xref: /openbmc/linux/drivers/net/ethernet/fealnx.c (revision cb3908c133f1285069673f11ad651d14ae0406cf)
1 /*
2 	Written 1998-2000 by Donald Becker.
3 
4 	This software may be used and distributed according to the terms of
5 	the GNU General Public License (GPL), incorporated herein by reference.
6 	Drivers based on or derived from this code fall under the GPL and must
7 	retain the authorship, copyright and license notice.  This file is not
8 	a complete program and may only be used when the entire operating
9 	system is licensed under the GPL.
10 
11 	The author may be reached as becker@scyld.com, or C/O
12 	Scyld Computing Corporation
13 	410 Severn Ave., Suite 210
14 	Annapolis MD 21403
15 
16 	Support information and updates available at
17 	http://www.scyld.com/network/pci-skeleton.html
18 
19 	Linux kernel updates:
20 
21 	Version 2.51, Nov 17, 2001 (jgarzik):
22 	- Add ethtool support
23 	- Replace some MII-related magic numbers with constants
24 
25 */
26 
27 #define DRV_NAME	"fealnx"
28 #define DRV_VERSION	"2.52"
29 #define DRV_RELDATE	"Sep-11-2006"
30 
31 static int debug;		/* 1-> print debug message */
32 static int max_interrupt_work = 20;
33 
34 /* Maximum number of multicast addresses to filter (vs. Rx-all-multicast). */
35 static int multicast_filter_limit = 32;
36 
37 /* Set the copy breakpoint for the copy-only-tiny-frames scheme. */
38 /* Setting to > 1518 effectively disables this feature.          */
39 static int rx_copybreak;
40 
41 /* Used to pass the media type, etc.                            */
42 /* Both 'options[]' and 'full_duplex[]' should exist for driver */
43 /* interoperability.                                            */
44 /* The media type is usually passed in 'options[]'.             */
45 #define MAX_UNITS 8		/* More are supported, limit only on options */
46 static int options[MAX_UNITS] = { -1, -1, -1, -1, -1, -1, -1, -1 };
47 static int full_duplex[MAX_UNITS] = { -1, -1, -1, -1, -1, -1, -1, -1 };
48 
49 /* Operational parameters that are set at compile time.                 */
50 /* Keep the ring sizes a power of two for compile efficiency.           */
51 /* The compiler will convert <unsigned>'%'<2^N> into a bit mask.        */
52 /* Making the Tx ring too large decreases the effectiveness of channel  */
53 /* bonding and packet priority.                                         */
54 /* There are no ill effects from too-large receive rings.               */
55 // 88-12-9 modify,
56 // #define TX_RING_SIZE    16
57 // #define RX_RING_SIZE    32
58 #define TX_RING_SIZE    6
59 #define RX_RING_SIZE    12
60 #define TX_TOTAL_SIZE	TX_RING_SIZE*sizeof(struct fealnx_desc)
61 #define RX_TOTAL_SIZE	RX_RING_SIZE*sizeof(struct fealnx_desc)
62 
63 /* Operational parameters that usually are not changed. */
64 /* Time in jiffies before concluding the transmitter is hung. */
65 #define TX_TIMEOUT      (2*HZ)
66 
67 #define PKT_BUF_SZ      1536	/* Size of each temporary Rx buffer. */
68 
69 
70 /* Include files, designed to support most kernel versions 2.0.0 and later. */
71 #include <linux/module.h>
72 #include <linux/kernel.h>
73 #include <linux/string.h>
74 #include <linux/timer.h>
75 #include <linux/errno.h>
76 #include <linux/ioport.h>
77 #include <linux/interrupt.h>
78 #include <linux/pci.h>
79 #include <linux/netdevice.h>
80 #include <linux/etherdevice.h>
81 #include <linux/skbuff.h>
82 #include <linux/init.h>
83 #include <linux/mii.h>
84 #include <linux/ethtool.h>
85 #include <linux/crc32.h>
86 #include <linux/delay.h>
87 #include <linux/bitops.h>
88 
89 #include <asm/processor.h>	/* Processor type for cache alignment. */
90 #include <asm/io.h>
91 #include <linux/uaccess.h>
92 #include <asm/byteorder.h>
93 
94 /* These identify the driver base version and may not be removed. */
95 static const char version[] =
96 	KERN_INFO DRV_NAME ".c:v" DRV_VERSION " " DRV_RELDATE "\n";
97 
98 
99 /* This driver was written to use PCI memory space, however some x86 systems
100    work only with I/O space accesses. */
101 #ifndef __alpha__
102 #define USE_IO_OPS
103 #endif
104 
105 /* Kernel compatibility defines, some common to David Hinds' PCMCIA package. */
106 /* This is only in the support-all-kernels source code. */
107 
108 #define RUN_AT(x) (jiffies + (x))
109 
110 MODULE_AUTHOR("Myson or whoever");
111 MODULE_DESCRIPTION("Myson MTD-8xx 100/10M Ethernet PCI Adapter Driver");
112 MODULE_LICENSE("GPL");
113 module_param(max_interrupt_work, int, 0);
114 module_param(debug, int, 0);
115 module_param(rx_copybreak, int, 0);
116 module_param(multicast_filter_limit, int, 0);
117 module_param_array(options, int, NULL, 0);
118 module_param_array(full_duplex, int, NULL, 0);
119 MODULE_PARM_DESC(max_interrupt_work, "fealnx maximum events handled per interrupt");
120 MODULE_PARM_DESC(debug, "fealnx enable debugging (0-1)");
121 MODULE_PARM_DESC(rx_copybreak, "fealnx copy breakpoint for copy-only-tiny-frames");
122 MODULE_PARM_DESC(multicast_filter_limit, "fealnx maximum number of filtered multicast addresses");
123 MODULE_PARM_DESC(options, "fealnx: Bits 0-3: media type, bit 17: full duplex");
124 MODULE_PARM_DESC(full_duplex, "fealnx full duplex setting(s) (1)");
125 
126 enum {
127 	MIN_REGION_SIZE		= 136,
128 };
129 
130 /* A chip capabilities table, matching the entries in pci_tbl[] above. */
131 enum chip_capability_flags {
132 	HAS_MII_XCVR,
133 	HAS_CHIP_XCVR,
134 };
135 
136 /* 89/6/13 add, */
137 /* for different PHY */
138 enum phy_type_flags {
139 	MysonPHY = 1,
140 	AhdocPHY = 2,
141 	SeeqPHY = 3,
142 	MarvellPHY = 4,
143 	Myson981 = 5,
144 	LevelOnePHY = 6,
145 	OtherPHY = 10,
146 };
147 
148 struct chip_info {
149 	char *chip_name;
150 	int flags;
151 };
152 
153 static const struct chip_info skel_netdrv_tbl[] = {
154  	{ "100/10M Ethernet PCI Adapter",	HAS_MII_XCVR },
155 	{ "100/10M Ethernet PCI Adapter",	HAS_CHIP_XCVR },
156 	{ "1000/100/10M Ethernet PCI Adapter",	HAS_MII_XCVR },
157 };
158 
159 /* Offsets to the Command and Status Registers. */
160 enum fealnx_offsets {
161 	PAR0 = 0x0,		/* physical address 0-3 */
162 	PAR1 = 0x04,		/* physical address 4-5 */
163 	MAR0 = 0x08,		/* multicast address 0-3 */
164 	MAR1 = 0x0C,		/* multicast address 4-7 */
165 	FAR0 = 0x10,		/* flow-control address 0-3 */
166 	FAR1 = 0x14,		/* flow-control address 4-5 */
167 	TCRRCR = 0x18,		/* receive & transmit configuration */
168 	BCR = 0x1C,		/* bus command */
169 	TXPDR = 0x20,		/* transmit polling demand */
170 	RXPDR = 0x24,		/* receive polling demand */
171 	RXCWP = 0x28,		/* receive current word pointer */
172 	TXLBA = 0x2C,		/* transmit list base address */
173 	RXLBA = 0x30,		/* receive list base address */
174 	ISR = 0x34,		/* interrupt status */
175 	IMR = 0x38,		/* interrupt mask */
176 	FTH = 0x3C,		/* flow control high/low threshold */
177 	MANAGEMENT = 0x40,	/* bootrom/eeprom and mii management */
178 	TALLY = 0x44,		/* tally counters for crc and mpa */
179 	TSR = 0x48,		/* tally counter for transmit status */
180 	BMCRSR = 0x4c,		/* basic mode control and status */
181 	PHYIDENTIFIER = 0x50,	/* phy identifier */
182 	ANARANLPAR = 0x54,	/* auto-negotiation advertisement and link
183 				   partner ability */
184 	ANEROCR = 0x58,		/* auto-negotiation expansion and pci conf. */
185 	BPREMRPSR = 0x5c,	/* bypass & receive error mask and phy status */
186 };
187 
188 /* Bits in the interrupt status/enable registers. */
189 /* The bits in the Intr Status/Enable registers, mostly interrupt sources. */
190 enum intr_status_bits {
191 	RFCON = 0x00020000,	/* receive flow control xon packet */
192 	RFCOFF = 0x00010000,	/* receive flow control xoff packet */
193 	LSCStatus = 0x00008000,	/* link status change */
194 	ANCStatus = 0x00004000,	/* autonegotiation completed */
195 	FBE = 0x00002000,	/* fatal bus error */
196 	FBEMask = 0x00001800,	/* mask bit12-11 */
197 	ParityErr = 0x00000000,	/* parity error */
198 	TargetErr = 0x00001000,	/* target abort */
199 	MasterErr = 0x00000800,	/* master error */
200 	TUNF = 0x00000400,	/* transmit underflow */
201 	ROVF = 0x00000200,	/* receive overflow */
202 	ETI = 0x00000100,	/* transmit early int */
203 	ERI = 0x00000080,	/* receive early int */
204 	CNTOVF = 0x00000040,	/* counter overflow */
205 	RBU = 0x00000020,	/* receive buffer unavailable */
206 	TBU = 0x00000010,	/* transmit buffer unavilable */
207 	TI = 0x00000008,	/* transmit interrupt */
208 	RI = 0x00000004,	/* receive interrupt */
209 	RxErr = 0x00000002,	/* receive error */
210 };
211 
212 /* Bits in the NetworkConfig register, W for writing, R for reading */
213 /* FIXME: some names are invented by me. Marked with (name?) */
214 /* If you have docs and know bit names, please fix 'em */
215 enum rx_mode_bits {
216 	CR_W_ENH	= 0x02000000,	/* enhanced mode (name?) */
217 	CR_W_FD		= 0x00100000,	/* full duplex */
218 	CR_W_PS10	= 0x00080000,	/* 10 mbit */
219 	CR_W_TXEN	= 0x00040000,	/* tx enable (name?) */
220 	CR_W_PS1000	= 0x00010000,	/* 1000 mbit */
221      /* CR_W_RXBURSTMASK= 0x00000e00, Im unsure about this */
222 	CR_W_RXMODEMASK	= 0x000000e0,
223 	CR_W_PROM	= 0x00000080,	/* promiscuous mode */
224 	CR_W_AB		= 0x00000040,	/* accept broadcast */
225 	CR_W_AM		= 0x00000020,	/* accept mutlicast */
226 	CR_W_ARP	= 0x00000008,	/* receive runt pkt */
227 	CR_W_ALP	= 0x00000004,	/* receive long pkt */
228 	CR_W_SEP	= 0x00000002,	/* receive error pkt */
229 	CR_W_RXEN	= 0x00000001,	/* rx enable (unicast?) (name?) */
230 
231 	CR_R_TXSTOP	= 0x04000000,	/* tx stopped (name?) */
232 	CR_R_FD		= 0x00100000,	/* full duplex detected */
233 	CR_R_PS10	= 0x00080000,	/* 10 mbit detected */
234 	CR_R_RXSTOP	= 0x00008000,	/* rx stopped (name?) */
235 };
236 
237 /* The Tulip Rx and Tx buffer descriptors. */
238 struct fealnx_desc {
239 	s32 status;
240 	s32 control;
241 	u32 buffer;
242 	u32 next_desc;
243 	struct fealnx_desc *next_desc_logical;
244 	struct sk_buff *skbuff;
245 	u32 reserved1;
246 	u32 reserved2;
247 };
248 
249 /* Bits in network_desc.status */
250 enum rx_desc_status_bits {
251 	RXOWN = 0x80000000,	/* own bit */
252 	FLNGMASK = 0x0fff0000,	/* frame length */
253 	FLNGShift = 16,
254 	MARSTATUS = 0x00004000,	/* multicast address received */
255 	BARSTATUS = 0x00002000,	/* broadcast address received */
256 	PHYSTATUS = 0x00001000,	/* physical address received */
257 	RXFSD = 0x00000800,	/* first descriptor */
258 	RXLSD = 0x00000400,	/* last descriptor */
259 	ErrorSummary = 0x80,	/* error summary */
260 	RUNTPKT = 0x40,		/* runt packet received */
261 	LONGPKT = 0x20,		/* long packet received */
262 	FAE = 0x10,		/* frame align error */
263 	CRC = 0x08,		/* crc error */
264 	RXER = 0x04,		/* receive error */
265 };
266 
267 enum rx_desc_control_bits {
268 	RXIC = 0x00800000,	/* interrupt control */
269 	RBSShift = 0,
270 };
271 
272 enum tx_desc_status_bits {
273 	TXOWN = 0x80000000,	/* own bit */
274 	JABTO = 0x00004000,	/* jabber timeout */
275 	CSL = 0x00002000,	/* carrier sense lost */
276 	LC = 0x00001000,	/* late collision */
277 	EC = 0x00000800,	/* excessive collision */
278 	UDF = 0x00000400,	/* fifo underflow */
279 	DFR = 0x00000200,	/* deferred */
280 	HF = 0x00000100,	/* heartbeat fail */
281 	NCRMask = 0x000000ff,	/* collision retry count */
282 	NCRShift = 0,
283 };
284 
285 enum tx_desc_control_bits {
286 	TXIC = 0x80000000,	/* interrupt control */
287 	ETIControl = 0x40000000,	/* early transmit interrupt */
288 	TXLD = 0x20000000,	/* last descriptor */
289 	TXFD = 0x10000000,	/* first descriptor */
290 	CRCEnable = 0x08000000,	/* crc control */
291 	PADEnable = 0x04000000,	/* padding control */
292 	RetryTxLC = 0x02000000,	/* retry late collision */
293 	PKTSMask = 0x3ff800,	/* packet size bit21-11 */
294 	PKTSShift = 11,
295 	TBSMask = 0x000007ff,	/* transmit buffer bit 10-0 */
296 	TBSShift = 0,
297 };
298 
299 /* BootROM/EEPROM/MII Management Register */
300 #define MASK_MIIR_MII_READ       0x00000000
301 #define MASK_MIIR_MII_WRITE      0x00000008
302 #define MASK_MIIR_MII_MDO        0x00000004
303 #define MASK_MIIR_MII_MDI        0x00000002
304 #define MASK_MIIR_MII_MDC        0x00000001
305 
306 /* ST+OP+PHYAD+REGAD+TA */
307 #define OP_READ             0x6000	/* ST:01+OP:10+PHYAD+REGAD+TA:Z0 */
308 #define OP_WRITE            0x5002	/* ST:01+OP:01+PHYAD+REGAD+TA:10 */
309 
310 /* ------------------------------------------------------------------------- */
311 /*      Constants for Myson PHY                                              */
312 /* ------------------------------------------------------------------------- */
313 #define MysonPHYID      0xd0000302
314 /* 89-7-27 add, (begin) */
315 #define MysonPHYID0     0x0302
316 #define StatusRegister  18
317 #define SPEED100        0x0400	// bit10
318 #define FULLMODE        0x0800	// bit11
319 /* 89-7-27 add, (end) */
320 
321 /* ------------------------------------------------------------------------- */
322 /*      Constants for Seeq 80225 PHY                                         */
323 /* ------------------------------------------------------------------------- */
324 #define SeeqPHYID0      0x0016
325 
326 #define MIIRegister18   18
327 #define SPD_DET_100     0x80
328 #define DPLX_DET_FULL   0x40
329 
330 /* ------------------------------------------------------------------------- */
331 /*      Constants for Ahdoc 101 PHY                                          */
332 /* ------------------------------------------------------------------------- */
333 #define AhdocPHYID0     0x0022
334 
335 #define DiagnosticReg   18
336 #define DPLX_FULL       0x0800
337 #define Speed_100       0x0400
338 
339 /* 89/6/13 add, */
340 /* -------------------------------------------------------------------------- */
341 /*      Constants                                                             */
342 /* -------------------------------------------------------------------------- */
343 #define MarvellPHYID0           0x0141
344 #define LevelOnePHYID0		0x0013
345 
346 #define MII1000BaseTControlReg  9
347 #define MII1000BaseTStatusReg   10
348 #define SpecificReg		17
349 
350 /* for 1000BaseT Control Register */
351 #define PHYAbletoPerform1000FullDuplex  0x0200
352 #define PHYAbletoPerform1000HalfDuplex  0x0100
353 #define PHY1000AbilityMask              0x300
354 
355 // for phy specific status register, marvell phy.
356 #define SpeedMask       0x0c000
357 #define Speed_1000M     0x08000
358 #define Speed_100M      0x4000
359 #define Speed_10M       0
360 #define Full_Duplex     0x2000
361 
362 // 89/12/29 add, for phy specific status register, levelone phy, (begin)
363 #define LXT1000_100M    0x08000
364 #define LXT1000_1000M   0x0c000
365 #define LXT1000_Full    0x200
366 // 89/12/29 add, for phy specific status register, levelone phy, (end)
367 
368 /* for 3-in-1 case, BMCRSR register */
369 #define LinkIsUp2	0x00040000
370 
371 /* for PHY */
372 #define LinkIsUp        0x0004
373 
374 
375 struct netdev_private {
376 	/* Descriptor rings first for alignment. */
377 	struct fealnx_desc *rx_ring;
378 	struct fealnx_desc *tx_ring;
379 
380 	dma_addr_t rx_ring_dma;
381 	dma_addr_t tx_ring_dma;
382 
383 	spinlock_t lock;
384 
385 	/* Media monitoring timer. */
386 	struct timer_list timer;
387 
388 	/* Reset timer */
389 	struct timer_list reset_timer;
390 	int reset_timer_armed;
391 	unsigned long crvalue_sv;
392 	unsigned long imrvalue_sv;
393 
394 	/* Frequently used values: keep some adjacent for cache effect. */
395 	int flags;
396 	struct pci_dev *pci_dev;
397 	unsigned long crvalue;
398 	unsigned long bcrvalue;
399 	unsigned long imrvalue;
400 	struct fealnx_desc *cur_rx;
401 	struct fealnx_desc *lack_rxbuf;
402 	int really_rx_count;
403 	struct fealnx_desc *cur_tx;
404 	struct fealnx_desc *cur_tx_copy;
405 	int really_tx_count;
406 	int free_tx_count;
407 	unsigned int rx_buf_sz;	/* Based on MTU+slack. */
408 
409 	/* These values are keep track of the transceiver/media in use. */
410 	unsigned int linkok;
411 	unsigned int line_speed;
412 	unsigned int duplexmode;
413 	unsigned int default_port:4;	/* Last dev->if_port value. */
414 	unsigned int PHYType;
415 
416 	/* MII transceiver section. */
417 	int mii_cnt;		/* MII device addresses. */
418 	unsigned char phys[2];	/* MII device addresses. */
419 	struct mii_if_info mii;
420 	void __iomem *mem;
421 };
422 
423 
424 static int mdio_read(struct net_device *dev, int phy_id, int location);
425 static void mdio_write(struct net_device *dev, int phy_id, int location, int value);
426 static int netdev_open(struct net_device *dev);
427 static void getlinktype(struct net_device *dev);
428 static void getlinkstatus(struct net_device *dev);
429 static void netdev_timer(struct timer_list *t);
430 static void reset_timer(struct timer_list *t);
431 static void fealnx_tx_timeout(struct net_device *dev);
432 static void init_ring(struct net_device *dev);
433 static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev);
434 static irqreturn_t intr_handler(int irq, void *dev_instance);
435 static int netdev_rx(struct net_device *dev);
436 static void set_rx_mode(struct net_device *dev);
437 static void __set_rx_mode(struct net_device *dev);
438 static struct net_device_stats *get_stats(struct net_device *dev);
439 static int mii_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
440 static const struct ethtool_ops netdev_ethtool_ops;
441 static int netdev_close(struct net_device *dev);
442 static void reset_rx_descriptors(struct net_device *dev);
443 static void reset_tx_descriptors(struct net_device *dev);
444 
445 static void stop_nic_rx(void __iomem *ioaddr, long crvalue)
446 {
447 	int delay = 0x1000;
448 	iowrite32(crvalue & ~(CR_W_RXEN), ioaddr + TCRRCR);
449 	while (--delay) {
450 		if ( (ioread32(ioaddr + TCRRCR) & CR_R_RXSTOP) == CR_R_RXSTOP)
451 			break;
452 	}
453 }
454 
455 
456 static void stop_nic_rxtx(void __iomem *ioaddr, long crvalue)
457 {
458 	int delay = 0x1000;
459 	iowrite32(crvalue & ~(CR_W_RXEN+CR_W_TXEN), ioaddr + TCRRCR);
460 	while (--delay) {
461 		if ( (ioread32(ioaddr + TCRRCR) & (CR_R_RXSTOP+CR_R_TXSTOP))
462 					    == (CR_R_RXSTOP+CR_R_TXSTOP) )
463 			break;
464 	}
465 }
466 
467 static const struct net_device_ops netdev_ops = {
468 	.ndo_open		= netdev_open,
469 	.ndo_stop		= netdev_close,
470 	.ndo_start_xmit		= start_tx,
471 	.ndo_get_stats 		= get_stats,
472 	.ndo_set_rx_mode	= set_rx_mode,
473 	.ndo_do_ioctl		= mii_ioctl,
474 	.ndo_tx_timeout		= fealnx_tx_timeout,
475 	.ndo_set_mac_address 	= eth_mac_addr,
476 	.ndo_validate_addr	= eth_validate_addr,
477 };
478 
479 static int fealnx_init_one(struct pci_dev *pdev,
480 			   const struct pci_device_id *ent)
481 {
482 	struct netdev_private *np;
483 	int i, option, err, irq;
484 	static int card_idx = -1;
485 	char boardname[12];
486 	void __iomem *ioaddr;
487 	unsigned long len;
488 	unsigned int chip_id = ent->driver_data;
489 	struct net_device *dev;
490 	void *ring_space;
491 	dma_addr_t ring_dma;
492 #ifdef USE_IO_OPS
493 	int bar = 0;
494 #else
495 	int bar = 1;
496 #endif
497 
498 /* when built into the kernel, we only print version if device is found */
499 #ifndef MODULE
500 	static int printed_version;
501 	if (!printed_version++)
502 		printk(version);
503 #endif
504 
505 	card_idx++;
506 	sprintf(boardname, "fealnx%d", card_idx);
507 
508 	option = card_idx < MAX_UNITS ? options[card_idx] : 0;
509 
510 	i = pci_enable_device(pdev);
511 	if (i) return i;
512 	pci_set_master(pdev);
513 
514 	len = pci_resource_len(pdev, bar);
515 	if (len < MIN_REGION_SIZE) {
516 		dev_err(&pdev->dev,
517 			   "region size %ld too small, aborting\n", len);
518 		return -ENODEV;
519 	}
520 
521 	i = pci_request_regions(pdev, boardname);
522 	if (i)
523 		return i;
524 
525 	irq = pdev->irq;
526 
527 	ioaddr = pci_iomap(pdev, bar, len);
528 	if (!ioaddr) {
529 		err = -ENOMEM;
530 		goto err_out_res;
531 	}
532 
533 	dev = alloc_etherdev(sizeof(struct netdev_private));
534 	if (!dev) {
535 		err = -ENOMEM;
536 		goto err_out_unmap;
537 	}
538 	SET_NETDEV_DEV(dev, &pdev->dev);
539 
540 	/* read ethernet id */
541 	for (i = 0; i < 6; ++i)
542 		dev->dev_addr[i] = ioread8(ioaddr + PAR0 + i);
543 
544 	/* Reset the chip to erase previous misconfiguration. */
545 	iowrite32(0x00000001, ioaddr + BCR);
546 
547 	/* Make certain the descriptor lists are aligned. */
548 	np = netdev_priv(dev);
549 	np->mem = ioaddr;
550 	spin_lock_init(&np->lock);
551 	np->pci_dev = pdev;
552 	np->flags = skel_netdrv_tbl[chip_id].flags;
553 	pci_set_drvdata(pdev, dev);
554 	np->mii.dev = dev;
555 	np->mii.mdio_read = mdio_read;
556 	np->mii.mdio_write = mdio_write;
557 	np->mii.phy_id_mask = 0x1f;
558 	np->mii.reg_num_mask = 0x1f;
559 
560 	ring_space = pci_alloc_consistent(pdev, RX_TOTAL_SIZE, &ring_dma);
561 	if (!ring_space) {
562 		err = -ENOMEM;
563 		goto err_out_free_dev;
564 	}
565 	np->rx_ring = ring_space;
566 	np->rx_ring_dma = ring_dma;
567 
568 	ring_space = pci_alloc_consistent(pdev, TX_TOTAL_SIZE, &ring_dma);
569 	if (!ring_space) {
570 		err = -ENOMEM;
571 		goto err_out_free_rx;
572 	}
573 	np->tx_ring = ring_space;
574 	np->tx_ring_dma = ring_dma;
575 
576 	/* find the connected MII xcvrs */
577 	if (np->flags == HAS_MII_XCVR) {
578 		int phy, phy_idx = 0;
579 
580 		for (phy = 1; phy < 32 && phy_idx < ARRAY_SIZE(np->phys);
581 			       phy++) {
582 			int mii_status = mdio_read(dev, phy, 1);
583 
584 			if (mii_status != 0xffff && mii_status != 0x0000) {
585 				np->phys[phy_idx++] = phy;
586 				dev_info(&pdev->dev,
587 				       "MII PHY found at address %d, status "
588 				       "0x%4.4x.\n", phy, mii_status);
589 				/* get phy type */
590 				{
591 					unsigned int data;
592 
593 					data = mdio_read(dev, np->phys[0], 2);
594 					if (data == SeeqPHYID0)
595 						np->PHYType = SeeqPHY;
596 					else if (data == AhdocPHYID0)
597 						np->PHYType = AhdocPHY;
598 					else if (data == MarvellPHYID0)
599 						np->PHYType = MarvellPHY;
600 					else if (data == MysonPHYID0)
601 						np->PHYType = Myson981;
602 					else if (data == LevelOnePHYID0)
603 						np->PHYType = LevelOnePHY;
604 					else
605 						np->PHYType = OtherPHY;
606 				}
607 			}
608 		}
609 
610 		np->mii_cnt = phy_idx;
611 		if (phy_idx == 0)
612 			dev_warn(&pdev->dev,
613 				"MII PHY not found -- this device may "
614 			       "not operate correctly.\n");
615 	} else {
616 		np->phys[0] = 32;
617 /* 89/6/23 add, (begin) */
618 		/* get phy type */
619 		if (ioread32(ioaddr + PHYIDENTIFIER) == MysonPHYID)
620 			np->PHYType = MysonPHY;
621 		else
622 			np->PHYType = OtherPHY;
623 	}
624 	np->mii.phy_id = np->phys[0];
625 
626 	if (dev->mem_start)
627 		option = dev->mem_start;
628 
629 	/* The lower four bits are the media type. */
630 	if (option > 0) {
631 		if (option & 0x200)
632 			np->mii.full_duplex = 1;
633 		np->default_port = option & 15;
634 	}
635 
636 	if (card_idx < MAX_UNITS && full_duplex[card_idx] > 0)
637 		np->mii.full_duplex = full_duplex[card_idx];
638 
639 	if (np->mii.full_duplex) {
640 		dev_info(&pdev->dev, "Media type forced to Full Duplex.\n");
641 /* 89/6/13 add, (begin) */
642 //      if (np->PHYType==MarvellPHY)
643 		if ((np->PHYType == MarvellPHY) || (np->PHYType == LevelOnePHY)) {
644 			unsigned int data;
645 
646 			data = mdio_read(dev, np->phys[0], 9);
647 			data = (data & 0xfcff) | 0x0200;
648 			mdio_write(dev, np->phys[0], 9, data);
649 		}
650 /* 89/6/13 add, (end) */
651 		if (np->flags == HAS_MII_XCVR)
652 			mdio_write(dev, np->phys[0], MII_ADVERTISE, ADVERTISE_FULL);
653 		else
654 			iowrite32(ADVERTISE_FULL, ioaddr + ANARANLPAR);
655 		np->mii.force_media = 1;
656 	}
657 
658 	dev->netdev_ops = &netdev_ops;
659 	dev->ethtool_ops = &netdev_ethtool_ops;
660 	dev->watchdog_timeo = TX_TIMEOUT;
661 
662 	err = register_netdev(dev);
663 	if (err)
664 		goto err_out_free_tx;
665 
666 	printk(KERN_INFO "%s: %s at %p, %pM, IRQ %d.\n",
667 	       dev->name, skel_netdrv_tbl[chip_id].chip_name, ioaddr,
668 	       dev->dev_addr, irq);
669 
670 	return 0;
671 
672 err_out_free_tx:
673 	pci_free_consistent(pdev, TX_TOTAL_SIZE, np->tx_ring, np->tx_ring_dma);
674 err_out_free_rx:
675 	pci_free_consistent(pdev, RX_TOTAL_SIZE, np->rx_ring, np->rx_ring_dma);
676 err_out_free_dev:
677 	free_netdev(dev);
678 err_out_unmap:
679 	pci_iounmap(pdev, ioaddr);
680 err_out_res:
681 	pci_release_regions(pdev);
682 	return err;
683 }
684 
685 
686 static void fealnx_remove_one(struct pci_dev *pdev)
687 {
688 	struct net_device *dev = pci_get_drvdata(pdev);
689 
690 	if (dev) {
691 		struct netdev_private *np = netdev_priv(dev);
692 
693 		pci_free_consistent(pdev, TX_TOTAL_SIZE, np->tx_ring,
694 			np->tx_ring_dma);
695 		pci_free_consistent(pdev, RX_TOTAL_SIZE, np->rx_ring,
696 			np->rx_ring_dma);
697 		unregister_netdev(dev);
698 		pci_iounmap(pdev, np->mem);
699 		free_netdev(dev);
700 		pci_release_regions(pdev);
701 	} else
702 		printk(KERN_ERR "fealnx: remove for unknown device\n");
703 }
704 
705 
706 static ulong m80x_send_cmd_to_phy(void __iomem *miiport, int opcode, int phyad, int regad)
707 {
708 	ulong miir;
709 	int i;
710 	unsigned int mask, data;
711 
712 	/* enable MII output */
713 	miir = (ulong) ioread32(miiport);
714 	miir &= 0xfffffff0;
715 
716 	miir |= MASK_MIIR_MII_WRITE + MASK_MIIR_MII_MDO;
717 
718 	/* send 32 1's preamble */
719 	for (i = 0; i < 32; i++) {
720 		/* low MDC; MDO is already high (miir) */
721 		miir &= ~MASK_MIIR_MII_MDC;
722 		iowrite32(miir, miiport);
723 
724 		/* high MDC */
725 		miir |= MASK_MIIR_MII_MDC;
726 		iowrite32(miir, miiport);
727 	}
728 
729 	/* calculate ST+OP+PHYAD+REGAD+TA */
730 	data = opcode | (phyad << 7) | (regad << 2);
731 
732 	/* sent out */
733 	mask = 0x8000;
734 	while (mask) {
735 		/* low MDC, prepare MDO */
736 		miir &= ~(MASK_MIIR_MII_MDC + MASK_MIIR_MII_MDO);
737 		if (mask & data)
738 			miir |= MASK_MIIR_MII_MDO;
739 
740 		iowrite32(miir, miiport);
741 		/* high MDC */
742 		miir |= MASK_MIIR_MII_MDC;
743 		iowrite32(miir, miiport);
744 		udelay(30);
745 
746 		/* next */
747 		mask >>= 1;
748 		if (mask == 0x2 && opcode == OP_READ)
749 			miir &= ~MASK_MIIR_MII_WRITE;
750 	}
751 	return miir;
752 }
753 
754 
755 static int mdio_read(struct net_device *dev, int phyad, int regad)
756 {
757 	struct netdev_private *np = netdev_priv(dev);
758 	void __iomem *miiport = np->mem + MANAGEMENT;
759 	ulong miir;
760 	unsigned int mask, data;
761 
762 	miir = m80x_send_cmd_to_phy(miiport, OP_READ, phyad, regad);
763 
764 	/* read data */
765 	mask = 0x8000;
766 	data = 0;
767 	while (mask) {
768 		/* low MDC */
769 		miir &= ~MASK_MIIR_MII_MDC;
770 		iowrite32(miir, miiport);
771 
772 		/* read MDI */
773 		miir = ioread32(miiport);
774 		if (miir & MASK_MIIR_MII_MDI)
775 			data |= mask;
776 
777 		/* high MDC, and wait */
778 		miir |= MASK_MIIR_MII_MDC;
779 		iowrite32(miir, miiport);
780 		udelay(30);
781 
782 		/* next */
783 		mask >>= 1;
784 	}
785 
786 	/* low MDC */
787 	miir &= ~MASK_MIIR_MII_MDC;
788 	iowrite32(miir, miiport);
789 
790 	return data & 0xffff;
791 }
792 
793 
794 static void mdio_write(struct net_device *dev, int phyad, int regad, int data)
795 {
796 	struct netdev_private *np = netdev_priv(dev);
797 	void __iomem *miiport = np->mem + MANAGEMENT;
798 	ulong miir;
799 	unsigned int mask;
800 
801 	miir = m80x_send_cmd_to_phy(miiport, OP_WRITE, phyad, regad);
802 
803 	/* write data */
804 	mask = 0x8000;
805 	while (mask) {
806 		/* low MDC, prepare MDO */
807 		miir &= ~(MASK_MIIR_MII_MDC + MASK_MIIR_MII_MDO);
808 		if (mask & data)
809 			miir |= MASK_MIIR_MII_MDO;
810 		iowrite32(miir, miiport);
811 
812 		/* high MDC */
813 		miir |= MASK_MIIR_MII_MDC;
814 		iowrite32(miir, miiport);
815 
816 		/* next */
817 		mask >>= 1;
818 	}
819 
820 	/* low MDC */
821 	miir &= ~MASK_MIIR_MII_MDC;
822 	iowrite32(miir, miiport);
823 }
824 
825 
826 static int netdev_open(struct net_device *dev)
827 {
828 	struct netdev_private *np = netdev_priv(dev);
829 	void __iomem *ioaddr = np->mem;
830 	const int irq = np->pci_dev->irq;
831 	int rc, i;
832 
833 	iowrite32(0x00000001, ioaddr + BCR);	/* Reset */
834 
835 	rc = request_irq(irq, intr_handler, IRQF_SHARED, dev->name, dev);
836 	if (rc)
837 		return -EAGAIN;
838 
839 	for (i = 0; i < 3; i++)
840 		iowrite16(((unsigned short*)dev->dev_addr)[i],
841 				ioaddr + PAR0 + i*2);
842 
843 	init_ring(dev);
844 
845 	iowrite32(np->rx_ring_dma, ioaddr + RXLBA);
846 	iowrite32(np->tx_ring_dma, ioaddr + TXLBA);
847 
848 	/* Initialize other registers. */
849 	/* Configure the PCI bus bursts and FIFO thresholds.
850 	   486: Set 8 longword burst.
851 	   586: no burst limit.
852 	   Burst length 5:3
853 	   0 0 0   1
854 	   0 0 1   4
855 	   0 1 0   8
856 	   0 1 1   16
857 	   1 0 0   32
858 	   1 0 1   64
859 	   1 1 0   128
860 	   1 1 1   256
861 	   Wait the specified 50 PCI cycles after a reset by initializing
862 	   Tx and Rx queues and the address filter list.
863 	   FIXME (Ueimor): optimistic for alpha + posted writes ? */
864 
865 	np->bcrvalue = 0x10;	/* little-endian, 8 burst length */
866 #ifdef __BIG_ENDIAN
867 	np->bcrvalue |= 0x04;	/* big-endian */
868 #endif
869 
870 #if defined(__i386__) && !defined(MODULE)
871 	if (boot_cpu_data.x86 <= 4)
872 		np->crvalue = 0xa00;
873 	else
874 #endif
875 		np->crvalue = 0xe00;	/* rx 128 burst length */
876 
877 
878 // 89/12/29 add,
879 // 90/1/16 modify,
880 //   np->imrvalue=FBE|TUNF|CNTOVF|RBU|TI|RI;
881 	np->imrvalue = TUNF | CNTOVF | RBU | TI | RI;
882 	if (np->pci_dev->device == 0x891) {
883 		np->bcrvalue |= 0x200;	/* set PROG bit */
884 		np->crvalue |= CR_W_ENH;	/* set enhanced bit */
885 		np->imrvalue |= ETI;
886 	}
887 	iowrite32(np->bcrvalue, ioaddr + BCR);
888 
889 	if (dev->if_port == 0)
890 		dev->if_port = np->default_port;
891 
892 	iowrite32(0, ioaddr + RXPDR);
893 // 89/9/1 modify,
894 //   np->crvalue = 0x00e40001;    /* tx store and forward, tx/rx enable */
895 	np->crvalue |= 0x00e40001;	/* tx store and forward, tx/rx enable */
896 	np->mii.full_duplex = np->mii.force_media;
897 	getlinkstatus(dev);
898 	if (np->linkok)
899 		getlinktype(dev);
900 	__set_rx_mode(dev);
901 
902 	netif_start_queue(dev);
903 
904 	/* Clear and Enable interrupts by setting the interrupt mask. */
905 	iowrite32(FBE | TUNF | CNTOVF | RBU | TI | RI, ioaddr + ISR);
906 	iowrite32(np->imrvalue, ioaddr + IMR);
907 
908 	if (debug)
909 		printk(KERN_DEBUG "%s: Done netdev_open().\n", dev->name);
910 
911 	/* Set the timer to check for link beat. */
912 	timer_setup(&np->timer, netdev_timer, 0);
913 	np->timer.expires = RUN_AT(3 * HZ);
914 
915 	/* timer handler */
916 	add_timer(&np->timer);
917 
918 	timer_setup(&np->reset_timer, reset_timer, 0);
919 	np->reset_timer_armed = 0;
920 	return rc;
921 }
922 
923 
924 static void getlinkstatus(struct net_device *dev)
925 /* function: Routine will read MII Status Register to get link status.       */
926 /* input   : dev... pointer to the adapter block.                            */
927 /* output  : none.                                                           */
928 {
929 	struct netdev_private *np = netdev_priv(dev);
930 	unsigned int i, DelayTime = 0x1000;
931 
932 	np->linkok = 0;
933 
934 	if (np->PHYType == MysonPHY) {
935 		for (i = 0; i < DelayTime; ++i) {
936 			if (ioread32(np->mem + BMCRSR) & LinkIsUp2) {
937 				np->linkok = 1;
938 				return;
939 			}
940 			udelay(100);
941 		}
942 	} else {
943 		for (i = 0; i < DelayTime; ++i) {
944 			if (mdio_read(dev, np->phys[0], MII_BMSR) & BMSR_LSTATUS) {
945 				np->linkok = 1;
946 				return;
947 			}
948 			udelay(100);
949 		}
950 	}
951 }
952 
953 
954 static void getlinktype(struct net_device *dev)
955 {
956 	struct netdev_private *np = netdev_priv(dev);
957 
958 	if (np->PHYType == MysonPHY) {	/* 3-in-1 case */
959 		if (ioread32(np->mem + TCRRCR) & CR_R_FD)
960 			np->duplexmode = 2;	/* full duplex */
961 		else
962 			np->duplexmode = 1;	/* half duplex */
963 		if (ioread32(np->mem + TCRRCR) & CR_R_PS10)
964 			np->line_speed = 1;	/* 10M */
965 		else
966 			np->line_speed = 2;	/* 100M */
967 	} else {
968 		if (np->PHYType == SeeqPHY) {	/* this PHY is SEEQ 80225 */
969 			unsigned int data;
970 
971 			data = mdio_read(dev, np->phys[0], MIIRegister18);
972 			if (data & SPD_DET_100)
973 				np->line_speed = 2;	/* 100M */
974 			else
975 				np->line_speed = 1;	/* 10M */
976 			if (data & DPLX_DET_FULL)
977 				np->duplexmode = 2;	/* full duplex mode */
978 			else
979 				np->duplexmode = 1;	/* half duplex mode */
980 		} else if (np->PHYType == AhdocPHY) {
981 			unsigned int data;
982 
983 			data = mdio_read(dev, np->phys[0], DiagnosticReg);
984 			if (data & Speed_100)
985 				np->line_speed = 2;	/* 100M */
986 			else
987 				np->line_speed = 1;	/* 10M */
988 			if (data & DPLX_FULL)
989 				np->duplexmode = 2;	/* full duplex mode */
990 			else
991 				np->duplexmode = 1;	/* half duplex mode */
992 		}
993 /* 89/6/13 add, (begin) */
994 		else if (np->PHYType == MarvellPHY) {
995 			unsigned int data;
996 
997 			data = mdio_read(dev, np->phys[0], SpecificReg);
998 			if (data & Full_Duplex)
999 				np->duplexmode = 2;	/* full duplex mode */
1000 			else
1001 				np->duplexmode = 1;	/* half duplex mode */
1002 			data &= SpeedMask;
1003 			if (data == Speed_1000M)
1004 				np->line_speed = 3;	/* 1000M */
1005 			else if (data == Speed_100M)
1006 				np->line_speed = 2;	/* 100M */
1007 			else
1008 				np->line_speed = 1;	/* 10M */
1009 		}
1010 /* 89/6/13 add, (end) */
1011 /* 89/7/27 add, (begin) */
1012 		else if (np->PHYType == Myson981) {
1013 			unsigned int data;
1014 
1015 			data = mdio_read(dev, np->phys[0], StatusRegister);
1016 
1017 			if (data & SPEED100)
1018 				np->line_speed = 2;
1019 			else
1020 				np->line_speed = 1;
1021 
1022 			if (data & FULLMODE)
1023 				np->duplexmode = 2;
1024 			else
1025 				np->duplexmode = 1;
1026 		}
1027 /* 89/7/27 add, (end) */
1028 /* 89/12/29 add */
1029 		else if (np->PHYType == LevelOnePHY) {
1030 			unsigned int data;
1031 
1032 			data = mdio_read(dev, np->phys[0], SpecificReg);
1033 			if (data & LXT1000_Full)
1034 				np->duplexmode = 2;	/* full duplex mode */
1035 			else
1036 				np->duplexmode = 1;	/* half duplex mode */
1037 			data &= SpeedMask;
1038 			if (data == LXT1000_1000M)
1039 				np->line_speed = 3;	/* 1000M */
1040 			else if (data == LXT1000_100M)
1041 				np->line_speed = 2;	/* 100M */
1042 			else
1043 				np->line_speed = 1;	/* 10M */
1044 		}
1045 		np->crvalue &= (~CR_W_PS10) & (~CR_W_FD) & (~CR_W_PS1000);
1046 		if (np->line_speed == 1)
1047 			np->crvalue |= CR_W_PS10;
1048 		else if (np->line_speed == 3)
1049 			np->crvalue |= CR_W_PS1000;
1050 		if (np->duplexmode == 2)
1051 			np->crvalue |= CR_W_FD;
1052 	}
1053 }
1054 
1055 
1056 /* Take lock before calling this */
1057 static void allocate_rx_buffers(struct net_device *dev)
1058 {
1059 	struct netdev_private *np = netdev_priv(dev);
1060 
1061 	/*  allocate skb for rx buffers */
1062 	while (np->really_rx_count != RX_RING_SIZE) {
1063 		struct sk_buff *skb;
1064 
1065 		skb = netdev_alloc_skb(dev, np->rx_buf_sz);
1066 		if (skb == NULL)
1067 			break;	/* Better luck next round. */
1068 
1069 		while (np->lack_rxbuf->skbuff)
1070 			np->lack_rxbuf = np->lack_rxbuf->next_desc_logical;
1071 
1072 		np->lack_rxbuf->skbuff = skb;
1073 		np->lack_rxbuf->buffer = pci_map_single(np->pci_dev, skb->data,
1074 			np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1075 		np->lack_rxbuf->status = RXOWN;
1076 		++np->really_rx_count;
1077 	}
1078 }
1079 
1080 
1081 static void netdev_timer(struct timer_list *t)
1082 {
1083 	struct netdev_private *np = from_timer(np, t, timer);
1084 	struct net_device *dev = np->mii.dev;
1085 	void __iomem *ioaddr = np->mem;
1086 	int old_crvalue = np->crvalue;
1087 	unsigned int old_linkok = np->linkok;
1088 	unsigned long flags;
1089 
1090 	if (debug)
1091 		printk(KERN_DEBUG "%s: Media selection timer tick, status %8.8x "
1092 		       "config %8.8x.\n", dev->name, ioread32(ioaddr + ISR),
1093 		       ioread32(ioaddr + TCRRCR));
1094 
1095 	spin_lock_irqsave(&np->lock, flags);
1096 
1097 	if (np->flags == HAS_MII_XCVR) {
1098 		getlinkstatus(dev);
1099 		if ((old_linkok == 0) && (np->linkok == 1)) {	/* we need to detect the media type again */
1100 			getlinktype(dev);
1101 			if (np->crvalue != old_crvalue) {
1102 				stop_nic_rxtx(ioaddr, np->crvalue);
1103 				iowrite32(np->crvalue, ioaddr + TCRRCR);
1104 			}
1105 		}
1106 	}
1107 
1108 	allocate_rx_buffers(dev);
1109 
1110 	spin_unlock_irqrestore(&np->lock, flags);
1111 
1112 	np->timer.expires = RUN_AT(10 * HZ);
1113 	add_timer(&np->timer);
1114 }
1115 
1116 
1117 /* Take lock before calling */
1118 /* Reset chip and disable rx, tx and interrupts */
1119 static void reset_and_disable_rxtx(struct net_device *dev)
1120 {
1121 	struct netdev_private *np = netdev_priv(dev);
1122 	void __iomem *ioaddr = np->mem;
1123 	int delay=51;
1124 
1125 	/* Reset the chip's Tx and Rx processes. */
1126 	stop_nic_rxtx(ioaddr, 0);
1127 
1128 	/* Disable interrupts by clearing the interrupt mask. */
1129 	iowrite32(0, ioaddr + IMR);
1130 
1131 	/* Reset the chip to erase previous misconfiguration. */
1132 	iowrite32(0x00000001, ioaddr + BCR);
1133 
1134 	/* Ueimor: wait for 50 PCI cycles (and flush posted writes btw).
1135 	   We surely wait too long (address+data phase). Who cares? */
1136 	while (--delay) {
1137 		ioread32(ioaddr + BCR);
1138 		rmb();
1139 	}
1140 }
1141 
1142 
1143 /* Take lock before calling */
1144 /* Restore chip after reset */
1145 static void enable_rxtx(struct net_device *dev)
1146 {
1147 	struct netdev_private *np = netdev_priv(dev);
1148 	void __iomem *ioaddr = np->mem;
1149 
1150 	reset_rx_descriptors(dev);
1151 
1152 	iowrite32(np->tx_ring_dma + ((char*)np->cur_tx - (char*)np->tx_ring),
1153 		ioaddr + TXLBA);
1154 	iowrite32(np->rx_ring_dma + ((char*)np->cur_rx - (char*)np->rx_ring),
1155 		ioaddr + RXLBA);
1156 
1157 	iowrite32(np->bcrvalue, ioaddr + BCR);
1158 
1159 	iowrite32(0, ioaddr + RXPDR);
1160 	__set_rx_mode(dev); /* changes np->crvalue, writes it into TCRRCR */
1161 
1162 	/* Clear and Enable interrupts by setting the interrupt mask. */
1163 	iowrite32(FBE | TUNF | CNTOVF | RBU | TI | RI, ioaddr + ISR);
1164 	iowrite32(np->imrvalue, ioaddr + IMR);
1165 
1166 	iowrite32(0, ioaddr + TXPDR);
1167 }
1168 
1169 
1170 static void reset_timer(struct timer_list *t)
1171 {
1172 	struct netdev_private *np = from_timer(np, t, reset_timer);
1173 	struct net_device *dev = np->mii.dev;
1174 	unsigned long flags;
1175 
1176 	printk(KERN_WARNING "%s: resetting tx and rx machinery\n", dev->name);
1177 
1178 	spin_lock_irqsave(&np->lock, flags);
1179 	np->crvalue = np->crvalue_sv;
1180 	np->imrvalue = np->imrvalue_sv;
1181 
1182 	reset_and_disable_rxtx(dev);
1183 	/* works for me without this:
1184 	reset_tx_descriptors(dev); */
1185 	enable_rxtx(dev);
1186 	netif_start_queue(dev); /* FIXME: or netif_wake_queue(dev); ? */
1187 
1188 	np->reset_timer_armed = 0;
1189 
1190 	spin_unlock_irqrestore(&np->lock, flags);
1191 }
1192 
1193 
1194 static void fealnx_tx_timeout(struct net_device *dev)
1195 {
1196 	struct netdev_private *np = netdev_priv(dev);
1197 	void __iomem *ioaddr = np->mem;
1198 	unsigned long flags;
1199 	int i;
1200 
1201 	printk(KERN_WARNING
1202 	       "%s: Transmit timed out, status %8.8x, resetting...\n",
1203 	       dev->name, ioread32(ioaddr + ISR));
1204 
1205 	{
1206 		printk(KERN_DEBUG "  Rx ring %p: ", np->rx_ring);
1207 		for (i = 0; i < RX_RING_SIZE; i++)
1208 			printk(KERN_CONT " %8.8x",
1209 			       (unsigned int) np->rx_ring[i].status);
1210 		printk(KERN_CONT "\n");
1211 		printk(KERN_DEBUG "  Tx ring %p: ", np->tx_ring);
1212 		for (i = 0; i < TX_RING_SIZE; i++)
1213 			printk(KERN_CONT " %4.4x", np->tx_ring[i].status);
1214 		printk(KERN_CONT "\n");
1215 	}
1216 
1217 	spin_lock_irqsave(&np->lock, flags);
1218 
1219 	reset_and_disable_rxtx(dev);
1220 	reset_tx_descriptors(dev);
1221 	enable_rxtx(dev);
1222 
1223 	spin_unlock_irqrestore(&np->lock, flags);
1224 
1225 	netif_trans_update(dev); /* prevent tx timeout */
1226 	dev->stats.tx_errors++;
1227 	netif_wake_queue(dev); /* or .._start_.. ?? */
1228 }
1229 
1230 
1231 /* Initialize the Rx and Tx rings, along with various 'dev' bits. */
1232 static void init_ring(struct net_device *dev)
1233 {
1234 	struct netdev_private *np = netdev_priv(dev);
1235 	int i;
1236 
1237 	/* initialize rx variables */
1238 	np->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
1239 	np->cur_rx = &np->rx_ring[0];
1240 	np->lack_rxbuf = np->rx_ring;
1241 	np->really_rx_count = 0;
1242 
1243 	/* initial rx descriptors. */
1244 	for (i = 0; i < RX_RING_SIZE; i++) {
1245 		np->rx_ring[i].status = 0;
1246 		np->rx_ring[i].control = np->rx_buf_sz << RBSShift;
1247 		np->rx_ring[i].next_desc = np->rx_ring_dma +
1248 			(i + 1)*sizeof(struct fealnx_desc);
1249 		np->rx_ring[i].next_desc_logical = &np->rx_ring[i + 1];
1250 		np->rx_ring[i].skbuff = NULL;
1251 	}
1252 
1253 	/* for the last rx descriptor */
1254 	np->rx_ring[i - 1].next_desc = np->rx_ring_dma;
1255 	np->rx_ring[i - 1].next_desc_logical = np->rx_ring;
1256 
1257 	/* allocate skb for rx buffers */
1258 	for (i = 0; i < RX_RING_SIZE; i++) {
1259 		struct sk_buff *skb = netdev_alloc_skb(dev, np->rx_buf_sz);
1260 
1261 		if (skb == NULL) {
1262 			np->lack_rxbuf = &np->rx_ring[i];
1263 			break;
1264 		}
1265 
1266 		++np->really_rx_count;
1267 		np->rx_ring[i].skbuff = skb;
1268 		np->rx_ring[i].buffer = pci_map_single(np->pci_dev, skb->data,
1269 			np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1270 		np->rx_ring[i].status = RXOWN;
1271 		np->rx_ring[i].control |= RXIC;
1272 	}
1273 
1274 	/* initialize tx variables */
1275 	np->cur_tx = &np->tx_ring[0];
1276 	np->cur_tx_copy = &np->tx_ring[0];
1277 	np->really_tx_count = 0;
1278 	np->free_tx_count = TX_RING_SIZE;
1279 
1280 	for (i = 0; i < TX_RING_SIZE; i++) {
1281 		np->tx_ring[i].status = 0;
1282 		/* do we need np->tx_ring[i].control = XXX; ?? */
1283 		np->tx_ring[i].next_desc = np->tx_ring_dma +
1284 			(i + 1)*sizeof(struct fealnx_desc);
1285 		np->tx_ring[i].next_desc_logical = &np->tx_ring[i + 1];
1286 		np->tx_ring[i].skbuff = NULL;
1287 	}
1288 
1289 	/* for the last tx descriptor */
1290 	np->tx_ring[i - 1].next_desc = np->tx_ring_dma;
1291 	np->tx_ring[i - 1].next_desc_logical = &np->tx_ring[0];
1292 }
1293 
1294 
1295 static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev)
1296 {
1297 	struct netdev_private *np = netdev_priv(dev);
1298 	unsigned long flags;
1299 
1300 	spin_lock_irqsave(&np->lock, flags);
1301 
1302 	np->cur_tx_copy->skbuff = skb;
1303 
1304 #define one_buffer
1305 #define BPT 1022
1306 #if defined(one_buffer)
1307 	np->cur_tx_copy->buffer = pci_map_single(np->pci_dev, skb->data,
1308 		skb->len, PCI_DMA_TODEVICE);
1309 	np->cur_tx_copy->control = TXIC | TXLD | TXFD | CRCEnable | PADEnable;
1310 	np->cur_tx_copy->control |= (skb->len << PKTSShift);	/* pkt size */
1311 	np->cur_tx_copy->control |= (skb->len << TBSShift);	/* buffer size */
1312 // 89/12/29 add,
1313 	if (np->pci_dev->device == 0x891)
1314 		np->cur_tx_copy->control |= ETIControl | RetryTxLC;
1315 	np->cur_tx_copy->status = TXOWN;
1316 	np->cur_tx_copy = np->cur_tx_copy->next_desc_logical;
1317 	--np->free_tx_count;
1318 #elif defined(two_buffer)
1319 	if (skb->len > BPT) {
1320 		struct fealnx_desc *next;
1321 
1322 		/* for the first descriptor */
1323 		np->cur_tx_copy->buffer = pci_map_single(np->pci_dev, skb->data,
1324 			BPT, PCI_DMA_TODEVICE);
1325 		np->cur_tx_copy->control = TXIC | TXFD | CRCEnable | PADEnable;
1326 		np->cur_tx_copy->control |= (skb->len << PKTSShift);	/* pkt size */
1327 		np->cur_tx_copy->control |= (BPT << TBSShift);	/* buffer size */
1328 
1329 		/* for the last descriptor */
1330 		next = np->cur_tx_copy->next_desc_logical;
1331 		next->skbuff = skb;
1332 		next->control = TXIC | TXLD | CRCEnable | PADEnable;
1333 		next->control |= (skb->len << PKTSShift);	/* pkt size */
1334 		next->control |= ((skb->len - BPT) << TBSShift);	/* buf size */
1335 // 89/12/29 add,
1336 		if (np->pci_dev->device == 0x891)
1337 			np->cur_tx_copy->control |= ETIControl | RetryTxLC;
1338 		next->buffer = pci_map_single(ep->pci_dev, skb->data + BPT,
1339                                 skb->len - BPT, PCI_DMA_TODEVICE);
1340 
1341 		next->status = TXOWN;
1342 		np->cur_tx_copy->status = TXOWN;
1343 
1344 		np->cur_tx_copy = next->next_desc_logical;
1345 		np->free_tx_count -= 2;
1346 	} else {
1347 		np->cur_tx_copy->buffer = pci_map_single(np->pci_dev, skb->data,
1348 			skb->len, PCI_DMA_TODEVICE);
1349 		np->cur_tx_copy->control = TXIC | TXLD | TXFD | CRCEnable | PADEnable;
1350 		np->cur_tx_copy->control |= (skb->len << PKTSShift);	/* pkt size */
1351 		np->cur_tx_copy->control |= (skb->len << TBSShift);	/* buffer size */
1352 // 89/12/29 add,
1353 		if (np->pci_dev->device == 0x891)
1354 			np->cur_tx_copy->control |= ETIControl | RetryTxLC;
1355 		np->cur_tx_copy->status = TXOWN;
1356 		np->cur_tx_copy = np->cur_tx_copy->next_desc_logical;
1357 		--np->free_tx_count;
1358 	}
1359 #endif
1360 
1361 	if (np->free_tx_count < 2)
1362 		netif_stop_queue(dev);
1363 	++np->really_tx_count;
1364 	iowrite32(0, np->mem + TXPDR);
1365 
1366 	spin_unlock_irqrestore(&np->lock, flags);
1367 	return NETDEV_TX_OK;
1368 }
1369 
1370 
1371 /* Take lock before calling */
1372 /* Chip probably hosed tx ring. Clean up. */
1373 static void reset_tx_descriptors(struct net_device *dev)
1374 {
1375 	struct netdev_private *np = netdev_priv(dev);
1376 	struct fealnx_desc *cur;
1377 	int i;
1378 
1379 	/* initialize tx variables */
1380 	np->cur_tx = &np->tx_ring[0];
1381 	np->cur_tx_copy = &np->tx_ring[0];
1382 	np->really_tx_count = 0;
1383 	np->free_tx_count = TX_RING_SIZE;
1384 
1385 	for (i = 0; i < TX_RING_SIZE; i++) {
1386 		cur = &np->tx_ring[i];
1387 		if (cur->skbuff) {
1388 			pci_unmap_single(np->pci_dev, cur->buffer,
1389 				cur->skbuff->len, PCI_DMA_TODEVICE);
1390 			dev_kfree_skb_any(cur->skbuff);
1391 			cur->skbuff = NULL;
1392 		}
1393 		cur->status = 0;
1394 		cur->control = 0;	/* needed? */
1395 		/* probably not needed. We do it for purely paranoid reasons */
1396 		cur->next_desc = np->tx_ring_dma +
1397 			(i + 1)*sizeof(struct fealnx_desc);
1398 		cur->next_desc_logical = &np->tx_ring[i + 1];
1399 	}
1400 	/* for the last tx descriptor */
1401 	np->tx_ring[TX_RING_SIZE - 1].next_desc = np->tx_ring_dma;
1402 	np->tx_ring[TX_RING_SIZE - 1].next_desc_logical = &np->tx_ring[0];
1403 }
1404 
1405 
1406 /* Take lock and stop rx before calling this */
1407 static void reset_rx_descriptors(struct net_device *dev)
1408 {
1409 	struct netdev_private *np = netdev_priv(dev);
1410 	struct fealnx_desc *cur = np->cur_rx;
1411 	int i;
1412 
1413 	allocate_rx_buffers(dev);
1414 
1415 	for (i = 0; i < RX_RING_SIZE; i++) {
1416 		if (cur->skbuff)
1417 			cur->status = RXOWN;
1418 		cur = cur->next_desc_logical;
1419 	}
1420 
1421 	iowrite32(np->rx_ring_dma + ((char*)np->cur_rx - (char*)np->rx_ring),
1422 		np->mem + RXLBA);
1423 }
1424 
1425 
1426 /* The interrupt handler does all of the Rx thread work and cleans up
1427    after the Tx thread. */
1428 static irqreturn_t intr_handler(int irq, void *dev_instance)
1429 {
1430 	struct net_device *dev = (struct net_device *) dev_instance;
1431 	struct netdev_private *np = netdev_priv(dev);
1432 	void __iomem *ioaddr = np->mem;
1433 	long boguscnt = max_interrupt_work;
1434 	unsigned int num_tx = 0;
1435 	int handled = 0;
1436 
1437 	spin_lock(&np->lock);
1438 
1439 	iowrite32(0, ioaddr + IMR);
1440 
1441 	do {
1442 		u32 intr_status = ioread32(ioaddr + ISR);
1443 
1444 		/* Acknowledge all of the current interrupt sources ASAP. */
1445 		iowrite32(intr_status, ioaddr + ISR);
1446 
1447 		if (debug)
1448 			printk(KERN_DEBUG "%s: Interrupt, status %4.4x.\n", dev->name,
1449 			       intr_status);
1450 
1451 		if (!(intr_status & np->imrvalue))
1452 			break;
1453 
1454 		handled = 1;
1455 
1456 // 90/1/16 delete,
1457 //
1458 //      if (intr_status & FBE)
1459 //      {   /* fatal error */
1460 //          stop_nic_tx(ioaddr, 0);
1461 //          stop_nic_rx(ioaddr, 0);
1462 //          break;
1463 //      };
1464 
1465 		if (intr_status & TUNF)
1466 			iowrite32(0, ioaddr + TXPDR);
1467 
1468 		if (intr_status & CNTOVF) {
1469 			/* missed pkts */
1470 			dev->stats.rx_missed_errors +=
1471 				ioread32(ioaddr + TALLY) & 0x7fff;
1472 
1473 			/* crc error */
1474 			dev->stats.rx_crc_errors +=
1475 			    (ioread32(ioaddr + TALLY) & 0x7fff0000) >> 16;
1476 		}
1477 
1478 		if (intr_status & (RI | RBU)) {
1479 			if (intr_status & RI)
1480 				netdev_rx(dev);
1481 			else {
1482 				stop_nic_rx(ioaddr, np->crvalue);
1483 				reset_rx_descriptors(dev);
1484 				iowrite32(np->crvalue, ioaddr + TCRRCR);
1485 			}
1486 		}
1487 
1488 		while (np->really_tx_count) {
1489 			long tx_status = np->cur_tx->status;
1490 			long tx_control = np->cur_tx->control;
1491 
1492 			if (!(tx_control & TXLD)) {	/* this pkt is combined by two tx descriptors */
1493 				struct fealnx_desc *next;
1494 
1495 				next = np->cur_tx->next_desc_logical;
1496 				tx_status = next->status;
1497 				tx_control = next->control;
1498 			}
1499 
1500 			if (tx_status & TXOWN)
1501 				break;
1502 
1503 			if (!(np->crvalue & CR_W_ENH)) {
1504 				if (tx_status & (CSL | LC | EC | UDF | HF)) {
1505 					dev->stats.tx_errors++;
1506 					if (tx_status & EC)
1507 						dev->stats.tx_aborted_errors++;
1508 					if (tx_status & CSL)
1509 						dev->stats.tx_carrier_errors++;
1510 					if (tx_status & LC)
1511 						dev->stats.tx_window_errors++;
1512 					if (tx_status & UDF)
1513 						dev->stats.tx_fifo_errors++;
1514 					if ((tx_status & HF) && np->mii.full_duplex == 0)
1515 						dev->stats.tx_heartbeat_errors++;
1516 
1517 				} else {
1518 					dev->stats.tx_bytes +=
1519 					    ((tx_control & PKTSMask) >> PKTSShift);
1520 
1521 					dev->stats.collisions +=
1522 					    ((tx_status & NCRMask) >> NCRShift);
1523 					dev->stats.tx_packets++;
1524 				}
1525 			} else {
1526 				dev->stats.tx_bytes +=
1527 				    ((tx_control & PKTSMask) >> PKTSShift);
1528 				dev->stats.tx_packets++;
1529 			}
1530 
1531 			/* Free the original skb. */
1532 			pci_unmap_single(np->pci_dev, np->cur_tx->buffer,
1533 				np->cur_tx->skbuff->len, PCI_DMA_TODEVICE);
1534 			dev_consume_skb_irq(np->cur_tx->skbuff);
1535 			np->cur_tx->skbuff = NULL;
1536 			--np->really_tx_count;
1537 			if (np->cur_tx->control & TXLD) {
1538 				np->cur_tx = np->cur_tx->next_desc_logical;
1539 				++np->free_tx_count;
1540 			} else {
1541 				np->cur_tx = np->cur_tx->next_desc_logical;
1542 				np->cur_tx = np->cur_tx->next_desc_logical;
1543 				np->free_tx_count += 2;
1544 			}
1545 			num_tx++;
1546 		}		/* end of for loop */
1547 
1548 		if (num_tx && np->free_tx_count >= 2)
1549 			netif_wake_queue(dev);
1550 
1551 		/* read transmit status for enhanced mode only */
1552 		if (np->crvalue & CR_W_ENH) {
1553 			long data;
1554 
1555 			data = ioread32(ioaddr + TSR);
1556 			dev->stats.tx_errors += (data & 0xff000000) >> 24;
1557 			dev->stats.tx_aborted_errors +=
1558 				(data & 0xff000000) >> 24;
1559 			dev->stats.tx_window_errors +=
1560 				(data & 0x00ff0000) >> 16;
1561 			dev->stats.collisions += (data & 0x0000ffff);
1562 		}
1563 
1564 		if (--boguscnt < 0) {
1565 			printk(KERN_WARNING "%s: Too much work at interrupt, "
1566 			       "status=0x%4.4x.\n", dev->name, intr_status);
1567 			if (!np->reset_timer_armed) {
1568 				np->reset_timer_armed = 1;
1569 				np->reset_timer.expires = RUN_AT(HZ/2);
1570 				add_timer(&np->reset_timer);
1571 				stop_nic_rxtx(ioaddr, 0);
1572 				netif_stop_queue(dev);
1573 				/* or netif_tx_disable(dev); ?? */
1574 				/* Prevent other paths from enabling tx,rx,intrs */
1575 				np->crvalue_sv = np->crvalue;
1576 				np->imrvalue_sv = np->imrvalue;
1577 				np->crvalue &= ~(CR_W_TXEN | CR_W_RXEN); /* or simply = 0? */
1578 				np->imrvalue = 0;
1579 			}
1580 
1581 			break;
1582 		}
1583 	} while (1);
1584 
1585 	/* read the tally counters */
1586 	/* missed pkts */
1587 	dev->stats.rx_missed_errors += ioread32(ioaddr + TALLY) & 0x7fff;
1588 
1589 	/* crc error */
1590 	dev->stats.rx_crc_errors +=
1591 		(ioread32(ioaddr + TALLY) & 0x7fff0000) >> 16;
1592 
1593 	if (debug)
1594 		printk(KERN_DEBUG "%s: exiting interrupt, status=%#4.4x.\n",
1595 		       dev->name, ioread32(ioaddr + ISR));
1596 
1597 	iowrite32(np->imrvalue, ioaddr + IMR);
1598 
1599 	spin_unlock(&np->lock);
1600 
1601 	return IRQ_RETVAL(handled);
1602 }
1603 
1604 
1605 /* This routine is logically part of the interrupt handler, but separated
1606    for clarity and better register allocation. */
1607 static int netdev_rx(struct net_device *dev)
1608 {
1609 	struct netdev_private *np = netdev_priv(dev);
1610 	void __iomem *ioaddr = np->mem;
1611 
1612 	/* If EOP is set on the next entry, it's a new packet. Send it up. */
1613 	while (!(np->cur_rx->status & RXOWN) && np->cur_rx->skbuff) {
1614 		s32 rx_status = np->cur_rx->status;
1615 
1616 		if (np->really_rx_count == 0)
1617 			break;
1618 
1619 		if (debug)
1620 			printk(KERN_DEBUG "  netdev_rx() status was %8.8x.\n", rx_status);
1621 
1622 		if ((!((rx_status & RXFSD) && (rx_status & RXLSD))) ||
1623 		    (rx_status & ErrorSummary)) {
1624 			if (rx_status & ErrorSummary) {	/* there was a fatal error */
1625 				if (debug)
1626 					printk(KERN_DEBUG
1627 					       "%s: Receive error, Rx status %8.8x.\n",
1628 					       dev->name, rx_status);
1629 
1630 				dev->stats.rx_errors++;	/* end of a packet. */
1631 				if (rx_status & (LONGPKT | RUNTPKT))
1632 					dev->stats.rx_length_errors++;
1633 				if (rx_status & RXER)
1634 					dev->stats.rx_frame_errors++;
1635 				if (rx_status & CRC)
1636 					dev->stats.rx_crc_errors++;
1637 			} else {
1638 				int need_to_reset = 0;
1639 				int desno = 0;
1640 
1641 				if (rx_status & RXFSD) {	/* this pkt is too long, over one rx buffer */
1642 					struct fealnx_desc *cur;
1643 
1644 					/* check this packet is received completely? */
1645 					cur = np->cur_rx;
1646 					while (desno <= np->really_rx_count) {
1647 						++desno;
1648 						if ((!(cur->status & RXOWN)) &&
1649 						    (cur->status & RXLSD))
1650 							break;
1651 						/* goto next rx descriptor */
1652 						cur = cur->next_desc_logical;
1653 					}
1654 					if (desno > np->really_rx_count)
1655 						need_to_reset = 1;
1656 				} else	/* RXLSD did not find, something error */
1657 					need_to_reset = 1;
1658 
1659 				if (need_to_reset == 0) {
1660 					int i;
1661 
1662 					dev->stats.rx_length_errors++;
1663 
1664 					/* free all rx descriptors related this long pkt */
1665 					for (i = 0; i < desno; ++i) {
1666 						if (!np->cur_rx->skbuff) {
1667 							printk(KERN_DEBUG
1668 								"%s: I'm scared\n", dev->name);
1669 							break;
1670 						}
1671 						np->cur_rx->status = RXOWN;
1672 						np->cur_rx = np->cur_rx->next_desc_logical;
1673 					}
1674 					continue;
1675 				} else {        /* rx error, need to reset this chip */
1676 					stop_nic_rx(ioaddr, np->crvalue);
1677 					reset_rx_descriptors(dev);
1678 					iowrite32(np->crvalue, ioaddr + TCRRCR);
1679 				}
1680 				break;	/* exit the while loop */
1681 			}
1682 		} else {	/* this received pkt is ok */
1683 
1684 			struct sk_buff *skb;
1685 			/* Omit the four octet CRC from the length. */
1686 			short pkt_len = ((rx_status & FLNGMASK) >> FLNGShift) - 4;
1687 
1688 #ifndef final_version
1689 			if (debug)
1690 				printk(KERN_DEBUG "  netdev_rx() normal Rx pkt length %d"
1691 				       " status %x.\n", pkt_len, rx_status);
1692 #endif
1693 
1694 			/* Check if the packet is long enough to accept without copying
1695 			   to a minimally-sized skbuff. */
1696 			if (pkt_len < rx_copybreak &&
1697 			    (skb = netdev_alloc_skb(dev, pkt_len + 2)) != NULL) {
1698 				skb_reserve(skb, 2);	/* 16 byte align the IP header */
1699 				pci_dma_sync_single_for_cpu(np->pci_dev,
1700 							    np->cur_rx->buffer,
1701 							    np->rx_buf_sz,
1702 							    PCI_DMA_FROMDEVICE);
1703 				/* Call copy + cksum if available. */
1704 
1705 #if ! defined(__alpha__)
1706 				skb_copy_to_linear_data(skb,
1707 					np->cur_rx->skbuff->data, pkt_len);
1708 				skb_put(skb, pkt_len);
1709 #else
1710 				skb_put_data(skb, np->cur_rx->skbuff->data,
1711 					     pkt_len);
1712 #endif
1713 				pci_dma_sync_single_for_device(np->pci_dev,
1714 							       np->cur_rx->buffer,
1715 							       np->rx_buf_sz,
1716 							       PCI_DMA_FROMDEVICE);
1717 			} else {
1718 				pci_unmap_single(np->pci_dev,
1719 						 np->cur_rx->buffer,
1720 						 np->rx_buf_sz,
1721 						 PCI_DMA_FROMDEVICE);
1722 				skb_put(skb = np->cur_rx->skbuff, pkt_len);
1723 				np->cur_rx->skbuff = NULL;
1724 				--np->really_rx_count;
1725 			}
1726 			skb->protocol = eth_type_trans(skb, dev);
1727 			netif_rx(skb);
1728 			dev->stats.rx_packets++;
1729 			dev->stats.rx_bytes += pkt_len;
1730 		}
1731 
1732 		np->cur_rx = np->cur_rx->next_desc_logical;
1733 	}			/* end of while loop */
1734 
1735 	/*  allocate skb for rx buffers */
1736 	allocate_rx_buffers(dev);
1737 
1738 	return 0;
1739 }
1740 
1741 
1742 static struct net_device_stats *get_stats(struct net_device *dev)
1743 {
1744 	struct netdev_private *np = netdev_priv(dev);
1745 	void __iomem *ioaddr = np->mem;
1746 
1747 	/* The chip only need report frame silently dropped. */
1748 	if (netif_running(dev)) {
1749 		dev->stats.rx_missed_errors +=
1750 			ioread32(ioaddr + TALLY) & 0x7fff;
1751 		dev->stats.rx_crc_errors +=
1752 			(ioread32(ioaddr + TALLY) & 0x7fff0000) >> 16;
1753 	}
1754 
1755 	return &dev->stats;
1756 }
1757 
1758 
1759 /* for dev->set_multicast_list */
1760 static void set_rx_mode(struct net_device *dev)
1761 {
1762 	spinlock_t *lp = &((struct netdev_private *)netdev_priv(dev))->lock;
1763 	unsigned long flags;
1764 	spin_lock_irqsave(lp, flags);
1765 	__set_rx_mode(dev);
1766 	spin_unlock_irqrestore(lp, flags);
1767 }
1768 
1769 
1770 /* Take lock before calling */
1771 static void __set_rx_mode(struct net_device *dev)
1772 {
1773 	struct netdev_private *np = netdev_priv(dev);
1774 	void __iomem *ioaddr = np->mem;
1775 	u32 mc_filter[2];	/* Multicast hash filter */
1776 	u32 rx_mode;
1777 
1778 	if (dev->flags & IFF_PROMISC) {	/* Set promiscuous. */
1779 		memset(mc_filter, 0xff, sizeof(mc_filter));
1780 		rx_mode = CR_W_PROM | CR_W_AB | CR_W_AM;
1781 	} else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
1782 		   (dev->flags & IFF_ALLMULTI)) {
1783 		/* Too many to match, or accept all multicasts. */
1784 		memset(mc_filter, 0xff, sizeof(mc_filter));
1785 		rx_mode = CR_W_AB | CR_W_AM;
1786 	} else {
1787 		struct netdev_hw_addr *ha;
1788 
1789 		memset(mc_filter, 0, sizeof(mc_filter));
1790 		netdev_for_each_mc_addr(ha, dev) {
1791 			unsigned int bit;
1792 			bit = (ether_crc(ETH_ALEN, ha->addr) >> 26) ^ 0x3F;
1793 			mc_filter[bit >> 5] |= (1 << bit);
1794 		}
1795 		rx_mode = CR_W_AB | CR_W_AM;
1796 	}
1797 
1798 	stop_nic_rxtx(ioaddr, np->crvalue);
1799 
1800 	iowrite32(mc_filter[0], ioaddr + MAR0);
1801 	iowrite32(mc_filter[1], ioaddr + MAR1);
1802 	np->crvalue &= ~CR_W_RXMODEMASK;
1803 	np->crvalue |= rx_mode;
1804 	iowrite32(np->crvalue, ioaddr + TCRRCR);
1805 }
1806 
1807 static void netdev_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1808 {
1809 	struct netdev_private *np = netdev_priv(dev);
1810 
1811 	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1812 	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1813 	strlcpy(info->bus_info, pci_name(np->pci_dev), sizeof(info->bus_info));
1814 }
1815 
1816 static int netdev_get_link_ksettings(struct net_device *dev,
1817 				     struct ethtool_link_ksettings *cmd)
1818 {
1819 	struct netdev_private *np = netdev_priv(dev);
1820 
1821 	spin_lock_irq(&np->lock);
1822 	mii_ethtool_get_link_ksettings(&np->mii, cmd);
1823 	spin_unlock_irq(&np->lock);
1824 
1825 	return 0;
1826 }
1827 
1828 static int netdev_set_link_ksettings(struct net_device *dev,
1829 				     const struct ethtool_link_ksettings *cmd)
1830 {
1831 	struct netdev_private *np = netdev_priv(dev);
1832 	int rc;
1833 
1834 	spin_lock_irq(&np->lock);
1835 	rc = mii_ethtool_set_link_ksettings(&np->mii, cmd);
1836 	spin_unlock_irq(&np->lock);
1837 
1838 	return rc;
1839 }
1840 
1841 static int netdev_nway_reset(struct net_device *dev)
1842 {
1843 	struct netdev_private *np = netdev_priv(dev);
1844 	return mii_nway_restart(&np->mii);
1845 }
1846 
1847 static u32 netdev_get_link(struct net_device *dev)
1848 {
1849 	struct netdev_private *np = netdev_priv(dev);
1850 	return mii_link_ok(&np->mii);
1851 }
1852 
1853 static u32 netdev_get_msglevel(struct net_device *dev)
1854 {
1855 	return debug;
1856 }
1857 
1858 static void netdev_set_msglevel(struct net_device *dev, u32 value)
1859 {
1860 	debug = value;
1861 }
1862 
1863 static const struct ethtool_ops netdev_ethtool_ops = {
1864 	.get_drvinfo		= netdev_get_drvinfo,
1865 	.nway_reset		= netdev_nway_reset,
1866 	.get_link		= netdev_get_link,
1867 	.get_msglevel		= netdev_get_msglevel,
1868 	.set_msglevel		= netdev_set_msglevel,
1869 	.get_link_ksettings	= netdev_get_link_ksettings,
1870 	.set_link_ksettings	= netdev_set_link_ksettings,
1871 };
1872 
1873 static int mii_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1874 {
1875 	struct netdev_private *np = netdev_priv(dev);
1876 	int rc;
1877 
1878 	if (!netif_running(dev))
1879 		return -EINVAL;
1880 
1881 	spin_lock_irq(&np->lock);
1882 	rc = generic_mii_ioctl(&np->mii, if_mii(rq), cmd, NULL);
1883 	spin_unlock_irq(&np->lock);
1884 
1885 	return rc;
1886 }
1887 
1888 
1889 static int netdev_close(struct net_device *dev)
1890 {
1891 	struct netdev_private *np = netdev_priv(dev);
1892 	void __iomem *ioaddr = np->mem;
1893 	int i;
1894 
1895 	netif_stop_queue(dev);
1896 
1897 	/* Disable interrupts by clearing the interrupt mask. */
1898 	iowrite32(0x0000, ioaddr + IMR);
1899 
1900 	/* Stop the chip's Tx and Rx processes. */
1901 	stop_nic_rxtx(ioaddr, 0);
1902 
1903 	del_timer_sync(&np->timer);
1904 	del_timer_sync(&np->reset_timer);
1905 
1906 	free_irq(np->pci_dev->irq, dev);
1907 
1908 	/* Free all the skbuffs in the Rx queue. */
1909 	for (i = 0; i < RX_RING_SIZE; i++) {
1910 		struct sk_buff *skb = np->rx_ring[i].skbuff;
1911 
1912 		np->rx_ring[i].status = 0;
1913 		if (skb) {
1914 			pci_unmap_single(np->pci_dev, np->rx_ring[i].buffer,
1915 				np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1916 			dev_kfree_skb(skb);
1917 			np->rx_ring[i].skbuff = NULL;
1918 		}
1919 	}
1920 
1921 	for (i = 0; i < TX_RING_SIZE; i++) {
1922 		struct sk_buff *skb = np->tx_ring[i].skbuff;
1923 
1924 		if (skb) {
1925 			pci_unmap_single(np->pci_dev, np->tx_ring[i].buffer,
1926 				skb->len, PCI_DMA_TODEVICE);
1927 			dev_kfree_skb(skb);
1928 			np->tx_ring[i].skbuff = NULL;
1929 		}
1930 	}
1931 
1932 	return 0;
1933 }
1934 
1935 static const struct pci_device_id fealnx_pci_tbl[] = {
1936 	{0x1516, 0x0800, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
1937 	{0x1516, 0x0803, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 1},
1938 	{0x1516, 0x0891, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 2},
1939 	{} /* terminate list */
1940 };
1941 MODULE_DEVICE_TABLE(pci, fealnx_pci_tbl);
1942 
1943 
1944 static struct pci_driver fealnx_driver = {
1945 	.name		= "fealnx",
1946 	.id_table	= fealnx_pci_tbl,
1947 	.probe		= fealnx_init_one,
1948 	.remove		= fealnx_remove_one,
1949 };
1950 
1951 static int __init fealnx_init(void)
1952 {
1953 /* when a module, this is printed whether or not devices are found in probe */
1954 #ifdef MODULE
1955 	printk(version);
1956 #endif
1957 
1958 	return pci_register_driver(&fealnx_driver);
1959 }
1960 
1961 static void __exit fealnx_exit(void)
1962 {
1963 	pci_unregister_driver(&fealnx_driver);
1964 }
1965 
1966 module_init(fealnx_init);
1967 module_exit(fealnx_exit);
1968