xref: /openbmc/linux/drivers/net/ethernet/fealnx.c (revision 6774def6)
1 /*
2 	Written 1998-2000 by Donald Becker.
3 
4 	This software may be used and distributed according to the terms of
5 	the GNU General Public License (GPL), incorporated herein by reference.
6 	Drivers based on or derived from this code fall under the GPL and must
7 	retain the authorship, copyright and license notice.  This file is not
8 	a complete program and may only be used when the entire operating
9 	system is licensed under the GPL.
10 
11 	The author may be reached as becker@scyld.com, or C/O
12 	Scyld Computing Corporation
13 	410 Severn Ave., Suite 210
14 	Annapolis MD 21403
15 
16 	Support information and updates available at
17 	http://www.scyld.com/network/pci-skeleton.html
18 
19 	Linux kernel updates:
20 
21 	Version 2.51, Nov 17, 2001 (jgarzik):
22 	- Add ethtool support
23 	- Replace some MII-related magic numbers with constants
24 
25 */
26 
27 #define DRV_NAME	"fealnx"
28 #define DRV_VERSION	"2.52"
29 #define DRV_RELDATE	"Sep-11-2006"
30 
31 static int debug;		/* 1-> print debug message */
32 static int max_interrupt_work = 20;
33 
34 /* Maximum number of multicast addresses to filter (vs. Rx-all-multicast). */
35 static int multicast_filter_limit = 32;
36 
37 /* Set the copy breakpoint for the copy-only-tiny-frames scheme. */
38 /* Setting to > 1518 effectively disables this feature.          */
39 static int rx_copybreak;
40 
41 /* Used to pass the media type, etc.                            */
42 /* Both 'options[]' and 'full_duplex[]' should exist for driver */
43 /* interoperability.                                            */
44 /* The media type is usually passed in 'options[]'.             */
45 #define MAX_UNITS 8		/* More are supported, limit only on options */
46 static int options[MAX_UNITS] = { -1, -1, -1, -1, -1, -1, -1, -1 };
47 static int full_duplex[MAX_UNITS] = { -1, -1, -1, -1, -1, -1, -1, -1 };
48 
49 /* Operational parameters that are set at compile time.                 */
50 /* Keep the ring sizes a power of two for compile efficiency.           */
51 /* The compiler will convert <unsigned>'%'<2^N> into a bit mask.        */
52 /* Making the Tx ring too large decreases the effectiveness of channel  */
53 /* bonding and packet priority.                                         */
54 /* There are no ill effects from too-large receive rings.               */
55 // 88-12-9 modify,
56 // #define TX_RING_SIZE    16
57 // #define RX_RING_SIZE    32
58 #define TX_RING_SIZE    6
59 #define RX_RING_SIZE    12
60 #define TX_TOTAL_SIZE	TX_RING_SIZE*sizeof(struct fealnx_desc)
61 #define RX_TOTAL_SIZE	RX_RING_SIZE*sizeof(struct fealnx_desc)
62 
63 /* Operational parameters that usually are not changed. */
64 /* Time in jiffies before concluding the transmitter is hung. */
65 #define TX_TIMEOUT      (2*HZ)
66 
67 #define PKT_BUF_SZ      1536	/* Size of each temporary Rx buffer. */
68 
69 
70 /* Include files, designed to support most kernel versions 2.0.0 and later. */
71 #include <linux/module.h>
72 #include <linux/kernel.h>
73 #include <linux/string.h>
74 #include <linux/timer.h>
75 #include <linux/errno.h>
76 #include <linux/ioport.h>
77 #include <linux/interrupt.h>
78 #include <linux/pci.h>
79 #include <linux/netdevice.h>
80 #include <linux/etherdevice.h>
81 #include <linux/skbuff.h>
82 #include <linux/init.h>
83 #include <linux/mii.h>
84 #include <linux/ethtool.h>
85 #include <linux/crc32.h>
86 #include <linux/delay.h>
87 #include <linux/bitops.h>
88 
89 #include <asm/processor.h>	/* Processor type for cache alignment. */
90 #include <asm/io.h>
91 #include <asm/uaccess.h>
92 #include <asm/byteorder.h>
93 
94 /* These identify the driver base version and may not be removed. */
95 static const char version[] =
96 	KERN_INFO DRV_NAME ".c:v" DRV_VERSION " " DRV_RELDATE "\n";
97 
98 
99 /* This driver was written to use PCI memory space, however some x86 systems
100    work only with I/O space accesses. */
101 #ifndef __alpha__
102 #define USE_IO_OPS
103 #endif
104 
105 /* Kernel compatibility defines, some common to David Hinds' PCMCIA package. */
106 /* This is only in the support-all-kernels source code. */
107 
108 #define RUN_AT(x) (jiffies + (x))
109 
110 MODULE_AUTHOR("Myson or whoever");
111 MODULE_DESCRIPTION("Myson MTD-8xx 100/10M Ethernet PCI Adapter Driver");
112 MODULE_LICENSE("GPL");
113 module_param(max_interrupt_work, int, 0);
114 module_param(debug, int, 0);
115 module_param(rx_copybreak, int, 0);
116 module_param(multicast_filter_limit, int, 0);
117 module_param_array(options, int, NULL, 0);
118 module_param_array(full_duplex, int, NULL, 0);
119 MODULE_PARM_DESC(max_interrupt_work, "fealnx maximum events handled per interrupt");
120 MODULE_PARM_DESC(debug, "fealnx enable debugging (0-1)");
121 MODULE_PARM_DESC(rx_copybreak, "fealnx copy breakpoint for copy-only-tiny-frames");
122 MODULE_PARM_DESC(multicast_filter_limit, "fealnx maximum number of filtered multicast addresses");
123 MODULE_PARM_DESC(options, "fealnx: Bits 0-3: media type, bit 17: full duplex");
124 MODULE_PARM_DESC(full_duplex, "fealnx full duplex setting(s) (1)");
125 
126 enum {
127 	MIN_REGION_SIZE		= 136,
128 };
129 
130 /* A chip capabilities table, matching the entries in pci_tbl[] above. */
131 enum chip_capability_flags {
132 	HAS_MII_XCVR,
133 	HAS_CHIP_XCVR,
134 };
135 
136 /* 89/6/13 add, */
137 /* for different PHY */
138 enum phy_type_flags {
139 	MysonPHY = 1,
140 	AhdocPHY = 2,
141 	SeeqPHY = 3,
142 	MarvellPHY = 4,
143 	Myson981 = 5,
144 	LevelOnePHY = 6,
145 	OtherPHY = 10,
146 };
147 
148 struct chip_info {
149 	char *chip_name;
150 	int flags;
151 };
152 
153 static const struct chip_info skel_netdrv_tbl[] = {
154  	{ "100/10M Ethernet PCI Adapter",	HAS_MII_XCVR },
155 	{ "100/10M Ethernet PCI Adapter",	HAS_CHIP_XCVR },
156 	{ "1000/100/10M Ethernet PCI Adapter",	HAS_MII_XCVR },
157 };
158 
159 /* Offsets to the Command and Status Registers. */
160 enum fealnx_offsets {
161 	PAR0 = 0x0,		/* physical address 0-3 */
162 	PAR1 = 0x04,		/* physical address 4-5 */
163 	MAR0 = 0x08,		/* multicast address 0-3 */
164 	MAR1 = 0x0C,		/* multicast address 4-7 */
165 	FAR0 = 0x10,		/* flow-control address 0-3 */
166 	FAR1 = 0x14,		/* flow-control address 4-5 */
167 	TCRRCR = 0x18,		/* receive & transmit configuration */
168 	BCR = 0x1C,		/* bus command */
169 	TXPDR = 0x20,		/* transmit polling demand */
170 	RXPDR = 0x24,		/* receive polling demand */
171 	RXCWP = 0x28,		/* receive current word pointer */
172 	TXLBA = 0x2C,		/* transmit list base address */
173 	RXLBA = 0x30,		/* receive list base address */
174 	ISR = 0x34,		/* interrupt status */
175 	IMR = 0x38,		/* interrupt mask */
176 	FTH = 0x3C,		/* flow control high/low threshold */
177 	MANAGEMENT = 0x40,	/* bootrom/eeprom and mii management */
178 	TALLY = 0x44,		/* tally counters for crc and mpa */
179 	TSR = 0x48,		/* tally counter for transmit status */
180 	BMCRSR = 0x4c,		/* basic mode control and status */
181 	PHYIDENTIFIER = 0x50,	/* phy identifier */
182 	ANARANLPAR = 0x54,	/* auto-negotiation advertisement and link
183 				   partner ability */
184 	ANEROCR = 0x58,		/* auto-negotiation expansion and pci conf. */
185 	BPREMRPSR = 0x5c,	/* bypass & receive error mask and phy status */
186 };
187 
188 /* Bits in the interrupt status/enable registers. */
189 /* The bits in the Intr Status/Enable registers, mostly interrupt sources. */
190 enum intr_status_bits {
191 	RFCON = 0x00020000,	/* receive flow control xon packet */
192 	RFCOFF = 0x00010000,	/* receive flow control xoff packet */
193 	LSCStatus = 0x00008000,	/* link status change */
194 	ANCStatus = 0x00004000,	/* autonegotiation completed */
195 	FBE = 0x00002000,	/* fatal bus error */
196 	FBEMask = 0x00001800,	/* mask bit12-11 */
197 	ParityErr = 0x00000000,	/* parity error */
198 	TargetErr = 0x00001000,	/* target abort */
199 	MasterErr = 0x00000800,	/* master error */
200 	TUNF = 0x00000400,	/* transmit underflow */
201 	ROVF = 0x00000200,	/* receive overflow */
202 	ETI = 0x00000100,	/* transmit early int */
203 	ERI = 0x00000080,	/* receive early int */
204 	CNTOVF = 0x00000040,	/* counter overflow */
205 	RBU = 0x00000020,	/* receive buffer unavailable */
206 	TBU = 0x00000010,	/* transmit buffer unavilable */
207 	TI = 0x00000008,	/* transmit interrupt */
208 	RI = 0x00000004,	/* receive interrupt */
209 	RxErr = 0x00000002,	/* receive error */
210 };
211 
212 /* Bits in the NetworkConfig register, W for writing, R for reading */
213 /* FIXME: some names are invented by me. Marked with (name?) */
214 /* If you have docs and know bit names, please fix 'em */
215 enum rx_mode_bits {
216 	CR_W_ENH	= 0x02000000,	/* enhanced mode (name?) */
217 	CR_W_FD		= 0x00100000,	/* full duplex */
218 	CR_W_PS10	= 0x00080000,	/* 10 mbit */
219 	CR_W_TXEN	= 0x00040000,	/* tx enable (name?) */
220 	CR_W_PS1000	= 0x00010000,	/* 1000 mbit */
221      /* CR_W_RXBURSTMASK= 0x00000e00, Im unsure about this */
222 	CR_W_RXMODEMASK	= 0x000000e0,
223 	CR_W_PROM	= 0x00000080,	/* promiscuous mode */
224 	CR_W_AB		= 0x00000040,	/* accept broadcast */
225 	CR_W_AM		= 0x00000020,	/* accept mutlicast */
226 	CR_W_ARP	= 0x00000008,	/* receive runt pkt */
227 	CR_W_ALP	= 0x00000004,	/* receive long pkt */
228 	CR_W_SEP	= 0x00000002,	/* receive error pkt */
229 	CR_W_RXEN	= 0x00000001,	/* rx enable (unicast?) (name?) */
230 
231 	CR_R_TXSTOP	= 0x04000000,	/* tx stopped (name?) */
232 	CR_R_FD		= 0x00100000,	/* full duplex detected */
233 	CR_R_PS10	= 0x00080000,	/* 10 mbit detected */
234 	CR_R_RXSTOP	= 0x00008000,	/* rx stopped (name?) */
235 };
236 
237 /* The Tulip Rx and Tx buffer descriptors. */
238 struct fealnx_desc {
239 	s32 status;
240 	s32 control;
241 	u32 buffer;
242 	u32 next_desc;
243 	struct fealnx_desc *next_desc_logical;
244 	struct sk_buff *skbuff;
245 	u32 reserved1;
246 	u32 reserved2;
247 };
248 
249 /* Bits in network_desc.status */
250 enum rx_desc_status_bits {
251 	RXOWN = 0x80000000,	/* own bit */
252 	FLNGMASK = 0x0fff0000,	/* frame length */
253 	FLNGShift = 16,
254 	MARSTATUS = 0x00004000,	/* multicast address received */
255 	BARSTATUS = 0x00002000,	/* broadcast address received */
256 	PHYSTATUS = 0x00001000,	/* physical address received */
257 	RXFSD = 0x00000800,	/* first descriptor */
258 	RXLSD = 0x00000400,	/* last descriptor */
259 	ErrorSummary = 0x80,	/* error summary */
260 	RUNT = 0x40,		/* runt packet received */
261 	LONG = 0x20,		/* long packet received */
262 	FAE = 0x10,		/* frame align error */
263 	CRC = 0x08,		/* crc error */
264 	RXER = 0x04,		/* receive error */
265 };
266 
267 enum rx_desc_control_bits {
268 	RXIC = 0x00800000,	/* interrupt control */
269 	RBSShift = 0,
270 };
271 
272 enum tx_desc_status_bits {
273 	TXOWN = 0x80000000,	/* own bit */
274 	JABTO = 0x00004000,	/* jabber timeout */
275 	CSL = 0x00002000,	/* carrier sense lost */
276 	LC = 0x00001000,	/* late collision */
277 	EC = 0x00000800,	/* excessive collision */
278 	UDF = 0x00000400,	/* fifo underflow */
279 	DFR = 0x00000200,	/* deferred */
280 	HF = 0x00000100,	/* heartbeat fail */
281 	NCRMask = 0x000000ff,	/* collision retry count */
282 	NCRShift = 0,
283 };
284 
285 enum tx_desc_control_bits {
286 	TXIC = 0x80000000,	/* interrupt control */
287 	ETIControl = 0x40000000,	/* early transmit interrupt */
288 	TXLD = 0x20000000,	/* last descriptor */
289 	TXFD = 0x10000000,	/* first descriptor */
290 	CRCEnable = 0x08000000,	/* crc control */
291 	PADEnable = 0x04000000,	/* padding control */
292 	RetryTxLC = 0x02000000,	/* retry late collision */
293 	PKTSMask = 0x3ff800,	/* packet size bit21-11 */
294 	PKTSShift = 11,
295 	TBSMask = 0x000007ff,	/* transmit buffer bit 10-0 */
296 	TBSShift = 0,
297 };
298 
299 /* BootROM/EEPROM/MII Management Register */
300 #define MASK_MIIR_MII_READ       0x00000000
301 #define MASK_MIIR_MII_WRITE      0x00000008
302 #define MASK_MIIR_MII_MDO        0x00000004
303 #define MASK_MIIR_MII_MDI        0x00000002
304 #define MASK_MIIR_MII_MDC        0x00000001
305 
306 /* ST+OP+PHYAD+REGAD+TA */
307 #define OP_READ             0x6000	/* ST:01+OP:10+PHYAD+REGAD+TA:Z0 */
308 #define OP_WRITE            0x5002	/* ST:01+OP:01+PHYAD+REGAD+TA:10 */
309 
310 /* ------------------------------------------------------------------------- */
311 /*      Constants for Myson PHY                                              */
312 /* ------------------------------------------------------------------------- */
313 #define MysonPHYID      0xd0000302
314 /* 89-7-27 add, (begin) */
315 #define MysonPHYID0     0x0302
316 #define StatusRegister  18
317 #define SPEED100        0x0400	// bit10
318 #define FULLMODE        0x0800	// bit11
319 /* 89-7-27 add, (end) */
320 
321 /* ------------------------------------------------------------------------- */
322 /*      Constants for Seeq 80225 PHY                                         */
323 /* ------------------------------------------------------------------------- */
324 #define SeeqPHYID0      0x0016
325 
326 #define MIIRegister18   18
327 #define SPD_DET_100     0x80
328 #define DPLX_DET_FULL   0x40
329 
330 /* ------------------------------------------------------------------------- */
331 /*      Constants for Ahdoc 101 PHY                                          */
332 /* ------------------------------------------------------------------------- */
333 #define AhdocPHYID0     0x0022
334 
335 #define DiagnosticReg   18
336 #define DPLX_FULL       0x0800
337 #define Speed_100       0x0400
338 
339 /* 89/6/13 add, */
340 /* -------------------------------------------------------------------------- */
341 /*      Constants                                                             */
342 /* -------------------------------------------------------------------------- */
343 #define MarvellPHYID0           0x0141
344 #define LevelOnePHYID0		0x0013
345 
346 #define MII1000BaseTControlReg  9
347 #define MII1000BaseTStatusReg   10
348 #define SpecificReg		17
349 
350 /* for 1000BaseT Control Register */
351 #define PHYAbletoPerform1000FullDuplex  0x0200
352 #define PHYAbletoPerform1000HalfDuplex  0x0100
353 #define PHY1000AbilityMask              0x300
354 
355 // for phy specific status register, marvell phy.
356 #define SpeedMask       0x0c000
357 #define Speed_1000M     0x08000
358 #define Speed_100M      0x4000
359 #define Speed_10M       0
360 #define Full_Duplex     0x2000
361 
362 // 89/12/29 add, for phy specific status register, levelone phy, (begin)
363 #define LXT1000_100M    0x08000
364 #define LXT1000_1000M   0x0c000
365 #define LXT1000_Full    0x200
366 // 89/12/29 add, for phy specific status register, levelone phy, (end)
367 
368 /* for 3-in-1 case, BMCRSR register */
369 #define LinkIsUp2	0x00040000
370 
371 /* for PHY */
372 #define LinkIsUp        0x0004
373 
374 
375 struct netdev_private {
376 	/* Descriptor rings first for alignment. */
377 	struct fealnx_desc *rx_ring;
378 	struct fealnx_desc *tx_ring;
379 
380 	dma_addr_t rx_ring_dma;
381 	dma_addr_t tx_ring_dma;
382 
383 	spinlock_t lock;
384 
385 	/* Media monitoring timer. */
386 	struct timer_list timer;
387 
388 	/* Reset timer */
389 	struct timer_list reset_timer;
390 	int reset_timer_armed;
391 	unsigned long crvalue_sv;
392 	unsigned long imrvalue_sv;
393 
394 	/* Frequently used values: keep some adjacent for cache effect. */
395 	int flags;
396 	struct pci_dev *pci_dev;
397 	unsigned long crvalue;
398 	unsigned long bcrvalue;
399 	unsigned long imrvalue;
400 	struct fealnx_desc *cur_rx;
401 	struct fealnx_desc *lack_rxbuf;
402 	int really_rx_count;
403 	struct fealnx_desc *cur_tx;
404 	struct fealnx_desc *cur_tx_copy;
405 	int really_tx_count;
406 	int free_tx_count;
407 	unsigned int rx_buf_sz;	/* Based on MTU+slack. */
408 
409 	/* These values are keep track of the transceiver/media in use. */
410 	unsigned int linkok;
411 	unsigned int line_speed;
412 	unsigned int duplexmode;
413 	unsigned int default_port:4;	/* Last dev->if_port value. */
414 	unsigned int PHYType;
415 
416 	/* MII transceiver section. */
417 	int mii_cnt;		/* MII device addresses. */
418 	unsigned char phys[2];	/* MII device addresses. */
419 	struct mii_if_info mii;
420 	void __iomem *mem;
421 };
422 
423 
424 static int mdio_read(struct net_device *dev, int phy_id, int location);
425 static void mdio_write(struct net_device *dev, int phy_id, int location, int value);
426 static int netdev_open(struct net_device *dev);
427 static void getlinktype(struct net_device *dev);
428 static void getlinkstatus(struct net_device *dev);
429 static void netdev_timer(unsigned long data);
430 static void reset_timer(unsigned long data);
431 static void fealnx_tx_timeout(struct net_device *dev);
432 static void init_ring(struct net_device *dev);
433 static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev);
434 static irqreturn_t intr_handler(int irq, void *dev_instance);
435 static int netdev_rx(struct net_device *dev);
436 static void set_rx_mode(struct net_device *dev);
437 static void __set_rx_mode(struct net_device *dev);
438 static struct net_device_stats *get_stats(struct net_device *dev);
439 static int mii_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
440 static const struct ethtool_ops netdev_ethtool_ops;
441 static int netdev_close(struct net_device *dev);
442 static void reset_rx_descriptors(struct net_device *dev);
443 static void reset_tx_descriptors(struct net_device *dev);
444 
445 static void stop_nic_rx(void __iomem *ioaddr, long crvalue)
446 {
447 	int delay = 0x1000;
448 	iowrite32(crvalue & ~(CR_W_RXEN), ioaddr + TCRRCR);
449 	while (--delay) {
450 		if ( (ioread32(ioaddr + TCRRCR) & CR_R_RXSTOP) == CR_R_RXSTOP)
451 			break;
452 	}
453 }
454 
455 
456 static void stop_nic_rxtx(void __iomem *ioaddr, long crvalue)
457 {
458 	int delay = 0x1000;
459 	iowrite32(crvalue & ~(CR_W_RXEN+CR_W_TXEN), ioaddr + TCRRCR);
460 	while (--delay) {
461 		if ( (ioread32(ioaddr + TCRRCR) & (CR_R_RXSTOP+CR_R_TXSTOP))
462 					    == (CR_R_RXSTOP+CR_R_TXSTOP) )
463 			break;
464 	}
465 }
466 
467 static const struct net_device_ops netdev_ops = {
468 	.ndo_open		= netdev_open,
469 	.ndo_stop		= netdev_close,
470 	.ndo_start_xmit		= start_tx,
471 	.ndo_get_stats 		= get_stats,
472 	.ndo_set_rx_mode	= set_rx_mode,
473 	.ndo_do_ioctl		= mii_ioctl,
474 	.ndo_tx_timeout		= fealnx_tx_timeout,
475 	.ndo_change_mtu		= eth_change_mtu,
476 	.ndo_set_mac_address 	= eth_mac_addr,
477 	.ndo_validate_addr	= eth_validate_addr,
478 };
479 
480 static int fealnx_init_one(struct pci_dev *pdev,
481 			   const struct pci_device_id *ent)
482 {
483 	struct netdev_private *np;
484 	int i, option, err, irq;
485 	static int card_idx = -1;
486 	char boardname[12];
487 	void __iomem *ioaddr;
488 	unsigned long len;
489 	unsigned int chip_id = ent->driver_data;
490 	struct net_device *dev;
491 	void *ring_space;
492 	dma_addr_t ring_dma;
493 #ifdef USE_IO_OPS
494 	int bar = 0;
495 #else
496 	int bar = 1;
497 #endif
498 
499 /* when built into the kernel, we only print version if device is found */
500 #ifndef MODULE
501 	static int printed_version;
502 	if (!printed_version++)
503 		printk(version);
504 #endif
505 
506 	card_idx++;
507 	sprintf(boardname, "fealnx%d", card_idx);
508 
509 	option = card_idx < MAX_UNITS ? options[card_idx] : 0;
510 
511 	i = pci_enable_device(pdev);
512 	if (i) return i;
513 	pci_set_master(pdev);
514 
515 	len = pci_resource_len(pdev, bar);
516 	if (len < MIN_REGION_SIZE) {
517 		dev_err(&pdev->dev,
518 			   "region size %ld too small, aborting\n", len);
519 		return -ENODEV;
520 	}
521 
522 	i = pci_request_regions(pdev, boardname);
523 	if (i)
524 		return i;
525 
526 	irq = pdev->irq;
527 
528 	ioaddr = pci_iomap(pdev, bar, len);
529 	if (!ioaddr) {
530 		err = -ENOMEM;
531 		goto err_out_res;
532 	}
533 
534 	dev = alloc_etherdev(sizeof(struct netdev_private));
535 	if (!dev) {
536 		err = -ENOMEM;
537 		goto err_out_unmap;
538 	}
539 	SET_NETDEV_DEV(dev, &pdev->dev);
540 
541 	/* read ethernet id */
542 	for (i = 0; i < 6; ++i)
543 		dev->dev_addr[i] = ioread8(ioaddr + PAR0 + i);
544 
545 	/* Reset the chip to erase previous misconfiguration. */
546 	iowrite32(0x00000001, ioaddr + BCR);
547 
548 	/* Make certain the descriptor lists are aligned. */
549 	np = netdev_priv(dev);
550 	np->mem = ioaddr;
551 	spin_lock_init(&np->lock);
552 	np->pci_dev = pdev;
553 	np->flags = skel_netdrv_tbl[chip_id].flags;
554 	pci_set_drvdata(pdev, dev);
555 	np->mii.dev = dev;
556 	np->mii.mdio_read = mdio_read;
557 	np->mii.mdio_write = mdio_write;
558 	np->mii.phy_id_mask = 0x1f;
559 	np->mii.reg_num_mask = 0x1f;
560 
561 	ring_space = pci_alloc_consistent(pdev, RX_TOTAL_SIZE, &ring_dma);
562 	if (!ring_space) {
563 		err = -ENOMEM;
564 		goto err_out_free_dev;
565 	}
566 	np->rx_ring = ring_space;
567 	np->rx_ring_dma = ring_dma;
568 
569 	ring_space = pci_alloc_consistent(pdev, TX_TOTAL_SIZE, &ring_dma);
570 	if (!ring_space) {
571 		err = -ENOMEM;
572 		goto err_out_free_rx;
573 	}
574 	np->tx_ring = ring_space;
575 	np->tx_ring_dma = ring_dma;
576 
577 	/* find the connected MII xcvrs */
578 	if (np->flags == HAS_MII_XCVR) {
579 		int phy, phy_idx = 0;
580 
581 		for (phy = 1; phy < 32 && phy_idx < ARRAY_SIZE(np->phys);
582 			       phy++) {
583 			int mii_status = mdio_read(dev, phy, 1);
584 
585 			if (mii_status != 0xffff && mii_status != 0x0000) {
586 				np->phys[phy_idx++] = phy;
587 				dev_info(&pdev->dev,
588 				       "MII PHY found at address %d, status "
589 				       "0x%4.4x.\n", phy, mii_status);
590 				/* get phy type */
591 				{
592 					unsigned int data;
593 
594 					data = mdio_read(dev, np->phys[0], 2);
595 					if (data == SeeqPHYID0)
596 						np->PHYType = SeeqPHY;
597 					else if (data == AhdocPHYID0)
598 						np->PHYType = AhdocPHY;
599 					else if (data == MarvellPHYID0)
600 						np->PHYType = MarvellPHY;
601 					else if (data == MysonPHYID0)
602 						np->PHYType = Myson981;
603 					else if (data == LevelOnePHYID0)
604 						np->PHYType = LevelOnePHY;
605 					else
606 						np->PHYType = OtherPHY;
607 				}
608 			}
609 		}
610 
611 		np->mii_cnt = phy_idx;
612 		if (phy_idx == 0)
613 			dev_warn(&pdev->dev,
614 				"MII PHY not found -- this device may "
615 			       "not operate correctly.\n");
616 	} else {
617 		np->phys[0] = 32;
618 /* 89/6/23 add, (begin) */
619 		/* get phy type */
620 		if (ioread32(ioaddr + PHYIDENTIFIER) == MysonPHYID)
621 			np->PHYType = MysonPHY;
622 		else
623 			np->PHYType = OtherPHY;
624 	}
625 	np->mii.phy_id = np->phys[0];
626 
627 	if (dev->mem_start)
628 		option = dev->mem_start;
629 
630 	/* The lower four bits are the media type. */
631 	if (option > 0) {
632 		if (option & 0x200)
633 			np->mii.full_duplex = 1;
634 		np->default_port = option & 15;
635 	}
636 
637 	if (card_idx < MAX_UNITS && full_duplex[card_idx] > 0)
638 		np->mii.full_duplex = full_duplex[card_idx];
639 
640 	if (np->mii.full_duplex) {
641 		dev_info(&pdev->dev, "Media type forced to Full Duplex.\n");
642 /* 89/6/13 add, (begin) */
643 //      if (np->PHYType==MarvellPHY)
644 		if ((np->PHYType == MarvellPHY) || (np->PHYType == LevelOnePHY)) {
645 			unsigned int data;
646 
647 			data = mdio_read(dev, np->phys[0], 9);
648 			data = (data & 0xfcff) | 0x0200;
649 			mdio_write(dev, np->phys[0], 9, data);
650 		}
651 /* 89/6/13 add, (end) */
652 		if (np->flags == HAS_MII_XCVR)
653 			mdio_write(dev, np->phys[0], MII_ADVERTISE, ADVERTISE_FULL);
654 		else
655 			iowrite32(ADVERTISE_FULL, ioaddr + ANARANLPAR);
656 		np->mii.force_media = 1;
657 	}
658 
659 	dev->netdev_ops = &netdev_ops;
660 	dev->ethtool_ops = &netdev_ethtool_ops;
661 	dev->watchdog_timeo = TX_TIMEOUT;
662 
663 	err = register_netdev(dev);
664 	if (err)
665 		goto err_out_free_tx;
666 
667 	printk(KERN_INFO "%s: %s at %p, %pM, IRQ %d.\n",
668 	       dev->name, skel_netdrv_tbl[chip_id].chip_name, ioaddr,
669 	       dev->dev_addr, irq);
670 
671 	return 0;
672 
673 err_out_free_tx:
674 	pci_free_consistent(pdev, TX_TOTAL_SIZE, np->tx_ring, np->tx_ring_dma);
675 err_out_free_rx:
676 	pci_free_consistent(pdev, RX_TOTAL_SIZE, np->rx_ring, np->rx_ring_dma);
677 err_out_free_dev:
678 	free_netdev(dev);
679 err_out_unmap:
680 	pci_iounmap(pdev, ioaddr);
681 err_out_res:
682 	pci_release_regions(pdev);
683 	return err;
684 }
685 
686 
687 static void fealnx_remove_one(struct pci_dev *pdev)
688 {
689 	struct net_device *dev = pci_get_drvdata(pdev);
690 
691 	if (dev) {
692 		struct netdev_private *np = netdev_priv(dev);
693 
694 		pci_free_consistent(pdev, TX_TOTAL_SIZE, np->tx_ring,
695 			np->tx_ring_dma);
696 		pci_free_consistent(pdev, RX_TOTAL_SIZE, np->rx_ring,
697 			np->rx_ring_dma);
698 		unregister_netdev(dev);
699 		pci_iounmap(pdev, np->mem);
700 		free_netdev(dev);
701 		pci_release_regions(pdev);
702 	} else
703 		printk(KERN_ERR "fealnx: remove for unknown device\n");
704 }
705 
706 
707 static ulong m80x_send_cmd_to_phy(void __iomem *miiport, int opcode, int phyad, int regad)
708 {
709 	ulong miir;
710 	int i;
711 	unsigned int mask, data;
712 
713 	/* enable MII output */
714 	miir = (ulong) ioread32(miiport);
715 	miir &= 0xfffffff0;
716 
717 	miir |= MASK_MIIR_MII_WRITE + MASK_MIIR_MII_MDO;
718 
719 	/* send 32 1's preamble */
720 	for (i = 0; i < 32; i++) {
721 		/* low MDC; MDO is already high (miir) */
722 		miir &= ~MASK_MIIR_MII_MDC;
723 		iowrite32(miir, miiport);
724 
725 		/* high MDC */
726 		miir |= MASK_MIIR_MII_MDC;
727 		iowrite32(miir, miiport);
728 	}
729 
730 	/* calculate ST+OP+PHYAD+REGAD+TA */
731 	data = opcode | (phyad << 7) | (regad << 2);
732 
733 	/* sent out */
734 	mask = 0x8000;
735 	while (mask) {
736 		/* low MDC, prepare MDO */
737 		miir &= ~(MASK_MIIR_MII_MDC + MASK_MIIR_MII_MDO);
738 		if (mask & data)
739 			miir |= MASK_MIIR_MII_MDO;
740 
741 		iowrite32(miir, miiport);
742 		/* high MDC */
743 		miir |= MASK_MIIR_MII_MDC;
744 		iowrite32(miir, miiport);
745 		udelay(30);
746 
747 		/* next */
748 		mask >>= 1;
749 		if (mask == 0x2 && opcode == OP_READ)
750 			miir &= ~MASK_MIIR_MII_WRITE;
751 	}
752 	return miir;
753 }
754 
755 
756 static int mdio_read(struct net_device *dev, int phyad, int regad)
757 {
758 	struct netdev_private *np = netdev_priv(dev);
759 	void __iomem *miiport = np->mem + MANAGEMENT;
760 	ulong miir;
761 	unsigned int mask, data;
762 
763 	miir = m80x_send_cmd_to_phy(miiport, OP_READ, phyad, regad);
764 
765 	/* read data */
766 	mask = 0x8000;
767 	data = 0;
768 	while (mask) {
769 		/* low MDC */
770 		miir &= ~MASK_MIIR_MII_MDC;
771 		iowrite32(miir, miiport);
772 
773 		/* read MDI */
774 		miir = ioread32(miiport);
775 		if (miir & MASK_MIIR_MII_MDI)
776 			data |= mask;
777 
778 		/* high MDC, and wait */
779 		miir |= MASK_MIIR_MII_MDC;
780 		iowrite32(miir, miiport);
781 		udelay(30);
782 
783 		/* next */
784 		mask >>= 1;
785 	}
786 
787 	/* low MDC */
788 	miir &= ~MASK_MIIR_MII_MDC;
789 	iowrite32(miir, miiport);
790 
791 	return data & 0xffff;
792 }
793 
794 
795 static void mdio_write(struct net_device *dev, int phyad, int regad, int data)
796 {
797 	struct netdev_private *np = netdev_priv(dev);
798 	void __iomem *miiport = np->mem + MANAGEMENT;
799 	ulong miir;
800 	unsigned int mask;
801 
802 	miir = m80x_send_cmd_to_phy(miiport, OP_WRITE, phyad, regad);
803 
804 	/* write data */
805 	mask = 0x8000;
806 	while (mask) {
807 		/* low MDC, prepare MDO */
808 		miir &= ~(MASK_MIIR_MII_MDC + MASK_MIIR_MII_MDO);
809 		if (mask & data)
810 			miir |= MASK_MIIR_MII_MDO;
811 		iowrite32(miir, miiport);
812 
813 		/* high MDC */
814 		miir |= MASK_MIIR_MII_MDC;
815 		iowrite32(miir, miiport);
816 
817 		/* next */
818 		mask >>= 1;
819 	}
820 
821 	/* low MDC */
822 	miir &= ~MASK_MIIR_MII_MDC;
823 	iowrite32(miir, miiport);
824 }
825 
826 
827 static int netdev_open(struct net_device *dev)
828 {
829 	struct netdev_private *np = netdev_priv(dev);
830 	void __iomem *ioaddr = np->mem;
831 	const int irq = np->pci_dev->irq;
832 	int rc, i;
833 
834 	iowrite32(0x00000001, ioaddr + BCR);	/* Reset */
835 
836 	rc = request_irq(irq, intr_handler, IRQF_SHARED, dev->name, dev);
837 	if (rc)
838 		return -EAGAIN;
839 
840 	for (i = 0; i < 3; i++)
841 		iowrite16(((unsigned short*)dev->dev_addr)[i],
842 				ioaddr + PAR0 + i*2);
843 
844 	init_ring(dev);
845 
846 	iowrite32(np->rx_ring_dma, ioaddr + RXLBA);
847 	iowrite32(np->tx_ring_dma, ioaddr + TXLBA);
848 
849 	/* Initialize other registers. */
850 	/* Configure the PCI bus bursts and FIFO thresholds.
851 	   486: Set 8 longword burst.
852 	   586: no burst limit.
853 	   Burst length 5:3
854 	   0 0 0   1
855 	   0 0 1   4
856 	   0 1 0   8
857 	   0 1 1   16
858 	   1 0 0   32
859 	   1 0 1   64
860 	   1 1 0   128
861 	   1 1 1   256
862 	   Wait the specified 50 PCI cycles after a reset by initializing
863 	   Tx and Rx queues and the address filter list.
864 	   FIXME (Ueimor): optimistic for alpha + posted writes ? */
865 
866 	np->bcrvalue = 0x10;	/* little-endian, 8 burst length */
867 #ifdef __BIG_ENDIAN
868 	np->bcrvalue |= 0x04;	/* big-endian */
869 #endif
870 
871 #if defined(__i386__) && !defined(MODULE)
872 	if (boot_cpu_data.x86 <= 4)
873 		np->crvalue = 0xa00;
874 	else
875 #endif
876 		np->crvalue = 0xe00;	/* rx 128 burst length */
877 
878 
879 // 89/12/29 add,
880 // 90/1/16 modify,
881 //   np->imrvalue=FBE|TUNF|CNTOVF|RBU|TI|RI;
882 	np->imrvalue = TUNF | CNTOVF | RBU | TI | RI;
883 	if (np->pci_dev->device == 0x891) {
884 		np->bcrvalue |= 0x200;	/* set PROG bit */
885 		np->crvalue |= CR_W_ENH;	/* set enhanced bit */
886 		np->imrvalue |= ETI;
887 	}
888 	iowrite32(np->bcrvalue, ioaddr + BCR);
889 
890 	if (dev->if_port == 0)
891 		dev->if_port = np->default_port;
892 
893 	iowrite32(0, ioaddr + RXPDR);
894 // 89/9/1 modify,
895 //   np->crvalue = 0x00e40001;    /* tx store and forward, tx/rx enable */
896 	np->crvalue |= 0x00e40001;	/* tx store and forward, tx/rx enable */
897 	np->mii.full_duplex = np->mii.force_media;
898 	getlinkstatus(dev);
899 	if (np->linkok)
900 		getlinktype(dev);
901 	__set_rx_mode(dev);
902 
903 	netif_start_queue(dev);
904 
905 	/* Clear and Enable interrupts by setting the interrupt mask. */
906 	iowrite32(FBE | TUNF | CNTOVF | RBU | TI | RI, ioaddr + ISR);
907 	iowrite32(np->imrvalue, ioaddr + IMR);
908 
909 	if (debug)
910 		printk(KERN_DEBUG "%s: Done netdev_open().\n", dev->name);
911 
912 	/* Set the timer to check for link beat. */
913 	init_timer(&np->timer);
914 	np->timer.expires = RUN_AT(3 * HZ);
915 	np->timer.data = (unsigned long) dev;
916 	np->timer.function = netdev_timer;
917 
918 	/* timer handler */
919 	add_timer(&np->timer);
920 
921 	init_timer(&np->reset_timer);
922 	np->reset_timer.data = (unsigned long) dev;
923 	np->reset_timer.function = reset_timer;
924 	np->reset_timer_armed = 0;
925 	return rc;
926 }
927 
928 
929 static void getlinkstatus(struct net_device *dev)
930 /* function: Routine will read MII Status Register to get link status.       */
931 /* input   : dev... pointer to the adapter block.                            */
932 /* output  : none.                                                           */
933 {
934 	struct netdev_private *np = netdev_priv(dev);
935 	unsigned int i, DelayTime = 0x1000;
936 
937 	np->linkok = 0;
938 
939 	if (np->PHYType == MysonPHY) {
940 		for (i = 0; i < DelayTime; ++i) {
941 			if (ioread32(np->mem + BMCRSR) & LinkIsUp2) {
942 				np->linkok = 1;
943 				return;
944 			}
945 			udelay(100);
946 		}
947 	} else {
948 		for (i = 0; i < DelayTime; ++i) {
949 			if (mdio_read(dev, np->phys[0], MII_BMSR) & BMSR_LSTATUS) {
950 				np->linkok = 1;
951 				return;
952 			}
953 			udelay(100);
954 		}
955 	}
956 }
957 
958 
959 static void getlinktype(struct net_device *dev)
960 {
961 	struct netdev_private *np = netdev_priv(dev);
962 
963 	if (np->PHYType == MysonPHY) {	/* 3-in-1 case */
964 		if (ioread32(np->mem + TCRRCR) & CR_R_FD)
965 			np->duplexmode = 2;	/* full duplex */
966 		else
967 			np->duplexmode = 1;	/* half duplex */
968 		if (ioread32(np->mem + TCRRCR) & CR_R_PS10)
969 			np->line_speed = 1;	/* 10M */
970 		else
971 			np->line_speed = 2;	/* 100M */
972 	} else {
973 		if (np->PHYType == SeeqPHY) {	/* this PHY is SEEQ 80225 */
974 			unsigned int data;
975 
976 			data = mdio_read(dev, np->phys[0], MIIRegister18);
977 			if (data & SPD_DET_100)
978 				np->line_speed = 2;	/* 100M */
979 			else
980 				np->line_speed = 1;	/* 10M */
981 			if (data & DPLX_DET_FULL)
982 				np->duplexmode = 2;	/* full duplex mode */
983 			else
984 				np->duplexmode = 1;	/* half duplex mode */
985 		} else if (np->PHYType == AhdocPHY) {
986 			unsigned int data;
987 
988 			data = mdio_read(dev, np->phys[0], DiagnosticReg);
989 			if (data & Speed_100)
990 				np->line_speed = 2;	/* 100M */
991 			else
992 				np->line_speed = 1;	/* 10M */
993 			if (data & DPLX_FULL)
994 				np->duplexmode = 2;	/* full duplex mode */
995 			else
996 				np->duplexmode = 1;	/* half duplex mode */
997 		}
998 /* 89/6/13 add, (begin) */
999 		else if (np->PHYType == MarvellPHY) {
1000 			unsigned int data;
1001 
1002 			data = mdio_read(dev, np->phys[0], SpecificReg);
1003 			if (data & Full_Duplex)
1004 				np->duplexmode = 2;	/* full duplex mode */
1005 			else
1006 				np->duplexmode = 1;	/* half duplex mode */
1007 			data &= SpeedMask;
1008 			if (data == Speed_1000M)
1009 				np->line_speed = 3;	/* 1000M */
1010 			else if (data == Speed_100M)
1011 				np->line_speed = 2;	/* 100M */
1012 			else
1013 				np->line_speed = 1;	/* 10M */
1014 		}
1015 /* 89/6/13 add, (end) */
1016 /* 89/7/27 add, (begin) */
1017 		else if (np->PHYType == Myson981) {
1018 			unsigned int data;
1019 
1020 			data = mdio_read(dev, np->phys[0], StatusRegister);
1021 
1022 			if (data & SPEED100)
1023 				np->line_speed = 2;
1024 			else
1025 				np->line_speed = 1;
1026 
1027 			if (data & FULLMODE)
1028 				np->duplexmode = 2;
1029 			else
1030 				np->duplexmode = 1;
1031 		}
1032 /* 89/7/27 add, (end) */
1033 /* 89/12/29 add */
1034 		else if (np->PHYType == LevelOnePHY) {
1035 			unsigned int data;
1036 
1037 			data = mdio_read(dev, np->phys[0], SpecificReg);
1038 			if (data & LXT1000_Full)
1039 				np->duplexmode = 2;	/* full duplex mode */
1040 			else
1041 				np->duplexmode = 1;	/* half duplex mode */
1042 			data &= SpeedMask;
1043 			if (data == LXT1000_1000M)
1044 				np->line_speed = 3;	/* 1000M */
1045 			else if (data == LXT1000_100M)
1046 				np->line_speed = 2;	/* 100M */
1047 			else
1048 				np->line_speed = 1;	/* 10M */
1049 		}
1050 		np->crvalue &= (~CR_W_PS10) & (~CR_W_FD) & (~CR_W_PS1000);
1051 		if (np->line_speed == 1)
1052 			np->crvalue |= CR_W_PS10;
1053 		else if (np->line_speed == 3)
1054 			np->crvalue |= CR_W_PS1000;
1055 		if (np->duplexmode == 2)
1056 			np->crvalue |= CR_W_FD;
1057 	}
1058 }
1059 
1060 
1061 /* Take lock before calling this */
1062 static void allocate_rx_buffers(struct net_device *dev)
1063 {
1064 	struct netdev_private *np = netdev_priv(dev);
1065 
1066 	/*  allocate skb for rx buffers */
1067 	while (np->really_rx_count != RX_RING_SIZE) {
1068 		struct sk_buff *skb;
1069 
1070 		skb = netdev_alloc_skb(dev, np->rx_buf_sz);
1071 		if (skb == NULL)
1072 			break;	/* Better luck next round. */
1073 
1074 		while (np->lack_rxbuf->skbuff)
1075 			np->lack_rxbuf = np->lack_rxbuf->next_desc_logical;
1076 
1077 		np->lack_rxbuf->skbuff = skb;
1078 		np->lack_rxbuf->buffer = pci_map_single(np->pci_dev, skb->data,
1079 			np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1080 		np->lack_rxbuf->status = RXOWN;
1081 		++np->really_rx_count;
1082 	}
1083 }
1084 
1085 
1086 static void netdev_timer(unsigned long data)
1087 {
1088 	struct net_device *dev = (struct net_device *) data;
1089 	struct netdev_private *np = netdev_priv(dev);
1090 	void __iomem *ioaddr = np->mem;
1091 	int old_crvalue = np->crvalue;
1092 	unsigned int old_linkok = np->linkok;
1093 	unsigned long flags;
1094 
1095 	if (debug)
1096 		printk(KERN_DEBUG "%s: Media selection timer tick, status %8.8x "
1097 		       "config %8.8x.\n", dev->name, ioread32(ioaddr + ISR),
1098 		       ioread32(ioaddr + TCRRCR));
1099 
1100 	spin_lock_irqsave(&np->lock, flags);
1101 
1102 	if (np->flags == HAS_MII_XCVR) {
1103 		getlinkstatus(dev);
1104 		if ((old_linkok == 0) && (np->linkok == 1)) {	/* we need to detect the media type again */
1105 			getlinktype(dev);
1106 			if (np->crvalue != old_crvalue) {
1107 				stop_nic_rxtx(ioaddr, np->crvalue);
1108 				iowrite32(np->crvalue, ioaddr + TCRRCR);
1109 			}
1110 		}
1111 	}
1112 
1113 	allocate_rx_buffers(dev);
1114 
1115 	spin_unlock_irqrestore(&np->lock, flags);
1116 
1117 	np->timer.expires = RUN_AT(10 * HZ);
1118 	add_timer(&np->timer);
1119 }
1120 
1121 
1122 /* Take lock before calling */
1123 /* Reset chip and disable rx, tx and interrupts */
1124 static void reset_and_disable_rxtx(struct net_device *dev)
1125 {
1126 	struct netdev_private *np = netdev_priv(dev);
1127 	void __iomem *ioaddr = np->mem;
1128 	int delay=51;
1129 
1130 	/* Reset the chip's Tx and Rx processes. */
1131 	stop_nic_rxtx(ioaddr, 0);
1132 
1133 	/* Disable interrupts by clearing the interrupt mask. */
1134 	iowrite32(0, ioaddr + IMR);
1135 
1136 	/* Reset the chip to erase previous misconfiguration. */
1137 	iowrite32(0x00000001, ioaddr + BCR);
1138 
1139 	/* Ueimor: wait for 50 PCI cycles (and flush posted writes btw).
1140 	   We surely wait too long (address+data phase). Who cares? */
1141 	while (--delay) {
1142 		ioread32(ioaddr + BCR);
1143 		rmb();
1144 	}
1145 }
1146 
1147 
1148 /* Take lock before calling */
1149 /* Restore chip after reset */
1150 static void enable_rxtx(struct net_device *dev)
1151 {
1152 	struct netdev_private *np = netdev_priv(dev);
1153 	void __iomem *ioaddr = np->mem;
1154 
1155 	reset_rx_descriptors(dev);
1156 
1157 	iowrite32(np->tx_ring_dma + ((char*)np->cur_tx - (char*)np->tx_ring),
1158 		ioaddr + TXLBA);
1159 	iowrite32(np->rx_ring_dma + ((char*)np->cur_rx - (char*)np->rx_ring),
1160 		ioaddr + RXLBA);
1161 
1162 	iowrite32(np->bcrvalue, ioaddr + BCR);
1163 
1164 	iowrite32(0, ioaddr + RXPDR);
1165 	__set_rx_mode(dev); /* changes np->crvalue, writes it into TCRRCR */
1166 
1167 	/* Clear and Enable interrupts by setting the interrupt mask. */
1168 	iowrite32(FBE | TUNF | CNTOVF | RBU | TI | RI, ioaddr + ISR);
1169 	iowrite32(np->imrvalue, ioaddr + IMR);
1170 
1171 	iowrite32(0, ioaddr + TXPDR);
1172 }
1173 
1174 
1175 static void reset_timer(unsigned long data)
1176 {
1177 	struct net_device *dev = (struct net_device *) data;
1178 	struct netdev_private *np = netdev_priv(dev);
1179 	unsigned long flags;
1180 
1181 	printk(KERN_WARNING "%s: resetting tx and rx machinery\n", dev->name);
1182 
1183 	spin_lock_irqsave(&np->lock, flags);
1184 	np->crvalue = np->crvalue_sv;
1185 	np->imrvalue = np->imrvalue_sv;
1186 
1187 	reset_and_disable_rxtx(dev);
1188 	/* works for me without this:
1189 	reset_tx_descriptors(dev); */
1190 	enable_rxtx(dev);
1191 	netif_start_queue(dev); /* FIXME: or netif_wake_queue(dev); ? */
1192 
1193 	np->reset_timer_armed = 0;
1194 
1195 	spin_unlock_irqrestore(&np->lock, flags);
1196 }
1197 
1198 
1199 static void fealnx_tx_timeout(struct net_device *dev)
1200 {
1201 	struct netdev_private *np = netdev_priv(dev);
1202 	void __iomem *ioaddr = np->mem;
1203 	unsigned long flags;
1204 	int i;
1205 
1206 	printk(KERN_WARNING
1207 	       "%s: Transmit timed out, status %8.8x, resetting...\n",
1208 	       dev->name, ioread32(ioaddr + ISR));
1209 
1210 	{
1211 		printk(KERN_DEBUG "  Rx ring %p: ", np->rx_ring);
1212 		for (i = 0; i < RX_RING_SIZE; i++)
1213 			printk(KERN_CONT " %8.8x",
1214 			       (unsigned int) np->rx_ring[i].status);
1215 		printk(KERN_CONT "\n");
1216 		printk(KERN_DEBUG "  Tx ring %p: ", np->tx_ring);
1217 		for (i = 0; i < TX_RING_SIZE; i++)
1218 			printk(KERN_CONT " %4.4x", np->tx_ring[i].status);
1219 		printk(KERN_CONT "\n");
1220 	}
1221 
1222 	spin_lock_irqsave(&np->lock, flags);
1223 
1224 	reset_and_disable_rxtx(dev);
1225 	reset_tx_descriptors(dev);
1226 	enable_rxtx(dev);
1227 
1228 	spin_unlock_irqrestore(&np->lock, flags);
1229 
1230 	dev->trans_start = jiffies; /* prevent tx timeout */
1231 	dev->stats.tx_errors++;
1232 	netif_wake_queue(dev); /* or .._start_.. ?? */
1233 }
1234 
1235 
1236 /* Initialize the Rx and Tx rings, along with various 'dev' bits. */
1237 static void init_ring(struct net_device *dev)
1238 {
1239 	struct netdev_private *np = netdev_priv(dev);
1240 	int i;
1241 
1242 	/* initialize rx variables */
1243 	np->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
1244 	np->cur_rx = &np->rx_ring[0];
1245 	np->lack_rxbuf = np->rx_ring;
1246 	np->really_rx_count = 0;
1247 
1248 	/* initial rx descriptors. */
1249 	for (i = 0; i < RX_RING_SIZE; i++) {
1250 		np->rx_ring[i].status = 0;
1251 		np->rx_ring[i].control = np->rx_buf_sz << RBSShift;
1252 		np->rx_ring[i].next_desc = np->rx_ring_dma +
1253 			(i + 1)*sizeof(struct fealnx_desc);
1254 		np->rx_ring[i].next_desc_logical = &np->rx_ring[i + 1];
1255 		np->rx_ring[i].skbuff = NULL;
1256 	}
1257 
1258 	/* for the last rx descriptor */
1259 	np->rx_ring[i - 1].next_desc = np->rx_ring_dma;
1260 	np->rx_ring[i - 1].next_desc_logical = np->rx_ring;
1261 
1262 	/* allocate skb for rx buffers */
1263 	for (i = 0; i < RX_RING_SIZE; i++) {
1264 		struct sk_buff *skb = netdev_alloc_skb(dev, np->rx_buf_sz);
1265 
1266 		if (skb == NULL) {
1267 			np->lack_rxbuf = &np->rx_ring[i];
1268 			break;
1269 		}
1270 
1271 		++np->really_rx_count;
1272 		np->rx_ring[i].skbuff = skb;
1273 		np->rx_ring[i].buffer = pci_map_single(np->pci_dev, skb->data,
1274 			np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1275 		np->rx_ring[i].status = RXOWN;
1276 		np->rx_ring[i].control |= RXIC;
1277 	}
1278 
1279 	/* initialize tx variables */
1280 	np->cur_tx = &np->tx_ring[0];
1281 	np->cur_tx_copy = &np->tx_ring[0];
1282 	np->really_tx_count = 0;
1283 	np->free_tx_count = TX_RING_SIZE;
1284 
1285 	for (i = 0; i < TX_RING_SIZE; i++) {
1286 		np->tx_ring[i].status = 0;
1287 		/* do we need np->tx_ring[i].control = XXX; ?? */
1288 		np->tx_ring[i].next_desc = np->tx_ring_dma +
1289 			(i + 1)*sizeof(struct fealnx_desc);
1290 		np->tx_ring[i].next_desc_logical = &np->tx_ring[i + 1];
1291 		np->tx_ring[i].skbuff = NULL;
1292 	}
1293 
1294 	/* for the last tx descriptor */
1295 	np->tx_ring[i - 1].next_desc = np->tx_ring_dma;
1296 	np->tx_ring[i - 1].next_desc_logical = &np->tx_ring[0];
1297 }
1298 
1299 
1300 static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev)
1301 {
1302 	struct netdev_private *np = netdev_priv(dev);
1303 	unsigned long flags;
1304 
1305 	spin_lock_irqsave(&np->lock, flags);
1306 
1307 	np->cur_tx_copy->skbuff = skb;
1308 
1309 #define one_buffer
1310 #define BPT 1022
1311 #if defined(one_buffer)
1312 	np->cur_tx_copy->buffer = pci_map_single(np->pci_dev, skb->data,
1313 		skb->len, PCI_DMA_TODEVICE);
1314 	np->cur_tx_copy->control = TXIC | TXLD | TXFD | CRCEnable | PADEnable;
1315 	np->cur_tx_copy->control |= (skb->len << PKTSShift);	/* pkt size */
1316 	np->cur_tx_copy->control |= (skb->len << TBSShift);	/* buffer size */
1317 // 89/12/29 add,
1318 	if (np->pci_dev->device == 0x891)
1319 		np->cur_tx_copy->control |= ETIControl | RetryTxLC;
1320 	np->cur_tx_copy->status = TXOWN;
1321 	np->cur_tx_copy = np->cur_tx_copy->next_desc_logical;
1322 	--np->free_tx_count;
1323 #elif defined(two_buffer)
1324 	if (skb->len > BPT) {
1325 		struct fealnx_desc *next;
1326 
1327 		/* for the first descriptor */
1328 		np->cur_tx_copy->buffer = pci_map_single(np->pci_dev, skb->data,
1329 			BPT, PCI_DMA_TODEVICE);
1330 		np->cur_tx_copy->control = TXIC | TXFD | CRCEnable | PADEnable;
1331 		np->cur_tx_copy->control |= (skb->len << PKTSShift);	/* pkt size */
1332 		np->cur_tx_copy->control |= (BPT << TBSShift);	/* buffer size */
1333 
1334 		/* for the last descriptor */
1335 		next = np->cur_tx_copy->next_desc_logical;
1336 		next->skbuff = skb;
1337 		next->control = TXIC | TXLD | CRCEnable | PADEnable;
1338 		next->control |= (skb->len << PKTSShift);	/* pkt size */
1339 		next->control |= ((skb->len - BPT) << TBSShift);	/* buf size */
1340 // 89/12/29 add,
1341 		if (np->pci_dev->device == 0x891)
1342 			np->cur_tx_copy->control |= ETIControl | RetryTxLC;
1343 		next->buffer = pci_map_single(ep->pci_dev, skb->data + BPT,
1344                                 skb->len - BPT, PCI_DMA_TODEVICE);
1345 
1346 		next->status = TXOWN;
1347 		np->cur_tx_copy->status = TXOWN;
1348 
1349 		np->cur_tx_copy = next->next_desc_logical;
1350 		np->free_tx_count -= 2;
1351 	} else {
1352 		np->cur_tx_copy->buffer = pci_map_single(np->pci_dev, skb->data,
1353 			skb->len, PCI_DMA_TODEVICE);
1354 		np->cur_tx_copy->control = TXIC | TXLD | TXFD | CRCEnable | PADEnable;
1355 		np->cur_tx_copy->control |= (skb->len << PKTSShift);	/* pkt size */
1356 		np->cur_tx_copy->control |= (skb->len << TBSShift);	/* buffer size */
1357 // 89/12/29 add,
1358 		if (np->pci_dev->device == 0x891)
1359 			np->cur_tx_copy->control |= ETIControl | RetryTxLC;
1360 		np->cur_tx_copy->status = TXOWN;
1361 		np->cur_tx_copy = np->cur_tx_copy->next_desc_logical;
1362 		--np->free_tx_count;
1363 	}
1364 #endif
1365 
1366 	if (np->free_tx_count < 2)
1367 		netif_stop_queue(dev);
1368 	++np->really_tx_count;
1369 	iowrite32(0, np->mem + TXPDR);
1370 
1371 	spin_unlock_irqrestore(&np->lock, flags);
1372 	return NETDEV_TX_OK;
1373 }
1374 
1375 
1376 /* Take lock before calling */
1377 /* Chip probably hosed tx ring. Clean up. */
1378 static void reset_tx_descriptors(struct net_device *dev)
1379 {
1380 	struct netdev_private *np = netdev_priv(dev);
1381 	struct fealnx_desc *cur;
1382 	int i;
1383 
1384 	/* initialize tx variables */
1385 	np->cur_tx = &np->tx_ring[0];
1386 	np->cur_tx_copy = &np->tx_ring[0];
1387 	np->really_tx_count = 0;
1388 	np->free_tx_count = TX_RING_SIZE;
1389 
1390 	for (i = 0; i < TX_RING_SIZE; i++) {
1391 		cur = &np->tx_ring[i];
1392 		if (cur->skbuff) {
1393 			pci_unmap_single(np->pci_dev, cur->buffer,
1394 				cur->skbuff->len, PCI_DMA_TODEVICE);
1395 			dev_kfree_skb_any(cur->skbuff);
1396 			cur->skbuff = NULL;
1397 		}
1398 		cur->status = 0;
1399 		cur->control = 0;	/* needed? */
1400 		/* probably not needed. We do it for purely paranoid reasons */
1401 		cur->next_desc = np->tx_ring_dma +
1402 			(i + 1)*sizeof(struct fealnx_desc);
1403 		cur->next_desc_logical = &np->tx_ring[i + 1];
1404 	}
1405 	/* for the last tx descriptor */
1406 	np->tx_ring[TX_RING_SIZE - 1].next_desc = np->tx_ring_dma;
1407 	np->tx_ring[TX_RING_SIZE - 1].next_desc_logical = &np->tx_ring[0];
1408 }
1409 
1410 
1411 /* Take lock and stop rx before calling this */
1412 static void reset_rx_descriptors(struct net_device *dev)
1413 {
1414 	struct netdev_private *np = netdev_priv(dev);
1415 	struct fealnx_desc *cur = np->cur_rx;
1416 	int i;
1417 
1418 	allocate_rx_buffers(dev);
1419 
1420 	for (i = 0; i < RX_RING_SIZE; i++) {
1421 		if (cur->skbuff)
1422 			cur->status = RXOWN;
1423 		cur = cur->next_desc_logical;
1424 	}
1425 
1426 	iowrite32(np->rx_ring_dma + ((char*)np->cur_rx - (char*)np->rx_ring),
1427 		np->mem + RXLBA);
1428 }
1429 
1430 
1431 /* The interrupt handler does all of the Rx thread work and cleans up
1432    after the Tx thread. */
1433 static irqreturn_t intr_handler(int irq, void *dev_instance)
1434 {
1435 	struct net_device *dev = (struct net_device *) dev_instance;
1436 	struct netdev_private *np = netdev_priv(dev);
1437 	void __iomem *ioaddr = np->mem;
1438 	long boguscnt = max_interrupt_work;
1439 	unsigned int num_tx = 0;
1440 	int handled = 0;
1441 
1442 	spin_lock(&np->lock);
1443 
1444 	iowrite32(0, ioaddr + IMR);
1445 
1446 	do {
1447 		u32 intr_status = ioread32(ioaddr + ISR);
1448 
1449 		/* Acknowledge all of the current interrupt sources ASAP. */
1450 		iowrite32(intr_status, ioaddr + ISR);
1451 
1452 		if (debug)
1453 			printk(KERN_DEBUG "%s: Interrupt, status %4.4x.\n", dev->name,
1454 			       intr_status);
1455 
1456 		if (!(intr_status & np->imrvalue))
1457 			break;
1458 
1459 		handled = 1;
1460 
1461 // 90/1/16 delete,
1462 //
1463 //      if (intr_status & FBE)
1464 //      {   /* fatal error */
1465 //          stop_nic_tx(ioaddr, 0);
1466 //          stop_nic_rx(ioaddr, 0);
1467 //          break;
1468 //      };
1469 
1470 		if (intr_status & TUNF)
1471 			iowrite32(0, ioaddr + TXPDR);
1472 
1473 		if (intr_status & CNTOVF) {
1474 			/* missed pkts */
1475 			dev->stats.rx_missed_errors +=
1476 				ioread32(ioaddr + TALLY) & 0x7fff;
1477 
1478 			/* crc error */
1479 			dev->stats.rx_crc_errors +=
1480 			    (ioread32(ioaddr + TALLY) & 0x7fff0000) >> 16;
1481 		}
1482 
1483 		if (intr_status & (RI | RBU)) {
1484 			if (intr_status & RI)
1485 				netdev_rx(dev);
1486 			else {
1487 				stop_nic_rx(ioaddr, np->crvalue);
1488 				reset_rx_descriptors(dev);
1489 				iowrite32(np->crvalue, ioaddr + TCRRCR);
1490 			}
1491 		}
1492 
1493 		while (np->really_tx_count) {
1494 			long tx_status = np->cur_tx->status;
1495 			long tx_control = np->cur_tx->control;
1496 
1497 			if (!(tx_control & TXLD)) {	/* this pkt is combined by two tx descriptors */
1498 				struct fealnx_desc *next;
1499 
1500 				next = np->cur_tx->next_desc_logical;
1501 				tx_status = next->status;
1502 				tx_control = next->control;
1503 			}
1504 
1505 			if (tx_status & TXOWN)
1506 				break;
1507 
1508 			if (!(np->crvalue & CR_W_ENH)) {
1509 				if (tx_status & (CSL | LC | EC | UDF | HF)) {
1510 					dev->stats.tx_errors++;
1511 					if (tx_status & EC)
1512 						dev->stats.tx_aborted_errors++;
1513 					if (tx_status & CSL)
1514 						dev->stats.tx_carrier_errors++;
1515 					if (tx_status & LC)
1516 						dev->stats.tx_window_errors++;
1517 					if (tx_status & UDF)
1518 						dev->stats.tx_fifo_errors++;
1519 					if ((tx_status & HF) && np->mii.full_duplex == 0)
1520 						dev->stats.tx_heartbeat_errors++;
1521 
1522 				} else {
1523 					dev->stats.tx_bytes +=
1524 					    ((tx_control & PKTSMask) >> PKTSShift);
1525 
1526 					dev->stats.collisions +=
1527 					    ((tx_status & NCRMask) >> NCRShift);
1528 					dev->stats.tx_packets++;
1529 				}
1530 			} else {
1531 				dev->stats.tx_bytes +=
1532 				    ((tx_control & PKTSMask) >> PKTSShift);
1533 				dev->stats.tx_packets++;
1534 			}
1535 
1536 			/* Free the original skb. */
1537 			pci_unmap_single(np->pci_dev, np->cur_tx->buffer,
1538 				np->cur_tx->skbuff->len, PCI_DMA_TODEVICE);
1539 			dev_kfree_skb_irq(np->cur_tx->skbuff);
1540 			np->cur_tx->skbuff = NULL;
1541 			--np->really_tx_count;
1542 			if (np->cur_tx->control & TXLD) {
1543 				np->cur_tx = np->cur_tx->next_desc_logical;
1544 				++np->free_tx_count;
1545 			} else {
1546 				np->cur_tx = np->cur_tx->next_desc_logical;
1547 				np->cur_tx = np->cur_tx->next_desc_logical;
1548 				np->free_tx_count += 2;
1549 			}
1550 			num_tx++;
1551 		}		/* end of for loop */
1552 
1553 		if (num_tx && np->free_tx_count >= 2)
1554 			netif_wake_queue(dev);
1555 
1556 		/* read transmit status for enhanced mode only */
1557 		if (np->crvalue & CR_W_ENH) {
1558 			long data;
1559 
1560 			data = ioread32(ioaddr + TSR);
1561 			dev->stats.tx_errors += (data & 0xff000000) >> 24;
1562 			dev->stats.tx_aborted_errors +=
1563 				(data & 0xff000000) >> 24;
1564 			dev->stats.tx_window_errors +=
1565 				(data & 0x00ff0000) >> 16;
1566 			dev->stats.collisions += (data & 0x0000ffff);
1567 		}
1568 
1569 		if (--boguscnt < 0) {
1570 			printk(KERN_WARNING "%s: Too much work at interrupt, "
1571 			       "status=0x%4.4x.\n", dev->name, intr_status);
1572 			if (!np->reset_timer_armed) {
1573 				np->reset_timer_armed = 1;
1574 				np->reset_timer.expires = RUN_AT(HZ/2);
1575 				add_timer(&np->reset_timer);
1576 				stop_nic_rxtx(ioaddr, 0);
1577 				netif_stop_queue(dev);
1578 				/* or netif_tx_disable(dev); ?? */
1579 				/* Prevent other paths from enabling tx,rx,intrs */
1580 				np->crvalue_sv = np->crvalue;
1581 				np->imrvalue_sv = np->imrvalue;
1582 				np->crvalue &= ~(CR_W_TXEN | CR_W_RXEN); /* or simply = 0? */
1583 				np->imrvalue = 0;
1584 			}
1585 
1586 			break;
1587 		}
1588 	} while (1);
1589 
1590 	/* read the tally counters */
1591 	/* missed pkts */
1592 	dev->stats.rx_missed_errors += ioread32(ioaddr + TALLY) & 0x7fff;
1593 
1594 	/* crc error */
1595 	dev->stats.rx_crc_errors +=
1596 		(ioread32(ioaddr + TALLY) & 0x7fff0000) >> 16;
1597 
1598 	if (debug)
1599 		printk(KERN_DEBUG "%s: exiting interrupt, status=%#4.4x.\n",
1600 		       dev->name, ioread32(ioaddr + ISR));
1601 
1602 	iowrite32(np->imrvalue, ioaddr + IMR);
1603 
1604 	spin_unlock(&np->lock);
1605 
1606 	return IRQ_RETVAL(handled);
1607 }
1608 
1609 
1610 /* This routine is logically part of the interrupt handler, but separated
1611    for clarity and better register allocation. */
1612 static int netdev_rx(struct net_device *dev)
1613 {
1614 	struct netdev_private *np = netdev_priv(dev);
1615 	void __iomem *ioaddr = np->mem;
1616 
1617 	/* If EOP is set on the next entry, it's a new packet. Send it up. */
1618 	while (!(np->cur_rx->status & RXOWN) && np->cur_rx->skbuff) {
1619 		s32 rx_status = np->cur_rx->status;
1620 
1621 		if (np->really_rx_count == 0)
1622 			break;
1623 
1624 		if (debug)
1625 			printk(KERN_DEBUG "  netdev_rx() status was %8.8x.\n", rx_status);
1626 
1627 		if ((!((rx_status & RXFSD) && (rx_status & RXLSD))) ||
1628 		    (rx_status & ErrorSummary)) {
1629 			if (rx_status & ErrorSummary) {	/* there was a fatal error */
1630 				if (debug)
1631 					printk(KERN_DEBUG
1632 					       "%s: Receive error, Rx status %8.8x.\n",
1633 					       dev->name, rx_status);
1634 
1635 				dev->stats.rx_errors++;	/* end of a packet. */
1636 				if (rx_status & (LONG | RUNT))
1637 					dev->stats.rx_length_errors++;
1638 				if (rx_status & RXER)
1639 					dev->stats.rx_frame_errors++;
1640 				if (rx_status & CRC)
1641 					dev->stats.rx_crc_errors++;
1642 			} else {
1643 				int need_to_reset = 0;
1644 				int desno = 0;
1645 
1646 				if (rx_status & RXFSD) {	/* this pkt is too long, over one rx buffer */
1647 					struct fealnx_desc *cur;
1648 
1649 					/* check this packet is received completely? */
1650 					cur = np->cur_rx;
1651 					while (desno <= np->really_rx_count) {
1652 						++desno;
1653 						if ((!(cur->status & RXOWN)) &&
1654 						    (cur->status & RXLSD))
1655 							break;
1656 						/* goto next rx descriptor */
1657 						cur = cur->next_desc_logical;
1658 					}
1659 					if (desno > np->really_rx_count)
1660 						need_to_reset = 1;
1661 				} else	/* RXLSD did not find, something error */
1662 					need_to_reset = 1;
1663 
1664 				if (need_to_reset == 0) {
1665 					int i;
1666 
1667 					dev->stats.rx_length_errors++;
1668 
1669 					/* free all rx descriptors related this long pkt */
1670 					for (i = 0; i < desno; ++i) {
1671 						if (!np->cur_rx->skbuff) {
1672 							printk(KERN_DEBUG
1673 								"%s: I'm scared\n", dev->name);
1674 							break;
1675 						}
1676 						np->cur_rx->status = RXOWN;
1677 						np->cur_rx = np->cur_rx->next_desc_logical;
1678 					}
1679 					continue;
1680 				} else {        /* rx error, need to reset this chip */
1681 					stop_nic_rx(ioaddr, np->crvalue);
1682 					reset_rx_descriptors(dev);
1683 					iowrite32(np->crvalue, ioaddr + TCRRCR);
1684 				}
1685 				break;	/* exit the while loop */
1686 			}
1687 		} else {	/* this received pkt is ok */
1688 
1689 			struct sk_buff *skb;
1690 			/* Omit the four octet CRC from the length. */
1691 			short pkt_len = ((rx_status & FLNGMASK) >> FLNGShift) - 4;
1692 
1693 #ifndef final_version
1694 			if (debug)
1695 				printk(KERN_DEBUG "  netdev_rx() normal Rx pkt length %d"
1696 				       " status %x.\n", pkt_len, rx_status);
1697 #endif
1698 
1699 			/* Check if the packet is long enough to accept without copying
1700 			   to a minimally-sized skbuff. */
1701 			if (pkt_len < rx_copybreak &&
1702 			    (skb = netdev_alloc_skb(dev, pkt_len + 2)) != NULL) {
1703 				skb_reserve(skb, 2);	/* 16 byte align the IP header */
1704 				pci_dma_sync_single_for_cpu(np->pci_dev,
1705 							    np->cur_rx->buffer,
1706 							    np->rx_buf_sz,
1707 							    PCI_DMA_FROMDEVICE);
1708 				/* Call copy + cksum if available. */
1709 
1710 #if ! defined(__alpha__)
1711 				skb_copy_to_linear_data(skb,
1712 					np->cur_rx->skbuff->data, pkt_len);
1713 				skb_put(skb, pkt_len);
1714 #else
1715 				memcpy(skb_put(skb, pkt_len),
1716 					np->cur_rx->skbuff->data, pkt_len);
1717 #endif
1718 				pci_dma_sync_single_for_device(np->pci_dev,
1719 							       np->cur_rx->buffer,
1720 							       np->rx_buf_sz,
1721 							       PCI_DMA_FROMDEVICE);
1722 			} else {
1723 				pci_unmap_single(np->pci_dev,
1724 						 np->cur_rx->buffer,
1725 						 np->rx_buf_sz,
1726 						 PCI_DMA_FROMDEVICE);
1727 				skb_put(skb = np->cur_rx->skbuff, pkt_len);
1728 				np->cur_rx->skbuff = NULL;
1729 				--np->really_rx_count;
1730 			}
1731 			skb->protocol = eth_type_trans(skb, dev);
1732 			netif_rx(skb);
1733 			dev->stats.rx_packets++;
1734 			dev->stats.rx_bytes += pkt_len;
1735 		}
1736 
1737 		np->cur_rx = np->cur_rx->next_desc_logical;
1738 	}			/* end of while loop */
1739 
1740 	/*  allocate skb for rx buffers */
1741 	allocate_rx_buffers(dev);
1742 
1743 	return 0;
1744 }
1745 
1746 
1747 static struct net_device_stats *get_stats(struct net_device *dev)
1748 {
1749 	struct netdev_private *np = netdev_priv(dev);
1750 	void __iomem *ioaddr = np->mem;
1751 
1752 	/* The chip only need report frame silently dropped. */
1753 	if (netif_running(dev)) {
1754 		dev->stats.rx_missed_errors +=
1755 			ioread32(ioaddr + TALLY) & 0x7fff;
1756 		dev->stats.rx_crc_errors +=
1757 			(ioread32(ioaddr + TALLY) & 0x7fff0000) >> 16;
1758 	}
1759 
1760 	return &dev->stats;
1761 }
1762 
1763 
1764 /* for dev->set_multicast_list */
1765 static void set_rx_mode(struct net_device *dev)
1766 {
1767 	spinlock_t *lp = &((struct netdev_private *)netdev_priv(dev))->lock;
1768 	unsigned long flags;
1769 	spin_lock_irqsave(lp, flags);
1770 	__set_rx_mode(dev);
1771 	spin_unlock_irqrestore(lp, flags);
1772 }
1773 
1774 
1775 /* Take lock before calling */
1776 static void __set_rx_mode(struct net_device *dev)
1777 {
1778 	struct netdev_private *np = netdev_priv(dev);
1779 	void __iomem *ioaddr = np->mem;
1780 	u32 mc_filter[2];	/* Multicast hash filter */
1781 	u32 rx_mode;
1782 
1783 	if (dev->flags & IFF_PROMISC) {	/* Set promiscuous. */
1784 		memset(mc_filter, 0xff, sizeof(mc_filter));
1785 		rx_mode = CR_W_PROM | CR_W_AB | CR_W_AM;
1786 	} else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
1787 		   (dev->flags & IFF_ALLMULTI)) {
1788 		/* Too many to match, or accept all multicasts. */
1789 		memset(mc_filter, 0xff, sizeof(mc_filter));
1790 		rx_mode = CR_W_AB | CR_W_AM;
1791 	} else {
1792 		struct netdev_hw_addr *ha;
1793 
1794 		memset(mc_filter, 0, sizeof(mc_filter));
1795 		netdev_for_each_mc_addr(ha, dev) {
1796 			unsigned int bit;
1797 			bit = (ether_crc(ETH_ALEN, ha->addr) >> 26) ^ 0x3F;
1798 			mc_filter[bit >> 5] |= (1 << bit);
1799 		}
1800 		rx_mode = CR_W_AB | CR_W_AM;
1801 	}
1802 
1803 	stop_nic_rxtx(ioaddr, np->crvalue);
1804 
1805 	iowrite32(mc_filter[0], ioaddr + MAR0);
1806 	iowrite32(mc_filter[1], ioaddr + MAR1);
1807 	np->crvalue &= ~CR_W_RXMODEMASK;
1808 	np->crvalue |= rx_mode;
1809 	iowrite32(np->crvalue, ioaddr + TCRRCR);
1810 }
1811 
1812 static void netdev_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1813 {
1814 	struct netdev_private *np = netdev_priv(dev);
1815 
1816 	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1817 	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1818 	strlcpy(info->bus_info, pci_name(np->pci_dev), sizeof(info->bus_info));
1819 }
1820 
1821 static int netdev_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1822 {
1823 	struct netdev_private *np = netdev_priv(dev);
1824 	int rc;
1825 
1826 	spin_lock_irq(&np->lock);
1827 	rc = mii_ethtool_gset(&np->mii, cmd);
1828 	spin_unlock_irq(&np->lock);
1829 
1830 	return rc;
1831 }
1832 
1833 static int netdev_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1834 {
1835 	struct netdev_private *np = netdev_priv(dev);
1836 	int rc;
1837 
1838 	spin_lock_irq(&np->lock);
1839 	rc = mii_ethtool_sset(&np->mii, cmd);
1840 	spin_unlock_irq(&np->lock);
1841 
1842 	return rc;
1843 }
1844 
1845 static int netdev_nway_reset(struct net_device *dev)
1846 {
1847 	struct netdev_private *np = netdev_priv(dev);
1848 	return mii_nway_restart(&np->mii);
1849 }
1850 
1851 static u32 netdev_get_link(struct net_device *dev)
1852 {
1853 	struct netdev_private *np = netdev_priv(dev);
1854 	return mii_link_ok(&np->mii);
1855 }
1856 
1857 static u32 netdev_get_msglevel(struct net_device *dev)
1858 {
1859 	return debug;
1860 }
1861 
1862 static void netdev_set_msglevel(struct net_device *dev, u32 value)
1863 {
1864 	debug = value;
1865 }
1866 
1867 static const struct ethtool_ops netdev_ethtool_ops = {
1868 	.get_drvinfo		= netdev_get_drvinfo,
1869 	.get_settings		= netdev_get_settings,
1870 	.set_settings		= netdev_set_settings,
1871 	.nway_reset		= netdev_nway_reset,
1872 	.get_link		= netdev_get_link,
1873 	.get_msglevel		= netdev_get_msglevel,
1874 	.set_msglevel		= netdev_set_msglevel,
1875 };
1876 
1877 static int mii_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1878 {
1879 	struct netdev_private *np = netdev_priv(dev);
1880 	int rc;
1881 
1882 	if (!netif_running(dev))
1883 		return -EINVAL;
1884 
1885 	spin_lock_irq(&np->lock);
1886 	rc = generic_mii_ioctl(&np->mii, if_mii(rq), cmd, NULL);
1887 	spin_unlock_irq(&np->lock);
1888 
1889 	return rc;
1890 }
1891 
1892 
1893 static int netdev_close(struct net_device *dev)
1894 {
1895 	struct netdev_private *np = netdev_priv(dev);
1896 	void __iomem *ioaddr = np->mem;
1897 	int i;
1898 
1899 	netif_stop_queue(dev);
1900 
1901 	/* Disable interrupts by clearing the interrupt mask. */
1902 	iowrite32(0x0000, ioaddr + IMR);
1903 
1904 	/* Stop the chip's Tx and Rx processes. */
1905 	stop_nic_rxtx(ioaddr, 0);
1906 
1907 	del_timer_sync(&np->timer);
1908 	del_timer_sync(&np->reset_timer);
1909 
1910 	free_irq(np->pci_dev->irq, dev);
1911 
1912 	/* Free all the skbuffs in the Rx queue. */
1913 	for (i = 0; i < RX_RING_SIZE; i++) {
1914 		struct sk_buff *skb = np->rx_ring[i].skbuff;
1915 
1916 		np->rx_ring[i].status = 0;
1917 		if (skb) {
1918 			pci_unmap_single(np->pci_dev, np->rx_ring[i].buffer,
1919 				np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1920 			dev_kfree_skb(skb);
1921 			np->rx_ring[i].skbuff = NULL;
1922 		}
1923 	}
1924 
1925 	for (i = 0; i < TX_RING_SIZE; i++) {
1926 		struct sk_buff *skb = np->tx_ring[i].skbuff;
1927 
1928 		if (skb) {
1929 			pci_unmap_single(np->pci_dev, np->tx_ring[i].buffer,
1930 				skb->len, PCI_DMA_TODEVICE);
1931 			dev_kfree_skb(skb);
1932 			np->tx_ring[i].skbuff = NULL;
1933 		}
1934 	}
1935 
1936 	return 0;
1937 }
1938 
1939 static const struct pci_device_id fealnx_pci_tbl[] = {
1940 	{0x1516, 0x0800, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
1941 	{0x1516, 0x0803, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 1},
1942 	{0x1516, 0x0891, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 2},
1943 	{} /* terminate list */
1944 };
1945 MODULE_DEVICE_TABLE(pci, fealnx_pci_tbl);
1946 
1947 
1948 static struct pci_driver fealnx_driver = {
1949 	.name		= "fealnx",
1950 	.id_table	= fealnx_pci_tbl,
1951 	.probe		= fealnx_init_one,
1952 	.remove		= fealnx_remove_one,
1953 };
1954 
1955 static int __init fealnx_init(void)
1956 {
1957 /* when a module, this is printed whether or not devices are found in probe */
1958 #ifdef MODULE
1959 	printk(version);
1960 #endif
1961 
1962 	return pci_register_driver(&fealnx_driver);
1963 }
1964 
1965 static void __exit fealnx_exit(void)
1966 {
1967 	pci_unregister_driver(&fealnx_driver);
1968 }
1969 
1970 module_init(fealnx_init);
1971 module_exit(fealnx_exit);
1972