xref: /openbmc/linux/drivers/net/ethernet/fealnx.c (revision ce932d0c5589e9766e089c22c66890dfc48fbd94)
1 /*
2 	Written 1998-2000 by Donald Becker.
3 
4 	This software may be used and distributed according to the terms of
5 	the GNU General Public License (GPL), incorporated herein by reference.
6 	Drivers based on or derived from this code fall under the GPL and must
7 	retain the authorship, copyright and license notice.  This file is not
8 	a complete program and may only be used when the entire operating
9 	system is licensed under the GPL.
10 
11 	The author may be reached as becker@scyld.com, or C/O
12 	Scyld Computing Corporation
13 	410 Severn Ave., Suite 210
14 	Annapolis MD 21403
15 
16 	Support information and updates available at
17 	http://www.scyld.com/network/pci-skeleton.html
18 
19 	Linux kernel updates:
20 
21 	Version 2.51, Nov 17, 2001 (jgarzik):
22 	- Add ethtool support
23 	- Replace some MII-related magic numbers with constants
24 
25 */
26 
27 #define DRV_NAME	"fealnx"
28 #define DRV_VERSION	"2.52"
29 #define DRV_RELDATE	"Sep-11-2006"
30 
31 static int debug;		/* 1-> print debug message */
32 static int max_interrupt_work = 20;
33 
34 /* Maximum number of multicast addresses to filter (vs. Rx-all-multicast). */
35 static int multicast_filter_limit = 32;
36 
37 /* Set the copy breakpoint for the copy-only-tiny-frames scheme. */
38 /* Setting to > 1518 effectively disables this feature.          */
39 static int rx_copybreak;
40 
41 /* Used to pass the media type, etc.                            */
42 /* Both 'options[]' and 'full_duplex[]' should exist for driver */
43 /* interoperability.                                            */
44 /* The media type is usually passed in 'options[]'.             */
45 #define MAX_UNITS 8		/* More are supported, limit only on options */
46 static int options[MAX_UNITS] = { -1, -1, -1, -1, -1, -1, -1, -1 };
47 static int full_duplex[MAX_UNITS] = { -1, -1, -1, -1, -1, -1, -1, -1 };
48 
49 /* Operational parameters that are set at compile time.                 */
50 /* Keep the ring sizes a power of two for compile efficiency.           */
51 /* The compiler will convert <unsigned>'%'<2^N> into a bit mask.        */
52 /* Making the Tx ring too large decreases the effectiveness of channel  */
53 /* bonding and packet priority.                                         */
54 /* There are no ill effects from too-large receive rings.               */
55 // 88-12-9 modify,
56 // #define TX_RING_SIZE    16
57 // #define RX_RING_SIZE    32
58 #define TX_RING_SIZE    6
59 #define RX_RING_SIZE    12
60 #define TX_TOTAL_SIZE	TX_RING_SIZE*sizeof(struct fealnx_desc)
61 #define RX_TOTAL_SIZE	RX_RING_SIZE*sizeof(struct fealnx_desc)
62 
63 /* Operational parameters that usually are not changed. */
64 /* Time in jiffies before concluding the transmitter is hung. */
65 #define TX_TIMEOUT      (2*HZ)
66 
67 #define PKT_BUF_SZ      1536	/* Size of each temporary Rx buffer. */
68 
69 
70 /* Include files, designed to support most kernel versions 2.0.0 and later. */
71 #include <linux/module.h>
72 #include <linux/kernel.h>
73 #include <linux/string.h>
74 #include <linux/timer.h>
75 #include <linux/errno.h>
76 #include <linux/ioport.h>
77 #include <linux/interrupt.h>
78 #include <linux/pci.h>
79 #include <linux/netdevice.h>
80 #include <linux/etherdevice.h>
81 #include <linux/skbuff.h>
82 #include <linux/init.h>
83 #include <linux/mii.h>
84 #include <linux/ethtool.h>
85 #include <linux/crc32.h>
86 #include <linux/delay.h>
87 #include <linux/bitops.h>
88 
89 #include <asm/processor.h>	/* Processor type for cache alignment. */
90 #include <asm/io.h>
91 #include <asm/uaccess.h>
92 #include <asm/byteorder.h>
93 
94 /* These identify the driver base version and may not be removed. */
95 static const char version[] __devinitconst =
96 	KERN_INFO DRV_NAME ".c:v" DRV_VERSION " " DRV_RELDATE "\n";
97 
98 
99 /* This driver was written to use PCI memory space, however some x86 systems
100    work only with I/O space accesses. */
101 #ifndef __alpha__
102 #define USE_IO_OPS
103 #endif
104 
105 /* Kernel compatibility defines, some common to David Hinds' PCMCIA package. */
106 /* This is only in the support-all-kernels source code. */
107 
108 #define RUN_AT(x) (jiffies + (x))
109 
110 MODULE_AUTHOR("Myson or whoever");
111 MODULE_DESCRIPTION("Myson MTD-8xx 100/10M Ethernet PCI Adapter Driver");
112 MODULE_LICENSE("GPL");
113 module_param(max_interrupt_work, int, 0);
114 module_param(debug, int, 0);
115 module_param(rx_copybreak, int, 0);
116 module_param(multicast_filter_limit, int, 0);
117 module_param_array(options, int, NULL, 0);
118 module_param_array(full_duplex, int, NULL, 0);
119 MODULE_PARM_DESC(max_interrupt_work, "fealnx maximum events handled per interrupt");
120 MODULE_PARM_DESC(debug, "fealnx enable debugging (0-1)");
121 MODULE_PARM_DESC(rx_copybreak, "fealnx copy breakpoint for copy-only-tiny-frames");
122 MODULE_PARM_DESC(multicast_filter_limit, "fealnx maximum number of filtered multicast addresses");
123 MODULE_PARM_DESC(options, "fealnx: Bits 0-3: media type, bit 17: full duplex");
124 MODULE_PARM_DESC(full_duplex, "fealnx full duplex setting(s) (1)");
125 
126 enum {
127 	MIN_REGION_SIZE		= 136,
128 };
129 
130 /* A chip capabilities table, matching the entries in pci_tbl[] above. */
131 enum chip_capability_flags {
132 	HAS_MII_XCVR,
133 	HAS_CHIP_XCVR,
134 };
135 
136 /* 89/6/13 add, */
137 /* for different PHY */
138 enum phy_type_flags {
139 	MysonPHY = 1,
140 	AhdocPHY = 2,
141 	SeeqPHY = 3,
142 	MarvellPHY = 4,
143 	Myson981 = 5,
144 	LevelOnePHY = 6,
145 	OtherPHY = 10,
146 };
147 
148 struct chip_info {
149 	char *chip_name;
150 	int flags;
151 };
152 
153 static const struct chip_info skel_netdrv_tbl[] __devinitdata = {
154  	{ "100/10M Ethernet PCI Adapter",	HAS_MII_XCVR },
155 	{ "100/10M Ethernet PCI Adapter",	HAS_CHIP_XCVR },
156 	{ "1000/100/10M Ethernet PCI Adapter",	HAS_MII_XCVR },
157 };
158 
159 /* Offsets to the Command and Status Registers. */
160 enum fealnx_offsets {
161 	PAR0 = 0x0,		/* physical address 0-3 */
162 	PAR1 = 0x04,		/* physical address 4-5 */
163 	MAR0 = 0x08,		/* multicast address 0-3 */
164 	MAR1 = 0x0C,		/* multicast address 4-7 */
165 	FAR0 = 0x10,		/* flow-control address 0-3 */
166 	FAR1 = 0x14,		/* flow-control address 4-5 */
167 	TCRRCR = 0x18,		/* receive & transmit configuration */
168 	BCR = 0x1C,		/* bus command */
169 	TXPDR = 0x20,		/* transmit polling demand */
170 	RXPDR = 0x24,		/* receive polling demand */
171 	RXCWP = 0x28,		/* receive current word pointer */
172 	TXLBA = 0x2C,		/* transmit list base address */
173 	RXLBA = 0x30,		/* receive list base address */
174 	ISR = 0x34,		/* interrupt status */
175 	IMR = 0x38,		/* interrupt mask */
176 	FTH = 0x3C,		/* flow control high/low threshold */
177 	MANAGEMENT = 0x40,	/* bootrom/eeprom and mii management */
178 	TALLY = 0x44,		/* tally counters for crc and mpa */
179 	TSR = 0x48,		/* tally counter for transmit status */
180 	BMCRSR = 0x4c,		/* basic mode control and status */
181 	PHYIDENTIFIER = 0x50,	/* phy identifier */
182 	ANARANLPAR = 0x54,	/* auto-negotiation advertisement and link
183 				   partner ability */
184 	ANEROCR = 0x58,		/* auto-negotiation expansion and pci conf. */
185 	BPREMRPSR = 0x5c,	/* bypass & receive error mask and phy status */
186 };
187 
188 /* Bits in the interrupt status/enable registers. */
189 /* The bits in the Intr Status/Enable registers, mostly interrupt sources. */
190 enum intr_status_bits {
191 	RFCON = 0x00020000,	/* receive flow control xon packet */
192 	RFCOFF = 0x00010000,	/* receive flow control xoff packet */
193 	LSCStatus = 0x00008000,	/* link status change */
194 	ANCStatus = 0x00004000,	/* autonegotiation completed */
195 	FBE = 0x00002000,	/* fatal bus error */
196 	FBEMask = 0x00001800,	/* mask bit12-11 */
197 	ParityErr = 0x00000000,	/* parity error */
198 	TargetErr = 0x00001000,	/* target abort */
199 	MasterErr = 0x00000800,	/* master error */
200 	TUNF = 0x00000400,	/* transmit underflow */
201 	ROVF = 0x00000200,	/* receive overflow */
202 	ETI = 0x00000100,	/* transmit early int */
203 	ERI = 0x00000080,	/* receive early int */
204 	CNTOVF = 0x00000040,	/* counter overflow */
205 	RBU = 0x00000020,	/* receive buffer unavailable */
206 	TBU = 0x00000010,	/* transmit buffer unavilable */
207 	TI = 0x00000008,	/* transmit interrupt */
208 	RI = 0x00000004,	/* receive interrupt */
209 	RxErr = 0x00000002,	/* receive error */
210 };
211 
212 /* Bits in the NetworkConfig register, W for writing, R for reading */
213 /* FIXME: some names are invented by me. Marked with (name?) */
214 /* If you have docs and know bit names, please fix 'em */
215 enum rx_mode_bits {
216 	CR_W_ENH	= 0x02000000,	/* enhanced mode (name?) */
217 	CR_W_FD		= 0x00100000,	/* full duplex */
218 	CR_W_PS10	= 0x00080000,	/* 10 mbit */
219 	CR_W_TXEN	= 0x00040000,	/* tx enable (name?) */
220 	CR_W_PS1000	= 0x00010000,	/* 1000 mbit */
221      /* CR_W_RXBURSTMASK= 0x00000e00, Im unsure about this */
222 	CR_W_RXMODEMASK	= 0x000000e0,
223 	CR_W_PROM	= 0x00000080,	/* promiscuous mode */
224 	CR_W_AB		= 0x00000040,	/* accept broadcast */
225 	CR_W_AM		= 0x00000020,	/* accept mutlicast */
226 	CR_W_ARP	= 0x00000008,	/* receive runt pkt */
227 	CR_W_ALP	= 0x00000004,	/* receive long pkt */
228 	CR_W_SEP	= 0x00000002,	/* receive error pkt */
229 	CR_W_RXEN	= 0x00000001,	/* rx enable (unicast?) (name?) */
230 
231 	CR_R_TXSTOP	= 0x04000000,	/* tx stopped (name?) */
232 	CR_R_FD		= 0x00100000,	/* full duplex detected */
233 	CR_R_PS10	= 0x00080000,	/* 10 mbit detected */
234 	CR_R_RXSTOP	= 0x00008000,	/* rx stopped (name?) */
235 };
236 
237 /* The Tulip Rx and Tx buffer descriptors. */
238 struct fealnx_desc {
239 	s32 status;
240 	s32 control;
241 	u32 buffer;
242 	u32 next_desc;
243 	struct fealnx_desc *next_desc_logical;
244 	struct sk_buff *skbuff;
245 	u32 reserved1;
246 	u32 reserved2;
247 };
248 
249 /* Bits in network_desc.status */
250 enum rx_desc_status_bits {
251 	RXOWN = 0x80000000,	/* own bit */
252 	FLNGMASK = 0x0fff0000,	/* frame length */
253 	FLNGShift = 16,
254 	MARSTATUS = 0x00004000,	/* multicast address received */
255 	BARSTATUS = 0x00002000,	/* broadcast address received */
256 	PHYSTATUS = 0x00001000,	/* physical address received */
257 	RXFSD = 0x00000800,	/* first descriptor */
258 	RXLSD = 0x00000400,	/* last descriptor */
259 	ErrorSummary = 0x80,	/* error summary */
260 	RUNT = 0x40,		/* runt packet received */
261 	LONG = 0x20,		/* long packet received */
262 	FAE = 0x10,		/* frame align error */
263 	CRC = 0x08,		/* crc error */
264 	RXER = 0x04,		/* receive error */
265 };
266 
267 enum rx_desc_control_bits {
268 	RXIC = 0x00800000,	/* interrupt control */
269 	RBSShift = 0,
270 };
271 
272 enum tx_desc_status_bits {
273 	TXOWN = 0x80000000,	/* own bit */
274 	JABTO = 0x00004000,	/* jabber timeout */
275 	CSL = 0x00002000,	/* carrier sense lost */
276 	LC = 0x00001000,	/* late collision */
277 	EC = 0x00000800,	/* excessive collision */
278 	UDF = 0x00000400,	/* fifo underflow */
279 	DFR = 0x00000200,	/* deferred */
280 	HF = 0x00000100,	/* heartbeat fail */
281 	NCRMask = 0x000000ff,	/* collision retry count */
282 	NCRShift = 0,
283 };
284 
285 enum tx_desc_control_bits {
286 	TXIC = 0x80000000,	/* interrupt control */
287 	ETIControl = 0x40000000,	/* early transmit interrupt */
288 	TXLD = 0x20000000,	/* last descriptor */
289 	TXFD = 0x10000000,	/* first descriptor */
290 	CRCEnable = 0x08000000,	/* crc control */
291 	PADEnable = 0x04000000,	/* padding control */
292 	RetryTxLC = 0x02000000,	/* retry late collision */
293 	PKTSMask = 0x3ff800,	/* packet size bit21-11 */
294 	PKTSShift = 11,
295 	TBSMask = 0x000007ff,	/* transmit buffer bit 10-0 */
296 	TBSShift = 0,
297 };
298 
299 /* BootROM/EEPROM/MII Management Register */
300 #define MASK_MIIR_MII_READ       0x00000000
301 #define MASK_MIIR_MII_WRITE      0x00000008
302 #define MASK_MIIR_MII_MDO        0x00000004
303 #define MASK_MIIR_MII_MDI        0x00000002
304 #define MASK_MIIR_MII_MDC        0x00000001
305 
306 /* ST+OP+PHYAD+REGAD+TA */
307 #define OP_READ             0x6000	/* ST:01+OP:10+PHYAD+REGAD+TA:Z0 */
308 #define OP_WRITE            0x5002	/* ST:01+OP:01+PHYAD+REGAD+TA:10 */
309 
310 /* ------------------------------------------------------------------------- */
311 /*      Constants for Myson PHY                                              */
312 /* ------------------------------------------------------------------------- */
313 #define MysonPHYID      0xd0000302
314 /* 89-7-27 add, (begin) */
315 #define MysonPHYID0     0x0302
316 #define StatusRegister  18
317 #define SPEED100        0x0400	// bit10
318 #define FULLMODE        0x0800	// bit11
319 /* 89-7-27 add, (end) */
320 
321 /* ------------------------------------------------------------------------- */
322 /*      Constants for Seeq 80225 PHY                                         */
323 /* ------------------------------------------------------------------------- */
324 #define SeeqPHYID0      0x0016
325 
326 #define MIIRegister18   18
327 #define SPD_DET_100     0x80
328 #define DPLX_DET_FULL   0x40
329 
330 /* ------------------------------------------------------------------------- */
331 /*      Constants for Ahdoc 101 PHY                                          */
332 /* ------------------------------------------------------------------------- */
333 #define AhdocPHYID0     0x0022
334 
335 #define DiagnosticReg   18
336 #define DPLX_FULL       0x0800
337 #define Speed_100       0x0400
338 
339 /* 89/6/13 add, */
340 /* -------------------------------------------------------------------------- */
341 /*      Constants                                                             */
342 /* -------------------------------------------------------------------------- */
343 #define MarvellPHYID0           0x0141
344 #define LevelOnePHYID0		0x0013
345 
346 #define MII1000BaseTControlReg  9
347 #define MII1000BaseTStatusReg   10
348 #define SpecificReg		17
349 
350 /* for 1000BaseT Control Register */
351 #define PHYAbletoPerform1000FullDuplex  0x0200
352 #define PHYAbletoPerform1000HalfDuplex  0x0100
353 #define PHY1000AbilityMask              0x300
354 
355 // for phy specific status register, marvell phy.
356 #define SpeedMask       0x0c000
357 #define Speed_1000M     0x08000
358 #define Speed_100M      0x4000
359 #define Speed_10M       0
360 #define Full_Duplex     0x2000
361 
362 // 89/12/29 add, for phy specific status register, levelone phy, (begin)
363 #define LXT1000_100M    0x08000
364 #define LXT1000_1000M   0x0c000
365 #define LXT1000_Full    0x200
366 // 89/12/29 add, for phy specific status register, levelone phy, (end)
367 
368 /* for 3-in-1 case, BMCRSR register */
369 #define LinkIsUp2	0x00040000
370 
371 /* for PHY */
372 #define LinkIsUp        0x0004
373 
374 
375 struct netdev_private {
376 	/* Descriptor rings first for alignment. */
377 	struct fealnx_desc *rx_ring;
378 	struct fealnx_desc *tx_ring;
379 
380 	dma_addr_t rx_ring_dma;
381 	dma_addr_t tx_ring_dma;
382 
383 	spinlock_t lock;
384 
385 	/* Media monitoring timer. */
386 	struct timer_list timer;
387 
388 	/* Reset timer */
389 	struct timer_list reset_timer;
390 	int reset_timer_armed;
391 	unsigned long crvalue_sv;
392 	unsigned long imrvalue_sv;
393 
394 	/* Frequently used values: keep some adjacent for cache effect. */
395 	int flags;
396 	struct pci_dev *pci_dev;
397 	unsigned long crvalue;
398 	unsigned long bcrvalue;
399 	unsigned long imrvalue;
400 	struct fealnx_desc *cur_rx;
401 	struct fealnx_desc *lack_rxbuf;
402 	int really_rx_count;
403 	struct fealnx_desc *cur_tx;
404 	struct fealnx_desc *cur_tx_copy;
405 	int really_tx_count;
406 	int free_tx_count;
407 	unsigned int rx_buf_sz;	/* Based on MTU+slack. */
408 
409 	/* These values are keep track of the transceiver/media in use. */
410 	unsigned int linkok;
411 	unsigned int line_speed;
412 	unsigned int duplexmode;
413 	unsigned int default_port:4;	/* Last dev->if_port value. */
414 	unsigned int PHYType;
415 
416 	/* MII transceiver section. */
417 	int mii_cnt;		/* MII device addresses. */
418 	unsigned char phys[2];	/* MII device addresses. */
419 	struct mii_if_info mii;
420 	void __iomem *mem;
421 };
422 
423 
424 static int mdio_read(struct net_device *dev, int phy_id, int location);
425 static void mdio_write(struct net_device *dev, int phy_id, int location, int value);
426 static int netdev_open(struct net_device *dev);
427 static void getlinktype(struct net_device *dev);
428 static void getlinkstatus(struct net_device *dev);
429 static void netdev_timer(unsigned long data);
430 static void reset_timer(unsigned long data);
431 static void fealnx_tx_timeout(struct net_device *dev);
432 static void init_ring(struct net_device *dev);
433 static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev);
434 static irqreturn_t intr_handler(int irq, void *dev_instance);
435 static int netdev_rx(struct net_device *dev);
436 static void set_rx_mode(struct net_device *dev);
437 static void __set_rx_mode(struct net_device *dev);
438 static struct net_device_stats *get_stats(struct net_device *dev);
439 static int mii_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
440 static const struct ethtool_ops netdev_ethtool_ops;
441 static int netdev_close(struct net_device *dev);
442 static void reset_rx_descriptors(struct net_device *dev);
443 static void reset_tx_descriptors(struct net_device *dev);
444 
445 static void stop_nic_rx(void __iomem *ioaddr, long crvalue)
446 {
447 	int delay = 0x1000;
448 	iowrite32(crvalue & ~(CR_W_RXEN), ioaddr + TCRRCR);
449 	while (--delay) {
450 		if ( (ioread32(ioaddr + TCRRCR) & CR_R_RXSTOP) == CR_R_RXSTOP)
451 			break;
452 	}
453 }
454 
455 
456 static void stop_nic_rxtx(void __iomem *ioaddr, long crvalue)
457 {
458 	int delay = 0x1000;
459 	iowrite32(crvalue & ~(CR_W_RXEN+CR_W_TXEN), ioaddr + TCRRCR);
460 	while (--delay) {
461 		if ( (ioread32(ioaddr + TCRRCR) & (CR_R_RXSTOP+CR_R_TXSTOP))
462 					    == (CR_R_RXSTOP+CR_R_TXSTOP) )
463 			break;
464 	}
465 }
466 
467 static const struct net_device_ops netdev_ops = {
468 	.ndo_open		= netdev_open,
469 	.ndo_stop		= netdev_close,
470 	.ndo_start_xmit		= start_tx,
471 	.ndo_get_stats 		= get_stats,
472 	.ndo_set_rx_mode	= set_rx_mode,
473 	.ndo_do_ioctl		= mii_ioctl,
474 	.ndo_tx_timeout		= fealnx_tx_timeout,
475 	.ndo_change_mtu		= eth_change_mtu,
476 	.ndo_set_mac_address 	= eth_mac_addr,
477 	.ndo_validate_addr	= eth_validate_addr,
478 };
479 
480 static int __devinit fealnx_init_one(struct pci_dev *pdev,
481 				     const struct pci_device_id *ent)
482 {
483 	struct netdev_private *np;
484 	int i, option, err, irq;
485 	static int card_idx = -1;
486 	char boardname[12];
487 	void __iomem *ioaddr;
488 	unsigned long len;
489 	unsigned int chip_id = ent->driver_data;
490 	struct net_device *dev;
491 	void *ring_space;
492 	dma_addr_t ring_dma;
493 #ifdef USE_IO_OPS
494 	int bar = 0;
495 #else
496 	int bar = 1;
497 #endif
498 
499 /* when built into the kernel, we only print version if device is found */
500 #ifndef MODULE
501 	static int printed_version;
502 	if (!printed_version++)
503 		printk(version);
504 #endif
505 
506 	card_idx++;
507 	sprintf(boardname, "fealnx%d", card_idx);
508 
509 	option = card_idx < MAX_UNITS ? options[card_idx] : 0;
510 
511 	i = pci_enable_device(pdev);
512 	if (i) return i;
513 	pci_set_master(pdev);
514 
515 	len = pci_resource_len(pdev, bar);
516 	if (len < MIN_REGION_SIZE) {
517 		dev_err(&pdev->dev,
518 			   "region size %ld too small, aborting\n", len);
519 		return -ENODEV;
520 	}
521 
522 	i = pci_request_regions(pdev, boardname);
523 	if (i)
524 		return i;
525 
526 	irq = pdev->irq;
527 
528 	ioaddr = pci_iomap(pdev, bar, len);
529 	if (!ioaddr) {
530 		err = -ENOMEM;
531 		goto err_out_res;
532 	}
533 
534 	dev = alloc_etherdev(sizeof(struct netdev_private));
535 	if (!dev) {
536 		err = -ENOMEM;
537 		goto err_out_unmap;
538 	}
539 	SET_NETDEV_DEV(dev, &pdev->dev);
540 
541 	/* read ethernet id */
542 	for (i = 0; i < 6; ++i)
543 		dev->dev_addr[i] = ioread8(ioaddr + PAR0 + i);
544 
545 	/* Reset the chip to erase previous misconfiguration. */
546 	iowrite32(0x00000001, ioaddr + BCR);
547 
548 	dev->base_addr = (unsigned long)ioaddr;
549 	dev->irq = irq;
550 
551 	/* Make certain the descriptor lists are aligned. */
552 	np = netdev_priv(dev);
553 	np->mem = ioaddr;
554 	spin_lock_init(&np->lock);
555 	np->pci_dev = pdev;
556 	np->flags = skel_netdrv_tbl[chip_id].flags;
557 	pci_set_drvdata(pdev, dev);
558 	np->mii.dev = dev;
559 	np->mii.mdio_read = mdio_read;
560 	np->mii.mdio_write = mdio_write;
561 	np->mii.phy_id_mask = 0x1f;
562 	np->mii.reg_num_mask = 0x1f;
563 
564 	ring_space = pci_alloc_consistent(pdev, RX_TOTAL_SIZE, &ring_dma);
565 	if (!ring_space) {
566 		err = -ENOMEM;
567 		goto err_out_free_dev;
568 	}
569 	np->rx_ring = ring_space;
570 	np->rx_ring_dma = ring_dma;
571 
572 	ring_space = pci_alloc_consistent(pdev, TX_TOTAL_SIZE, &ring_dma);
573 	if (!ring_space) {
574 		err = -ENOMEM;
575 		goto err_out_free_rx;
576 	}
577 	np->tx_ring = ring_space;
578 	np->tx_ring_dma = ring_dma;
579 
580 	/* find the connected MII xcvrs */
581 	if (np->flags == HAS_MII_XCVR) {
582 		int phy, phy_idx = 0;
583 
584 		for (phy = 1; phy < 32 && phy_idx < ARRAY_SIZE(np->phys);
585 			       phy++) {
586 			int mii_status = mdio_read(dev, phy, 1);
587 
588 			if (mii_status != 0xffff && mii_status != 0x0000) {
589 				np->phys[phy_idx++] = phy;
590 				dev_info(&pdev->dev,
591 				       "MII PHY found at address %d, status "
592 				       "0x%4.4x.\n", phy, mii_status);
593 				/* get phy type */
594 				{
595 					unsigned int data;
596 
597 					data = mdio_read(dev, np->phys[0], 2);
598 					if (data == SeeqPHYID0)
599 						np->PHYType = SeeqPHY;
600 					else if (data == AhdocPHYID0)
601 						np->PHYType = AhdocPHY;
602 					else if (data == MarvellPHYID0)
603 						np->PHYType = MarvellPHY;
604 					else if (data == MysonPHYID0)
605 						np->PHYType = Myson981;
606 					else if (data == LevelOnePHYID0)
607 						np->PHYType = LevelOnePHY;
608 					else
609 						np->PHYType = OtherPHY;
610 				}
611 			}
612 		}
613 
614 		np->mii_cnt = phy_idx;
615 		if (phy_idx == 0)
616 			dev_warn(&pdev->dev,
617 				"MII PHY not found -- this device may "
618 			       "not operate correctly.\n");
619 	} else {
620 		np->phys[0] = 32;
621 /* 89/6/23 add, (begin) */
622 		/* get phy type */
623 		if (ioread32(ioaddr + PHYIDENTIFIER) == MysonPHYID)
624 			np->PHYType = MysonPHY;
625 		else
626 			np->PHYType = OtherPHY;
627 	}
628 	np->mii.phy_id = np->phys[0];
629 
630 	if (dev->mem_start)
631 		option = dev->mem_start;
632 
633 	/* The lower four bits are the media type. */
634 	if (option > 0) {
635 		if (option & 0x200)
636 			np->mii.full_duplex = 1;
637 		np->default_port = option & 15;
638 	}
639 
640 	if (card_idx < MAX_UNITS && full_duplex[card_idx] > 0)
641 		np->mii.full_duplex = full_duplex[card_idx];
642 
643 	if (np->mii.full_duplex) {
644 		dev_info(&pdev->dev, "Media type forced to Full Duplex.\n");
645 /* 89/6/13 add, (begin) */
646 //      if (np->PHYType==MarvellPHY)
647 		if ((np->PHYType == MarvellPHY) || (np->PHYType == LevelOnePHY)) {
648 			unsigned int data;
649 
650 			data = mdio_read(dev, np->phys[0], 9);
651 			data = (data & 0xfcff) | 0x0200;
652 			mdio_write(dev, np->phys[0], 9, data);
653 		}
654 /* 89/6/13 add, (end) */
655 		if (np->flags == HAS_MII_XCVR)
656 			mdio_write(dev, np->phys[0], MII_ADVERTISE, ADVERTISE_FULL);
657 		else
658 			iowrite32(ADVERTISE_FULL, ioaddr + ANARANLPAR);
659 		np->mii.force_media = 1;
660 	}
661 
662 	dev->netdev_ops = &netdev_ops;
663 	dev->ethtool_ops = &netdev_ethtool_ops;
664 	dev->watchdog_timeo = TX_TIMEOUT;
665 
666 	err = register_netdev(dev);
667 	if (err)
668 		goto err_out_free_tx;
669 
670 	printk(KERN_INFO "%s: %s at %p, %pM, IRQ %d.\n",
671 	       dev->name, skel_netdrv_tbl[chip_id].chip_name, ioaddr,
672 	       dev->dev_addr, irq);
673 
674 	return 0;
675 
676 err_out_free_tx:
677 	pci_free_consistent(pdev, TX_TOTAL_SIZE, np->tx_ring, np->tx_ring_dma);
678 err_out_free_rx:
679 	pci_free_consistent(pdev, RX_TOTAL_SIZE, np->rx_ring, np->rx_ring_dma);
680 err_out_free_dev:
681 	free_netdev(dev);
682 err_out_unmap:
683 	pci_iounmap(pdev, ioaddr);
684 err_out_res:
685 	pci_release_regions(pdev);
686 	return err;
687 }
688 
689 
690 static void __devexit fealnx_remove_one(struct pci_dev *pdev)
691 {
692 	struct net_device *dev = pci_get_drvdata(pdev);
693 
694 	if (dev) {
695 		struct netdev_private *np = netdev_priv(dev);
696 
697 		pci_free_consistent(pdev, TX_TOTAL_SIZE, np->tx_ring,
698 			np->tx_ring_dma);
699 		pci_free_consistent(pdev, RX_TOTAL_SIZE, np->rx_ring,
700 			np->rx_ring_dma);
701 		unregister_netdev(dev);
702 		pci_iounmap(pdev, np->mem);
703 		free_netdev(dev);
704 		pci_release_regions(pdev);
705 		pci_set_drvdata(pdev, NULL);
706 	} else
707 		printk(KERN_ERR "fealnx: remove for unknown device\n");
708 }
709 
710 
711 static ulong m80x_send_cmd_to_phy(void __iomem *miiport, int opcode, int phyad, int regad)
712 {
713 	ulong miir;
714 	int i;
715 	unsigned int mask, data;
716 
717 	/* enable MII output */
718 	miir = (ulong) ioread32(miiport);
719 	miir &= 0xfffffff0;
720 
721 	miir |= MASK_MIIR_MII_WRITE + MASK_MIIR_MII_MDO;
722 
723 	/* send 32 1's preamble */
724 	for (i = 0; i < 32; i++) {
725 		/* low MDC; MDO is already high (miir) */
726 		miir &= ~MASK_MIIR_MII_MDC;
727 		iowrite32(miir, miiport);
728 
729 		/* high MDC */
730 		miir |= MASK_MIIR_MII_MDC;
731 		iowrite32(miir, miiport);
732 	}
733 
734 	/* calculate ST+OP+PHYAD+REGAD+TA */
735 	data = opcode | (phyad << 7) | (regad << 2);
736 
737 	/* sent out */
738 	mask = 0x8000;
739 	while (mask) {
740 		/* low MDC, prepare MDO */
741 		miir &= ~(MASK_MIIR_MII_MDC + MASK_MIIR_MII_MDO);
742 		if (mask & data)
743 			miir |= MASK_MIIR_MII_MDO;
744 
745 		iowrite32(miir, miiport);
746 		/* high MDC */
747 		miir |= MASK_MIIR_MII_MDC;
748 		iowrite32(miir, miiport);
749 		udelay(30);
750 
751 		/* next */
752 		mask >>= 1;
753 		if (mask == 0x2 && opcode == OP_READ)
754 			miir &= ~MASK_MIIR_MII_WRITE;
755 	}
756 	return miir;
757 }
758 
759 
760 static int mdio_read(struct net_device *dev, int phyad, int regad)
761 {
762 	struct netdev_private *np = netdev_priv(dev);
763 	void __iomem *miiport = np->mem + MANAGEMENT;
764 	ulong miir;
765 	unsigned int mask, data;
766 
767 	miir = m80x_send_cmd_to_phy(miiport, OP_READ, phyad, regad);
768 
769 	/* read data */
770 	mask = 0x8000;
771 	data = 0;
772 	while (mask) {
773 		/* low MDC */
774 		miir &= ~MASK_MIIR_MII_MDC;
775 		iowrite32(miir, miiport);
776 
777 		/* read MDI */
778 		miir = ioread32(miiport);
779 		if (miir & MASK_MIIR_MII_MDI)
780 			data |= mask;
781 
782 		/* high MDC, and wait */
783 		miir |= MASK_MIIR_MII_MDC;
784 		iowrite32(miir, miiport);
785 		udelay(30);
786 
787 		/* next */
788 		mask >>= 1;
789 	}
790 
791 	/* low MDC */
792 	miir &= ~MASK_MIIR_MII_MDC;
793 	iowrite32(miir, miiport);
794 
795 	return data & 0xffff;
796 }
797 
798 
799 static void mdio_write(struct net_device *dev, int phyad, int regad, int data)
800 {
801 	struct netdev_private *np = netdev_priv(dev);
802 	void __iomem *miiport = np->mem + MANAGEMENT;
803 	ulong miir;
804 	unsigned int mask;
805 
806 	miir = m80x_send_cmd_to_phy(miiport, OP_WRITE, phyad, regad);
807 
808 	/* write data */
809 	mask = 0x8000;
810 	while (mask) {
811 		/* low MDC, prepare MDO */
812 		miir &= ~(MASK_MIIR_MII_MDC + MASK_MIIR_MII_MDO);
813 		if (mask & data)
814 			miir |= MASK_MIIR_MII_MDO;
815 		iowrite32(miir, miiport);
816 
817 		/* high MDC */
818 		miir |= MASK_MIIR_MII_MDC;
819 		iowrite32(miir, miiport);
820 
821 		/* next */
822 		mask >>= 1;
823 	}
824 
825 	/* low MDC */
826 	miir &= ~MASK_MIIR_MII_MDC;
827 	iowrite32(miir, miiport);
828 }
829 
830 
831 static int netdev_open(struct net_device *dev)
832 {
833 	struct netdev_private *np = netdev_priv(dev);
834 	void __iomem *ioaddr = np->mem;
835 	int i;
836 
837 	iowrite32(0x00000001, ioaddr + BCR);	/* Reset */
838 
839 	if (request_irq(dev->irq, intr_handler, IRQF_SHARED, dev->name, dev))
840 		return -EAGAIN;
841 
842 	for (i = 0; i < 3; i++)
843 		iowrite16(((unsigned short*)dev->dev_addr)[i],
844 				ioaddr + PAR0 + i*2);
845 
846 	init_ring(dev);
847 
848 	iowrite32(np->rx_ring_dma, ioaddr + RXLBA);
849 	iowrite32(np->tx_ring_dma, ioaddr + TXLBA);
850 
851 	/* Initialize other registers. */
852 	/* Configure the PCI bus bursts and FIFO thresholds.
853 	   486: Set 8 longword burst.
854 	   586: no burst limit.
855 	   Burst length 5:3
856 	   0 0 0   1
857 	   0 0 1   4
858 	   0 1 0   8
859 	   0 1 1   16
860 	   1 0 0   32
861 	   1 0 1   64
862 	   1 1 0   128
863 	   1 1 1   256
864 	   Wait the specified 50 PCI cycles after a reset by initializing
865 	   Tx and Rx queues and the address filter list.
866 	   FIXME (Ueimor): optimistic for alpha + posted writes ? */
867 
868 	np->bcrvalue = 0x10;	/* little-endian, 8 burst length */
869 #ifdef __BIG_ENDIAN
870 	np->bcrvalue |= 0x04;	/* big-endian */
871 #endif
872 
873 #if defined(__i386__) && !defined(MODULE)
874 	if (boot_cpu_data.x86 <= 4)
875 		np->crvalue = 0xa00;
876 	else
877 #endif
878 		np->crvalue = 0xe00;	/* rx 128 burst length */
879 
880 
881 // 89/12/29 add,
882 // 90/1/16 modify,
883 //   np->imrvalue=FBE|TUNF|CNTOVF|RBU|TI|RI;
884 	np->imrvalue = TUNF | CNTOVF | RBU | TI | RI;
885 	if (np->pci_dev->device == 0x891) {
886 		np->bcrvalue |= 0x200;	/* set PROG bit */
887 		np->crvalue |= CR_W_ENH;	/* set enhanced bit */
888 		np->imrvalue |= ETI;
889 	}
890 	iowrite32(np->bcrvalue, ioaddr + BCR);
891 
892 	if (dev->if_port == 0)
893 		dev->if_port = np->default_port;
894 
895 	iowrite32(0, ioaddr + RXPDR);
896 // 89/9/1 modify,
897 //   np->crvalue = 0x00e40001;    /* tx store and forward, tx/rx enable */
898 	np->crvalue |= 0x00e40001;	/* tx store and forward, tx/rx enable */
899 	np->mii.full_duplex = np->mii.force_media;
900 	getlinkstatus(dev);
901 	if (np->linkok)
902 		getlinktype(dev);
903 	__set_rx_mode(dev);
904 
905 	netif_start_queue(dev);
906 
907 	/* Clear and Enable interrupts by setting the interrupt mask. */
908 	iowrite32(FBE | TUNF | CNTOVF | RBU | TI | RI, ioaddr + ISR);
909 	iowrite32(np->imrvalue, ioaddr + IMR);
910 
911 	if (debug)
912 		printk(KERN_DEBUG "%s: Done netdev_open().\n", dev->name);
913 
914 	/* Set the timer to check for link beat. */
915 	init_timer(&np->timer);
916 	np->timer.expires = RUN_AT(3 * HZ);
917 	np->timer.data = (unsigned long) dev;
918 	np->timer.function = netdev_timer;
919 
920 	/* timer handler */
921 	add_timer(&np->timer);
922 
923 	init_timer(&np->reset_timer);
924 	np->reset_timer.data = (unsigned long) dev;
925 	np->reset_timer.function = reset_timer;
926 	np->reset_timer_armed = 0;
927 
928 	return 0;
929 }
930 
931 
932 static void getlinkstatus(struct net_device *dev)
933 /* function: Routine will read MII Status Register to get link status.       */
934 /* input   : dev... pointer to the adapter block.                            */
935 /* output  : none.                                                           */
936 {
937 	struct netdev_private *np = netdev_priv(dev);
938 	unsigned int i, DelayTime = 0x1000;
939 
940 	np->linkok = 0;
941 
942 	if (np->PHYType == MysonPHY) {
943 		for (i = 0; i < DelayTime; ++i) {
944 			if (ioread32(np->mem + BMCRSR) & LinkIsUp2) {
945 				np->linkok = 1;
946 				return;
947 			}
948 			udelay(100);
949 		}
950 	} else {
951 		for (i = 0; i < DelayTime; ++i) {
952 			if (mdio_read(dev, np->phys[0], MII_BMSR) & BMSR_LSTATUS) {
953 				np->linkok = 1;
954 				return;
955 			}
956 			udelay(100);
957 		}
958 	}
959 }
960 
961 
962 static void getlinktype(struct net_device *dev)
963 {
964 	struct netdev_private *np = netdev_priv(dev);
965 
966 	if (np->PHYType == MysonPHY) {	/* 3-in-1 case */
967 		if (ioread32(np->mem + TCRRCR) & CR_R_FD)
968 			np->duplexmode = 2;	/* full duplex */
969 		else
970 			np->duplexmode = 1;	/* half duplex */
971 		if (ioread32(np->mem + TCRRCR) & CR_R_PS10)
972 			np->line_speed = 1;	/* 10M */
973 		else
974 			np->line_speed = 2;	/* 100M */
975 	} else {
976 		if (np->PHYType == SeeqPHY) {	/* this PHY is SEEQ 80225 */
977 			unsigned int data;
978 
979 			data = mdio_read(dev, np->phys[0], MIIRegister18);
980 			if (data & SPD_DET_100)
981 				np->line_speed = 2;	/* 100M */
982 			else
983 				np->line_speed = 1;	/* 10M */
984 			if (data & DPLX_DET_FULL)
985 				np->duplexmode = 2;	/* full duplex mode */
986 			else
987 				np->duplexmode = 1;	/* half duplex mode */
988 		} else if (np->PHYType == AhdocPHY) {
989 			unsigned int data;
990 
991 			data = mdio_read(dev, np->phys[0], DiagnosticReg);
992 			if (data & Speed_100)
993 				np->line_speed = 2;	/* 100M */
994 			else
995 				np->line_speed = 1;	/* 10M */
996 			if (data & DPLX_FULL)
997 				np->duplexmode = 2;	/* full duplex mode */
998 			else
999 				np->duplexmode = 1;	/* half duplex mode */
1000 		}
1001 /* 89/6/13 add, (begin) */
1002 		else if (np->PHYType == MarvellPHY) {
1003 			unsigned int data;
1004 
1005 			data = mdio_read(dev, np->phys[0], SpecificReg);
1006 			if (data & Full_Duplex)
1007 				np->duplexmode = 2;	/* full duplex mode */
1008 			else
1009 				np->duplexmode = 1;	/* half duplex mode */
1010 			data &= SpeedMask;
1011 			if (data == Speed_1000M)
1012 				np->line_speed = 3;	/* 1000M */
1013 			else if (data == Speed_100M)
1014 				np->line_speed = 2;	/* 100M */
1015 			else
1016 				np->line_speed = 1;	/* 10M */
1017 		}
1018 /* 89/6/13 add, (end) */
1019 /* 89/7/27 add, (begin) */
1020 		else if (np->PHYType == Myson981) {
1021 			unsigned int data;
1022 
1023 			data = mdio_read(dev, np->phys[0], StatusRegister);
1024 
1025 			if (data & SPEED100)
1026 				np->line_speed = 2;
1027 			else
1028 				np->line_speed = 1;
1029 
1030 			if (data & FULLMODE)
1031 				np->duplexmode = 2;
1032 			else
1033 				np->duplexmode = 1;
1034 		}
1035 /* 89/7/27 add, (end) */
1036 /* 89/12/29 add */
1037 		else if (np->PHYType == LevelOnePHY) {
1038 			unsigned int data;
1039 
1040 			data = mdio_read(dev, np->phys[0], SpecificReg);
1041 			if (data & LXT1000_Full)
1042 				np->duplexmode = 2;	/* full duplex mode */
1043 			else
1044 				np->duplexmode = 1;	/* half duplex mode */
1045 			data &= SpeedMask;
1046 			if (data == LXT1000_1000M)
1047 				np->line_speed = 3;	/* 1000M */
1048 			else if (data == LXT1000_100M)
1049 				np->line_speed = 2;	/* 100M */
1050 			else
1051 				np->line_speed = 1;	/* 10M */
1052 		}
1053 		np->crvalue &= (~CR_W_PS10) & (~CR_W_FD) & (~CR_W_PS1000);
1054 		if (np->line_speed == 1)
1055 			np->crvalue |= CR_W_PS10;
1056 		else if (np->line_speed == 3)
1057 			np->crvalue |= CR_W_PS1000;
1058 		if (np->duplexmode == 2)
1059 			np->crvalue |= CR_W_FD;
1060 	}
1061 }
1062 
1063 
1064 /* Take lock before calling this */
1065 static void allocate_rx_buffers(struct net_device *dev)
1066 {
1067 	struct netdev_private *np = netdev_priv(dev);
1068 
1069 	/*  allocate skb for rx buffers */
1070 	while (np->really_rx_count != RX_RING_SIZE) {
1071 		struct sk_buff *skb;
1072 
1073 		skb = netdev_alloc_skb(dev, np->rx_buf_sz);
1074 		if (skb == NULL)
1075 			break;	/* Better luck next round. */
1076 
1077 		while (np->lack_rxbuf->skbuff)
1078 			np->lack_rxbuf = np->lack_rxbuf->next_desc_logical;
1079 
1080 		np->lack_rxbuf->skbuff = skb;
1081 		np->lack_rxbuf->buffer = pci_map_single(np->pci_dev, skb->data,
1082 			np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1083 		np->lack_rxbuf->status = RXOWN;
1084 		++np->really_rx_count;
1085 	}
1086 }
1087 
1088 
1089 static void netdev_timer(unsigned long data)
1090 {
1091 	struct net_device *dev = (struct net_device *) data;
1092 	struct netdev_private *np = netdev_priv(dev);
1093 	void __iomem *ioaddr = np->mem;
1094 	int old_crvalue = np->crvalue;
1095 	unsigned int old_linkok = np->linkok;
1096 	unsigned long flags;
1097 
1098 	if (debug)
1099 		printk(KERN_DEBUG "%s: Media selection timer tick, status %8.8x "
1100 		       "config %8.8x.\n", dev->name, ioread32(ioaddr + ISR),
1101 		       ioread32(ioaddr + TCRRCR));
1102 
1103 	spin_lock_irqsave(&np->lock, flags);
1104 
1105 	if (np->flags == HAS_MII_XCVR) {
1106 		getlinkstatus(dev);
1107 		if ((old_linkok == 0) && (np->linkok == 1)) {	/* we need to detect the media type again */
1108 			getlinktype(dev);
1109 			if (np->crvalue != old_crvalue) {
1110 				stop_nic_rxtx(ioaddr, np->crvalue);
1111 				iowrite32(np->crvalue, ioaddr + TCRRCR);
1112 			}
1113 		}
1114 	}
1115 
1116 	allocate_rx_buffers(dev);
1117 
1118 	spin_unlock_irqrestore(&np->lock, flags);
1119 
1120 	np->timer.expires = RUN_AT(10 * HZ);
1121 	add_timer(&np->timer);
1122 }
1123 
1124 
1125 /* Take lock before calling */
1126 /* Reset chip and disable rx, tx and interrupts */
1127 static void reset_and_disable_rxtx(struct net_device *dev)
1128 {
1129 	struct netdev_private *np = netdev_priv(dev);
1130 	void __iomem *ioaddr = np->mem;
1131 	int delay=51;
1132 
1133 	/* Reset the chip's Tx and Rx processes. */
1134 	stop_nic_rxtx(ioaddr, 0);
1135 
1136 	/* Disable interrupts by clearing the interrupt mask. */
1137 	iowrite32(0, ioaddr + IMR);
1138 
1139 	/* Reset the chip to erase previous misconfiguration. */
1140 	iowrite32(0x00000001, ioaddr + BCR);
1141 
1142 	/* Ueimor: wait for 50 PCI cycles (and flush posted writes btw).
1143 	   We surely wait too long (address+data phase). Who cares? */
1144 	while (--delay) {
1145 		ioread32(ioaddr + BCR);
1146 		rmb();
1147 	}
1148 }
1149 
1150 
1151 /* Take lock before calling */
1152 /* Restore chip after reset */
1153 static void enable_rxtx(struct net_device *dev)
1154 {
1155 	struct netdev_private *np = netdev_priv(dev);
1156 	void __iomem *ioaddr = np->mem;
1157 
1158 	reset_rx_descriptors(dev);
1159 
1160 	iowrite32(np->tx_ring_dma + ((char*)np->cur_tx - (char*)np->tx_ring),
1161 		ioaddr + TXLBA);
1162 	iowrite32(np->rx_ring_dma + ((char*)np->cur_rx - (char*)np->rx_ring),
1163 		ioaddr + RXLBA);
1164 
1165 	iowrite32(np->bcrvalue, ioaddr + BCR);
1166 
1167 	iowrite32(0, ioaddr + RXPDR);
1168 	__set_rx_mode(dev); /* changes np->crvalue, writes it into TCRRCR */
1169 
1170 	/* Clear and Enable interrupts by setting the interrupt mask. */
1171 	iowrite32(FBE | TUNF | CNTOVF | RBU | TI | RI, ioaddr + ISR);
1172 	iowrite32(np->imrvalue, ioaddr + IMR);
1173 
1174 	iowrite32(0, ioaddr + TXPDR);
1175 }
1176 
1177 
1178 static void reset_timer(unsigned long data)
1179 {
1180 	struct net_device *dev = (struct net_device *) data;
1181 	struct netdev_private *np = netdev_priv(dev);
1182 	unsigned long flags;
1183 
1184 	printk(KERN_WARNING "%s: resetting tx and rx machinery\n", dev->name);
1185 
1186 	spin_lock_irqsave(&np->lock, flags);
1187 	np->crvalue = np->crvalue_sv;
1188 	np->imrvalue = np->imrvalue_sv;
1189 
1190 	reset_and_disable_rxtx(dev);
1191 	/* works for me without this:
1192 	reset_tx_descriptors(dev); */
1193 	enable_rxtx(dev);
1194 	netif_start_queue(dev); /* FIXME: or netif_wake_queue(dev); ? */
1195 
1196 	np->reset_timer_armed = 0;
1197 
1198 	spin_unlock_irqrestore(&np->lock, flags);
1199 }
1200 
1201 
1202 static void fealnx_tx_timeout(struct net_device *dev)
1203 {
1204 	struct netdev_private *np = netdev_priv(dev);
1205 	void __iomem *ioaddr = np->mem;
1206 	unsigned long flags;
1207 	int i;
1208 
1209 	printk(KERN_WARNING
1210 	       "%s: Transmit timed out, status %8.8x, resetting...\n",
1211 	       dev->name, ioread32(ioaddr + ISR));
1212 
1213 	{
1214 		printk(KERN_DEBUG "  Rx ring %p: ", np->rx_ring);
1215 		for (i = 0; i < RX_RING_SIZE; i++)
1216 			printk(KERN_CONT " %8.8x",
1217 			       (unsigned int) np->rx_ring[i].status);
1218 		printk(KERN_CONT "\n");
1219 		printk(KERN_DEBUG "  Tx ring %p: ", np->tx_ring);
1220 		for (i = 0; i < TX_RING_SIZE; i++)
1221 			printk(KERN_CONT " %4.4x", np->tx_ring[i].status);
1222 		printk(KERN_CONT "\n");
1223 	}
1224 
1225 	spin_lock_irqsave(&np->lock, flags);
1226 
1227 	reset_and_disable_rxtx(dev);
1228 	reset_tx_descriptors(dev);
1229 	enable_rxtx(dev);
1230 
1231 	spin_unlock_irqrestore(&np->lock, flags);
1232 
1233 	dev->trans_start = jiffies; /* prevent tx timeout */
1234 	dev->stats.tx_errors++;
1235 	netif_wake_queue(dev); /* or .._start_.. ?? */
1236 }
1237 
1238 
1239 /* Initialize the Rx and Tx rings, along with various 'dev' bits. */
1240 static void init_ring(struct net_device *dev)
1241 {
1242 	struct netdev_private *np = netdev_priv(dev);
1243 	int i;
1244 
1245 	/* initialize rx variables */
1246 	np->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
1247 	np->cur_rx = &np->rx_ring[0];
1248 	np->lack_rxbuf = np->rx_ring;
1249 	np->really_rx_count = 0;
1250 
1251 	/* initial rx descriptors. */
1252 	for (i = 0; i < RX_RING_SIZE; i++) {
1253 		np->rx_ring[i].status = 0;
1254 		np->rx_ring[i].control = np->rx_buf_sz << RBSShift;
1255 		np->rx_ring[i].next_desc = np->rx_ring_dma +
1256 			(i + 1)*sizeof(struct fealnx_desc);
1257 		np->rx_ring[i].next_desc_logical = &np->rx_ring[i + 1];
1258 		np->rx_ring[i].skbuff = NULL;
1259 	}
1260 
1261 	/* for the last rx descriptor */
1262 	np->rx_ring[i - 1].next_desc = np->rx_ring_dma;
1263 	np->rx_ring[i - 1].next_desc_logical = np->rx_ring;
1264 
1265 	/* allocate skb for rx buffers */
1266 	for (i = 0; i < RX_RING_SIZE; i++) {
1267 		struct sk_buff *skb = netdev_alloc_skb(dev, np->rx_buf_sz);
1268 
1269 		if (skb == NULL) {
1270 			np->lack_rxbuf = &np->rx_ring[i];
1271 			break;
1272 		}
1273 
1274 		++np->really_rx_count;
1275 		np->rx_ring[i].skbuff = skb;
1276 		np->rx_ring[i].buffer = pci_map_single(np->pci_dev, skb->data,
1277 			np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1278 		np->rx_ring[i].status = RXOWN;
1279 		np->rx_ring[i].control |= RXIC;
1280 	}
1281 
1282 	/* initialize tx variables */
1283 	np->cur_tx = &np->tx_ring[0];
1284 	np->cur_tx_copy = &np->tx_ring[0];
1285 	np->really_tx_count = 0;
1286 	np->free_tx_count = TX_RING_SIZE;
1287 
1288 	for (i = 0; i < TX_RING_SIZE; i++) {
1289 		np->tx_ring[i].status = 0;
1290 		/* do we need np->tx_ring[i].control = XXX; ?? */
1291 		np->tx_ring[i].next_desc = np->tx_ring_dma +
1292 			(i + 1)*sizeof(struct fealnx_desc);
1293 		np->tx_ring[i].next_desc_logical = &np->tx_ring[i + 1];
1294 		np->tx_ring[i].skbuff = NULL;
1295 	}
1296 
1297 	/* for the last tx descriptor */
1298 	np->tx_ring[i - 1].next_desc = np->tx_ring_dma;
1299 	np->tx_ring[i - 1].next_desc_logical = &np->tx_ring[0];
1300 }
1301 
1302 
1303 static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev)
1304 {
1305 	struct netdev_private *np = netdev_priv(dev);
1306 	unsigned long flags;
1307 
1308 	spin_lock_irqsave(&np->lock, flags);
1309 
1310 	np->cur_tx_copy->skbuff = skb;
1311 
1312 #define one_buffer
1313 #define BPT 1022
1314 #if defined(one_buffer)
1315 	np->cur_tx_copy->buffer = pci_map_single(np->pci_dev, skb->data,
1316 		skb->len, PCI_DMA_TODEVICE);
1317 	np->cur_tx_copy->control = TXIC | TXLD | TXFD | CRCEnable | PADEnable;
1318 	np->cur_tx_copy->control |= (skb->len << PKTSShift);	/* pkt size */
1319 	np->cur_tx_copy->control |= (skb->len << TBSShift);	/* buffer size */
1320 // 89/12/29 add,
1321 	if (np->pci_dev->device == 0x891)
1322 		np->cur_tx_copy->control |= ETIControl | RetryTxLC;
1323 	np->cur_tx_copy->status = TXOWN;
1324 	np->cur_tx_copy = np->cur_tx_copy->next_desc_logical;
1325 	--np->free_tx_count;
1326 #elif defined(two_buffer)
1327 	if (skb->len > BPT) {
1328 		struct fealnx_desc *next;
1329 
1330 		/* for the first descriptor */
1331 		np->cur_tx_copy->buffer = pci_map_single(np->pci_dev, skb->data,
1332 			BPT, PCI_DMA_TODEVICE);
1333 		np->cur_tx_copy->control = TXIC | TXFD | CRCEnable | PADEnable;
1334 		np->cur_tx_copy->control |= (skb->len << PKTSShift);	/* pkt size */
1335 		np->cur_tx_copy->control |= (BPT << TBSShift);	/* buffer size */
1336 
1337 		/* for the last descriptor */
1338 		next = np->cur_tx_copy->next_desc_logical;
1339 		next->skbuff = skb;
1340 		next->control = TXIC | TXLD | CRCEnable | PADEnable;
1341 		next->control |= (skb->len << PKTSShift);	/* pkt size */
1342 		next->control |= ((skb->len - BPT) << TBSShift);	/* buf size */
1343 // 89/12/29 add,
1344 		if (np->pci_dev->device == 0x891)
1345 			np->cur_tx_copy->control |= ETIControl | RetryTxLC;
1346 		next->buffer = pci_map_single(ep->pci_dev, skb->data + BPT,
1347                                 skb->len - BPT, PCI_DMA_TODEVICE);
1348 
1349 		next->status = TXOWN;
1350 		np->cur_tx_copy->status = TXOWN;
1351 
1352 		np->cur_tx_copy = next->next_desc_logical;
1353 		np->free_tx_count -= 2;
1354 	} else {
1355 		np->cur_tx_copy->buffer = pci_map_single(np->pci_dev, skb->data,
1356 			skb->len, PCI_DMA_TODEVICE);
1357 		np->cur_tx_copy->control = TXIC | TXLD | TXFD | CRCEnable | PADEnable;
1358 		np->cur_tx_copy->control |= (skb->len << PKTSShift);	/* pkt size */
1359 		np->cur_tx_copy->control |= (skb->len << TBSShift);	/* buffer size */
1360 // 89/12/29 add,
1361 		if (np->pci_dev->device == 0x891)
1362 			np->cur_tx_copy->control |= ETIControl | RetryTxLC;
1363 		np->cur_tx_copy->status = TXOWN;
1364 		np->cur_tx_copy = np->cur_tx_copy->next_desc_logical;
1365 		--np->free_tx_count;
1366 	}
1367 #endif
1368 
1369 	if (np->free_tx_count < 2)
1370 		netif_stop_queue(dev);
1371 	++np->really_tx_count;
1372 	iowrite32(0, np->mem + TXPDR);
1373 
1374 	spin_unlock_irqrestore(&np->lock, flags);
1375 	return NETDEV_TX_OK;
1376 }
1377 
1378 
1379 /* Take lock before calling */
1380 /* Chip probably hosed tx ring. Clean up. */
1381 static void reset_tx_descriptors(struct net_device *dev)
1382 {
1383 	struct netdev_private *np = netdev_priv(dev);
1384 	struct fealnx_desc *cur;
1385 	int i;
1386 
1387 	/* initialize tx variables */
1388 	np->cur_tx = &np->tx_ring[0];
1389 	np->cur_tx_copy = &np->tx_ring[0];
1390 	np->really_tx_count = 0;
1391 	np->free_tx_count = TX_RING_SIZE;
1392 
1393 	for (i = 0; i < TX_RING_SIZE; i++) {
1394 		cur = &np->tx_ring[i];
1395 		if (cur->skbuff) {
1396 			pci_unmap_single(np->pci_dev, cur->buffer,
1397 				cur->skbuff->len, PCI_DMA_TODEVICE);
1398 			dev_kfree_skb_any(cur->skbuff);
1399 			cur->skbuff = NULL;
1400 		}
1401 		cur->status = 0;
1402 		cur->control = 0;	/* needed? */
1403 		/* probably not needed. We do it for purely paranoid reasons */
1404 		cur->next_desc = np->tx_ring_dma +
1405 			(i + 1)*sizeof(struct fealnx_desc);
1406 		cur->next_desc_logical = &np->tx_ring[i + 1];
1407 	}
1408 	/* for the last tx descriptor */
1409 	np->tx_ring[TX_RING_SIZE - 1].next_desc = np->tx_ring_dma;
1410 	np->tx_ring[TX_RING_SIZE - 1].next_desc_logical = &np->tx_ring[0];
1411 }
1412 
1413 
1414 /* Take lock and stop rx before calling this */
1415 static void reset_rx_descriptors(struct net_device *dev)
1416 {
1417 	struct netdev_private *np = netdev_priv(dev);
1418 	struct fealnx_desc *cur = np->cur_rx;
1419 	int i;
1420 
1421 	allocate_rx_buffers(dev);
1422 
1423 	for (i = 0; i < RX_RING_SIZE; i++) {
1424 		if (cur->skbuff)
1425 			cur->status = RXOWN;
1426 		cur = cur->next_desc_logical;
1427 	}
1428 
1429 	iowrite32(np->rx_ring_dma + ((char*)np->cur_rx - (char*)np->rx_ring),
1430 		np->mem + RXLBA);
1431 }
1432 
1433 
1434 /* The interrupt handler does all of the Rx thread work and cleans up
1435    after the Tx thread. */
1436 static irqreturn_t intr_handler(int irq, void *dev_instance)
1437 {
1438 	struct net_device *dev = (struct net_device *) dev_instance;
1439 	struct netdev_private *np = netdev_priv(dev);
1440 	void __iomem *ioaddr = np->mem;
1441 	long boguscnt = max_interrupt_work;
1442 	unsigned int num_tx = 0;
1443 	int handled = 0;
1444 
1445 	spin_lock(&np->lock);
1446 
1447 	iowrite32(0, ioaddr + IMR);
1448 
1449 	do {
1450 		u32 intr_status = ioread32(ioaddr + ISR);
1451 
1452 		/* Acknowledge all of the current interrupt sources ASAP. */
1453 		iowrite32(intr_status, ioaddr + ISR);
1454 
1455 		if (debug)
1456 			printk(KERN_DEBUG "%s: Interrupt, status %4.4x.\n", dev->name,
1457 			       intr_status);
1458 
1459 		if (!(intr_status & np->imrvalue))
1460 			break;
1461 
1462 		handled = 1;
1463 
1464 // 90/1/16 delete,
1465 //
1466 //      if (intr_status & FBE)
1467 //      {   /* fatal error */
1468 //          stop_nic_tx(ioaddr, 0);
1469 //          stop_nic_rx(ioaddr, 0);
1470 //          break;
1471 //      };
1472 
1473 		if (intr_status & TUNF)
1474 			iowrite32(0, ioaddr + TXPDR);
1475 
1476 		if (intr_status & CNTOVF) {
1477 			/* missed pkts */
1478 			dev->stats.rx_missed_errors +=
1479 				ioread32(ioaddr + TALLY) & 0x7fff;
1480 
1481 			/* crc error */
1482 			dev->stats.rx_crc_errors +=
1483 			    (ioread32(ioaddr + TALLY) & 0x7fff0000) >> 16;
1484 		}
1485 
1486 		if (intr_status & (RI | RBU)) {
1487 			if (intr_status & RI)
1488 				netdev_rx(dev);
1489 			else {
1490 				stop_nic_rx(ioaddr, np->crvalue);
1491 				reset_rx_descriptors(dev);
1492 				iowrite32(np->crvalue, ioaddr + TCRRCR);
1493 			}
1494 		}
1495 
1496 		while (np->really_tx_count) {
1497 			long tx_status = np->cur_tx->status;
1498 			long tx_control = np->cur_tx->control;
1499 
1500 			if (!(tx_control & TXLD)) {	/* this pkt is combined by two tx descriptors */
1501 				struct fealnx_desc *next;
1502 
1503 				next = np->cur_tx->next_desc_logical;
1504 				tx_status = next->status;
1505 				tx_control = next->control;
1506 			}
1507 
1508 			if (tx_status & TXOWN)
1509 				break;
1510 
1511 			if (!(np->crvalue & CR_W_ENH)) {
1512 				if (tx_status & (CSL | LC | EC | UDF | HF)) {
1513 					dev->stats.tx_errors++;
1514 					if (tx_status & EC)
1515 						dev->stats.tx_aborted_errors++;
1516 					if (tx_status & CSL)
1517 						dev->stats.tx_carrier_errors++;
1518 					if (tx_status & LC)
1519 						dev->stats.tx_window_errors++;
1520 					if (tx_status & UDF)
1521 						dev->stats.tx_fifo_errors++;
1522 					if ((tx_status & HF) && np->mii.full_duplex == 0)
1523 						dev->stats.tx_heartbeat_errors++;
1524 
1525 				} else {
1526 					dev->stats.tx_bytes +=
1527 					    ((tx_control & PKTSMask) >> PKTSShift);
1528 
1529 					dev->stats.collisions +=
1530 					    ((tx_status & NCRMask) >> NCRShift);
1531 					dev->stats.tx_packets++;
1532 				}
1533 			} else {
1534 				dev->stats.tx_bytes +=
1535 				    ((tx_control & PKTSMask) >> PKTSShift);
1536 				dev->stats.tx_packets++;
1537 			}
1538 
1539 			/* Free the original skb. */
1540 			pci_unmap_single(np->pci_dev, np->cur_tx->buffer,
1541 				np->cur_tx->skbuff->len, PCI_DMA_TODEVICE);
1542 			dev_kfree_skb_irq(np->cur_tx->skbuff);
1543 			np->cur_tx->skbuff = NULL;
1544 			--np->really_tx_count;
1545 			if (np->cur_tx->control & TXLD) {
1546 				np->cur_tx = np->cur_tx->next_desc_logical;
1547 				++np->free_tx_count;
1548 			} else {
1549 				np->cur_tx = np->cur_tx->next_desc_logical;
1550 				np->cur_tx = np->cur_tx->next_desc_logical;
1551 				np->free_tx_count += 2;
1552 			}
1553 			num_tx++;
1554 		}		/* end of for loop */
1555 
1556 		if (num_tx && np->free_tx_count >= 2)
1557 			netif_wake_queue(dev);
1558 
1559 		/* read transmit status for enhanced mode only */
1560 		if (np->crvalue & CR_W_ENH) {
1561 			long data;
1562 
1563 			data = ioread32(ioaddr + TSR);
1564 			dev->stats.tx_errors += (data & 0xff000000) >> 24;
1565 			dev->stats.tx_aborted_errors +=
1566 				(data & 0xff000000) >> 24;
1567 			dev->stats.tx_window_errors +=
1568 				(data & 0x00ff0000) >> 16;
1569 			dev->stats.collisions += (data & 0x0000ffff);
1570 		}
1571 
1572 		if (--boguscnt < 0) {
1573 			printk(KERN_WARNING "%s: Too much work at interrupt, "
1574 			       "status=0x%4.4x.\n", dev->name, intr_status);
1575 			if (!np->reset_timer_armed) {
1576 				np->reset_timer_armed = 1;
1577 				np->reset_timer.expires = RUN_AT(HZ/2);
1578 				add_timer(&np->reset_timer);
1579 				stop_nic_rxtx(ioaddr, 0);
1580 				netif_stop_queue(dev);
1581 				/* or netif_tx_disable(dev); ?? */
1582 				/* Prevent other paths from enabling tx,rx,intrs */
1583 				np->crvalue_sv = np->crvalue;
1584 				np->imrvalue_sv = np->imrvalue;
1585 				np->crvalue &= ~(CR_W_TXEN | CR_W_RXEN); /* or simply = 0? */
1586 				np->imrvalue = 0;
1587 			}
1588 
1589 			break;
1590 		}
1591 	} while (1);
1592 
1593 	/* read the tally counters */
1594 	/* missed pkts */
1595 	dev->stats.rx_missed_errors += ioread32(ioaddr + TALLY) & 0x7fff;
1596 
1597 	/* crc error */
1598 	dev->stats.rx_crc_errors +=
1599 		(ioread32(ioaddr + TALLY) & 0x7fff0000) >> 16;
1600 
1601 	if (debug)
1602 		printk(KERN_DEBUG "%s: exiting interrupt, status=%#4.4x.\n",
1603 		       dev->name, ioread32(ioaddr + ISR));
1604 
1605 	iowrite32(np->imrvalue, ioaddr + IMR);
1606 
1607 	spin_unlock(&np->lock);
1608 
1609 	return IRQ_RETVAL(handled);
1610 }
1611 
1612 
1613 /* This routine is logically part of the interrupt handler, but separated
1614    for clarity and better register allocation. */
1615 static int netdev_rx(struct net_device *dev)
1616 {
1617 	struct netdev_private *np = netdev_priv(dev);
1618 	void __iomem *ioaddr = np->mem;
1619 
1620 	/* If EOP is set on the next entry, it's a new packet. Send it up. */
1621 	while (!(np->cur_rx->status & RXOWN) && np->cur_rx->skbuff) {
1622 		s32 rx_status = np->cur_rx->status;
1623 
1624 		if (np->really_rx_count == 0)
1625 			break;
1626 
1627 		if (debug)
1628 			printk(KERN_DEBUG "  netdev_rx() status was %8.8x.\n", rx_status);
1629 
1630 		if ((!((rx_status & RXFSD) && (rx_status & RXLSD))) ||
1631 		    (rx_status & ErrorSummary)) {
1632 			if (rx_status & ErrorSummary) {	/* there was a fatal error */
1633 				if (debug)
1634 					printk(KERN_DEBUG
1635 					       "%s: Receive error, Rx status %8.8x.\n",
1636 					       dev->name, rx_status);
1637 
1638 				dev->stats.rx_errors++;	/* end of a packet. */
1639 				if (rx_status & (LONG | RUNT))
1640 					dev->stats.rx_length_errors++;
1641 				if (rx_status & RXER)
1642 					dev->stats.rx_frame_errors++;
1643 				if (rx_status & CRC)
1644 					dev->stats.rx_crc_errors++;
1645 			} else {
1646 				int need_to_reset = 0;
1647 				int desno = 0;
1648 
1649 				if (rx_status & RXFSD) {	/* this pkt is too long, over one rx buffer */
1650 					struct fealnx_desc *cur;
1651 
1652 					/* check this packet is received completely? */
1653 					cur = np->cur_rx;
1654 					while (desno <= np->really_rx_count) {
1655 						++desno;
1656 						if ((!(cur->status & RXOWN)) &&
1657 						    (cur->status & RXLSD))
1658 							break;
1659 						/* goto next rx descriptor */
1660 						cur = cur->next_desc_logical;
1661 					}
1662 					if (desno > np->really_rx_count)
1663 						need_to_reset = 1;
1664 				} else	/* RXLSD did not find, something error */
1665 					need_to_reset = 1;
1666 
1667 				if (need_to_reset == 0) {
1668 					int i;
1669 
1670 					dev->stats.rx_length_errors++;
1671 
1672 					/* free all rx descriptors related this long pkt */
1673 					for (i = 0; i < desno; ++i) {
1674 						if (!np->cur_rx->skbuff) {
1675 							printk(KERN_DEBUG
1676 								"%s: I'm scared\n", dev->name);
1677 							break;
1678 						}
1679 						np->cur_rx->status = RXOWN;
1680 						np->cur_rx = np->cur_rx->next_desc_logical;
1681 					}
1682 					continue;
1683 				} else {        /* rx error, need to reset this chip */
1684 					stop_nic_rx(ioaddr, np->crvalue);
1685 					reset_rx_descriptors(dev);
1686 					iowrite32(np->crvalue, ioaddr + TCRRCR);
1687 				}
1688 				break;	/* exit the while loop */
1689 			}
1690 		} else {	/* this received pkt is ok */
1691 
1692 			struct sk_buff *skb;
1693 			/* Omit the four octet CRC from the length. */
1694 			short pkt_len = ((rx_status & FLNGMASK) >> FLNGShift) - 4;
1695 
1696 #ifndef final_version
1697 			if (debug)
1698 				printk(KERN_DEBUG "  netdev_rx() normal Rx pkt length %d"
1699 				       " status %x.\n", pkt_len, rx_status);
1700 #endif
1701 
1702 			/* Check if the packet is long enough to accept without copying
1703 			   to a minimally-sized skbuff. */
1704 			if (pkt_len < rx_copybreak &&
1705 			    (skb = netdev_alloc_skb(dev, pkt_len + 2)) != NULL) {
1706 				skb_reserve(skb, 2);	/* 16 byte align the IP header */
1707 				pci_dma_sync_single_for_cpu(np->pci_dev,
1708 							    np->cur_rx->buffer,
1709 							    np->rx_buf_sz,
1710 							    PCI_DMA_FROMDEVICE);
1711 				/* Call copy + cksum if available. */
1712 
1713 #if ! defined(__alpha__)
1714 				skb_copy_to_linear_data(skb,
1715 					np->cur_rx->skbuff->data, pkt_len);
1716 				skb_put(skb, pkt_len);
1717 #else
1718 				memcpy(skb_put(skb, pkt_len),
1719 					np->cur_rx->skbuff->data, pkt_len);
1720 #endif
1721 				pci_dma_sync_single_for_device(np->pci_dev,
1722 							       np->cur_rx->buffer,
1723 							       np->rx_buf_sz,
1724 							       PCI_DMA_FROMDEVICE);
1725 			} else {
1726 				pci_unmap_single(np->pci_dev,
1727 						 np->cur_rx->buffer,
1728 						 np->rx_buf_sz,
1729 						 PCI_DMA_FROMDEVICE);
1730 				skb_put(skb = np->cur_rx->skbuff, pkt_len);
1731 				np->cur_rx->skbuff = NULL;
1732 				--np->really_rx_count;
1733 			}
1734 			skb->protocol = eth_type_trans(skb, dev);
1735 			netif_rx(skb);
1736 			dev->stats.rx_packets++;
1737 			dev->stats.rx_bytes += pkt_len;
1738 		}
1739 
1740 		np->cur_rx = np->cur_rx->next_desc_logical;
1741 	}			/* end of while loop */
1742 
1743 	/*  allocate skb for rx buffers */
1744 	allocate_rx_buffers(dev);
1745 
1746 	return 0;
1747 }
1748 
1749 
1750 static struct net_device_stats *get_stats(struct net_device *dev)
1751 {
1752 	struct netdev_private *np = netdev_priv(dev);
1753 	void __iomem *ioaddr = np->mem;
1754 
1755 	/* The chip only need report frame silently dropped. */
1756 	if (netif_running(dev)) {
1757 		dev->stats.rx_missed_errors +=
1758 			ioread32(ioaddr + TALLY) & 0x7fff;
1759 		dev->stats.rx_crc_errors +=
1760 			(ioread32(ioaddr + TALLY) & 0x7fff0000) >> 16;
1761 	}
1762 
1763 	return &dev->stats;
1764 }
1765 
1766 
1767 /* for dev->set_multicast_list */
1768 static void set_rx_mode(struct net_device *dev)
1769 {
1770 	spinlock_t *lp = &((struct netdev_private *)netdev_priv(dev))->lock;
1771 	unsigned long flags;
1772 	spin_lock_irqsave(lp, flags);
1773 	__set_rx_mode(dev);
1774 	spin_unlock_irqrestore(lp, flags);
1775 }
1776 
1777 
1778 /* Take lock before calling */
1779 static void __set_rx_mode(struct net_device *dev)
1780 {
1781 	struct netdev_private *np = netdev_priv(dev);
1782 	void __iomem *ioaddr = np->mem;
1783 	u32 mc_filter[2];	/* Multicast hash filter */
1784 	u32 rx_mode;
1785 
1786 	if (dev->flags & IFF_PROMISC) {	/* Set promiscuous. */
1787 		memset(mc_filter, 0xff, sizeof(mc_filter));
1788 		rx_mode = CR_W_PROM | CR_W_AB | CR_W_AM;
1789 	} else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
1790 		   (dev->flags & IFF_ALLMULTI)) {
1791 		/* Too many to match, or accept all multicasts. */
1792 		memset(mc_filter, 0xff, sizeof(mc_filter));
1793 		rx_mode = CR_W_AB | CR_W_AM;
1794 	} else {
1795 		struct netdev_hw_addr *ha;
1796 
1797 		memset(mc_filter, 0, sizeof(mc_filter));
1798 		netdev_for_each_mc_addr(ha, dev) {
1799 			unsigned int bit;
1800 			bit = (ether_crc(ETH_ALEN, ha->addr) >> 26) ^ 0x3F;
1801 			mc_filter[bit >> 5] |= (1 << bit);
1802 		}
1803 		rx_mode = CR_W_AB | CR_W_AM;
1804 	}
1805 
1806 	stop_nic_rxtx(ioaddr, np->crvalue);
1807 
1808 	iowrite32(mc_filter[0], ioaddr + MAR0);
1809 	iowrite32(mc_filter[1], ioaddr + MAR1);
1810 	np->crvalue &= ~CR_W_RXMODEMASK;
1811 	np->crvalue |= rx_mode;
1812 	iowrite32(np->crvalue, ioaddr + TCRRCR);
1813 }
1814 
1815 static void netdev_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1816 {
1817 	struct netdev_private *np = netdev_priv(dev);
1818 
1819 	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1820 	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1821 	strlcpy(info->bus_info, pci_name(np->pci_dev), sizeof(info->bus_info));
1822 }
1823 
1824 static int netdev_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1825 {
1826 	struct netdev_private *np = netdev_priv(dev);
1827 	int rc;
1828 
1829 	spin_lock_irq(&np->lock);
1830 	rc = mii_ethtool_gset(&np->mii, cmd);
1831 	spin_unlock_irq(&np->lock);
1832 
1833 	return rc;
1834 }
1835 
1836 static int netdev_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1837 {
1838 	struct netdev_private *np = netdev_priv(dev);
1839 	int rc;
1840 
1841 	spin_lock_irq(&np->lock);
1842 	rc = mii_ethtool_sset(&np->mii, cmd);
1843 	spin_unlock_irq(&np->lock);
1844 
1845 	return rc;
1846 }
1847 
1848 static int netdev_nway_reset(struct net_device *dev)
1849 {
1850 	struct netdev_private *np = netdev_priv(dev);
1851 	return mii_nway_restart(&np->mii);
1852 }
1853 
1854 static u32 netdev_get_link(struct net_device *dev)
1855 {
1856 	struct netdev_private *np = netdev_priv(dev);
1857 	return mii_link_ok(&np->mii);
1858 }
1859 
1860 static u32 netdev_get_msglevel(struct net_device *dev)
1861 {
1862 	return debug;
1863 }
1864 
1865 static void netdev_set_msglevel(struct net_device *dev, u32 value)
1866 {
1867 	debug = value;
1868 }
1869 
1870 static const struct ethtool_ops netdev_ethtool_ops = {
1871 	.get_drvinfo		= netdev_get_drvinfo,
1872 	.get_settings		= netdev_get_settings,
1873 	.set_settings		= netdev_set_settings,
1874 	.nway_reset		= netdev_nway_reset,
1875 	.get_link		= netdev_get_link,
1876 	.get_msglevel		= netdev_get_msglevel,
1877 	.set_msglevel		= netdev_set_msglevel,
1878 };
1879 
1880 static int mii_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1881 {
1882 	struct netdev_private *np = netdev_priv(dev);
1883 	int rc;
1884 
1885 	if (!netif_running(dev))
1886 		return -EINVAL;
1887 
1888 	spin_lock_irq(&np->lock);
1889 	rc = generic_mii_ioctl(&np->mii, if_mii(rq), cmd, NULL);
1890 	spin_unlock_irq(&np->lock);
1891 
1892 	return rc;
1893 }
1894 
1895 
1896 static int netdev_close(struct net_device *dev)
1897 {
1898 	struct netdev_private *np = netdev_priv(dev);
1899 	void __iomem *ioaddr = np->mem;
1900 	int i;
1901 
1902 	netif_stop_queue(dev);
1903 
1904 	/* Disable interrupts by clearing the interrupt mask. */
1905 	iowrite32(0x0000, ioaddr + IMR);
1906 
1907 	/* Stop the chip's Tx and Rx processes. */
1908 	stop_nic_rxtx(ioaddr, 0);
1909 
1910 	del_timer_sync(&np->timer);
1911 	del_timer_sync(&np->reset_timer);
1912 
1913 	free_irq(dev->irq, dev);
1914 
1915 	/* Free all the skbuffs in the Rx queue. */
1916 	for (i = 0; i < RX_RING_SIZE; i++) {
1917 		struct sk_buff *skb = np->rx_ring[i].skbuff;
1918 
1919 		np->rx_ring[i].status = 0;
1920 		if (skb) {
1921 			pci_unmap_single(np->pci_dev, np->rx_ring[i].buffer,
1922 				np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1923 			dev_kfree_skb(skb);
1924 			np->rx_ring[i].skbuff = NULL;
1925 		}
1926 	}
1927 
1928 	for (i = 0; i < TX_RING_SIZE; i++) {
1929 		struct sk_buff *skb = np->tx_ring[i].skbuff;
1930 
1931 		if (skb) {
1932 			pci_unmap_single(np->pci_dev, np->tx_ring[i].buffer,
1933 				skb->len, PCI_DMA_TODEVICE);
1934 			dev_kfree_skb(skb);
1935 			np->tx_ring[i].skbuff = NULL;
1936 		}
1937 	}
1938 
1939 	return 0;
1940 }
1941 
1942 static DEFINE_PCI_DEVICE_TABLE(fealnx_pci_tbl) = {
1943 	{0x1516, 0x0800, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
1944 	{0x1516, 0x0803, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 1},
1945 	{0x1516, 0x0891, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 2},
1946 	{} /* terminate list */
1947 };
1948 MODULE_DEVICE_TABLE(pci, fealnx_pci_tbl);
1949 
1950 
1951 static struct pci_driver fealnx_driver = {
1952 	.name		= "fealnx",
1953 	.id_table	= fealnx_pci_tbl,
1954 	.probe		= fealnx_init_one,
1955 	.remove		= __devexit_p(fealnx_remove_one),
1956 };
1957 
1958 static int __init fealnx_init(void)
1959 {
1960 /* when a module, this is printed whether or not devices are found in probe */
1961 #ifdef MODULE
1962 	printk(version);
1963 #endif
1964 
1965 	return pci_register_driver(&fealnx_driver);
1966 }
1967 
1968 static void __exit fealnx_exit(void)
1969 {
1970 	pci_unregister_driver(&fealnx_driver);
1971 }
1972 
1973 module_init(fealnx_init);
1974 module_exit(fealnx_exit);
1975