1 /* 2 Written 1998-2000 by Donald Becker. 3 4 This software may be used and distributed according to the terms of 5 the GNU General Public License (GPL), incorporated herein by reference. 6 Drivers based on or derived from this code fall under the GPL and must 7 retain the authorship, copyright and license notice. This file is not 8 a complete program and may only be used when the entire operating 9 system is licensed under the GPL. 10 11 The author may be reached as becker@scyld.com, or C/O 12 Scyld Computing Corporation 13 410 Severn Ave., Suite 210 14 Annapolis MD 21403 15 16 Support information and updates available at 17 http://www.scyld.com/network/pci-skeleton.html 18 19 Linux kernel updates: 20 21 Version 2.51, Nov 17, 2001 (jgarzik): 22 - Add ethtool support 23 - Replace some MII-related magic numbers with constants 24 25 */ 26 27 #define DRV_NAME "fealnx" 28 29 static int debug; /* 1-> print debug message */ 30 static int max_interrupt_work = 20; 31 32 /* Maximum number of multicast addresses to filter (vs. Rx-all-multicast). */ 33 static int multicast_filter_limit = 32; 34 35 /* Set the copy breakpoint for the copy-only-tiny-frames scheme. */ 36 /* Setting to > 1518 effectively disables this feature. */ 37 static int rx_copybreak; 38 39 /* Used to pass the media type, etc. */ 40 /* Both 'options[]' and 'full_duplex[]' should exist for driver */ 41 /* interoperability. */ 42 /* The media type is usually passed in 'options[]'. */ 43 #define MAX_UNITS 8 /* More are supported, limit only on options */ 44 static int options[MAX_UNITS] = { -1, -1, -1, -1, -1, -1, -1, -1 }; 45 static int full_duplex[MAX_UNITS] = { -1, -1, -1, -1, -1, -1, -1, -1 }; 46 47 /* Operational parameters that are set at compile time. */ 48 /* Keep the ring sizes a power of two for compile efficiency. */ 49 /* The compiler will convert <unsigned>'%'<2^N> into a bit mask. */ 50 /* Making the Tx ring too large decreases the effectiveness of channel */ 51 /* bonding and packet priority. */ 52 /* There are no ill effects from too-large receive rings. */ 53 // 88-12-9 modify, 54 // #define TX_RING_SIZE 16 55 // #define RX_RING_SIZE 32 56 #define TX_RING_SIZE 6 57 #define RX_RING_SIZE 12 58 #define TX_TOTAL_SIZE TX_RING_SIZE*sizeof(struct fealnx_desc) 59 #define RX_TOTAL_SIZE RX_RING_SIZE*sizeof(struct fealnx_desc) 60 61 /* Operational parameters that usually are not changed. */ 62 /* Time in jiffies before concluding the transmitter is hung. */ 63 #define TX_TIMEOUT (2*HZ) 64 65 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer. */ 66 67 68 /* Include files, designed to support most kernel versions 2.0.0 and later. */ 69 #include <linux/module.h> 70 #include <linux/kernel.h> 71 #include <linux/string.h> 72 #include <linux/timer.h> 73 #include <linux/errno.h> 74 #include <linux/ioport.h> 75 #include <linux/interrupt.h> 76 #include <linux/pci.h> 77 #include <linux/netdevice.h> 78 #include <linux/etherdevice.h> 79 #include <linux/skbuff.h> 80 #include <linux/init.h> 81 #include <linux/mii.h> 82 #include <linux/ethtool.h> 83 #include <linux/crc32.h> 84 #include <linux/delay.h> 85 #include <linux/bitops.h> 86 87 #include <asm/processor.h> /* Processor type for cache alignment. */ 88 #include <asm/io.h> 89 #include <linux/uaccess.h> 90 #include <asm/byteorder.h> 91 92 /* This driver was written to use PCI memory space, however some x86 systems 93 work only with I/O space accesses. */ 94 #ifndef __alpha__ 95 #define USE_IO_OPS 96 #endif 97 98 /* Kernel compatibility defines, some common to David Hinds' PCMCIA package. */ 99 /* This is only in the support-all-kernels source code. */ 100 101 #define RUN_AT(x) (jiffies + (x)) 102 103 MODULE_AUTHOR("Myson or whoever"); 104 MODULE_DESCRIPTION("Myson MTD-8xx 100/10M Ethernet PCI Adapter Driver"); 105 MODULE_LICENSE("GPL"); 106 module_param(max_interrupt_work, int, 0); 107 module_param(debug, int, 0); 108 module_param(rx_copybreak, int, 0); 109 module_param(multicast_filter_limit, int, 0); 110 module_param_array(options, int, NULL, 0); 111 module_param_array(full_duplex, int, NULL, 0); 112 MODULE_PARM_DESC(max_interrupt_work, "fealnx maximum events handled per interrupt"); 113 MODULE_PARM_DESC(debug, "fealnx enable debugging (0-1)"); 114 MODULE_PARM_DESC(rx_copybreak, "fealnx copy breakpoint for copy-only-tiny-frames"); 115 MODULE_PARM_DESC(multicast_filter_limit, "fealnx maximum number of filtered multicast addresses"); 116 MODULE_PARM_DESC(options, "fealnx: Bits 0-3: media type, bit 17: full duplex"); 117 MODULE_PARM_DESC(full_duplex, "fealnx full duplex setting(s) (1)"); 118 119 enum { 120 MIN_REGION_SIZE = 136, 121 }; 122 123 /* A chip capabilities table, matching the entries in pci_tbl[] above. */ 124 enum chip_capability_flags { 125 HAS_MII_XCVR, 126 HAS_CHIP_XCVR, 127 }; 128 129 /* 89/6/13 add, */ 130 /* for different PHY */ 131 enum phy_type_flags { 132 MysonPHY = 1, 133 AhdocPHY = 2, 134 SeeqPHY = 3, 135 MarvellPHY = 4, 136 Myson981 = 5, 137 LevelOnePHY = 6, 138 OtherPHY = 10, 139 }; 140 141 struct chip_info { 142 char *chip_name; 143 int flags; 144 }; 145 146 static const struct chip_info skel_netdrv_tbl[] = { 147 { "100/10M Ethernet PCI Adapter", HAS_MII_XCVR }, 148 { "100/10M Ethernet PCI Adapter", HAS_CHIP_XCVR }, 149 { "1000/100/10M Ethernet PCI Adapter", HAS_MII_XCVR }, 150 }; 151 152 /* Offsets to the Command and Status Registers. */ 153 enum fealnx_offsets { 154 PAR0 = 0x0, /* physical address 0-3 */ 155 PAR1 = 0x04, /* physical address 4-5 */ 156 MAR0 = 0x08, /* multicast address 0-3 */ 157 MAR1 = 0x0C, /* multicast address 4-7 */ 158 FAR0 = 0x10, /* flow-control address 0-3 */ 159 FAR1 = 0x14, /* flow-control address 4-5 */ 160 TCRRCR = 0x18, /* receive & transmit configuration */ 161 BCR = 0x1C, /* bus command */ 162 TXPDR = 0x20, /* transmit polling demand */ 163 RXPDR = 0x24, /* receive polling demand */ 164 RXCWP = 0x28, /* receive current word pointer */ 165 TXLBA = 0x2C, /* transmit list base address */ 166 RXLBA = 0x30, /* receive list base address */ 167 ISR = 0x34, /* interrupt status */ 168 IMR = 0x38, /* interrupt mask */ 169 FTH = 0x3C, /* flow control high/low threshold */ 170 MANAGEMENT = 0x40, /* bootrom/eeprom and mii management */ 171 TALLY = 0x44, /* tally counters for crc and mpa */ 172 TSR = 0x48, /* tally counter for transmit status */ 173 BMCRSR = 0x4c, /* basic mode control and status */ 174 PHYIDENTIFIER = 0x50, /* phy identifier */ 175 ANARANLPAR = 0x54, /* auto-negotiation advertisement and link 176 partner ability */ 177 ANEROCR = 0x58, /* auto-negotiation expansion and pci conf. */ 178 BPREMRPSR = 0x5c, /* bypass & receive error mask and phy status */ 179 }; 180 181 /* Bits in the interrupt status/enable registers. */ 182 /* The bits in the Intr Status/Enable registers, mostly interrupt sources. */ 183 enum intr_status_bits { 184 RFCON = 0x00020000, /* receive flow control xon packet */ 185 RFCOFF = 0x00010000, /* receive flow control xoff packet */ 186 LSCStatus = 0x00008000, /* link status change */ 187 ANCStatus = 0x00004000, /* autonegotiation completed */ 188 FBE = 0x00002000, /* fatal bus error */ 189 FBEMask = 0x00001800, /* mask bit12-11 */ 190 ParityErr = 0x00000000, /* parity error */ 191 TargetErr = 0x00001000, /* target abort */ 192 MasterErr = 0x00000800, /* master error */ 193 TUNF = 0x00000400, /* transmit underflow */ 194 ROVF = 0x00000200, /* receive overflow */ 195 ETI = 0x00000100, /* transmit early int */ 196 ERI = 0x00000080, /* receive early int */ 197 CNTOVF = 0x00000040, /* counter overflow */ 198 RBU = 0x00000020, /* receive buffer unavailable */ 199 TBU = 0x00000010, /* transmit buffer unavilable */ 200 TI = 0x00000008, /* transmit interrupt */ 201 RI = 0x00000004, /* receive interrupt */ 202 RxErr = 0x00000002, /* receive error */ 203 }; 204 205 /* Bits in the NetworkConfig register, W for writing, R for reading */ 206 /* FIXME: some names are invented by me. Marked with (name?) */ 207 /* If you have docs and know bit names, please fix 'em */ 208 enum rx_mode_bits { 209 CR_W_ENH = 0x02000000, /* enhanced mode (name?) */ 210 CR_W_FD = 0x00100000, /* full duplex */ 211 CR_W_PS10 = 0x00080000, /* 10 mbit */ 212 CR_W_TXEN = 0x00040000, /* tx enable (name?) */ 213 CR_W_PS1000 = 0x00010000, /* 1000 mbit */ 214 /* CR_W_RXBURSTMASK= 0x00000e00, Im unsure about this */ 215 CR_W_RXMODEMASK = 0x000000e0, 216 CR_W_PROM = 0x00000080, /* promiscuous mode */ 217 CR_W_AB = 0x00000040, /* accept broadcast */ 218 CR_W_AM = 0x00000020, /* accept mutlicast */ 219 CR_W_ARP = 0x00000008, /* receive runt pkt */ 220 CR_W_ALP = 0x00000004, /* receive long pkt */ 221 CR_W_SEP = 0x00000002, /* receive error pkt */ 222 CR_W_RXEN = 0x00000001, /* rx enable (unicast?) (name?) */ 223 224 CR_R_TXSTOP = 0x04000000, /* tx stopped (name?) */ 225 CR_R_FD = 0x00100000, /* full duplex detected */ 226 CR_R_PS10 = 0x00080000, /* 10 mbit detected */ 227 CR_R_RXSTOP = 0x00008000, /* rx stopped (name?) */ 228 }; 229 230 /* The Tulip Rx and Tx buffer descriptors. */ 231 struct fealnx_desc { 232 s32 status; 233 s32 control; 234 u32 buffer; 235 u32 next_desc; 236 struct fealnx_desc *next_desc_logical; 237 struct sk_buff *skbuff; 238 u32 reserved1; 239 u32 reserved2; 240 }; 241 242 /* Bits in network_desc.status */ 243 enum rx_desc_status_bits { 244 RXOWN = 0x80000000, /* own bit */ 245 FLNGMASK = 0x0fff0000, /* frame length */ 246 FLNGShift = 16, 247 MARSTATUS = 0x00004000, /* multicast address received */ 248 BARSTATUS = 0x00002000, /* broadcast address received */ 249 PHYSTATUS = 0x00001000, /* physical address received */ 250 RXFSD = 0x00000800, /* first descriptor */ 251 RXLSD = 0x00000400, /* last descriptor */ 252 ErrorSummary = 0x80, /* error summary */ 253 RUNTPKT = 0x40, /* runt packet received */ 254 LONGPKT = 0x20, /* long packet received */ 255 FAE = 0x10, /* frame align error */ 256 CRC = 0x08, /* crc error */ 257 RXER = 0x04, /* receive error */ 258 }; 259 260 enum rx_desc_control_bits { 261 RXIC = 0x00800000, /* interrupt control */ 262 RBSShift = 0, 263 }; 264 265 enum tx_desc_status_bits { 266 TXOWN = 0x80000000, /* own bit */ 267 JABTO = 0x00004000, /* jabber timeout */ 268 CSL = 0x00002000, /* carrier sense lost */ 269 LC = 0x00001000, /* late collision */ 270 EC = 0x00000800, /* excessive collision */ 271 UDF = 0x00000400, /* fifo underflow */ 272 DFR = 0x00000200, /* deferred */ 273 HF = 0x00000100, /* heartbeat fail */ 274 NCRMask = 0x000000ff, /* collision retry count */ 275 NCRShift = 0, 276 }; 277 278 enum tx_desc_control_bits { 279 TXIC = 0x80000000, /* interrupt control */ 280 ETIControl = 0x40000000, /* early transmit interrupt */ 281 TXLD = 0x20000000, /* last descriptor */ 282 TXFD = 0x10000000, /* first descriptor */ 283 CRCEnable = 0x08000000, /* crc control */ 284 PADEnable = 0x04000000, /* padding control */ 285 RetryTxLC = 0x02000000, /* retry late collision */ 286 PKTSMask = 0x3ff800, /* packet size bit21-11 */ 287 PKTSShift = 11, 288 TBSMask = 0x000007ff, /* transmit buffer bit 10-0 */ 289 TBSShift = 0, 290 }; 291 292 /* BootROM/EEPROM/MII Management Register */ 293 #define MASK_MIIR_MII_READ 0x00000000 294 #define MASK_MIIR_MII_WRITE 0x00000008 295 #define MASK_MIIR_MII_MDO 0x00000004 296 #define MASK_MIIR_MII_MDI 0x00000002 297 #define MASK_MIIR_MII_MDC 0x00000001 298 299 /* ST+OP+PHYAD+REGAD+TA */ 300 #define OP_READ 0x6000 /* ST:01+OP:10+PHYAD+REGAD+TA:Z0 */ 301 #define OP_WRITE 0x5002 /* ST:01+OP:01+PHYAD+REGAD+TA:10 */ 302 303 /* ------------------------------------------------------------------------- */ 304 /* Constants for Myson PHY */ 305 /* ------------------------------------------------------------------------- */ 306 #define MysonPHYID 0xd0000302 307 /* 89-7-27 add, (begin) */ 308 #define MysonPHYID0 0x0302 309 #define StatusRegister 18 310 #define SPEED100 0x0400 // bit10 311 #define FULLMODE 0x0800 // bit11 312 /* 89-7-27 add, (end) */ 313 314 /* ------------------------------------------------------------------------- */ 315 /* Constants for Seeq 80225 PHY */ 316 /* ------------------------------------------------------------------------- */ 317 #define SeeqPHYID0 0x0016 318 319 #define MIIRegister18 18 320 #define SPD_DET_100 0x80 321 #define DPLX_DET_FULL 0x40 322 323 /* ------------------------------------------------------------------------- */ 324 /* Constants for Ahdoc 101 PHY */ 325 /* ------------------------------------------------------------------------- */ 326 #define AhdocPHYID0 0x0022 327 328 #define DiagnosticReg 18 329 #define DPLX_FULL 0x0800 330 #define Speed_100 0x0400 331 332 /* 89/6/13 add, */ 333 /* -------------------------------------------------------------------------- */ 334 /* Constants */ 335 /* -------------------------------------------------------------------------- */ 336 #define MarvellPHYID0 0x0141 337 #define LevelOnePHYID0 0x0013 338 339 #define MII1000BaseTControlReg 9 340 #define MII1000BaseTStatusReg 10 341 #define SpecificReg 17 342 343 /* for 1000BaseT Control Register */ 344 #define PHYAbletoPerform1000FullDuplex 0x0200 345 #define PHYAbletoPerform1000HalfDuplex 0x0100 346 #define PHY1000AbilityMask 0x300 347 348 // for phy specific status register, marvell phy. 349 #define SpeedMask 0x0c000 350 #define Speed_1000M 0x08000 351 #define Speed_100M 0x4000 352 #define Speed_10M 0 353 #define Full_Duplex 0x2000 354 355 // 89/12/29 add, for phy specific status register, levelone phy, (begin) 356 #define LXT1000_100M 0x08000 357 #define LXT1000_1000M 0x0c000 358 #define LXT1000_Full 0x200 359 // 89/12/29 add, for phy specific status register, levelone phy, (end) 360 361 /* for 3-in-1 case, BMCRSR register */ 362 #define LinkIsUp2 0x00040000 363 364 /* for PHY */ 365 #define LinkIsUp 0x0004 366 367 368 struct netdev_private { 369 /* Descriptor rings first for alignment. */ 370 struct fealnx_desc *rx_ring; 371 struct fealnx_desc *tx_ring; 372 373 dma_addr_t rx_ring_dma; 374 dma_addr_t tx_ring_dma; 375 376 spinlock_t lock; 377 378 /* Media monitoring timer. */ 379 struct timer_list timer; 380 381 /* Reset timer */ 382 struct timer_list reset_timer; 383 int reset_timer_armed; 384 unsigned long crvalue_sv; 385 unsigned long imrvalue_sv; 386 387 /* Frequently used values: keep some adjacent for cache effect. */ 388 int flags; 389 struct pci_dev *pci_dev; 390 unsigned long crvalue; 391 unsigned long bcrvalue; 392 unsigned long imrvalue; 393 struct fealnx_desc *cur_rx; 394 struct fealnx_desc *lack_rxbuf; 395 int really_rx_count; 396 struct fealnx_desc *cur_tx; 397 struct fealnx_desc *cur_tx_copy; 398 int really_tx_count; 399 int free_tx_count; 400 unsigned int rx_buf_sz; /* Based on MTU+slack. */ 401 402 /* These values are keep track of the transceiver/media in use. */ 403 unsigned int linkok; 404 unsigned int line_speed; 405 unsigned int duplexmode; 406 unsigned int default_port:4; /* Last dev->if_port value. */ 407 unsigned int PHYType; 408 409 /* MII transceiver section. */ 410 int mii_cnt; /* MII device addresses. */ 411 unsigned char phys[2]; /* MII device addresses. */ 412 struct mii_if_info mii; 413 void __iomem *mem; 414 }; 415 416 417 static int mdio_read(struct net_device *dev, int phy_id, int location); 418 static void mdio_write(struct net_device *dev, int phy_id, int location, int value); 419 static int netdev_open(struct net_device *dev); 420 static void getlinktype(struct net_device *dev); 421 static void getlinkstatus(struct net_device *dev); 422 static void netdev_timer(struct timer_list *t); 423 static void reset_timer(struct timer_list *t); 424 static void fealnx_tx_timeout(struct net_device *dev, unsigned int txqueue); 425 static void init_ring(struct net_device *dev); 426 static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev); 427 static irqreturn_t intr_handler(int irq, void *dev_instance); 428 static int netdev_rx(struct net_device *dev); 429 static void set_rx_mode(struct net_device *dev); 430 static void __set_rx_mode(struct net_device *dev); 431 static struct net_device_stats *get_stats(struct net_device *dev); 432 static int mii_ioctl(struct net_device *dev, struct ifreq *rq, int cmd); 433 static const struct ethtool_ops netdev_ethtool_ops; 434 static int netdev_close(struct net_device *dev); 435 static void reset_rx_descriptors(struct net_device *dev); 436 static void reset_tx_descriptors(struct net_device *dev); 437 438 static void stop_nic_rx(void __iomem *ioaddr, long crvalue) 439 { 440 int delay = 0x1000; 441 iowrite32(crvalue & ~(CR_W_RXEN), ioaddr + TCRRCR); 442 while (--delay) { 443 if ( (ioread32(ioaddr + TCRRCR) & CR_R_RXSTOP) == CR_R_RXSTOP) 444 break; 445 } 446 } 447 448 449 static void stop_nic_rxtx(void __iomem *ioaddr, long crvalue) 450 { 451 int delay = 0x1000; 452 iowrite32(crvalue & ~(CR_W_RXEN+CR_W_TXEN), ioaddr + TCRRCR); 453 while (--delay) { 454 if ( (ioread32(ioaddr + TCRRCR) & (CR_R_RXSTOP+CR_R_TXSTOP)) 455 == (CR_R_RXSTOP+CR_R_TXSTOP) ) 456 break; 457 } 458 } 459 460 static const struct net_device_ops netdev_ops = { 461 .ndo_open = netdev_open, 462 .ndo_stop = netdev_close, 463 .ndo_start_xmit = start_tx, 464 .ndo_get_stats = get_stats, 465 .ndo_set_rx_mode = set_rx_mode, 466 .ndo_eth_ioctl = mii_ioctl, 467 .ndo_tx_timeout = fealnx_tx_timeout, 468 .ndo_set_mac_address = eth_mac_addr, 469 .ndo_validate_addr = eth_validate_addr, 470 }; 471 472 static int fealnx_init_one(struct pci_dev *pdev, 473 const struct pci_device_id *ent) 474 { 475 struct netdev_private *np; 476 int i, option, err, irq; 477 static int card_idx = -1; 478 char boardname[12]; 479 void __iomem *ioaddr; 480 unsigned long len; 481 unsigned int chip_id = ent->driver_data; 482 struct net_device *dev; 483 void *ring_space; 484 dma_addr_t ring_dma; 485 u8 addr[ETH_ALEN]; 486 #ifdef USE_IO_OPS 487 int bar = 0; 488 #else 489 int bar = 1; 490 #endif 491 492 card_idx++; 493 sprintf(boardname, "fealnx%d", card_idx); 494 495 option = card_idx < MAX_UNITS ? options[card_idx] : 0; 496 497 i = pci_enable_device(pdev); 498 if (i) return i; 499 pci_set_master(pdev); 500 501 len = pci_resource_len(pdev, bar); 502 if (len < MIN_REGION_SIZE) { 503 dev_err(&pdev->dev, 504 "region size %ld too small, aborting\n", len); 505 return -ENODEV; 506 } 507 508 i = pci_request_regions(pdev, boardname); 509 if (i) 510 return i; 511 512 irq = pdev->irq; 513 514 ioaddr = pci_iomap(pdev, bar, len); 515 if (!ioaddr) { 516 err = -ENOMEM; 517 goto err_out_res; 518 } 519 520 dev = alloc_etherdev(sizeof(struct netdev_private)); 521 if (!dev) { 522 err = -ENOMEM; 523 goto err_out_unmap; 524 } 525 SET_NETDEV_DEV(dev, &pdev->dev); 526 527 /* read ethernet id */ 528 for (i = 0; i < 6; ++i) 529 addr[i] = ioread8(ioaddr + PAR0 + i); 530 eth_hw_addr_set(dev, addr); 531 532 /* Reset the chip to erase previous misconfiguration. */ 533 iowrite32(0x00000001, ioaddr + BCR); 534 535 /* Make certain the descriptor lists are aligned. */ 536 np = netdev_priv(dev); 537 np->mem = ioaddr; 538 spin_lock_init(&np->lock); 539 np->pci_dev = pdev; 540 np->flags = skel_netdrv_tbl[chip_id].flags; 541 pci_set_drvdata(pdev, dev); 542 np->mii.dev = dev; 543 np->mii.mdio_read = mdio_read; 544 np->mii.mdio_write = mdio_write; 545 np->mii.phy_id_mask = 0x1f; 546 np->mii.reg_num_mask = 0x1f; 547 548 ring_space = dma_alloc_coherent(&pdev->dev, RX_TOTAL_SIZE, &ring_dma, 549 GFP_KERNEL); 550 if (!ring_space) { 551 err = -ENOMEM; 552 goto err_out_free_dev; 553 } 554 np->rx_ring = ring_space; 555 np->rx_ring_dma = ring_dma; 556 557 ring_space = dma_alloc_coherent(&pdev->dev, TX_TOTAL_SIZE, &ring_dma, 558 GFP_KERNEL); 559 if (!ring_space) { 560 err = -ENOMEM; 561 goto err_out_free_rx; 562 } 563 np->tx_ring = ring_space; 564 np->tx_ring_dma = ring_dma; 565 566 /* find the connected MII xcvrs */ 567 if (np->flags == HAS_MII_XCVR) { 568 int phy, phy_idx = 0; 569 570 for (phy = 1; phy < 32 && phy_idx < ARRAY_SIZE(np->phys); 571 phy++) { 572 int mii_status = mdio_read(dev, phy, 1); 573 574 if (mii_status != 0xffff && mii_status != 0x0000) { 575 np->phys[phy_idx++] = phy; 576 dev_info(&pdev->dev, 577 "MII PHY found at address %d, status " 578 "0x%4.4x.\n", phy, mii_status); 579 /* get phy type */ 580 { 581 unsigned int data; 582 583 data = mdio_read(dev, np->phys[0], 2); 584 if (data == SeeqPHYID0) 585 np->PHYType = SeeqPHY; 586 else if (data == AhdocPHYID0) 587 np->PHYType = AhdocPHY; 588 else if (data == MarvellPHYID0) 589 np->PHYType = MarvellPHY; 590 else if (data == MysonPHYID0) 591 np->PHYType = Myson981; 592 else if (data == LevelOnePHYID0) 593 np->PHYType = LevelOnePHY; 594 else 595 np->PHYType = OtherPHY; 596 } 597 } 598 } 599 600 np->mii_cnt = phy_idx; 601 if (phy_idx == 0) 602 dev_warn(&pdev->dev, 603 "MII PHY not found -- this device may " 604 "not operate correctly.\n"); 605 } else { 606 np->phys[0] = 32; 607 /* 89/6/23 add, (begin) */ 608 /* get phy type */ 609 if (ioread32(ioaddr + PHYIDENTIFIER) == MysonPHYID) 610 np->PHYType = MysonPHY; 611 else 612 np->PHYType = OtherPHY; 613 } 614 np->mii.phy_id = np->phys[0]; 615 616 if (dev->mem_start) 617 option = dev->mem_start; 618 619 /* The lower four bits are the media type. */ 620 if (option > 0) { 621 if (option & 0x200) 622 np->mii.full_duplex = 1; 623 np->default_port = option & 15; 624 } 625 626 if (card_idx < MAX_UNITS && full_duplex[card_idx] > 0) 627 np->mii.full_duplex = full_duplex[card_idx]; 628 629 if (np->mii.full_duplex) { 630 dev_info(&pdev->dev, "Media type forced to Full Duplex.\n"); 631 /* 89/6/13 add, (begin) */ 632 // if (np->PHYType==MarvellPHY) 633 if ((np->PHYType == MarvellPHY) || (np->PHYType == LevelOnePHY)) { 634 unsigned int data; 635 636 data = mdio_read(dev, np->phys[0], 9); 637 data = (data & 0xfcff) | 0x0200; 638 mdio_write(dev, np->phys[0], 9, data); 639 } 640 /* 89/6/13 add, (end) */ 641 if (np->flags == HAS_MII_XCVR) 642 mdio_write(dev, np->phys[0], MII_ADVERTISE, ADVERTISE_FULL); 643 else 644 iowrite32(ADVERTISE_FULL, ioaddr + ANARANLPAR); 645 np->mii.force_media = 1; 646 } 647 648 dev->netdev_ops = &netdev_ops; 649 dev->ethtool_ops = &netdev_ethtool_ops; 650 dev->watchdog_timeo = TX_TIMEOUT; 651 652 err = register_netdev(dev); 653 if (err) 654 goto err_out_free_tx; 655 656 printk(KERN_INFO "%s: %s at %p, %pM, IRQ %d.\n", 657 dev->name, skel_netdrv_tbl[chip_id].chip_name, ioaddr, 658 dev->dev_addr, irq); 659 660 return 0; 661 662 err_out_free_tx: 663 dma_free_coherent(&pdev->dev, TX_TOTAL_SIZE, np->tx_ring, 664 np->tx_ring_dma); 665 err_out_free_rx: 666 dma_free_coherent(&pdev->dev, RX_TOTAL_SIZE, np->rx_ring, 667 np->rx_ring_dma); 668 err_out_free_dev: 669 free_netdev(dev); 670 err_out_unmap: 671 pci_iounmap(pdev, ioaddr); 672 err_out_res: 673 pci_release_regions(pdev); 674 return err; 675 } 676 677 678 static void fealnx_remove_one(struct pci_dev *pdev) 679 { 680 struct net_device *dev = pci_get_drvdata(pdev); 681 682 if (dev) { 683 struct netdev_private *np = netdev_priv(dev); 684 685 dma_free_coherent(&pdev->dev, TX_TOTAL_SIZE, np->tx_ring, 686 np->tx_ring_dma); 687 dma_free_coherent(&pdev->dev, RX_TOTAL_SIZE, np->rx_ring, 688 np->rx_ring_dma); 689 unregister_netdev(dev); 690 pci_iounmap(pdev, np->mem); 691 free_netdev(dev); 692 pci_release_regions(pdev); 693 } else 694 printk(KERN_ERR "fealnx: remove for unknown device\n"); 695 } 696 697 698 static ulong m80x_send_cmd_to_phy(void __iomem *miiport, int opcode, int phyad, int regad) 699 { 700 ulong miir; 701 int i; 702 unsigned int mask, data; 703 704 /* enable MII output */ 705 miir = (ulong) ioread32(miiport); 706 miir &= 0xfffffff0; 707 708 miir |= MASK_MIIR_MII_WRITE + MASK_MIIR_MII_MDO; 709 710 /* send 32 1's preamble */ 711 for (i = 0; i < 32; i++) { 712 /* low MDC; MDO is already high (miir) */ 713 miir &= ~MASK_MIIR_MII_MDC; 714 iowrite32(miir, miiport); 715 716 /* high MDC */ 717 miir |= MASK_MIIR_MII_MDC; 718 iowrite32(miir, miiport); 719 } 720 721 /* calculate ST+OP+PHYAD+REGAD+TA */ 722 data = opcode | (phyad << 7) | (regad << 2); 723 724 /* sent out */ 725 mask = 0x8000; 726 while (mask) { 727 /* low MDC, prepare MDO */ 728 miir &= ~(MASK_MIIR_MII_MDC + MASK_MIIR_MII_MDO); 729 if (mask & data) 730 miir |= MASK_MIIR_MII_MDO; 731 732 iowrite32(miir, miiport); 733 /* high MDC */ 734 miir |= MASK_MIIR_MII_MDC; 735 iowrite32(miir, miiport); 736 udelay(30); 737 738 /* next */ 739 mask >>= 1; 740 if (mask == 0x2 && opcode == OP_READ) 741 miir &= ~MASK_MIIR_MII_WRITE; 742 } 743 return miir; 744 } 745 746 747 static int mdio_read(struct net_device *dev, int phyad, int regad) 748 { 749 struct netdev_private *np = netdev_priv(dev); 750 void __iomem *miiport = np->mem + MANAGEMENT; 751 ulong miir; 752 unsigned int mask, data; 753 754 miir = m80x_send_cmd_to_phy(miiport, OP_READ, phyad, regad); 755 756 /* read data */ 757 mask = 0x8000; 758 data = 0; 759 while (mask) { 760 /* low MDC */ 761 miir &= ~MASK_MIIR_MII_MDC; 762 iowrite32(miir, miiport); 763 764 /* read MDI */ 765 miir = ioread32(miiport); 766 if (miir & MASK_MIIR_MII_MDI) 767 data |= mask; 768 769 /* high MDC, and wait */ 770 miir |= MASK_MIIR_MII_MDC; 771 iowrite32(miir, miiport); 772 udelay(30); 773 774 /* next */ 775 mask >>= 1; 776 } 777 778 /* low MDC */ 779 miir &= ~MASK_MIIR_MII_MDC; 780 iowrite32(miir, miiport); 781 782 return data & 0xffff; 783 } 784 785 786 static void mdio_write(struct net_device *dev, int phyad, int regad, int data) 787 { 788 struct netdev_private *np = netdev_priv(dev); 789 void __iomem *miiport = np->mem + MANAGEMENT; 790 ulong miir; 791 unsigned int mask; 792 793 miir = m80x_send_cmd_to_phy(miiport, OP_WRITE, phyad, regad); 794 795 /* write data */ 796 mask = 0x8000; 797 while (mask) { 798 /* low MDC, prepare MDO */ 799 miir &= ~(MASK_MIIR_MII_MDC + MASK_MIIR_MII_MDO); 800 if (mask & data) 801 miir |= MASK_MIIR_MII_MDO; 802 iowrite32(miir, miiport); 803 804 /* high MDC */ 805 miir |= MASK_MIIR_MII_MDC; 806 iowrite32(miir, miiport); 807 808 /* next */ 809 mask >>= 1; 810 } 811 812 /* low MDC */ 813 miir &= ~MASK_MIIR_MII_MDC; 814 iowrite32(miir, miiport); 815 } 816 817 818 static int netdev_open(struct net_device *dev) 819 { 820 struct netdev_private *np = netdev_priv(dev); 821 void __iomem *ioaddr = np->mem; 822 const int irq = np->pci_dev->irq; 823 int rc, i; 824 825 iowrite32(0x00000001, ioaddr + BCR); /* Reset */ 826 827 rc = request_irq(irq, intr_handler, IRQF_SHARED, dev->name, dev); 828 if (rc) 829 return -EAGAIN; 830 831 for (i = 0; i < 3; i++) 832 iowrite16(((const unsigned short *)dev->dev_addr)[i], 833 ioaddr + PAR0 + i*2); 834 835 init_ring(dev); 836 837 iowrite32(np->rx_ring_dma, ioaddr + RXLBA); 838 iowrite32(np->tx_ring_dma, ioaddr + TXLBA); 839 840 /* Initialize other registers. */ 841 /* Configure the PCI bus bursts and FIFO thresholds. 842 486: Set 8 longword burst. 843 586: no burst limit. 844 Burst length 5:3 845 0 0 0 1 846 0 0 1 4 847 0 1 0 8 848 0 1 1 16 849 1 0 0 32 850 1 0 1 64 851 1 1 0 128 852 1 1 1 256 853 Wait the specified 50 PCI cycles after a reset by initializing 854 Tx and Rx queues and the address filter list. 855 FIXME (Ueimor): optimistic for alpha + posted writes ? */ 856 857 np->bcrvalue = 0x10; /* little-endian, 8 burst length */ 858 #ifdef __BIG_ENDIAN 859 np->bcrvalue |= 0x04; /* big-endian */ 860 #endif 861 862 #if defined(__i386__) && !defined(MODULE) && !defined(CONFIG_UML) 863 if (boot_cpu_data.x86 <= 4) 864 np->crvalue = 0xa00; 865 else 866 #endif 867 np->crvalue = 0xe00; /* rx 128 burst length */ 868 869 870 // 89/12/29 add, 871 // 90/1/16 modify, 872 // np->imrvalue=FBE|TUNF|CNTOVF|RBU|TI|RI; 873 np->imrvalue = TUNF | CNTOVF | RBU | TI | RI; 874 if (np->pci_dev->device == 0x891) { 875 np->bcrvalue |= 0x200; /* set PROG bit */ 876 np->crvalue |= CR_W_ENH; /* set enhanced bit */ 877 np->imrvalue |= ETI; 878 } 879 iowrite32(np->bcrvalue, ioaddr + BCR); 880 881 if (dev->if_port == 0) 882 dev->if_port = np->default_port; 883 884 iowrite32(0, ioaddr + RXPDR); 885 // 89/9/1 modify, 886 // np->crvalue = 0x00e40001; /* tx store and forward, tx/rx enable */ 887 np->crvalue |= 0x00e40001; /* tx store and forward, tx/rx enable */ 888 np->mii.full_duplex = np->mii.force_media; 889 getlinkstatus(dev); 890 if (np->linkok) 891 getlinktype(dev); 892 __set_rx_mode(dev); 893 894 netif_start_queue(dev); 895 896 /* Clear and Enable interrupts by setting the interrupt mask. */ 897 iowrite32(FBE | TUNF | CNTOVF | RBU | TI | RI, ioaddr + ISR); 898 iowrite32(np->imrvalue, ioaddr + IMR); 899 900 if (debug) 901 printk(KERN_DEBUG "%s: Done netdev_open().\n", dev->name); 902 903 /* Set the timer to check for link beat. */ 904 timer_setup(&np->timer, netdev_timer, 0); 905 np->timer.expires = RUN_AT(3 * HZ); 906 907 /* timer handler */ 908 add_timer(&np->timer); 909 910 timer_setup(&np->reset_timer, reset_timer, 0); 911 np->reset_timer_armed = 0; 912 return rc; 913 } 914 915 916 static void getlinkstatus(struct net_device *dev) 917 /* function: Routine will read MII Status Register to get link status. */ 918 /* input : dev... pointer to the adapter block. */ 919 /* output : none. */ 920 { 921 struct netdev_private *np = netdev_priv(dev); 922 unsigned int i, DelayTime = 0x1000; 923 924 np->linkok = 0; 925 926 if (np->PHYType == MysonPHY) { 927 for (i = 0; i < DelayTime; ++i) { 928 if (ioread32(np->mem + BMCRSR) & LinkIsUp2) { 929 np->linkok = 1; 930 return; 931 } 932 udelay(100); 933 } 934 } else { 935 for (i = 0; i < DelayTime; ++i) { 936 if (mdio_read(dev, np->phys[0], MII_BMSR) & BMSR_LSTATUS) { 937 np->linkok = 1; 938 return; 939 } 940 udelay(100); 941 } 942 } 943 } 944 945 946 static void getlinktype(struct net_device *dev) 947 { 948 struct netdev_private *np = netdev_priv(dev); 949 950 if (np->PHYType == MysonPHY) { /* 3-in-1 case */ 951 if (ioread32(np->mem + TCRRCR) & CR_R_FD) 952 np->duplexmode = 2; /* full duplex */ 953 else 954 np->duplexmode = 1; /* half duplex */ 955 if (ioread32(np->mem + TCRRCR) & CR_R_PS10) 956 np->line_speed = 1; /* 10M */ 957 else 958 np->line_speed = 2; /* 100M */ 959 } else { 960 if (np->PHYType == SeeqPHY) { /* this PHY is SEEQ 80225 */ 961 unsigned int data; 962 963 data = mdio_read(dev, np->phys[0], MIIRegister18); 964 if (data & SPD_DET_100) 965 np->line_speed = 2; /* 100M */ 966 else 967 np->line_speed = 1; /* 10M */ 968 if (data & DPLX_DET_FULL) 969 np->duplexmode = 2; /* full duplex mode */ 970 else 971 np->duplexmode = 1; /* half duplex mode */ 972 } else if (np->PHYType == AhdocPHY) { 973 unsigned int data; 974 975 data = mdio_read(dev, np->phys[0], DiagnosticReg); 976 if (data & Speed_100) 977 np->line_speed = 2; /* 100M */ 978 else 979 np->line_speed = 1; /* 10M */ 980 if (data & DPLX_FULL) 981 np->duplexmode = 2; /* full duplex mode */ 982 else 983 np->duplexmode = 1; /* half duplex mode */ 984 } 985 /* 89/6/13 add, (begin) */ 986 else if (np->PHYType == MarvellPHY) { 987 unsigned int data; 988 989 data = mdio_read(dev, np->phys[0], SpecificReg); 990 if (data & Full_Duplex) 991 np->duplexmode = 2; /* full duplex mode */ 992 else 993 np->duplexmode = 1; /* half duplex mode */ 994 data &= SpeedMask; 995 if (data == Speed_1000M) 996 np->line_speed = 3; /* 1000M */ 997 else if (data == Speed_100M) 998 np->line_speed = 2; /* 100M */ 999 else 1000 np->line_speed = 1; /* 10M */ 1001 } 1002 /* 89/6/13 add, (end) */ 1003 /* 89/7/27 add, (begin) */ 1004 else if (np->PHYType == Myson981) { 1005 unsigned int data; 1006 1007 data = mdio_read(dev, np->phys[0], StatusRegister); 1008 1009 if (data & SPEED100) 1010 np->line_speed = 2; 1011 else 1012 np->line_speed = 1; 1013 1014 if (data & FULLMODE) 1015 np->duplexmode = 2; 1016 else 1017 np->duplexmode = 1; 1018 } 1019 /* 89/7/27 add, (end) */ 1020 /* 89/12/29 add */ 1021 else if (np->PHYType == LevelOnePHY) { 1022 unsigned int data; 1023 1024 data = mdio_read(dev, np->phys[0], SpecificReg); 1025 if (data & LXT1000_Full) 1026 np->duplexmode = 2; /* full duplex mode */ 1027 else 1028 np->duplexmode = 1; /* half duplex mode */ 1029 data &= SpeedMask; 1030 if (data == LXT1000_1000M) 1031 np->line_speed = 3; /* 1000M */ 1032 else if (data == LXT1000_100M) 1033 np->line_speed = 2; /* 100M */ 1034 else 1035 np->line_speed = 1; /* 10M */ 1036 } 1037 np->crvalue &= (~CR_W_PS10) & (~CR_W_FD) & (~CR_W_PS1000); 1038 if (np->line_speed == 1) 1039 np->crvalue |= CR_W_PS10; 1040 else if (np->line_speed == 3) 1041 np->crvalue |= CR_W_PS1000; 1042 if (np->duplexmode == 2) 1043 np->crvalue |= CR_W_FD; 1044 } 1045 } 1046 1047 1048 /* Take lock before calling this */ 1049 static void allocate_rx_buffers(struct net_device *dev) 1050 { 1051 struct netdev_private *np = netdev_priv(dev); 1052 1053 /* allocate skb for rx buffers */ 1054 while (np->really_rx_count != RX_RING_SIZE) { 1055 struct sk_buff *skb; 1056 1057 skb = netdev_alloc_skb(dev, np->rx_buf_sz); 1058 if (skb == NULL) 1059 break; /* Better luck next round. */ 1060 1061 while (np->lack_rxbuf->skbuff) 1062 np->lack_rxbuf = np->lack_rxbuf->next_desc_logical; 1063 1064 np->lack_rxbuf->skbuff = skb; 1065 np->lack_rxbuf->buffer = dma_map_single(&np->pci_dev->dev, 1066 skb->data, 1067 np->rx_buf_sz, 1068 DMA_FROM_DEVICE); 1069 np->lack_rxbuf->status = RXOWN; 1070 ++np->really_rx_count; 1071 } 1072 } 1073 1074 1075 static void netdev_timer(struct timer_list *t) 1076 { 1077 struct netdev_private *np = from_timer(np, t, timer); 1078 struct net_device *dev = np->mii.dev; 1079 void __iomem *ioaddr = np->mem; 1080 int old_crvalue = np->crvalue; 1081 unsigned int old_linkok = np->linkok; 1082 unsigned long flags; 1083 1084 if (debug) 1085 printk(KERN_DEBUG "%s: Media selection timer tick, status %8.8x " 1086 "config %8.8x.\n", dev->name, ioread32(ioaddr + ISR), 1087 ioread32(ioaddr + TCRRCR)); 1088 1089 spin_lock_irqsave(&np->lock, flags); 1090 1091 if (np->flags == HAS_MII_XCVR) { 1092 getlinkstatus(dev); 1093 if ((old_linkok == 0) && (np->linkok == 1)) { /* we need to detect the media type again */ 1094 getlinktype(dev); 1095 if (np->crvalue != old_crvalue) { 1096 stop_nic_rxtx(ioaddr, np->crvalue); 1097 iowrite32(np->crvalue, ioaddr + TCRRCR); 1098 } 1099 } 1100 } 1101 1102 allocate_rx_buffers(dev); 1103 1104 spin_unlock_irqrestore(&np->lock, flags); 1105 1106 np->timer.expires = RUN_AT(10 * HZ); 1107 add_timer(&np->timer); 1108 } 1109 1110 1111 /* Take lock before calling */ 1112 /* Reset chip and disable rx, tx and interrupts */ 1113 static void reset_and_disable_rxtx(struct net_device *dev) 1114 { 1115 struct netdev_private *np = netdev_priv(dev); 1116 void __iomem *ioaddr = np->mem; 1117 int delay=51; 1118 1119 /* Reset the chip's Tx and Rx processes. */ 1120 stop_nic_rxtx(ioaddr, 0); 1121 1122 /* Disable interrupts by clearing the interrupt mask. */ 1123 iowrite32(0, ioaddr + IMR); 1124 1125 /* Reset the chip to erase previous misconfiguration. */ 1126 iowrite32(0x00000001, ioaddr + BCR); 1127 1128 /* Ueimor: wait for 50 PCI cycles (and flush posted writes btw). 1129 We surely wait too long (address+data phase). Who cares? */ 1130 while (--delay) { 1131 ioread32(ioaddr + BCR); 1132 rmb(); 1133 } 1134 } 1135 1136 1137 /* Take lock before calling */ 1138 /* Restore chip after reset */ 1139 static void enable_rxtx(struct net_device *dev) 1140 { 1141 struct netdev_private *np = netdev_priv(dev); 1142 void __iomem *ioaddr = np->mem; 1143 1144 reset_rx_descriptors(dev); 1145 1146 iowrite32(np->tx_ring_dma + ((char*)np->cur_tx - (char*)np->tx_ring), 1147 ioaddr + TXLBA); 1148 iowrite32(np->rx_ring_dma + ((char*)np->cur_rx - (char*)np->rx_ring), 1149 ioaddr + RXLBA); 1150 1151 iowrite32(np->bcrvalue, ioaddr + BCR); 1152 1153 iowrite32(0, ioaddr + RXPDR); 1154 __set_rx_mode(dev); /* changes np->crvalue, writes it into TCRRCR */ 1155 1156 /* Clear and Enable interrupts by setting the interrupt mask. */ 1157 iowrite32(FBE | TUNF | CNTOVF | RBU | TI | RI, ioaddr + ISR); 1158 iowrite32(np->imrvalue, ioaddr + IMR); 1159 1160 iowrite32(0, ioaddr + TXPDR); 1161 } 1162 1163 1164 static void reset_timer(struct timer_list *t) 1165 { 1166 struct netdev_private *np = from_timer(np, t, reset_timer); 1167 struct net_device *dev = np->mii.dev; 1168 unsigned long flags; 1169 1170 printk(KERN_WARNING "%s: resetting tx and rx machinery\n", dev->name); 1171 1172 spin_lock_irqsave(&np->lock, flags); 1173 np->crvalue = np->crvalue_sv; 1174 np->imrvalue = np->imrvalue_sv; 1175 1176 reset_and_disable_rxtx(dev); 1177 /* works for me without this: 1178 reset_tx_descriptors(dev); */ 1179 enable_rxtx(dev); 1180 netif_start_queue(dev); /* FIXME: or netif_wake_queue(dev); ? */ 1181 1182 np->reset_timer_armed = 0; 1183 1184 spin_unlock_irqrestore(&np->lock, flags); 1185 } 1186 1187 1188 static void fealnx_tx_timeout(struct net_device *dev, unsigned int txqueue) 1189 { 1190 struct netdev_private *np = netdev_priv(dev); 1191 void __iomem *ioaddr = np->mem; 1192 unsigned long flags; 1193 int i; 1194 1195 printk(KERN_WARNING 1196 "%s: Transmit timed out, status %8.8x, resetting...\n", 1197 dev->name, ioread32(ioaddr + ISR)); 1198 1199 { 1200 printk(KERN_DEBUG " Rx ring %p: ", np->rx_ring); 1201 for (i = 0; i < RX_RING_SIZE; i++) 1202 printk(KERN_CONT " %8.8x", 1203 (unsigned int) np->rx_ring[i].status); 1204 printk(KERN_CONT "\n"); 1205 printk(KERN_DEBUG " Tx ring %p: ", np->tx_ring); 1206 for (i = 0; i < TX_RING_SIZE; i++) 1207 printk(KERN_CONT " %4.4x", np->tx_ring[i].status); 1208 printk(KERN_CONT "\n"); 1209 } 1210 1211 spin_lock_irqsave(&np->lock, flags); 1212 1213 reset_and_disable_rxtx(dev); 1214 reset_tx_descriptors(dev); 1215 enable_rxtx(dev); 1216 1217 spin_unlock_irqrestore(&np->lock, flags); 1218 1219 netif_trans_update(dev); /* prevent tx timeout */ 1220 dev->stats.tx_errors++; 1221 netif_wake_queue(dev); /* or .._start_.. ?? */ 1222 } 1223 1224 1225 /* Initialize the Rx and Tx rings, along with various 'dev' bits. */ 1226 static void init_ring(struct net_device *dev) 1227 { 1228 struct netdev_private *np = netdev_priv(dev); 1229 int i; 1230 1231 /* initialize rx variables */ 1232 np->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32); 1233 np->cur_rx = &np->rx_ring[0]; 1234 np->lack_rxbuf = np->rx_ring; 1235 np->really_rx_count = 0; 1236 1237 /* initial rx descriptors. */ 1238 for (i = 0; i < RX_RING_SIZE; i++) { 1239 np->rx_ring[i].status = 0; 1240 np->rx_ring[i].control = np->rx_buf_sz << RBSShift; 1241 np->rx_ring[i].next_desc = np->rx_ring_dma + 1242 (i + 1)*sizeof(struct fealnx_desc); 1243 np->rx_ring[i].next_desc_logical = &np->rx_ring[i + 1]; 1244 np->rx_ring[i].skbuff = NULL; 1245 } 1246 1247 /* for the last rx descriptor */ 1248 np->rx_ring[i - 1].next_desc = np->rx_ring_dma; 1249 np->rx_ring[i - 1].next_desc_logical = np->rx_ring; 1250 1251 /* allocate skb for rx buffers */ 1252 for (i = 0; i < RX_RING_SIZE; i++) { 1253 struct sk_buff *skb = netdev_alloc_skb(dev, np->rx_buf_sz); 1254 1255 if (skb == NULL) { 1256 np->lack_rxbuf = &np->rx_ring[i]; 1257 break; 1258 } 1259 1260 ++np->really_rx_count; 1261 np->rx_ring[i].skbuff = skb; 1262 np->rx_ring[i].buffer = dma_map_single(&np->pci_dev->dev, 1263 skb->data, 1264 np->rx_buf_sz, 1265 DMA_FROM_DEVICE); 1266 np->rx_ring[i].status = RXOWN; 1267 np->rx_ring[i].control |= RXIC; 1268 } 1269 1270 /* initialize tx variables */ 1271 np->cur_tx = &np->tx_ring[0]; 1272 np->cur_tx_copy = &np->tx_ring[0]; 1273 np->really_tx_count = 0; 1274 np->free_tx_count = TX_RING_SIZE; 1275 1276 for (i = 0; i < TX_RING_SIZE; i++) { 1277 np->tx_ring[i].status = 0; 1278 /* do we need np->tx_ring[i].control = XXX; ?? */ 1279 np->tx_ring[i].next_desc = np->tx_ring_dma + 1280 (i + 1)*sizeof(struct fealnx_desc); 1281 np->tx_ring[i].next_desc_logical = &np->tx_ring[i + 1]; 1282 np->tx_ring[i].skbuff = NULL; 1283 } 1284 1285 /* for the last tx descriptor */ 1286 np->tx_ring[i - 1].next_desc = np->tx_ring_dma; 1287 np->tx_ring[i - 1].next_desc_logical = &np->tx_ring[0]; 1288 } 1289 1290 1291 static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev) 1292 { 1293 struct netdev_private *np = netdev_priv(dev); 1294 unsigned long flags; 1295 1296 spin_lock_irqsave(&np->lock, flags); 1297 1298 np->cur_tx_copy->skbuff = skb; 1299 1300 #define one_buffer 1301 #define BPT 1022 1302 #if defined(one_buffer) 1303 np->cur_tx_copy->buffer = dma_map_single(&np->pci_dev->dev, skb->data, 1304 skb->len, DMA_TO_DEVICE); 1305 np->cur_tx_copy->control = TXIC | TXLD | TXFD | CRCEnable | PADEnable; 1306 np->cur_tx_copy->control |= (skb->len << PKTSShift); /* pkt size */ 1307 np->cur_tx_copy->control |= (skb->len << TBSShift); /* buffer size */ 1308 // 89/12/29 add, 1309 if (np->pci_dev->device == 0x891) 1310 np->cur_tx_copy->control |= ETIControl | RetryTxLC; 1311 np->cur_tx_copy->status = TXOWN; 1312 np->cur_tx_copy = np->cur_tx_copy->next_desc_logical; 1313 --np->free_tx_count; 1314 #elif defined(two_buffer) 1315 if (skb->len > BPT) { 1316 struct fealnx_desc *next; 1317 1318 /* for the first descriptor */ 1319 np->cur_tx_copy->buffer = dma_map_single(&np->pci_dev->dev, 1320 skb->data, BPT, 1321 DMA_TO_DEVICE); 1322 np->cur_tx_copy->control = TXIC | TXFD | CRCEnable | PADEnable; 1323 np->cur_tx_copy->control |= (skb->len << PKTSShift); /* pkt size */ 1324 np->cur_tx_copy->control |= (BPT << TBSShift); /* buffer size */ 1325 1326 /* for the last descriptor */ 1327 next = np->cur_tx_copy->next_desc_logical; 1328 next->skbuff = skb; 1329 next->control = TXIC | TXLD | CRCEnable | PADEnable; 1330 next->control |= (skb->len << PKTSShift); /* pkt size */ 1331 next->control |= ((skb->len - BPT) << TBSShift); /* buf size */ 1332 // 89/12/29 add, 1333 if (np->pci_dev->device == 0x891) 1334 np->cur_tx_copy->control |= ETIControl | RetryTxLC; 1335 next->buffer = dma_map_single(&ep->pci_dev->dev, 1336 skb->data + BPT, skb->len - BPT, 1337 DMA_TO_DEVICE); 1338 1339 next->status = TXOWN; 1340 np->cur_tx_copy->status = TXOWN; 1341 1342 np->cur_tx_copy = next->next_desc_logical; 1343 np->free_tx_count -= 2; 1344 } else { 1345 np->cur_tx_copy->buffer = dma_map_single(&np->pci_dev->dev, 1346 skb->data, skb->len, 1347 DMA_TO_DEVICE); 1348 np->cur_tx_copy->control = TXIC | TXLD | TXFD | CRCEnable | PADEnable; 1349 np->cur_tx_copy->control |= (skb->len << PKTSShift); /* pkt size */ 1350 np->cur_tx_copy->control |= (skb->len << TBSShift); /* buffer size */ 1351 // 89/12/29 add, 1352 if (np->pci_dev->device == 0x891) 1353 np->cur_tx_copy->control |= ETIControl | RetryTxLC; 1354 np->cur_tx_copy->status = TXOWN; 1355 np->cur_tx_copy = np->cur_tx_copy->next_desc_logical; 1356 --np->free_tx_count; 1357 } 1358 #endif 1359 1360 if (np->free_tx_count < 2) 1361 netif_stop_queue(dev); 1362 ++np->really_tx_count; 1363 iowrite32(0, np->mem + TXPDR); 1364 1365 spin_unlock_irqrestore(&np->lock, flags); 1366 return NETDEV_TX_OK; 1367 } 1368 1369 1370 /* Take lock before calling */ 1371 /* Chip probably hosed tx ring. Clean up. */ 1372 static void reset_tx_descriptors(struct net_device *dev) 1373 { 1374 struct netdev_private *np = netdev_priv(dev); 1375 struct fealnx_desc *cur; 1376 int i; 1377 1378 /* initialize tx variables */ 1379 np->cur_tx = &np->tx_ring[0]; 1380 np->cur_tx_copy = &np->tx_ring[0]; 1381 np->really_tx_count = 0; 1382 np->free_tx_count = TX_RING_SIZE; 1383 1384 for (i = 0; i < TX_RING_SIZE; i++) { 1385 cur = &np->tx_ring[i]; 1386 if (cur->skbuff) { 1387 dma_unmap_single(&np->pci_dev->dev, cur->buffer, 1388 cur->skbuff->len, DMA_TO_DEVICE); 1389 dev_kfree_skb_any(cur->skbuff); 1390 cur->skbuff = NULL; 1391 } 1392 cur->status = 0; 1393 cur->control = 0; /* needed? */ 1394 /* probably not needed. We do it for purely paranoid reasons */ 1395 cur->next_desc = np->tx_ring_dma + 1396 (i + 1)*sizeof(struct fealnx_desc); 1397 cur->next_desc_logical = &np->tx_ring[i + 1]; 1398 } 1399 /* for the last tx descriptor */ 1400 np->tx_ring[TX_RING_SIZE - 1].next_desc = np->tx_ring_dma; 1401 np->tx_ring[TX_RING_SIZE - 1].next_desc_logical = &np->tx_ring[0]; 1402 } 1403 1404 1405 /* Take lock and stop rx before calling this */ 1406 static void reset_rx_descriptors(struct net_device *dev) 1407 { 1408 struct netdev_private *np = netdev_priv(dev); 1409 struct fealnx_desc *cur = np->cur_rx; 1410 int i; 1411 1412 allocate_rx_buffers(dev); 1413 1414 for (i = 0; i < RX_RING_SIZE; i++) { 1415 if (cur->skbuff) 1416 cur->status = RXOWN; 1417 cur = cur->next_desc_logical; 1418 } 1419 1420 iowrite32(np->rx_ring_dma + ((char*)np->cur_rx - (char*)np->rx_ring), 1421 np->mem + RXLBA); 1422 } 1423 1424 1425 /* The interrupt handler does all of the Rx thread work and cleans up 1426 after the Tx thread. */ 1427 static irqreturn_t intr_handler(int irq, void *dev_instance) 1428 { 1429 struct net_device *dev = (struct net_device *) dev_instance; 1430 struct netdev_private *np = netdev_priv(dev); 1431 void __iomem *ioaddr = np->mem; 1432 long boguscnt = max_interrupt_work; 1433 unsigned int num_tx = 0; 1434 int handled = 0; 1435 1436 spin_lock(&np->lock); 1437 1438 iowrite32(0, ioaddr + IMR); 1439 1440 do { 1441 u32 intr_status = ioread32(ioaddr + ISR); 1442 1443 /* Acknowledge all of the current interrupt sources ASAP. */ 1444 iowrite32(intr_status, ioaddr + ISR); 1445 1446 if (debug) 1447 printk(KERN_DEBUG "%s: Interrupt, status %4.4x.\n", dev->name, 1448 intr_status); 1449 1450 if (!(intr_status & np->imrvalue)) 1451 break; 1452 1453 handled = 1; 1454 1455 // 90/1/16 delete, 1456 // 1457 // if (intr_status & FBE) 1458 // { /* fatal error */ 1459 // stop_nic_tx(ioaddr, 0); 1460 // stop_nic_rx(ioaddr, 0); 1461 // break; 1462 // }; 1463 1464 if (intr_status & TUNF) 1465 iowrite32(0, ioaddr + TXPDR); 1466 1467 if (intr_status & CNTOVF) { 1468 /* missed pkts */ 1469 dev->stats.rx_missed_errors += 1470 ioread32(ioaddr + TALLY) & 0x7fff; 1471 1472 /* crc error */ 1473 dev->stats.rx_crc_errors += 1474 (ioread32(ioaddr + TALLY) & 0x7fff0000) >> 16; 1475 } 1476 1477 if (intr_status & (RI | RBU)) { 1478 if (intr_status & RI) 1479 netdev_rx(dev); 1480 else { 1481 stop_nic_rx(ioaddr, np->crvalue); 1482 reset_rx_descriptors(dev); 1483 iowrite32(np->crvalue, ioaddr + TCRRCR); 1484 } 1485 } 1486 1487 while (np->really_tx_count) { 1488 long tx_status = np->cur_tx->status; 1489 long tx_control = np->cur_tx->control; 1490 1491 if (!(tx_control & TXLD)) { /* this pkt is combined by two tx descriptors */ 1492 struct fealnx_desc *next; 1493 1494 next = np->cur_tx->next_desc_logical; 1495 tx_status = next->status; 1496 tx_control = next->control; 1497 } 1498 1499 if (tx_status & TXOWN) 1500 break; 1501 1502 if (!(np->crvalue & CR_W_ENH)) { 1503 if (tx_status & (CSL | LC | EC | UDF | HF)) { 1504 dev->stats.tx_errors++; 1505 if (tx_status & EC) 1506 dev->stats.tx_aborted_errors++; 1507 if (tx_status & CSL) 1508 dev->stats.tx_carrier_errors++; 1509 if (tx_status & LC) 1510 dev->stats.tx_window_errors++; 1511 if (tx_status & UDF) 1512 dev->stats.tx_fifo_errors++; 1513 if ((tx_status & HF) && np->mii.full_duplex == 0) 1514 dev->stats.tx_heartbeat_errors++; 1515 1516 } else { 1517 dev->stats.tx_bytes += 1518 ((tx_control & PKTSMask) >> PKTSShift); 1519 1520 dev->stats.collisions += 1521 ((tx_status & NCRMask) >> NCRShift); 1522 dev->stats.tx_packets++; 1523 } 1524 } else { 1525 dev->stats.tx_bytes += 1526 ((tx_control & PKTSMask) >> PKTSShift); 1527 dev->stats.tx_packets++; 1528 } 1529 1530 /* Free the original skb. */ 1531 dma_unmap_single(&np->pci_dev->dev, 1532 np->cur_tx->buffer, 1533 np->cur_tx->skbuff->len, 1534 DMA_TO_DEVICE); 1535 dev_consume_skb_irq(np->cur_tx->skbuff); 1536 np->cur_tx->skbuff = NULL; 1537 --np->really_tx_count; 1538 if (np->cur_tx->control & TXLD) { 1539 np->cur_tx = np->cur_tx->next_desc_logical; 1540 ++np->free_tx_count; 1541 } else { 1542 np->cur_tx = np->cur_tx->next_desc_logical; 1543 np->cur_tx = np->cur_tx->next_desc_logical; 1544 np->free_tx_count += 2; 1545 } 1546 num_tx++; 1547 } /* end of for loop */ 1548 1549 if (num_tx && np->free_tx_count >= 2) 1550 netif_wake_queue(dev); 1551 1552 /* read transmit status for enhanced mode only */ 1553 if (np->crvalue & CR_W_ENH) { 1554 long data; 1555 1556 data = ioread32(ioaddr + TSR); 1557 dev->stats.tx_errors += (data & 0xff000000) >> 24; 1558 dev->stats.tx_aborted_errors += 1559 (data & 0xff000000) >> 24; 1560 dev->stats.tx_window_errors += 1561 (data & 0x00ff0000) >> 16; 1562 dev->stats.collisions += (data & 0x0000ffff); 1563 } 1564 1565 if (--boguscnt < 0) { 1566 printk(KERN_WARNING "%s: Too much work at interrupt, " 1567 "status=0x%4.4x.\n", dev->name, intr_status); 1568 if (!np->reset_timer_armed) { 1569 np->reset_timer_armed = 1; 1570 np->reset_timer.expires = RUN_AT(HZ/2); 1571 add_timer(&np->reset_timer); 1572 stop_nic_rxtx(ioaddr, 0); 1573 netif_stop_queue(dev); 1574 /* or netif_tx_disable(dev); ?? */ 1575 /* Prevent other paths from enabling tx,rx,intrs */ 1576 np->crvalue_sv = np->crvalue; 1577 np->imrvalue_sv = np->imrvalue; 1578 np->crvalue &= ~(CR_W_TXEN | CR_W_RXEN); /* or simply = 0? */ 1579 np->imrvalue = 0; 1580 } 1581 1582 break; 1583 } 1584 } while (1); 1585 1586 /* read the tally counters */ 1587 /* missed pkts */ 1588 dev->stats.rx_missed_errors += ioread32(ioaddr + TALLY) & 0x7fff; 1589 1590 /* crc error */ 1591 dev->stats.rx_crc_errors += 1592 (ioread32(ioaddr + TALLY) & 0x7fff0000) >> 16; 1593 1594 if (debug) 1595 printk(KERN_DEBUG "%s: exiting interrupt, status=%#4.4x.\n", 1596 dev->name, ioread32(ioaddr + ISR)); 1597 1598 iowrite32(np->imrvalue, ioaddr + IMR); 1599 1600 spin_unlock(&np->lock); 1601 1602 return IRQ_RETVAL(handled); 1603 } 1604 1605 1606 /* This routine is logically part of the interrupt handler, but separated 1607 for clarity and better register allocation. */ 1608 static int netdev_rx(struct net_device *dev) 1609 { 1610 struct netdev_private *np = netdev_priv(dev); 1611 void __iomem *ioaddr = np->mem; 1612 1613 /* If EOP is set on the next entry, it's a new packet. Send it up. */ 1614 while (!(np->cur_rx->status & RXOWN) && np->cur_rx->skbuff) { 1615 s32 rx_status = np->cur_rx->status; 1616 1617 if (np->really_rx_count == 0) 1618 break; 1619 1620 if (debug) 1621 printk(KERN_DEBUG " netdev_rx() status was %8.8x.\n", rx_status); 1622 1623 if ((!((rx_status & RXFSD) && (rx_status & RXLSD))) || 1624 (rx_status & ErrorSummary)) { 1625 if (rx_status & ErrorSummary) { /* there was a fatal error */ 1626 if (debug) 1627 printk(KERN_DEBUG 1628 "%s: Receive error, Rx status %8.8x.\n", 1629 dev->name, rx_status); 1630 1631 dev->stats.rx_errors++; /* end of a packet. */ 1632 if (rx_status & (LONGPKT | RUNTPKT)) 1633 dev->stats.rx_length_errors++; 1634 if (rx_status & RXER) 1635 dev->stats.rx_frame_errors++; 1636 if (rx_status & CRC) 1637 dev->stats.rx_crc_errors++; 1638 } else { 1639 int need_to_reset = 0; 1640 int desno = 0; 1641 1642 if (rx_status & RXFSD) { /* this pkt is too long, over one rx buffer */ 1643 struct fealnx_desc *cur; 1644 1645 /* check this packet is received completely? */ 1646 cur = np->cur_rx; 1647 while (desno <= np->really_rx_count) { 1648 ++desno; 1649 if ((!(cur->status & RXOWN)) && 1650 (cur->status & RXLSD)) 1651 break; 1652 /* goto next rx descriptor */ 1653 cur = cur->next_desc_logical; 1654 } 1655 if (desno > np->really_rx_count) 1656 need_to_reset = 1; 1657 } else /* RXLSD did not find, something error */ 1658 need_to_reset = 1; 1659 1660 if (need_to_reset == 0) { 1661 int i; 1662 1663 dev->stats.rx_length_errors++; 1664 1665 /* free all rx descriptors related this long pkt */ 1666 for (i = 0; i < desno; ++i) { 1667 if (!np->cur_rx->skbuff) { 1668 printk(KERN_DEBUG 1669 "%s: I'm scared\n", dev->name); 1670 break; 1671 } 1672 np->cur_rx->status = RXOWN; 1673 np->cur_rx = np->cur_rx->next_desc_logical; 1674 } 1675 continue; 1676 } else { /* rx error, need to reset this chip */ 1677 stop_nic_rx(ioaddr, np->crvalue); 1678 reset_rx_descriptors(dev); 1679 iowrite32(np->crvalue, ioaddr + TCRRCR); 1680 } 1681 break; /* exit the while loop */ 1682 } 1683 } else { /* this received pkt is ok */ 1684 1685 struct sk_buff *skb; 1686 /* Omit the four octet CRC from the length. */ 1687 short pkt_len = ((rx_status & FLNGMASK) >> FLNGShift) - 4; 1688 1689 #ifndef final_version 1690 if (debug) 1691 printk(KERN_DEBUG " netdev_rx() normal Rx pkt length %d" 1692 " status %x.\n", pkt_len, rx_status); 1693 #endif 1694 1695 /* Check if the packet is long enough to accept without copying 1696 to a minimally-sized skbuff. */ 1697 if (pkt_len < rx_copybreak && 1698 (skb = netdev_alloc_skb(dev, pkt_len + 2)) != NULL) { 1699 skb_reserve(skb, 2); /* 16 byte align the IP header */ 1700 dma_sync_single_for_cpu(&np->pci_dev->dev, 1701 np->cur_rx->buffer, 1702 np->rx_buf_sz, 1703 DMA_FROM_DEVICE); 1704 /* Call copy + cksum if available. */ 1705 1706 #if ! defined(__alpha__) 1707 skb_copy_to_linear_data(skb, 1708 np->cur_rx->skbuff->data, pkt_len); 1709 skb_put(skb, pkt_len); 1710 #else 1711 skb_put_data(skb, np->cur_rx->skbuff->data, 1712 pkt_len); 1713 #endif 1714 dma_sync_single_for_device(&np->pci_dev->dev, 1715 np->cur_rx->buffer, 1716 np->rx_buf_sz, 1717 DMA_FROM_DEVICE); 1718 } else { 1719 dma_unmap_single(&np->pci_dev->dev, 1720 np->cur_rx->buffer, 1721 np->rx_buf_sz, 1722 DMA_FROM_DEVICE); 1723 skb_put(skb = np->cur_rx->skbuff, pkt_len); 1724 np->cur_rx->skbuff = NULL; 1725 --np->really_rx_count; 1726 } 1727 skb->protocol = eth_type_trans(skb, dev); 1728 netif_rx(skb); 1729 dev->stats.rx_packets++; 1730 dev->stats.rx_bytes += pkt_len; 1731 } 1732 1733 np->cur_rx = np->cur_rx->next_desc_logical; 1734 } /* end of while loop */ 1735 1736 /* allocate skb for rx buffers */ 1737 allocate_rx_buffers(dev); 1738 1739 return 0; 1740 } 1741 1742 1743 static struct net_device_stats *get_stats(struct net_device *dev) 1744 { 1745 struct netdev_private *np = netdev_priv(dev); 1746 void __iomem *ioaddr = np->mem; 1747 1748 /* The chip only need report frame silently dropped. */ 1749 if (netif_running(dev)) { 1750 dev->stats.rx_missed_errors += 1751 ioread32(ioaddr + TALLY) & 0x7fff; 1752 dev->stats.rx_crc_errors += 1753 (ioread32(ioaddr + TALLY) & 0x7fff0000) >> 16; 1754 } 1755 1756 return &dev->stats; 1757 } 1758 1759 1760 /* for dev->set_multicast_list */ 1761 static void set_rx_mode(struct net_device *dev) 1762 { 1763 spinlock_t *lp = &((struct netdev_private *)netdev_priv(dev))->lock; 1764 unsigned long flags; 1765 spin_lock_irqsave(lp, flags); 1766 __set_rx_mode(dev); 1767 spin_unlock_irqrestore(lp, flags); 1768 } 1769 1770 1771 /* Take lock before calling */ 1772 static void __set_rx_mode(struct net_device *dev) 1773 { 1774 struct netdev_private *np = netdev_priv(dev); 1775 void __iomem *ioaddr = np->mem; 1776 u32 mc_filter[2]; /* Multicast hash filter */ 1777 u32 rx_mode; 1778 1779 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */ 1780 memset(mc_filter, 0xff, sizeof(mc_filter)); 1781 rx_mode = CR_W_PROM | CR_W_AB | CR_W_AM; 1782 } else if ((netdev_mc_count(dev) > multicast_filter_limit) || 1783 (dev->flags & IFF_ALLMULTI)) { 1784 /* Too many to match, or accept all multicasts. */ 1785 memset(mc_filter, 0xff, sizeof(mc_filter)); 1786 rx_mode = CR_W_AB | CR_W_AM; 1787 } else { 1788 struct netdev_hw_addr *ha; 1789 1790 memset(mc_filter, 0, sizeof(mc_filter)); 1791 netdev_for_each_mc_addr(ha, dev) { 1792 unsigned int bit; 1793 bit = (ether_crc(ETH_ALEN, ha->addr) >> 26) ^ 0x3F; 1794 mc_filter[bit >> 5] |= (1 << bit); 1795 } 1796 rx_mode = CR_W_AB | CR_W_AM; 1797 } 1798 1799 stop_nic_rxtx(ioaddr, np->crvalue); 1800 1801 iowrite32(mc_filter[0], ioaddr + MAR0); 1802 iowrite32(mc_filter[1], ioaddr + MAR1); 1803 np->crvalue &= ~CR_W_RXMODEMASK; 1804 np->crvalue |= rx_mode; 1805 iowrite32(np->crvalue, ioaddr + TCRRCR); 1806 } 1807 1808 static void netdev_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) 1809 { 1810 struct netdev_private *np = netdev_priv(dev); 1811 1812 strlcpy(info->driver, DRV_NAME, sizeof(info->driver)); 1813 strlcpy(info->bus_info, pci_name(np->pci_dev), sizeof(info->bus_info)); 1814 } 1815 1816 static int netdev_get_link_ksettings(struct net_device *dev, 1817 struct ethtool_link_ksettings *cmd) 1818 { 1819 struct netdev_private *np = netdev_priv(dev); 1820 1821 spin_lock_irq(&np->lock); 1822 mii_ethtool_get_link_ksettings(&np->mii, cmd); 1823 spin_unlock_irq(&np->lock); 1824 1825 return 0; 1826 } 1827 1828 static int netdev_set_link_ksettings(struct net_device *dev, 1829 const struct ethtool_link_ksettings *cmd) 1830 { 1831 struct netdev_private *np = netdev_priv(dev); 1832 int rc; 1833 1834 spin_lock_irq(&np->lock); 1835 rc = mii_ethtool_set_link_ksettings(&np->mii, cmd); 1836 spin_unlock_irq(&np->lock); 1837 1838 return rc; 1839 } 1840 1841 static int netdev_nway_reset(struct net_device *dev) 1842 { 1843 struct netdev_private *np = netdev_priv(dev); 1844 return mii_nway_restart(&np->mii); 1845 } 1846 1847 static u32 netdev_get_link(struct net_device *dev) 1848 { 1849 struct netdev_private *np = netdev_priv(dev); 1850 return mii_link_ok(&np->mii); 1851 } 1852 1853 static u32 netdev_get_msglevel(struct net_device *dev) 1854 { 1855 return debug; 1856 } 1857 1858 static void netdev_set_msglevel(struct net_device *dev, u32 value) 1859 { 1860 debug = value; 1861 } 1862 1863 static const struct ethtool_ops netdev_ethtool_ops = { 1864 .get_drvinfo = netdev_get_drvinfo, 1865 .nway_reset = netdev_nway_reset, 1866 .get_link = netdev_get_link, 1867 .get_msglevel = netdev_get_msglevel, 1868 .set_msglevel = netdev_set_msglevel, 1869 .get_link_ksettings = netdev_get_link_ksettings, 1870 .set_link_ksettings = netdev_set_link_ksettings, 1871 }; 1872 1873 static int mii_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 1874 { 1875 struct netdev_private *np = netdev_priv(dev); 1876 int rc; 1877 1878 if (!netif_running(dev)) 1879 return -EINVAL; 1880 1881 spin_lock_irq(&np->lock); 1882 rc = generic_mii_ioctl(&np->mii, if_mii(rq), cmd, NULL); 1883 spin_unlock_irq(&np->lock); 1884 1885 return rc; 1886 } 1887 1888 1889 static int netdev_close(struct net_device *dev) 1890 { 1891 struct netdev_private *np = netdev_priv(dev); 1892 void __iomem *ioaddr = np->mem; 1893 int i; 1894 1895 netif_stop_queue(dev); 1896 1897 /* Disable interrupts by clearing the interrupt mask. */ 1898 iowrite32(0x0000, ioaddr + IMR); 1899 1900 /* Stop the chip's Tx and Rx processes. */ 1901 stop_nic_rxtx(ioaddr, 0); 1902 1903 del_timer_sync(&np->timer); 1904 del_timer_sync(&np->reset_timer); 1905 1906 free_irq(np->pci_dev->irq, dev); 1907 1908 /* Free all the skbuffs in the Rx queue. */ 1909 for (i = 0; i < RX_RING_SIZE; i++) { 1910 struct sk_buff *skb = np->rx_ring[i].skbuff; 1911 1912 np->rx_ring[i].status = 0; 1913 if (skb) { 1914 dma_unmap_single(&np->pci_dev->dev, 1915 np->rx_ring[i].buffer, np->rx_buf_sz, 1916 DMA_FROM_DEVICE); 1917 dev_kfree_skb(skb); 1918 np->rx_ring[i].skbuff = NULL; 1919 } 1920 } 1921 1922 for (i = 0; i < TX_RING_SIZE; i++) { 1923 struct sk_buff *skb = np->tx_ring[i].skbuff; 1924 1925 if (skb) { 1926 dma_unmap_single(&np->pci_dev->dev, 1927 np->tx_ring[i].buffer, skb->len, 1928 DMA_TO_DEVICE); 1929 dev_kfree_skb(skb); 1930 np->tx_ring[i].skbuff = NULL; 1931 } 1932 } 1933 1934 return 0; 1935 } 1936 1937 static const struct pci_device_id fealnx_pci_tbl[] = { 1938 {0x1516, 0x0800, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, 1939 {0x1516, 0x0803, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 1}, 1940 {0x1516, 0x0891, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 2}, 1941 {} /* terminate list */ 1942 }; 1943 MODULE_DEVICE_TABLE(pci, fealnx_pci_tbl); 1944 1945 1946 static struct pci_driver fealnx_driver = { 1947 .name = "fealnx", 1948 .id_table = fealnx_pci_tbl, 1949 .probe = fealnx_init_one, 1950 .remove = fealnx_remove_one, 1951 }; 1952 1953 module_pci_driver(fealnx_driver); 1954