(struct net_device *dev) 1233 { 1234 struct netdev_private *np = netdev_priv(dev); 1235 int i; 1236 1237 /* initialize rx variables */ 1238 np->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32); 1239 np->cur_rx = &np->rx_ring[0]; 1240 np->lack_rxbuf = np->rx_ring; 1241 np->really_rx_count = 0; 1242 1243 /* initial rx descriptors. */ 1244 for (i = 0; i < RX_RING_SIZE; i++) { 1245 np->rx_ring[i].status = 0; 1246 np->rx_ring[i].control = np->rx_buf_sz << RBSShift; 1247 np->rx_ring[i].next_desc = np->rx_ring_dma + 1248 (i + 1)*sizeof(struct fealnx_desc); 1249 np->rx_ring[i].next_desc_logical = &np->rx_ring[i + 1]; 1250 np->rx_ring[i].skbuff = NULL; 1251 } 1252 1253 /* for the last rx descriptor */ 1254 np->rx_ring[i - 1].next_desc = np->rx_ring_dma; 1255 np->rx_ring[i - 1].next_desc_logical = np->rx_ring; 1256 1257 /* allocate skb for rx buffers */ 1258 for (i = 0; i < RX_RING_SIZE; i++) { 1259 struct sk_buff *skb = netdev_alloc_skb(dev, np->rx_buf_sz); 1260 1261 if (skb == NULL) { 1262 np->lack_rxbuf = &np->rx_ring[i]; 1263 break; 1264 } 1265 1266 ++np->really_rx_count; 1267 np->rx_ring[i].skbuff = skb; 1268 np->rx_ring[i].buffer = pci_map_single(np->pci_dev, skb->data, 1269 np->rx_buf_sz, PCI_DMA_FROMDEVICE); 1270 np->rx_ring[i].status = RXOWN; 1271 np->rx_ring[i].control |= RXIC; 1272 } 1273 1274 /* initialize tx variables */ 1275 np->cur_tx = &np->tx_ring[0]; 1276 np->cur_tx_copy = &np->tx_ring[0]; 1277 np->really_tx_count = 0; 1278 np->free_tx_count = TX_RING_SIZE; 1279 1280 for (i = 0; i < TX_RING_SIZE; i++) { 1281 np->tx_ring[i].status = 0; 1282 /* do we need np->tx_ring[i].control = XXX; ?? */ 1283 np->tx_ring[i].next_desc = np->tx_ring_dma + 1284 (i + 1)*sizeof(struct fealnx_desc); 1285 np->tx_ring[i].next_desc_logical = &np->tx_ring[i + 1]; 1286 np->tx_ring[i].skbuff = NULL; 1287 } 1288 1289 /* for the last tx descriptor */ 1290 np->tx_ring[i - 1].next_desc = np->tx_ring_dma; 1291 np->tx_ring[i - 1].next_desc_logical = &np->tx_ring[0]; 1292 } 1293 1294 1295 static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev) 1296 { 1297 struct netdev_private *np = netdev_priv(dev); 1298 unsigned long flags; 1299 1300 spin_lock_irqsave(&np->lock, flags); 1301 1302 np->cur_tx_copy->skbuff = skb; 1303 1304 #define one_buffer 1305 #define BPT 1022 1306 #if defined(one_buffer) 1307 np->cur_tx_copy->buffer = pci_map_single(np->pci_dev, skb->data, 1308 skb->len, PCI_DMA_TODEVICE); 1309 np->cur_tx_copy->control = TXIC | TXLD | TXFD | CRCEnable | PADEnable; 1310 np->cur_tx_copy->control |= (skb->len << PKTSShift); /* pkt size */ 1311 np->cur_tx_copy->control |= (skb->len << TBSShift); /* buffer size */ 1312 // 89/12/29 add, 1313 if (np->pci_dev->device == 0x891) 1314 np->cur_tx_copy->control |= ETIControl | RetryTxLC; 1315 np->cur_tx_copy->status = TXOWN; 1316 np->cur_tx_copy = np->cur_tx_copy->next_desc_logical; 1317 --np->free_tx_count; 1318 #elif defined(two_buffer) 1319 if (skb->len > BPT) { 1320 struct fealnx_desc *next; 1321 1322 /* for the first descriptor */ 1323 np->cur_tx_copy->buffer = pci_map_single(np->pci_dev, skb->data, 1324 BPT, PCI_DMA_TODEVICE); 1325 np->cur_tx_copy->control = TXIC | TXFD | CRCEnable | PADEnable; 1326 np->cur_tx_copy->control |= (skb->len << PKTSShift); /* pkt size */ 1327 np->cur_tx_copy->control |= (BPT << TBSShift); /* buffer size */ 1328 1329 /* for the last descriptor */ 1330 next = np->cur_tx_copy->next_desc_logical; 1331 next->skbuff = skb; 1332 next->control = TXIC | TXLD | CRCEnable | PADEnable; 1333 next->control |= (skb->len << PKTSShift); /* pkt size */ 1334 next->control |= ((skb->len - BPT) << TBSShift); /* buf size */ 1335 // 89/12/29 add, 1336 if (np->pci_dev->device == 0x891) 1337 np->cur_tx_copy->control |= ETIControl | RetryTxLC; 1338 next->buffer = pci_map_single(ep->pci_dev, skb->data + BPT, 1339 skb->len - BPT, PCI_DMA_TODEVICE); 1340 1341 next->status = TXOWN; 1342 np->cur_tx_copy->status = TXOWN; 1343 1344 np->cur_tx_copy = next->next_desc_logical; 1345 np->free_tx_count -= 2; 1346 } else { 1347 np->cur_tx_copy->buffer = pci_map_single(np->pci_dev, skb->data, 1348 skb->len, PCI_DMA_TODEVICE); 1349 np->cur_tx_copy->control = TXIC | TXLD | TXFD | CRCEnable | PADEnable; 1350 np->cur_tx_copy->control |= (skb->len << PKTSShift); /* pkt size */ 1351 np->cur_tx_copy->control |= (skb->len << TBSShift); /* buffer size */ 1352 // 89/12/29 add, 1353 if (np->pci_dev->device == 0x891) 1354 np->cur_tx_copy->control |= ETIControl | RetryTxLC; 1355 np->cur_tx_copy->status = TXOWN; 1356 np->cur_tx_copy = np->cur_tx_copy->next_desc_logical; 1357 --np->free_tx_count; 1358 } 1359 #endif 1360 1361 if (np->free_tx_count < 2) 1362 netif_stop_queue(dev); 1363 ++np->really_tx_count; 1364 iowrite32(0, np->mem + TXPDR); 1365 1366 spin_unlock_irqrestore(&np->lock, flags); 1367 return NETDEV_TX_OK; 1368 } 1369 1370 1371 /* Take lock before calling */ 1372 /* Chip probably hosed tx ring. Clean up. */ 1373 static void reset_tx_descriptors(struct net_device *dev) 1374 { 1375 struct netdev_private *np = netdev_priv(dev); 1376 struct fealnx_desc *cur; 1377 int i; 1378 1379 /* initialize tx variables */ 1380 np->cur_tx = &np->tx_ring[0]; 1381 np->cur_tx_copy = &np->tx_ring[0]; 1382 np->really_tx_count = 0; 1383 np->free_tx_count = TX_RING_SIZE; 1384 1385 for (i = 0; i < TX_RING_SIZE; i++) { 1386 cur = &np->tx_ring[i]; 1387 if (cur->skbuff) { 1388 pci_unmap_single(np->pci_dev, cur->buffer, 1389 cur->skbuff->len, PCI_DMA_TODEVICE); 1390 dev_kfree_skb_any(cur->skbuff); 1391 cur->skbuff = NULL; 1392 } 1393 cur->status = 0; 1394 cur->control = 0; /* needed? */ 1395 /* probably not needed. We do it for purely paranoid reasons */ 1396 cur->next_desc = np->tx_ring_dma + 1397 (i + 1)*sizeof(struct fealnx_desc); 1398 cur->next_desc_logical = &np->tx_ring[i + 1]; 1399 } 1400 /* for the last tx descriptor */ 1401 np->tx_ring[TX_RING_SIZE - 1].next_desc = np->tx_ring_dma; 1402 np->tx_ring[TX_RING_SIZE - 1].next_desc_logical = &np->tx_ring[0]; 1403 } 1404 1405 1406 /* Take lock and stop rx before calling this */ 1407 static void reset_rx_descriptors(struct net_device *dev) 1408 { 1409 struct netdev_private *np = netdev_priv(dev); 1410 struct fealnx_desc *cur = np->cur_rx; 1411 int i; 1412 1413 allocate_rx_buffers(dev); 1414 1415 for (i = 0; i < RX_RING_SIZE; i++) { 1416 if (cur->skbuff) 1417 cur->status = RXOWN; 1418 cur = cur->next_desc_logical; 1419 } 1420 1421 iowrite32(np->rx_ring_dma + ((char*)np->cur_rx - (char*)np->rx_ring), 1422 np->mem + RXLBA); 1423 } 1424 1425 1426 /* The interrupt handler does all of the Rx thread work and cleans up 1427 after the Tx thread. */ 1428 static irqreturn_t intr_handler(int irq, void *dev_instance) 1429 { 1430 struct net_device *dev = (struct net_device *) dev_instance; 1431 struct netdev_private *np = netdev_priv(dev); 1432 void __iomem *ioaddr = np->mem; 1433 long boguscnt = max_interrupt_work; 1434 unsigned int num_tx = 0; 1435 int handled = 0; 1436 1437 spin_lock(&np->lock); 1438 1439 iowrite32(0, ioaddr + IMR); 1440 1441 do { 1442 u32 intr_status = ioread32(ioaddr + ISR); 1443 1444 /* Acknowledge all of the current interrupt sources ASAP. */ 1445 iowrite32(intr_status, ioaddr + ISR); 1446 1447 if (debug) 1448 printk(KERN_DEBUG "%s: Interrupt, status %4.4x.\n", dev->name, 1449 intr_status); 1450 1451 if (!(intr_status & np->imrvalue)) 1452 break; 1453 1454 handled = 1; 1455 1456 // 90/1/16 delete, 1457 // 1458 // if (intr_status & FBE) 1459 // { /* fatal error */ 1460 // stop_nic_tx(ioaddr, 0); 1461 // stop_nic_rx(ioaddr, 0); 1462 // break; 1463 // }; 1464 1465 if (intr_status & TUNF) 1466 iowrite32(0, ioaddr + TXPDR); 1467 1468 if (intr_status & CNTOVF) { 1469 /* missed pkts */ 1470 dev->stats.rx_missed_errors += 1471 ioread32(ioaddr + TALLY) & 0x7fff; 1472 1473 /* crc error */ 1474 dev->stats.rx_crc_errors += 1475 (ioread32(ioaddr + TALLY) & 0x7fff0000) >> 16; 1476 } 1477 1478 if (intr_status & (RI | RBU)) { 1479 if (intr_status & RI) 1480 netdev_rx(dev); 1481 else { 1482 stop_nic_rx(ioaddr, np->crvalue); 1483 reset_rx_descriptors(dev); 1484 iowrite32(np->crvalue, ioaddr + TCRRCR); 1485 } 1486 } 1487 1488 while (np->really_tx_count) { 1489 long tx_status = np->cur_tx->status; 1490 long tx_control = np->cur_tx->control; 1491 1492 if (!(tx_control & TXLD)) { /* this pkt is combined by two tx descriptors */ 1493 struct fealnx_desc *next; 1494 1495 next = np->cur_tx->next_desc_logical; 1496 tx_status = next->status; 1497 tx_control = next->control; 1498 } 1499 1500 if (tx_status & TXOWN) 1501 break; 1502 1503 if (!(np->crvalue & CR_W_ENH)) { 1504 if (tx_status & (CSL | LC | EC | UDF | HF)) { 1505 dev->stats.tx_errors++; 1506 if (tx_status & EC) 1507 dev->stats.tx_aborted_errors++; 1508 if (tx_status & CSL) 1509 dev->stats.tx_carrier_errors++; 1510 if (tx_status & LC) 1511 dev->stats.tx_window_errors++; 1512 if (tx_status & UDF) 1513 dev->stats.tx_fifo_errors++; 1514 if ((tx_status & HF) && np->mii.full_duplex == 0) 1515 dev->stats.tx_heartbeat_errors++; 1516 1517 } else { 1518 dev->stats.tx_bytes += 1519 ((tx_control & PKTSMask) >> PKTSShift); 1520 1521 dev->stats.collisions += 1522 ((tx_status & NCRMask) >> NCRShift); 1523 dev->stats.tx_packets++; 1524 } 1525 } else { 1526 dev->stats.tx_bytes += 1527 ((tx_control & PKTSMask) >> PKTSShift); 1528 dev->stats.tx_packets++; 1529 } 1530 1531 /* Free the original skb. */ 1532 pci_unmap_single(np->pci_dev, np->cur_tx->buffer, 1533 np->cur_tx->skbuff->len, PCI_DMA_TODEVICE); 1534 dev_kfree_skb_irq(np->cur_tx->skbuff); 1535 np->cur_tx->skbuff = NULL; 1536 --np->really_tx_count; 1537 if (np->cur_tx->control & TXLD) { 1538 np->cur_tx = np->cur_tx->next_desc_logical; 1539 ++np->free_tx_count; 1540 } else { 1541 np->cur_tx = np->cur_tx->next_desc_logical; 1542 np->cur_tx = np->cur_tx->next_desc_logical; 1543 np->free_tx_count += 2; 1544 } 1545 num_tx++; 1546 } /* end of for loop */ 1547 1548 if (num_tx && np->free_tx_count >= 2) 1549 netif_wake_queue(dev); 1550 1551 /* read transmit status for enhanced mode only */ 1552 if (np->crvalue & CR_W_ENH) { 1553 long data; 1554 1555 data = ioread32(ioaddr + TSR); 1556 dev->stats.tx_errors += (data & 0xff000000) >> 24; 1557 dev->stats.tx_aborted_errors += 1558 (data & 0xff000000) >> 24; 1559 dev->stats.tx_window_errors += 1560 (data & 0x00ff0000) >> 16; 1561 dev->stats.collisions += (data & 0x0000ffff); 1562 } 1563 1564 if (--boguscnt < 0) { 1565 printk(KERN_WARNING "%s: Too much work at interrupt, " 1566 "status=0x%4.4x.\n", dev->name, intr_status); 1567 if (!np->reset_timer_armed) { 1568 np->reset_timer_armed = 1; 1569 np->reset_timer.expires = RUN_AT(HZ/2); 1570 add_timer(&np->reset_timer); 1571 stop_nic_rxtx(ioaddr, 0); 1572 netif_stop_queue(dev); 1573 /* or netif_tx_disable(dev); ?? */ 1574 /* Prevent other paths from enabling tx,rx,intrs */ 1575 np->crvalue_sv = np->crvalue; 1576 np->imrvalue_sv = np->imrvalue; 1577 np->crvalue &= ~(CR_W_TXEN | CR_W_RXEN); /* or simply = 0? */ 1578 np->imrvalue = 0; 1579 } 1580 1581 break; 1582 } 1583 } while (1); 1584 1585 /* read the tally counters */ 1586 /* missed pkts */ 1587 dev->stats.rx_missed_errors += ioread32(ioaddr + TALLY) & 0x7fff; 1588 1589 /* crc error */ 1590 dev->stats.rx_crc_errors += 1591 (ioread32(ioaddr + TALLY) & 0x7fff0000) >> 16; 1592 1593 if (debug) 1594 printk(KERN_DEBUG "%s: exiting interrupt, status=%#4.4x.\n", 1595 dev->name, ioread32(ioaddr + ISR)); 1596 1597 iowrite32(np->imrvalue, ioaddr + IMR); 1598 1599 spin_unlock(&np->lock); 1600 1601 return IRQ_RETVAL(handled); 1602 } 1603 1604 1605 /* This routine is logically part of the interrupt handler, but separated 1606 for clarity and better register allocation. */ 1607 static int netdev_rx(struct net_device *dev) 1608 { 1609 struct netdev_private *np = netdev_priv(dev); 1610 void __iomem *ioaddr = np->mem; 1611 1612 /* If EOP is set on the next entry, it's a new packet. Send it up. */ 1613 while (!(np->cur_rx->status & RXOWN) && np->cur_rx->skbuff) { 1614 s32 rx_status = np->cur_rx->status; 1615 1616 if (np->really_rx_count == 0) 1617 break; 1618 1619 if (debug) 1620 printk(KERN_DEBUG " netdev_rx() status was %8.8x.\n", rx_status); 1621 1622 if ((!((rx_status & RXFSD) && (rx_status & RXLSD))) || 1623 (rx_status & ErrorSummary)) { 1624 if (rx_status & ErrorSummary) { /* there was a fatal error */ 1625 if (debug) 1626 printk(KERN_DEBUG 1627 "%s: Receive error, Rx status %8.8x.\n", 1628 dev->name, rx_status); 1629 1630 dev->stats.rx_errors++; /* end of a packet. */ 1631 if (rx_status & (LONGPKT | RUNTPKT)) 1632 dev->stats.rx_length_errors++; 1633 if (rx_status & RXER) 1634 dev->stats.rx_frame_errors++; 1635 if (rx_status & CRC) 1636 dev->stats.rx_crc_errors++; 1637 } else { 1638 int need_to_reset = 0; 1639 int desno = 0; 1640 1641 if (rx_status & RXFSD) { /* this pkt is too long, over one rx buffer */ 1642 struct fealnx_desc *cur; 1643 1644 /* check this packet is received completely? */ 1645 cur = np->cur_rx; 1646 while (desno <= np->really_rx_count) { 1647 ++desno; 1648 if ((!(cur->status & RXOWN)) && 1649 (cur->status & RXLSD)) 1650 break; 1651 /* goto next rx descriptor */ 1652 cur = cur->next_desc_logical; 1653 } 1654 if (desno > np->really_rx_count) 1655 need_to_reset = 1; 1656 } else /* RXLSD did not find, something error */ 1657 need_to_reset = 1; 1658 1659 if (need_to_reset == 0) { 1660 int i; 1661 1662 dev->stats.rx_length_errors++; 1663 1664 /* free all rx descriptors related this long pkt */ 1665 for (i = 0; i < desno; ++i) { 1666 if (!np->cur_rx->skbuff) { 1667 printk(KERN_DEBUG 1668 "%s: I'm scared\n", dev->name); 1669 break; 1670 } 1671 np->cur_rx->status = RXOWN; 1672 np->cur_rx = np->cur_rx->next_desc_logical; 1673 } 1674 continue; 1675 } else { /* rx error, need to reset this chip */ 1676 stop_nic_rx(ioaddr, np->crvalue); 1677 reset_rx_descriptors(dev); 1678 iowrite32(np->crvalue, ioaddr + TCRRCR); 1679 } 1680 break; /* exit the while loop */ 1681 } 1682 } else { /* this received pkt is ok */ 1683 1684 struct sk_buff *skb; 1685 /* Omit the four octet CRC from the length. */ 1686 short pkt_len = ((rx_status & FLNGMASK) >> FLNGShift) - 4; 1687 1688 #ifndef final_version 1689 if (debug) 1690 printk(KERN_DEBUG " netdev_rx() normal Rx pkt length %d" 1691 " status %x.\n", pkt_len, rx_status); 1692 #endif 1693 1694 /* Check if the packet is long enough to accept without copying 1695 to a minimally-sized skbuff. */ 1696 if (pkt_len < rx_copybreak && 1697 (skb = netdev_alloc_skb(dev, pkt_len + 2)) != NULL) { 1698 skb_reserve(skb, 2); /* 16 byte align the IP header */ 1699 pci_dma_sync_single_for_cpu(np->pci_dev, 1700 np->cur_rx->buffer, 1701 np->rx_buf_sz, 1702 PCI_DMA_FROMDEVICE); 1703 /* Call copy + cksum if available. */ 1704 1705 #if ! defined(__alpha__) 1706 skb_copy_to_linear_data(skb, 1707 np->cur_rx->skbuff->data, pkt_len); 1708 skb_put(skb, pkt_len); 1709 #else 1710 skb_put_data(skb, np->cur_rx->skbuff->data, 1711 pkt_len); 1712 #endif 1713 pci_dma_sync_single_for_device(np->pci_dev, 1714 np->cur_rx->buffer, 1715 np->rx_buf_sz, 1716 PCI_DMA_FROMDEVICE); 1717 } else { 1718 pci_unmap_single(np->pci_dev, 1719 np->cur_rx->buffer, 1720 np->rx_buf_sz, 1721 PCI_DMA_FROMDEVICE); 1722 skb_put(skb = np->cur_rx->skbuff, pkt_len); 1723 np->cur_rx->skbuff = NULL; 1724 --np->really_rx_count; 1725 } 1726 skb->protocol = eth_type_trans(skb, dev); 1727 netif_rx(skb); 1728 dev->stats.rx_packets++; 1729 dev->stats.rx_bytes += pkt_len; 1730 } 1731 1732 np->cur_rx = np->cur_rx->next_desc_logical; 1733 } /* end of while loop */ 1734 1735 /* allocate skb for rx buffers */ 1736 allocate_rx_buffers(dev); 1737 1738 return 0; 1739 } 1740 1741 1742 static struct net_device_stats *get_stats(struct net_device *dev) 1743 { 1744 struct netdev_private *np = netdev_priv(dev); 1745 void __iomem *ioaddr = np->mem; 1746 1747 /* The chip only need report frame silently dropped. */ 1748 if (netif_running(dev)) { 1749 dev->stats.rx_missed_errors += 1750 ioread32(ioaddr + TALLY) & 0x7fff; 1751 dev->stats.rx_crc_errors += 1752 (ioread32(ioaddr + TALLY) & 0x7fff0000) >> 16; 1753 } 1754 1755 return &dev->stats; 1756 } 1757 1758 1759 /* for dev->set_multicast_list */ 1760 static void set_rx_mode(struct net_device *dev) 1761 { 1762 spinlock_t *lp = &((struct netdev_private *)netdev_priv(dev))->lock; 1763 unsigned long flags; 1764 spin_lock_irqsave(lp, flags); 1765 __set_rx_mode(dev); 1766 spin_unlock_irqrestore(lp, flags); 1767 } 1768 1769 1770 /* Take lock before calling */ 1771 static void __set_rx_mode(struct net_device *dev) 1772 { 1773 struct netdev_private *np = netdev_priv(dev); 1774 void __iomem *ioaddr = np->mem; 1775 u32 mc_filter[2]; /* Multicast hash filter */ 1776 u32 rx_mode; 1777 1778 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */ 1779 memset(mc_filter, 0xff, sizeof(mc_filter)); 1780 rx_mode = CR_W_PROM | CR_W_AB | CR_W_AM; 1781 } else if ((netdev_mc_count(dev) > multicast_filter_limit) || 1782 (dev->flags & IFF_ALLMULTI)) { 1783 /* Too many to match, or accept all multicasts. */ 1784 memset(mc_filter, 0xff, sizeof(mc_filter)); 1785 rx_mode = CR_W_AB | CR_W_AM; 1786 } else { 1787 struct netdev_hw_addr *ha; 1788 1789 memset(mc_filter, 0, sizeof(mc_filter)); 1790 netdev_for_each_mc_addr(ha, dev) { 1791 unsigned int bit; 1792 bit = (ether_crc(ETH_ALEN, ha->addr) >> 26) ^ 0x3F; 1793 mc_filter[bit >> 5] |= (1 << bit); 1794 } 1795 rx_mode = CR_W_AB | CR_W_AM; 1796 } 1797 1798 stop_nic_rxtx(ioaddr, np->crvalue); 1799 1800 iowrite32(mc_filter[0], ioaddr + MAR0); 1801 iowrite32(mc_filter[1], ioaddr + MAR1); 1802 np->crvalue &= ~CR_W_RXMODEMASK; 1803 np->crvalue |= rx_mode; 1804 iowrite32(np->crvalue, ioaddr + TCRRCR); 1805 } 1806 1807 static void netdev_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) 1808 { 1809 struct netdev_private *np = netdev_priv(dev); 1810 1811 strlcpy(info->driver, DRV_NAME, sizeof(info->driver)); 1812 strlcpy(info->version, DRV_VERSION, sizeof(info->version)); 1813 strlcpy(info->bus_info, pci_name(np->pci_dev), sizeof(info->bus_info)); 1814 } 1815 1816 static int netdev_get_link_ksettings(struct net_device *dev, 1817 struct ethtool_link_ksettings *cmd) 1818 { 1819 struct netdev_private *np = netdev_priv(dev); 1820 1821 spin_lock_irq(&np->lock); 1822 mii_ethtool_get_link_ksettings(&np->mii, cmd); 1823 spin_unlock_irq(&np->lock); 1824 1825 return 0; 1826 } 1827 1828 static int netdev_set_link_ksettings(struct net_device *dev, 1829 const struct ethtool_link_ksettings *cmd) 1830 { 1831 struct netdev_private *np = netdev_priv(dev); 1832 int rc; 1833 1834 spin_lock_irq(&np->lock); 1835 rc = mii_ethtool_set_link_ksettings(&np->mii, cmd); 1836 spin_unlock_irq(&np->lock); 1837 1838 return rc; 1839 } 1840 1841 static int netdev_nway_reset(struct net_device *dev) 1842 { 1843 struct netdev_private *np = netdev_priv(dev); 1844 return mii_nway_restart(&np->mii); 1845 } 1846 1847 static u32 netdev_get_link(struct net_device *dev) 1848 { 1849 struct netdev_private *np = netdev_priv(dev); 1850 return mii_link_ok(&np->mii); 1851 } 1852 1853 static u32 netdev_get_msglevel(struct net_device *dev) 1854 { 1855 return debug; 1856 } 1857 1858 static void netdev_set_msglevel(struct net_device *dev, u32 value) 1859 { 1860 debug = value; 1861 } 1862 1863 static const struct ethtool_ops netdev_ethtool_ops = { 1864 .get_drvinfo = netdev_get_drvinfo, 1865 .nway_reset = netdev_nway_reset, 1866 .get_link = netdev_get_link, 1867 .get_msglevel = netdev_get_msglevel, 1868 .set_msglevel = netdev_set_msglevel, 1869 .get_link_ksettings = netdev_get_link_ksettings, 1870 .set_link_ksettings = netdev_set_link_ksettings, 1871 }; 1872 1873 static int mii_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 1874 { 1875 struct netdev_private *np = netdev_priv(dev); 1876 int rc; 1877 1878 if (!netif_running(dev)) 1879 return -EINVAL; 1880 1881 spin_lock_irq(&np->lock); 1882 rc = generic_mii_ioctl(&np->mii, if_mii(rq), cmd, NULL); 1883 spin_unlock_irq(&np->lock); 1884 1885 return rc; 1886 } 1887 1888 1889 static int netdev_close(struct net_device *dev) 1890 { 1891 struct netdev_private *np = netdev_priv(dev); 1892 void __iomem *ioaddr = np->mem; 1893 int i; 1894 1895 netif_stop_queue(dev); 1896 1897 /* Disable interrupts by clearing the interrupt mask. */ 1898 iowrite32(0x0000, ioaddr + IMR); 1899 1900 /* Stop the chip's Tx and Rx processes. */ 1901 stop_nic_rxtx(ioaddr, 0); 1902 1903 del_timer_sync(&np->timer); 1904 del_timer_sync(&np->reset_timer); 1905 1906 free_irq(np->pci_dev->irq, dev); 1907 1908 /* Free all the skbuffs in the Rx queue. */ 1909 for (i = 0; i < RX_RING_SIZE; i++) { 1910 struct sk_buff *skb = np->rx_ring[i].skbuff; 1911 1912 np->rx_ring[i].status = 0; 1913 if (skb) { 1914 pci_unmap_single(np->pci_dev, np->rx_ring[i].buffer, 1915 np->rx_buf_sz, PCI_DMA_FROMDEVICE); 1916 dev_kfree_skb(skb); 1917 np->rx_ring[i].skbuff = NULL; 1918 } 1919 } 1920 1921 for (i = 0; i < TX_RING_SIZE; i++) { 1922 struct sk_buff *skb = np->tx_ring[i].skbuff; 1923 1924 if (skb) { 1925 pci_unmap_single(np->pci_dev, np->tx_ring[i].buffer, 1926 skb->len, PCI_DMA_TODEVICE); 1927 dev_kfree_skb(skb); 1928 np->tx_ring[i].skbuff = NULL; 1929 } 1930 } 1931 1932 return 0; 1933 } 1934 1935 static const struct pci_device_id fealnx_pci_tbl[] = { 1936 {0x1516, 0x0800, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, 1937 {0x1516, 0x0803, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 1}, 1938 {0x1516, 0x0891, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 2}, 1939 {} /* terminate list */ 1940 }; 1941 MODULE_DEVICE_TABLE(pci, fealnx_pci_tbl); 1942 1943 1944 static struct pci_driver fealnx_driver = { 1945 .name = "fealnx", 1946 .id_table = fealnx_pci_tbl, 1947 .probe = fealnx_init_one, 1948 .remove = fealnx_remove_one, 1949 }; 1950 1951 static int __init fealnx_init(void) 1952 { 1953 /* when a module, this is printed whether or not devices are found in probe */ 1954 #ifdef MODULE 1955 printk(version); 1956 #endif 1957 1958 return pci_register_driver(&fealnx_driver); 1959 } 1960 1961 static void __exit fealnx_exit(void) 1962 { 1963 pci_unregister_driver(&fealnx_driver); 1964 } 1965 1966 module_init(fealnx_init); 1967 module_exit(fealnx_exit); 1968