xref: /openbmc/linux/drivers/net/ethernet/fealnx.c (revision 3381df09)
1 /*
2 	Written 1998-2000 by Donald Becker.
3 
4 	This software may be used and distributed according to the terms of
5 	the GNU General Public License (GPL), incorporated herein by reference.
6 	Drivers based on or derived from this code fall under the GPL and must
7 	retain the authorship, copyright and license notice.  This file is not
8 	a complete program and may only be used when the entire operating
9 	system is licensed under the GPL.
10 
11 	The author may be reached as becker@scyld.com, or C/O
12 	Scyld Computing Corporation
13 	410 Severn Ave., Suite 210
14 	Annapolis MD 21403
15 
16 	Support information and updates available at
17 	http://www.scyld.com/network/pci-skeleton.html
18 
19 	Linux kernel updates:
20 
21 	Version 2.51, Nov 17, 2001 (jgarzik):
22 	- Add ethtool support
23 	- Replace some MII-related magic numbers with constants
24 
25 */
26 
27 #define DRV_NAME	"fealnx"
28 
29 static int debug;		/* 1-> print debug message */
30 static int max_interrupt_work = 20;
31 
32 /* Maximum number of multicast addresses to filter (vs. Rx-all-multicast). */
33 static int multicast_filter_limit = 32;
34 
35 /* Set the copy breakpoint for the copy-only-tiny-frames scheme. */
36 /* Setting to > 1518 effectively disables this feature.          */
37 static int rx_copybreak;
38 
39 /* Used to pass the media type, etc.                            */
40 /* Both 'options[]' and 'full_duplex[]' should exist for driver */
41 /* interoperability.                                            */
42 /* The media type is usually passed in 'options[]'.             */
43 #define MAX_UNITS 8		/* More are supported, limit only on options */
44 static int options[MAX_UNITS] = { -1, -1, -1, -1, -1, -1, -1, -1 };
45 static int full_duplex[MAX_UNITS] = { -1, -1, -1, -1, -1, -1, -1, -1 };
46 
47 /* Operational parameters that are set at compile time.                 */
48 /* Keep the ring sizes a power of two for compile efficiency.           */
49 /* The compiler will convert <unsigned>'%'<2^N> into a bit mask.        */
50 /* Making the Tx ring too large decreases the effectiveness of channel  */
51 /* bonding and packet priority.                                         */
52 /* There are no ill effects from too-large receive rings.               */
53 // 88-12-9 modify,
54 // #define TX_RING_SIZE    16
55 // #define RX_RING_SIZE    32
56 #define TX_RING_SIZE    6
57 #define RX_RING_SIZE    12
58 #define TX_TOTAL_SIZE	TX_RING_SIZE*sizeof(struct fealnx_desc)
59 #define RX_TOTAL_SIZE	RX_RING_SIZE*sizeof(struct fealnx_desc)
60 
61 /* Operational parameters that usually are not changed. */
62 /* Time in jiffies before concluding the transmitter is hung. */
63 #define TX_TIMEOUT      (2*HZ)
64 
65 #define PKT_BUF_SZ      1536	/* Size of each temporary Rx buffer. */
66 
67 
68 /* Include files, designed to support most kernel versions 2.0.0 and later. */
69 #include <linux/module.h>
70 #include <linux/kernel.h>
71 #include <linux/string.h>
72 #include <linux/timer.h>
73 #include <linux/errno.h>
74 #include <linux/ioport.h>
75 #include <linux/interrupt.h>
76 #include <linux/pci.h>
77 #include <linux/netdevice.h>
78 #include <linux/etherdevice.h>
79 #include <linux/skbuff.h>
80 #include <linux/init.h>
81 #include <linux/mii.h>
82 #include <linux/ethtool.h>
83 #include <linux/crc32.h>
84 #include <linux/delay.h>
85 #include <linux/bitops.h>
86 
87 #include <asm/processor.h>	/* Processor type for cache alignment. */
88 #include <asm/io.h>
89 #include <linux/uaccess.h>
90 #include <asm/byteorder.h>
91 
92 /* This driver was written to use PCI memory space, however some x86 systems
93    work only with I/O space accesses. */
94 #ifndef __alpha__
95 #define USE_IO_OPS
96 #endif
97 
98 /* Kernel compatibility defines, some common to David Hinds' PCMCIA package. */
99 /* This is only in the support-all-kernels source code. */
100 
101 #define RUN_AT(x) (jiffies + (x))
102 
103 MODULE_AUTHOR("Myson or whoever");
104 MODULE_DESCRIPTION("Myson MTD-8xx 100/10M Ethernet PCI Adapter Driver");
105 MODULE_LICENSE("GPL");
106 module_param(max_interrupt_work, int, 0);
107 module_param(debug, int, 0);
108 module_param(rx_copybreak, int, 0);
109 module_param(multicast_filter_limit, int, 0);
110 module_param_array(options, int, NULL, 0);
111 module_param_array(full_duplex, int, NULL, 0);
112 MODULE_PARM_DESC(max_interrupt_work, "fealnx maximum events handled per interrupt");
113 MODULE_PARM_DESC(debug, "fealnx enable debugging (0-1)");
114 MODULE_PARM_DESC(rx_copybreak, "fealnx copy breakpoint for copy-only-tiny-frames");
115 MODULE_PARM_DESC(multicast_filter_limit, "fealnx maximum number of filtered multicast addresses");
116 MODULE_PARM_DESC(options, "fealnx: Bits 0-3: media type, bit 17: full duplex");
117 MODULE_PARM_DESC(full_duplex, "fealnx full duplex setting(s) (1)");
118 
119 enum {
120 	MIN_REGION_SIZE		= 136,
121 };
122 
123 /* A chip capabilities table, matching the entries in pci_tbl[] above. */
124 enum chip_capability_flags {
125 	HAS_MII_XCVR,
126 	HAS_CHIP_XCVR,
127 };
128 
129 /* 89/6/13 add, */
130 /* for different PHY */
131 enum phy_type_flags {
132 	MysonPHY = 1,
133 	AhdocPHY = 2,
134 	SeeqPHY = 3,
135 	MarvellPHY = 4,
136 	Myson981 = 5,
137 	LevelOnePHY = 6,
138 	OtherPHY = 10,
139 };
140 
141 struct chip_info {
142 	char *chip_name;
143 	int flags;
144 };
145 
146 static const struct chip_info skel_netdrv_tbl[] = {
147  	{ "100/10M Ethernet PCI Adapter",	HAS_MII_XCVR },
148 	{ "100/10M Ethernet PCI Adapter",	HAS_CHIP_XCVR },
149 	{ "1000/100/10M Ethernet PCI Adapter",	HAS_MII_XCVR },
150 };
151 
152 /* Offsets to the Command and Status Registers. */
153 enum fealnx_offsets {
154 	PAR0 = 0x0,		/* physical address 0-3 */
155 	PAR1 = 0x04,		/* physical address 4-5 */
156 	MAR0 = 0x08,		/* multicast address 0-3 */
157 	MAR1 = 0x0C,		/* multicast address 4-7 */
158 	FAR0 = 0x10,		/* flow-control address 0-3 */
159 	FAR1 = 0x14,		/* flow-control address 4-5 */
160 	TCRRCR = 0x18,		/* receive & transmit configuration */
161 	BCR = 0x1C,		/* bus command */
162 	TXPDR = 0x20,		/* transmit polling demand */
163 	RXPDR = 0x24,		/* receive polling demand */
164 	RXCWP = 0x28,		/* receive current word pointer */
165 	TXLBA = 0x2C,		/* transmit list base address */
166 	RXLBA = 0x30,		/* receive list base address */
167 	ISR = 0x34,		/* interrupt status */
168 	IMR = 0x38,		/* interrupt mask */
169 	FTH = 0x3C,		/* flow control high/low threshold */
170 	MANAGEMENT = 0x40,	/* bootrom/eeprom and mii management */
171 	TALLY = 0x44,		/* tally counters for crc and mpa */
172 	TSR = 0x48,		/* tally counter for transmit status */
173 	BMCRSR = 0x4c,		/* basic mode control and status */
174 	PHYIDENTIFIER = 0x50,	/* phy identifier */
175 	ANARANLPAR = 0x54,	/* auto-negotiation advertisement and link
176 				   partner ability */
177 	ANEROCR = 0x58,		/* auto-negotiation expansion and pci conf. */
178 	BPREMRPSR = 0x5c,	/* bypass & receive error mask and phy status */
179 };
180 
181 /* Bits in the interrupt status/enable registers. */
182 /* The bits in the Intr Status/Enable registers, mostly interrupt sources. */
183 enum intr_status_bits {
184 	RFCON = 0x00020000,	/* receive flow control xon packet */
185 	RFCOFF = 0x00010000,	/* receive flow control xoff packet */
186 	LSCStatus = 0x00008000,	/* link status change */
187 	ANCStatus = 0x00004000,	/* autonegotiation completed */
188 	FBE = 0x00002000,	/* fatal bus error */
189 	FBEMask = 0x00001800,	/* mask bit12-11 */
190 	ParityErr = 0x00000000,	/* parity error */
191 	TargetErr = 0x00001000,	/* target abort */
192 	MasterErr = 0x00000800,	/* master error */
193 	TUNF = 0x00000400,	/* transmit underflow */
194 	ROVF = 0x00000200,	/* receive overflow */
195 	ETI = 0x00000100,	/* transmit early int */
196 	ERI = 0x00000080,	/* receive early int */
197 	CNTOVF = 0x00000040,	/* counter overflow */
198 	RBU = 0x00000020,	/* receive buffer unavailable */
199 	TBU = 0x00000010,	/* transmit buffer unavilable */
200 	TI = 0x00000008,	/* transmit interrupt */
201 	RI = 0x00000004,	/* receive interrupt */
202 	RxErr = 0x00000002,	/* receive error */
203 };
204 
205 /* Bits in the NetworkConfig register, W for writing, R for reading */
206 /* FIXME: some names are invented by me. Marked with (name?) */
207 /* If you have docs and know bit names, please fix 'em */
208 enum rx_mode_bits {
209 	CR_W_ENH	= 0x02000000,	/* enhanced mode (name?) */
210 	CR_W_FD		= 0x00100000,	/* full duplex */
211 	CR_W_PS10	= 0x00080000,	/* 10 mbit */
212 	CR_W_TXEN	= 0x00040000,	/* tx enable (name?) */
213 	CR_W_PS1000	= 0x00010000,	/* 1000 mbit */
214      /* CR_W_RXBURSTMASK= 0x00000e00, Im unsure about this */
215 	CR_W_RXMODEMASK	= 0x000000e0,
216 	CR_W_PROM	= 0x00000080,	/* promiscuous mode */
217 	CR_W_AB		= 0x00000040,	/* accept broadcast */
218 	CR_W_AM		= 0x00000020,	/* accept mutlicast */
219 	CR_W_ARP	= 0x00000008,	/* receive runt pkt */
220 	CR_W_ALP	= 0x00000004,	/* receive long pkt */
221 	CR_W_SEP	= 0x00000002,	/* receive error pkt */
222 	CR_W_RXEN	= 0x00000001,	/* rx enable (unicast?) (name?) */
223 
224 	CR_R_TXSTOP	= 0x04000000,	/* tx stopped (name?) */
225 	CR_R_FD		= 0x00100000,	/* full duplex detected */
226 	CR_R_PS10	= 0x00080000,	/* 10 mbit detected */
227 	CR_R_RXSTOP	= 0x00008000,	/* rx stopped (name?) */
228 };
229 
230 /* The Tulip Rx and Tx buffer descriptors. */
231 struct fealnx_desc {
232 	s32 status;
233 	s32 control;
234 	u32 buffer;
235 	u32 next_desc;
236 	struct fealnx_desc *next_desc_logical;
237 	struct sk_buff *skbuff;
238 	u32 reserved1;
239 	u32 reserved2;
240 };
241 
242 /* Bits in network_desc.status */
243 enum rx_desc_status_bits {
244 	RXOWN = 0x80000000,	/* own bit */
245 	FLNGMASK = 0x0fff0000,	/* frame length */
246 	FLNGShift = 16,
247 	MARSTATUS = 0x00004000,	/* multicast address received */
248 	BARSTATUS = 0x00002000,	/* broadcast address received */
249 	PHYSTATUS = 0x00001000,	/* physical address received */
250 	RXFSD = 0x00000800,	/* first descriptor */
251 	RXLSD = 0x00000400,	/* last descriptor */
252 	ErrorSummary = 0x80,	/* error summary */
253 	RUNTPKT = 0x40,		/* runt packet received */
254 	LONGPKT = 0x20,		/* long packet received */
255 	FAE = 0x10,		/* frame align error */
256 	CRC = 0x08,		/* crc error */
257 	RXER = 0x04,		/* receive error */
258 };
259 
260 enum rx_desc_control_bits {
261 	RXIC = 0x00800000,	/* interrupt control */
262 	RBSShift = 0,
263 };
264 
265 enum tx_desc_status_bits {
266 	TXOWN = 0x80000000,	/* own bit */
267 	JABTO = 0x00004000,	/* jabber timeout */
268 	CSL = 0x00002000,	/* carrier sense lost */
269 	LC = 0x00001000,	/* late collision */
270 	EC = 0x00000800,	/* excessive collision */
271 	UDF = 0x00000400,	/* fifo underflow */
272 	DFR = 0x00000200,	/* deferred */
273 	HF = 0x00000100,	/* heartbeat fail */
274 	NCRMask = 0x000000ff,	/* collision retry count */
275 	NCRShift = 0,
276 };
277 
278 enum tx_desc_control_bits {
279 	TXIC = 0x80000000,	/* interrupt control */
280 	ETIControl = 0x40000000,	/* early transmit interrupt */
281 	TXLD = 0x20000000,	/* last descriptor */
282 	TXFD = 0x10000000,	/* first descriptor */
283 	CRCEnable = 0x08000000,	/* crc control */
284 	PADEnable = 0x04000000,	/* padding control */
285 	RetryTxLC = 0x02000000,	/* retry late collision */
286 	PKTSMask = 0x3ff800,	/* packet size bit21-11 */
287 	PKTSShift = 11,
288 	TBSMask = 0x000007ff,	/* transmit buffer bit 10-0 */
289 	TBSShift = 0,
290 };
291 
292 /* BootROM/EEPROM/MII Management Register */
293 #define MASK_MIIR_MII_READ       0x00000000
294 #define MASK_MIIR_MII_WRITE      0x00000008
295 #define MASK_MIIR_MII_MDO        0x00000004
296 #define MASK_MIIR_MII_MDI        0x00000002
297 #define MASK_MIIR_MII_MDC        0x00000001
298 
299 /* ST+OP+PHYAD+REGAD+TA */
300 #define OP_READ             0x6000	/* ST:01+OP:10+PHYAD+REGAD+TA:Z0 */
301 #define OP_WRITE            0x5002	/* ST:01+OP:01+PHYAD+REGAD+TA:10 */
302 
303 /* ------------------------------------------------------------------------- */
304 /*      Constants for Myson PHY                                              */
305 /* ------------------------------------------------------------------------- */
306 #define MysonPHYID      0xd0000302
307 /* 89-7-27 add, (begin) */
308 #define MysonPHYID0     0x0302
309 #define StatusRegister  18
310 #define SPEED100        0x0400	// bit10
311 #define FULLMODE        0x0800	// bit11
312 /* 89-7-27 add, (end) */
313 
314 /* ------------------------------------------------------------------------- */
315 /*      Constants for Seeq 80225 PHY                                         */
316 /* ------------------------------------------------------------------------- */
317 #define SeeqPHYID0      0x0016
318 
319 #define MIIRegister18   18
320 #define SPD_DET_100     0x80
321 #define DPLX_DET_FULL   0x40
322 
323 /* ------------------------------------------------------------------------- */
324 /*      Constants for Ahdoc 101 PHY                                          */
325 /* ------------------------------------------------------------------------- */
326 #define AhdocPHYID0     0x0022
327 
328 #define DiagnosticReg   18
329 #define DPLX_FULL       0x0800
330 #define Speed_100       0x0400
331 
332 /* 89/6/13 add, */
333 /* -------------------------------------------------------------------------- */
334 /*      Constants                                                             */
335 /* -------------------------------------------------------------------------- */
336 #define MarvellPHYID0           0x0141
337 #define LevelOnePHYID0		0x0013
338 
339 #define MII1000BaseTControlReg  9
340 #define MII1000BaseTStatusReg   10
341 #define SpecificReg		17
342 
343 /* for 1000BaseT Control Register */
344 #define PHYAbletoPerform1000FullDuplex  0x0200
345 #define PHYAbletoPerform1000HalfDuplex  0x0100
346 #define PHY1000AbilityMask              0x300
347 
348 // for phy specific status register, marvell phy.
349 #define SpeedMask       0x0c000
350 #define Speed_1000M     0x08000
351 #define Speed_100M      0x4000
352 #define Speed_10M       0
353 #define Full_Duplex     0x2000
354 
355 // 89/12/29 add, for phy specific status register, levelone phy, (begin)
356 #define LXT1000_100M    0x08000
357 #define LXT1000_1000M   0x0c000
358 #define LXT1000_Full    0x200
359 // 89/12/29 add, for phy specific status register, levelone phy, (end)
360 
361 /* for 3-in-1 case, BMCRSR register */
362 #define LinkIsUp2	0x00040000
363 
364 /* for PHY */
365 #define LinkIsUp        0x0004
366 
367 
368 struct netdev_private {
369 	/* Descriptor rings first for alignment. */
370 	struct fealnx_desc *rx_ring;
371 	struct fealnx_desc *tx_ring;
372 
373 	dma_addr_t rx_ring_dma;
374 	dma_addr_t tx_ring_dma;
375 
376 	spinlock_t lock;
377 
378 	/* Media monitoring timer. */
379 	struct timer_list timer;
380 
381 	/* Reset timer */
382 	struct timer_list reset_timer;
383 	int reset_timer_armed;
384 	unsigned long crvalue_sv;
385 	unsigned long imrvalue_sv;
386 
387 	/* Frequently used values: keep some adjacent for cache effect. */
388 	int flags;
389 	struct pci_dev *pci_dev;
390 	unsigned long crvalue;
391 	unsigned long bcrvalue;
392 	unsigned long imrvalue;
393 	struct fealnx_desc *cur_rx;
394 	struct fealnx_desc *lack_rxbuf;
395 	int really_rx_count;
396 	struct fealnx_desc *cur_tx;
397 	struct fealnx_desc *cur_tx_copy;
398 	int really_tx_count;
399 	int free_tx_count;
400 	unsigned int rx_buf_sz;	/* Based on MTU+slack. */
401 
402 	/* These values are keep track of the transceiver/media in use. */
403 	unsigned int linkok;
404 	unsigned int line_speed;
405 	unsigned int duplexmode;
406 	unsigned int default_port:4;	/* Last dev->if_port value. */
407 	unsigned int PHYType;
408 
409 	/* MII transceiver section. */
410 	int mii_cnt;		/* MII device addresses. */
411 	unsigned char phys[2];	/* MII device addresses. */
412 	struct mii_if_info mii;
413 	void __iomem *mem;
414 };
415 
416 
417 static int mdio_read(struct net_device *dev, int phy_id, int location);
418 static void mdio_write(struct net_device *dev, int phy_id, int location, int value);
419 static int netdev_open(struct net_device *dev);
420 static void getlinktype(struct net_device *dev);
421 static void getlinkstatus(struct net_device *dev);
422 static void netdev_timer(struct timer_list *t);
423 static void reset_timer(struct timer_list *t);
424 static void fealnx_tx_timeout(struct net_device *dev, unsigned int txqueue);
425 static void init_ring(struct net_device *dev);
426 static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev);
427 static irqreturn_t intr_handler(int irq, void *dev_instance);
428 static int netdev_rx(struct net_device *dev);
429 static void set_rx_mode(struct net_device *dev);
430 static void __set_rx_mode(struct net_device *dev);
431 static struct net_device_stats *get_stats(struct net_device *dev);
432 static int mii_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
433 static const struct ethtool_ops netdev_ethtool_ops;
434 static int netdev_close(struct net_device *dev);
435 static void reset_rx_descriptors(struct net_device *dev);
436 static void reset_tx_descriptors(struct net_device *dev);
437 
438 static void stop_nic_rx(void __iomem *ioaddr, long crvalue)
439 {
440 	int delay = 0x1000;
441 	iowrite32(crvalue & ~(CR_W_RXEN), ioaddr + TCRRCR);
442 	while (--delay) {
443 		if ( (ioread32(ioaddr + TCRRCR) & CR_R_RXSTOP) == CR_R_RXSTOP)
444 			break;
445 	}
446 }
447 
448 
449 static void stop_nic_rxtx(void __iomem *ioaddr, long crvalue)
450 {
451 	int delay = 0x1000;
452 	iowrite32(crvalue & ~(CR_W_RXEN+CR_W_TXEN), ioaddr + TCRRCR);
453 	while (--delay) {
454 		if ( (ioread32(ioaddr + TCRRCR) & (CR_R_RXSTOP+CR_R_TXSTOP))
455 					    == (CR_R_RXSTOP+CR_R_TXSTOP) )
456 			break;
457 	}
458 }
459 
460 static const struct net_device_ops netdev_ops = {
461 	.ndo_open		= netdev_open,
462 	.ndo_stop		= netdev_close,
463 	.ndo_start_xmit		= start_tx,
464 	.ndo_get_stats 		= get_stats,
465 	.ndo_set_rx_mode	= set_rx_mode,
466 	.ndo_do_ioctl		= mii_ioctl,
467 	.ndo_tx_timeout		= fealnx_tx_timeout,
468 	.ndo_set_mac_address 	= eth_mac_addr,
469 	.ndo_validate_addr	= eth_validate_addr,
470 };
471 
472 static int fealnx_init_one(struct pci_dev *pdev,
473 			   const struct pci_device_id *ent)
474 {
475 	struct netdev_private *np;
476 	int i, option, err, irq;
477 	static int card_idx = -1;
478 	char boardname[12];
479 	void __iomem *ioaddr;
480 	unsigned long len;
481 	unsigned int chip_id = ent->driver_data;
482 	struct net_device *dev;
483 	void *ring_space;
484 	dma_addr_t ring_dma;
485 #ifdef USE_IO_OPS
486 	int bar = 0;
487 #else
488 	int bar = 1;
489 #endif
490 
491 	card_idx++;
492 	sprintf(boardname, "fealnx%d", card_idx);
493 
494 	option = card_idx < MAX_UNITS ? options[card_idx] : 0;
495 
496 	i = pci_enable_device(pdev);
497 	if (i) return i;
498 	pci_set_master(pdev);
499 
500 	len = pci_resource_len(pdev, bar);
501 	if (len < MIN_REGION_SIZE) {
502 		dev_err(&pdev->dev,
503 			   "region size %ld too small, aborting\n", len);
504 		return -ENODEV;
505 	}
506 
507 	i = pci_request_regions(pdev, boardname);
508 	if (i)
509 		return i;
510 
511 	irq = pdev->irq;
512 
513 	ioaddr = pci_iomap(pdev, bar, len);
514 	if (!ioaddr) {
515 		err = -ENOMEM;
516 		goto err_out_res;
517 	}
518 
519 	dev = alloc_etherdev(sizeof(struct netdev_private));
520 	if (!dev) {
521 		err = -ENOMEM;
522 		goto err_out_unmap;
523 	}
524 	SET_NETDEV_DEV(dev, &pdev->dev);
525 
526 	/* read ethernet id */
527 	for (i = 0; i < 6; ++i)
528 		dev->dev_addr[i] = ioread8(ioaddr + PAR0 + i);
529 
530 	/* Reset the chip to erase previous misconfiguration. */
531 	iowrite32(0x00000001, ioaddr + BCR);
532 
533 	/* Make certain the descriptor lists are aligned. */
534 	np = netdev_priv(dev);
535 	np->mem = ioaddr;
536 	spin_lock_init(&np->lock);
537 	np->pci_dev = pdev;
538 	np->flags = skel_netdrv_tbl[chip_id].flags;
539 	pci_set_drvdata(pdev, dev);
540 	np->mii.dev = dev;
541 	np->mii.mdio_read = mdio_read;
542 	np->mii.mdio_write = mdio_write;
543 	np->mii.phy_id_mask = 0x1f;
544 	np->mii.reg_num_mask = 0x1f;
545 
546 	ring_space = pci_alloc_consistent(pdev, RX_TOTAL_SIZE, &ring_dma);
547 	if (!ring_space) {
548 		err = -ENOMEM;
549 		goto err_out_free_dev;
550 	}
551 	np->rx_ring = ring_space;
552 	np->rx_ring_dma = ring_dma;
553 
554 	ring_space = pci_alloc_consistent(pdev, TX_TOTAL_SIZE, &ring_dma);
555 	if (!ring_space) {
556 		err = -ENOMEM;
557 		goto err_out_free_rx;
558 	}
559 	np->tx_ring = ring_space;
560 	np->tx_ring_dma = ring_dma;
561 
562 	/* find the connected MII xcvrs */
563 	if (np->flags == HAS_MII_XCVR) {
564 		int phy, phy_idx = 0;
565 
566 		for (phy = 1; phy < 32 && phy_idx < ARRAY_SIZE(np->phys);
567 			       phy++) {
568 			int mii_status = mdio_read(dev, phy, 1);
569 
570 			if (mii_status != 0xffff && mii_status != 0x0000) {
571 				np->phys[phy_idx++] = phy;
572 				dev_info(&pdev->dev,
573 				       "MII PHY found at address %d, status "
574 				       "0x%4.4x.\n", phy, mii_status);
575 				/* get phy type */
576 				{
577 					unsigned int data;
578 
579 					data = mdio_read(dev, np->phys[0], 2);
580 					if (data == SeeqPHYID0)
581 						np->PHYType = SeeqPHY;
582 					else if (data == AhdocPHYID0)
583 						np->PHYType = AhdocPHY;
584 					else if (data == MarvellPHYID0)
585 						np->PHYType = MarvellPHY;
586 					else if (data == MysonPHYID0)
587 						np->PHYType = Myson981;
588 					else if (data == LevelOnePHYID0)
589 						np->PHYType = LevelOnePHY;
590 					else
591 						np->PHYType = OtherPHY;
592 				}
593 			}
594 		}
595 
596 		np->mii_cnt = phy_idx;
597 		if (phy_idx == 0)
598 			dev_warn(&pdev->dev,
599 				"MII PHY not found -- this device may "
600 			       "not operate correctly.\n");
601 	} else {
602 		np->phys[0] = 32;
603 /* 89/6/23 add, (begin) */
604 		/* get phy type */
605 		if (ioread32(ioaddr + PHYIDENTIFIER) == MysonPHYID)
606 			np->PHYType = MysonPHY;
607 		else
608 			np->PHYType = OtherPHY;
609 	}
610 	np->mii.phy_id = np->phys[0];
611 
612 	if (dev->mem_start)
613 		option = dev->mem_start;
614 
615 	/* The lower four bits are the media type. */
616 	if (option > 0) {
617 		if (option & 0x200)
618 			np->mii.full_duplex = 1;
619 		np->default_port = option & 15;
620 	}
621 
622 	if (card_idx < MAX_UNITS && full_duplex[card_idx] > 0)
623 		np->mii.full_duplex = full_duplex[card_idx];
624 
625 	if (np->mii.full_duplex) {
626 		dev_info(&pdev->dev, "Media type forced to Full Duplex.\n");
627 /* 89/6/13 add, (begin) */
628 //      if (np->PHYType==MarvellPHY)
629 		if ((np->PHYType == MarvellPHY) || (np->PHYType == LevelOnePHY)) {
630 			unsigned int data;
631 
632 			data = mdio_read(dev, np->phys[0], 9);
633 			data = (data & 0xfcff) | 0x0200;
634 			mdio_write(dev, np->phys[0], 9, data);
635 		}
636 /* 89/6/13 add, (end) */
637 		if (np->flags == HAS_MII_XCVR)
638 			mdio_write(dev, np->phys[0], MII_ADVERTISE, ADVERTISE_FULL);
639 		else
640 			iowrite32(ADVERTISE_FULL, ioaddr + ANARANLPAR);
641 		np->mii.force_media = 1;
642 	}
643 
644 	dev->netdev_ops = &netdev_ops;
645 	dev->ethtool_ops = &netdev_ethtool_ops;
646 	dev->watchdog_timeo = TX_TIMEOUT;
647 
648 	err = register_netdev(dev);
649 	if (err)
650 		goto err_out_free_tx;
651 
652 	printk(KERN_INFO "%s: %s at %p, %pM, IRQ %d.\n",
653 	       dev->name, skel_netdrv_tbl[chip_id].chip_name, ioaddr,
654 	       dev->dev_addr, irq);
655 
656 	return 0;
657 
658 err_out_free_tx:
659 	pci_free_consistent(pdev, TX_TOTAL_SIZE, np->tx_ring, np->tx_ring_dma);
660 err_out_free_rx:
661 	pci_free_consistent(pdev, RX_TOTAL_SIZE, np->rx_ring, np->rx_ring_dma);
662 err_out_free_dev:
663 	free_netdev(dev);
664 err_out_unmap:
665 	pci_iounmap(pdev, ioaddr);
666 err_out_res:
667 	pci_release_regions(pdev);
668 	return err;
669 }
670 
671 
672 static void fealnx_remove_one(struct pci_dev *pdev)
673 {
674 	struct net_device *dev = pci_get_drvdata(pdev);
675 
676 	if (dev) {
677 		struct netdev_private *np = netdev_priv(dev);
678 
679 		pci_free_consistent(pdev, TX_TOTAL_SIZE, np->tx_ring,
680 			np->tx_ring_dma);
681 		pci_free_consistent(pdev, RX_TOTAL_SIZE, np->rx_ring,
682 			np->rx_ring_dma);
683 		unregister_netdev(dev);
684 		pci_iounmap(pdev, np->mem);
685 		free_netdev(dev);
686 		pci_release_regions(pdev);
687 	} else
688 		printk(KERN_ERR "fealnx: remove for unknown device\n");
689 }
690 
691 
692 static ulong m80x_send_cmd_to_phy(void __iomem *miiport, int opcode, int phyad, int regad)
693 {
694 	ulong miir;
695 	int i;
696 	unsigned int mask, data;
697 
698 	/* enable MII output */
699 	miir = (ulong) ioread32(miiport);
700 	miir &= 0xfffffff0;
701 
702 	miir |= MASK_MIIR_MII_WRITE + MASK_MIIR_MII_MDO;
703 
704 	/* send 32 1's preamble */
705 	for (i = 0; i < 32; i++) {
706 		/* low MDC; MDO is already high (miir) */
707 		miir &= ~MASK_MIIR_MII_MDC;
708 		iowrite32(miir, miiport);
709 
710 		/* high MDC */
711 		miir |= MASK_MIIR_MII_MDC;
712 		iowrite32(miir, miiport);
713 	}
714 
715 	/* calculate ST+OP+PHYAD+REGAD+TA */
716 	data = opcode | (phyad << 7) | (regad << 2);
717 
718 	/* sent out */
719 	mask = 0x8000;
720 	while (mask) {
721 		/* low MDC, prepare MDO */
722 		miir &= ~(MASK_MIIR_MII_MDC + MASK_MIIR_MII_MDO);
723 		if (mask & data)
724 			miir |= MASK_MIIR_MII_MDO;
725 
726 		iowrite32(miir, miiport);
727 		/* high MDC */
728 		miir |= MASK_MIIR_MII_MDC;
729 		iowrite32(miir, miiport);
730 		udelay(30);
731 
732 		/* next */
733 		mask >>= 1;
734 		if (mask == 0x2 && opcode == OP_READ)
735 			miir &= ~MASK_MIIR_MII_WRITE;
736 	}
737 	return miir;
738 }
739 
740 
741 static int mdio_read(struct net_device *dev, int phyad, int regad)
742 {
743 	struct netdev_private *np = netdev_priv(dev);
744 	void __iomem *miiport = np->mem + MANAGEMENT;
745 	ulong miir;
746 	unsigned int mask, data;
747 
748 	miir = m80x_send_cmd_to_phy(miiport, OP_READ, phyad, regad);
749 
750 	/* read data */
751 	mask = 0x8000;
752 	data = 0;
753 	while (mask) {
754 		/* low MDC */
755 		miir &= ~MASK_MIIR_MII_MDC;
756 		iowrite32(miir, miiport);
757 
758 		/* read MDI */
759 		miir = ioread32(miiport);
760 		if (miir & MASK_MIIR_MII_MDI)
761 			data |= mask;
762 
763 		/* high MDC, and wait */
764 		miir |= MASK_MIIR_MII_MDC;
765 		iowrite32(miir, miiport);
766 		udelay(30);
767 
768 		/* next */
769 		mask >>= 1;
770 	}
771 
772 	/* low MDC */
773 	miir &= ~MASK_MIIR_MII_MDC;
774 	iowrite32(miir, miiport);
775 
776 	return data & 0xffff;
777 }
778 
779 
780 static void mdio_write(struct net_device *dev, int phyad, int regad, int data)
781 {
782 	struct netdev_private *np = netdev_priv(dev);
783 	void __iomem *miiport = np->mem + MANAGEMENT;
784 	ulong miir;
785 	unsigned int mask;
786 
787 	miir = m80x_send_cmd_to_phy(miiport, OP_WRITE, phyad, regad);
788 
789 	/* write data */
790 	mask = 0x8000;
791 	while (mask) {
792 		/* low MDC, prepare MDO */
793 		miir &= ~(MASK_MIIR_MII_MDC + MASK_MIIR_MII_MDO);
794 		if (mask & data)
795 			miir |= MASK_MIIR_MII_MDO;
796 		iowrite32(miir, miiport);
797 
798 		/* high MDC */
799 		miir |= MASK_MIIR_MII_MDC;
800 		iowrite32(miir, miiport);
801 
802 		/* next */
803 		mask >>= 1;
804 	}
805 
806 	/* low MDC */
807 	miir &= ~MASK_MIIR_MII_MDC;
808 	iowrite32(miir, miiport);
809 }
810 
811 
812 static int netdev_open(struct net_device *dev)
813 {
814 	struct netdev_private *np = netdev_priv(dev);
815 	void __iomem *ioaddr = np->mem;
816 	const int irq = np->pci_dev->irq;
817 	int rc, i;
818 
819 	iowrite32(0x00000001, ioaddr + BCR);	/* Reset */
820 
821 	rc = request_irq(irq, intr_handler, IRQF_SHARED, dev->name, dev);
822 	if (rc)
823 		return -EAGAIN;
824 
825 	for (i = 0; i < 3; i++)
826 		iowrite16(((unsigned short*)dev->dev_addr)[i],
827 				ioaddr + PAR0 + i*2);
828 
829 	init_ring(dev);
830 
831 	iowrite32(np->rx_ring_dma, ioaddr + RXLBA);
832 	iowrite32(np->tx_ring_dma, ioaddr + TXLBA);
833 
834 	/* Initialize other registers. */
835 	/* Configure the PCI bus bursts and FIFO thresholds.
836 	   486: Set 8 longword burst.
837 	   586: no burst limit.
838 	   Burst length 5:3
839 	   0 0 0   1
840 	   0 0 1   4
841 	   0 1 0   8
842 	   0 1 1   16
843 	   1 0 0   32
844 	   1 0 1   64
845 	   1 1 0   128
846 	   1 1 1   256
847 	   Wait the specified 50 PCI cycles after a reset by initializing
848 	   Tx and Rx queues and the address filter list.
849 	   FIXME (Ueimor): optimistic for alpha + posted writes ? */
850 
851 	np->bcrvalue = 0x10;	/* little-endian, 8 burst length */
852 #ifdef __BIG_ENDIAN
853 	np->bcrvalue |= 0x04;	/* big-endian */
854 #endif
855 
856 #if defined(__i386__) && !defined(MODULE)
857 	if (boot_cpu_data.x86 <= 4)
858 		np->crvalue = 0xa00;
859 	else
860 #endif
861 		np->crvalue = 0xe00;	/* rx 128 burst length */
862 
863 
864 // 89/12/29 add,
865 // 90/1/16 modify,
866 //   np->imrvalue=FBE|TUNF|CNTOVF|RBU|TI|RI;
867 	np->imrvalue = TUNF | CNTOVF | RBU | TI | RI;
868 	if (np->pci_dev->device == 0x891) {
869 		np->bcrvalue |= 0x200;	/* set PROG bit */
870 		np->crvalue |= CR_W_ENH;	/* set enhanced bit */
871 		np->imrvalue |= ETI;
872 	}
873 	iowrite32(np->bcrvalue, ioaddr + BCR);
874 
875 	if (dev->if_port == 0)
876 		dev->if_port = np->default_port;
877 
878 	iowrite32(0, ioaddr + RXPDR);
879 // 89/9/1 modify,
880 //   np->crvalue = 0x00e40001;    /* tx store and forward, tx/rx enable */
881 	np->crvalue |= 0x00e40001;	/* tx store and forward, tx/rx enable */
882 	np->mii.full_duplex = np->mii.force_media;
883 	getlinkstatus(dev);
884 	if (np->linkok)
885 		getlinktype(dev);
886 	__set_rx_mode(dev);
887 
888 	netif_start_queue(dev);
889 
890 	/* Clear and Enable interrupts by setting the interrupt mask. */
891 	iowrite32(FBE | TUNF | CNTOVF | RBU | TI | RI, ioaddr + ISR);
892 	iowrite32(np->imrvalue, ioaddr + IMR);
893 
894 	if (debug)
895 		printk(KERN_DEBUG "%s: Done netdev_open().\n", dev->name);
896 
897 	/* Set the timer to check for link beat. */
898 	timer_setup(&np->timer, netdev_timer, 0);
899 	np->timer.expires = RUN_AT(3 * HZ);
900 
901 	/* timer handler */
902 	add_timer(&np->timer);
903 
904 	timer_setup(&np->reset_timer, reset_timer, 0);
905 	np->reset_timer_armed = 0;
906 	return rc;
907 }
908 
909 
910 static void getlinkstatus(struct net_device *dev)
911 /* function: Routine will read MII Status Register to get link status.       */
912 /* input   : dev... pointer to the adapter block.                            */
913 /* output  : none.                                                           */
914 {
915 	struct netdev_private *np = netdev_priv(dev);
916 	unsigned int i, DelayTime = 0x1000;
917 
918 	np->linkok = 0;
919 
920 	if (np->PHYType == MysonPHY) {
921 		for (i = 0; i < DelayTime; ++i) {
922 			if (ioread32(np->mem + BMCRSR) & LinkIsUp2) {
923 				np->linkok = 1;
924 				return;
925 			}
926 			udelay(100);
927 		}
928 	} else {
929 		for (i = 0; i < DelayTime; ++i) {
930 			if (mdio_read(dev, np->phys[0], MII_BMSR) & BMSR_LSTATUS) {
931 				np->linkok = 1;
932 				return;
933 			}
934 			udelay(100);
935 		}
936 	}
937 }
938 
939 
940 static void getlinktype(struct net_device *dev)
941 {
942 	struct netdev_private *np = netdev_priv(dev);
943 
944 	if (np->PHYType == MysonPHY) {	/* 3-in-1 case */
945 		if (ioread32(np->mem + TCRRCR) & CR_R_FD)
946 			np->duplexmode = 2;	/* full duplex */
947 		else
948 			np->duplexmode = 1;	/* half duplex */
949 		if (ioread32(np->mem + TCRRCR) & CR_R_PS10)
950 			np->line_speed = 1;	/* 10M */
951 		else
952 			np->line_speed = 2;	/* 100M */
953 	} else {
954 		if (np->PHYType == SeeqPHY) {	/* this PHY is SEEQ 80225 */
955 			unsigned int data;
956 
957 			data = mdio_read(dev, np->phys[0], MIIRegister18);
958 			if (data & SPD_DET_100)
959 				np->line_speed = 2;	/* 100M */
960 			else
961 				np->line_speed = 1;	/* 10M */
962 			if (data & DPLX_DET_FULL)
963 				np->duplexmode = 2;	/* full duplex mode */
964 			else
965 				np->duplexmode = 1;	/* half duplex mode */
966 		} else if (np->PHYType == AhdocPHY) {
967 			unsigned int data;
968 
969 			data = mdio_read(dev, np->phys[0], DiagnosticReg);
970 			if (data & Speed_100)
971 				np->line_speed = 2;	/* 100M */
972 			else
973 				np->line_speed = 1;	/* 10M */
974 			if (data & DPLX_FULL)
975 				np->duplexmode = 2;	/* full duplex mode */
976 			else
977 				np->duplexmode = 1;	/* half duplex mode */
978 		}
979 /* 89/6/13 add, (begin) */
980 		else if (np->PHYType == MarvellPHY) {
981 			unsigned int data;
982 
983 			data = mdio_read(dev, np->phys[0], SpecificReg);
984 			if (data & Full_Duplex)
985 				np->duplexmode = 2;	/* full duplex mode */
986 			else
987 				np->duplexmode = 1;	/* half duplex mode */
988 			data &= SpeedMask;
989 			if (data == Speed_1000M)
990 				np->line_speed = 3;	/* 1000M */
991 			else if (data == Speed_100M)
992 				np->line_speed = 2;	/* 100M */
993 			else
994 				np->line_speed = 1;	/* 10M */
995 		}
996 /* 89/6/13 add, (end) */
997 /* 89/7/27 add, (begin) */
998 		else if (np->PHYType == Myson981) {
999 			unsigned int data;
1000 
1001 			data = mdio_read(dev, np->phys[0], StatusRegister);
1002 
1003 			if (data & SPEED100)
1004 				np->line_speed = 2;
1005 			else
1006 				np->line_speed = 1;
1007 
1008 			if (data & FULLMODE)
1009 				np->duplexmode = 2;
1010 			else
1011 				np->duplexmode = 1;
1012 		}
1013 /* 89/7/27 add, (end) */
1014 /* 89/12/29 add */
1015 		else if (np->PHYType == LevelOnePHY) {
1016 			unsigned int data;
1017 
1018 			data = mdio_read(dev, np->phys[0], SpecificReg);
1019 			if (data & LXT1000_Full)
1020 				np->duplexmode = 2;	/* full duplex mode */
1021 			else
1022 				np->duplexmode = 1;	/* half duplex mode */
1023 			data &= SpeedMask;
1024 			if (data == LXT1000_1000M)
1025 				np->line_speed = 3;	/* 1000M */
1026 			else if (data == LXT1000_100M)
1027 				np->line_speed = 2;	/* 100M */
1028 			else
1029 				np->line_speed = 1;	/* 10M */
1030 		}
1031 		np->crvalue &= (~CR_W_PS10) & (~CR_W_FD) & (~CR_W_PS1000);
1032 		if (np->line_speed == 1)
1033 			np->crvalue |= CR_W_PS10;
1034 		else if (np->line_speed == 3)
1035 			np->crvalue |= CR_W_PS1000;
1036 		if (np->duplexmode == 2)
1037 			np->crvalue |= CR_W_FD;
1038 	}
1039 }
1040 
1041 
1042 /* Take lock before calling this */
1043 static void allocate_rx_buffers(struct net_device *dev)
1044 {
1045 	struct netdev_private *np = netdev_priv(dev);
1046 
1047 	/*  allocate skb for rx buffers */
1048 	while (np->really_rx_count != RX_RING_SIZE) {
1049 		struct sk_buff *skb;
1050 
1051 		skb = netdev_alloc_skb(dev, np->rx_buf_sz);
1052 		if (skb == NULL)
1053 			break;	/* Better luck next round. */
1054 
1055 		while (np->lack_rxbuf->skbuff)
1056 			np->lack_rxbuf = np->lack_rxbuf->next_desc_logical;
1057 
1058 		np->lack_rxbuf->skbuff = skb;
1059 		np->lack_rxbuf->buffer = pci_map_single(np->pci_dev, skb->data,
1060 			np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1061 		np->lack_rxbuf->status = RXOWN;
1062 		++np->really_rx_count;
1063 	}
1064 }
1065 
1066 
1067 static void netdev_timer(struct timer_list *t)
1068 {
1069 	struct netdev_private *np = from_timer(np, t, timer);
1070 	struct net_device *dev = np->mii.dev;
1071 	void __iomem *ioaddr = np->mem;
1072 	int old_crvalue = np->crvalue;
1073 	unsigned int old_linkok = np->linkok;
1074 	unsigned long flags;
1075 
1076 	if (debug)
1077 		printk(KERN_DEBUG "%s: Media selection timer tick, status %8.8x "
1078 		       "config %8.8x.\n", dev->name, ioread32(ioaddr + ISR),
1079 		       ioread32(ioaddr + TCRRCR));
1080 
1081 	spin_lock_irqsave(&np->lock, flags);
1082 
1083 	if (np->flags == HAS_MII_XCVR) {
1084 		getlinkstatus(dev);
1085 		if ((old_linkok == 0) && (np->linkok == 1)) {	/* we need to detect the media type again */
1086 			getlinktype(dev);
1087 			if (np->crvalue != old_crvalue) {
1088 				stop_nic_rxtx(ioaddr, np->crvalue);
1089 				iowrite32(np->crvalue, ioaddr + TCRRCR);
1090 			}
1091 		}
1092 	}
1093 
1094 	allocate_rx_buffers(dev);
1095 
1096 	spin_unlock_irqrestore(&np->lock, flags);
1097 
1098 	np->timer.expires = RUN_AT(10 * HZ);
1099 	add_timer(&np->timer);
1100 }
1101 
1102 
1103 /* Take lock before calling */
1104 /* Reset chip and disable rx, tx and interrupts */
1105 static void reset_and_disable_rxtx(struct net_device *dev)
1106 {
1107 	struct netdev_private *np = netdev_priv(dev);
1108 	void __iomem *ioaddr = np->mem;
1109 	int delay=51;
1110 
1111 	/* Reset the chip's Tx and Rx processes. */
1112 	stop_nic_rxtx(ioaddr, 0);
1113 
1114 	/* Disable interrupts by clearing the interrupt mask. */
1115 	iowrite32(0, ioaddr + IMR);
1116 
1117 	/* Reset the chip to erase previous misconfiguration. */
1118 	iowrite32(0x00000001, ioaddr + BCR);
1119 
1120 	/* Ueimor: wait for 50 PCI cycles (and flush posted writes btw).
1121 	   We surely wait too long (address+data phase). Who cares? */
1122 	while (--delay) {
1123 		ioread32(ioaddr + BCR);
1124 		rmb();
1125 	}
1126 }
1127 
1128 
1129 /* Take lock before calling */
1130 /* Restore chip after reset */
1131 static void enable_rxtx(struct net_device *dev)
1132 {
1133 	struct netdev_private *np = netdev_priv(dev);
1134 	void __iomem *ioaddr = np->mem;
1135 
1136 	reset_rx_descriptors(dev);
1137 
1138 	iowrite32(np->tx_ring_dma + ((char*)np->cur_tx - (char*)np->tx_ring),
1139 		ioaddr + TXLBA);
1140 	iowrite32(np->rx_ring_dma + ((char*)np->cur_rx - (char*)np->rx_ring),
1141 		ioaddr + RXLBA);
1142 
1143 	iowrite32(np->bcrvalue, ioaddr + BCR);
1144 
1145 	iowrite32(0, ioaddr + RXPDR);
1146 	__set_rx_mode(dev); /* changes np->crvalue, writes it into TCRRCR */
1147 
1148 	/* Clear and Enable interrupts by setting the interrupt mask. */
1149 	iowrite32(FBE | TUNF | CNTOVF | RBU | TI | RI, ioaddr + ISR);
1150 	iowrite32(np->imrvalue, ioaddr + IMR);
1151 
1152 	iowrite32(0, ioaddr + TXPDR);
1153 }
1154 
1155 
1156 static void reset_timer(struct timer_list *t)
1157 {
1158 	struct netdev_private *np = from_timer(np, t, reset_timer);
1159 	struct net_device *dev = np->mii.dev;
1160 	unsigned long flags;
1161 
1162 	printk(KERN_WARNING "%s: resetting tx and rx machinery\n", dev->name);
1163 
1164 	spin_lock_irqsave(&np->lock, flags);
1165 	np->crvalue = np->crvalue_sv;
1166 	np->imrvalue = np->imrvalue_sv;
1167 
1168 	reset_and_disable_rxtx(dev);
1169 	/* works for me without this:
1170 	reset_tx_descriptors(dev); */
1171 	enable_rxtx(dev);
1172 	netif_start_queue(dev); /* FIXME: or netif_wake_queue(dev); ? */
1173 
1174 	np->reset_timer_armed = 0;
1175 
1176 	spin_unlock_irqrestore(&np->lock, flags);
1177 }
1178 
1179 
1180 static void fealnx_tx_timeout(struct net_device *dev, unsigned int txqueue)
1181 {
1182 	struct netdev_private *np = netdev_priv(dev);
1183 	void __iomem *ioaddr = np->mem;
1184 	unsigned long flags;
1185 	int i;
1186 
1187 	printk(KERN_WARNING
1188 	       "%s: Transmit timed out, status %8.8x, resetting...\n",
1189 	       dev->name, ioread32(ioaddr + ISR));
1190 
1191 	{
1192 		printk(KERN_DEBUG "  Rx ring %p: ", np->rx_ring);
1193 		for (i = 0; i < RX_RING_SIZE; i++)
1194 			printk(KERN_CONT " %8.8x",
1195 			       (unsigned int) np->rx_ring[i].status);
1196 		printk(KERN_CONT "\n");
1197 		printk(KERN_DEBUG "  Tx ring %p: ", np->tx_ring);
1198 		for (i = 0; i < TX_RING_SIZE; i++)
1199 			printk(KERN_CONT " %4.4x", np->tx_ring[i].status);
1200 		printk(KERN_CONT "\n");
1201 	}
1202 
1203 	spin_lock_irqsave(&np->lock, flags);
1204 
1205 	reset_and_disable_rxtx(dev);
1206 	reset_tx_descriptors(dev);
1207 	enable_rxtx(dev);
1208 
1209 	spin_unlock_irqrestore(&np->lock, flags);
1210 
1211 	netif_trans_update(dev); /* prevent tx timeout */
1212 	dev->stats.tx_errors++;
1213 	netif_wake_queue(dev); /* or .._start_.. ?? */
1214 }
1215 
1216 
1217 /* Initialize the Rx and Tx rings, along with various 'dev' bits. */
1218 static void init_ring(struct net_device *dev)
1219 {
1220 	struct netdev_private *np = netdev_priv(dev);
1221 	int i;
1222 
1223 	/* initialize rx variables */
1224 	np->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
1225 	np->cur_rx = &np->rx_ring[0];
1226 	np->lack_rxbuf = np->rx_ring;
1227 	np->really_rx_count = 0;
1228 
1229 	/* initial rx descriptors. */
1230 	for (i = 0; i < RX_RING_SIZE; i++) {
1231 		np->rx_ring[i].status = 0;
1232 		np->rx_ring[i].control = np->rx_buf_sz << RBSShift;
1233 		np->rx_ring[i].next_desc = np->rx_ring_dma +
1234 			(i + 1)*sizeof(struct fealnx_desc);
1235 		np->rx_ring[i].next_desc_logical = &np->rx_ring[i + 1];
1236 		np->rx_ring[i].skbuff = NULL;
1237 	}
1238 
1239 	/* for the last rx descriptor */
1240 	np->rx_ring[i - 1].next_desc = np->rx_ring_dma;
1241 	np->rx_ring[i - 1].next_desc_logical = np->rx_ring;
1242 
1243 	/* allocate skb for rx buffers */
1244 	for (i = 0; i < RX_RING_SIZE; i++) {
1245 		struct sk_buff *skb = netdev_alloc_skb(dev, np->rx_buf_sz);
1246 
1247 		if (skb == NULL) {
1248 			np->lack_rxbuf = &np->rx_ring[i];
1249 			break;
1250 		}
1251 
1252 		++np->really_rx_count;
1253 		np->rx_ring[i].skbuff = skb;
1254 		np->rx_ring[i].buffer = pci_map_single(np->pci_dev, skb->data,
1255 			np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1256 		np->rx_ring[i].status = RXOWN;
1257 		np->rx_ring[i].control |= RXIC;
1258 	}
1259 
1260 	/* initialize tx variables */
1261 	np->cur_tx = &np->tx_ring[0];
1262 	np->cur_tx_copy = &np->tx_ring[0];
1263 	np->really_tx_count = 0;
1264 	np->free_tx_count = TX_RING_SIZE;
1265 
1266 	for (i = 0; i < TX_RING_SIZE; i++) {
1267 		np->tx_ring[i].status = 0;
1268 		/* do we need np->tx_ring[i].control = XXX; ?? */
1269 		np->tx_ring[i].next_desc = np->tx_ring_dma +
1270 			(i + 1)*sizeof(struct fealnx_desc);
1271 		np->tx_ring[i].next_desc_logical = &np->tx_ring[i + 1];
1272 		np->tx_ring[i].skbuff = NULL;
1273 	}
1274 
1275 	/* for the last tx descriptor */
1276 	np->tx_ring[i - 1].next_desc = np->tx_ring_dma;
1277 	np->tx_ring[i - 1].next_desc_logical = &np->tx_ring[0];
1278 }
1279 
1280 
1281 static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev)
1282 {
1283 	struct netdev_private *np = netdev_priv(dev);
1284 	unsigned long flags;
1285 
1286 	spin_lock_irqsave(&np->lock, flags);
1287 
1288 	np->cur_tx_copy->skbuff = skb;
1289 
1290 #define one_buffer
1291 #define BPT 1022
1292 #if defined(one_buffer)
1293 	np->cur_tx_copy->buffer = pci_map_single(np->pci_dev, skb->data,
1294 		skb->len, PCI_DMA_TODEVICE);
1295 	np->cur_tx_copy->control = TXIC | TXLD | TXFD | CRCEnable | PADEnable;
1296 	np->cur_tx_copy->control |= (skb->len << PKTSShift);	/* pkt size */
1297 	np->cur_tx_copy->control |= (skb->len << TBSShift);	/* buffer size */
1298 // 89/12/29 add,
1299 	if (np->pci_dev->device == 0x891)
1300 		np->cur_tx_copy->control |= ETIControl | RetryTxLC;
1301 	np->cur_tx_copy->status = TXOWN;
1302 	np->cur_tx_copy = np->cur_tx_copy->next_desc_logical;
1303 	--np->free_tx_count;
1304 #elif defined(two_buffer)
1305 	if (skb->len > BPT) {
1306 		struct fealnx_desc *next;
1307 
1308 		/* for the first descriptor */
1309 		np->cur_tx_copy->buffer = pci_map_single(np->pci_dev, skb->data,
1310 			BPT, PCI_DMA_TODEVICE);
1311 		np->cur_tx_copy->control = TXIC | TXFD | CRCEnable | PADEnable;
1312 		np->cur_tx_copy->control |= (skb->len << PKTSShift);	/* pkt size */
1313 		np->cur_tx_copy->control |= (BPT << TBSShift);	/* buffer size */
1314 
1315 		/* for the last descriptor */
1316 		next = np->cur_tx_copy->next_desc_logical;
1317 		next->skbuff = skb;
1318 		next->control = TXIC | TXLD | CRCEnable | PADEnable;
1319 		next->control |= (skb->len << PKTSShift);	/* pkt size */
1320 		next->control |= ((skb->len - BPT) << TBSShift);	/* buf size */
1321 // 89/12/29 add,
1322 		if (np->pci_dev->device == 0x891)
1323 			np->cur_tx_copy->control |= ETIControl | RetryTxLC;
1324 		next->buffer = pci_map_single(ep->pci_dev, skb->data + BPT,
1325                                 skb->len - BPT, PCI_DMA_TODEVICE);
1326 
1327 		next->status = TXOWN;
1328 		np->cur_tx_copy->status = TXOWN;
1329 
1330 		np->cur_tx_copy = next->next_desc_logical;
1331 		np->free_tx_count -= 2;
1332 	} else {
1333 		np->cur_tx_copy->buffer = pci_map_single(np->pci_dev, skb->data,
1334 			skb->len, PCI_DMA_TODEVICE);
1335 		np->cur_tx_copy->control = TXIC | TXLD | TXFD | CRCEnable | PADEnable;
1336 		np->cur_tx_copy->control |= (skb->len << PKTSShift);	/* pkt size */
1337 		np->cur_tx_copy->control |= (skb->len << TBSShift);	/* buffer size */
1338 // 89/12/29 add,
1339 		if (np->pci_dev->device == 0x891)
1340 			np->cur_tx_copy->control |= ETIControl | RetryTxLC;
1341 		np->cur_tx_copy->status = TXOWN;
1342 		np->cur_tx_copy = np->cur_tx_copy->next_desc_logical;
1343 		--np->free_tx_count;
1344 	}
1345 #endif
1346 
1347 	if (np->free_tx_count < 2)
1348 		netif_stop_queue(dev);
1349 	++np->really_tx_count;
1350 	iowrite32(0, np->mem + TXPDR);
1351 
1352 	spin_unlock_irqrestore(&np->lock, flags);
1353 	return NETDEV_TX_OK;
1354 }
1355 
1356 
1357 /* Take lock before calling */
1358 /* Chip probably hosed tx ring. Clean up. */
1359 static void reset_tx_descriptors(struct net_device *dev)
1360 {
1361 	struct netdev_private *np = netdev_priv(dev);
1362 	struct fealnx_desc *cur;
1363 	int i;
1364 
1365 	/* initialize tx variables */
1366 	np->cur_tx = &np->tx_ring[0];
1367 	np->cur_tx_copy = &np->tx_ring[0];
1368 	np->really_tx_count = 0;
1369 	np->free_tx_count = TX_RING_SIZE;
1370 
1371 	for (i = 0; i < TX_RING_SIZE; i++) {
1372 		cur = &np->tx_ring[i];
1373 		if (cur->skbuff) {
1374 			pci_unmap_single(np->pci_dev, cur->buffer,
1375 				cur->skbuff->len, PCI_DMA_TODEVICE);
1376 			dev_kfree_skb_any(cur->skbuff);
1377 			cur->skbuff = NULL;
1378 		}
1379 		cur->status = 0;
1380 		cur->control = 0;	/* needed? */
1381 		/* probably not needed. We do it for purely paranoid reasons */
1382 		cur->next_desc = np->tx_ring_dma +
1383 			(i + 1)*sizeof(struct fealnx_desc);
1384 		cur->next_desc_logical = &np->tx_ring[i + 1];
1385 	}
1386 	/* for the last tx descriptor */
1387 	np->tx_ring[TX_RING_SIZE - 1].next_desc = np->tx_ring_dma;
1388 	np->tx_ring[TX_RING_SIZE - 1].next_desc_logical = &np->tx_ring[0];
1389 }
1390 
1391 
1392 /* Take lock and stop rx before calling this */
1393 static void reset_rx_descriptors(struct net_device *dev)
1394 {
1395 	struct netdev_private *np = netdev_priv(dev);
1396 	struct fealnx_desc *cur = np->cur_rx;
1397 	int i;
1398 
1399 	allocate_rx_buffers(dev);
1400 
1401 	for (i = 0; i < RX_RING_SIZE; i++) {
1402 		if (cur->skbuff)
1403 			cur->status = RXOWN;
1404 		cur = cur->next_desc_logical;
1405 	}
1406 
1407 	iowrite32(np->rx_ring_dma + ((char*)np->cur_rx - (char*)np->rx_ring),
1408 		np->mem + RXLBA);
1409 }
1410 
1411 
1412 /* The interrupt handler does all of the Rx thread work and cleans up
1413    after the Tx thread. */
1414 static irqreturn_t intr_handler(int irq, void *dev_instance)
1415 {
1416 	struct net_device *dev = (struct net_device *) dev_instance;
1417 	struct netdev_private *np = netdev_priv(dev);
1418 	void __iomem *ioaddr = np->mem;
1419 	long boguscnt = max_interrupt_work;
1420 	unsigned int num_tx = 0;
1421 	int handled = 0;
1422 
1423 	spin_lock(&np->lock);
1424 
1425 	iowrite32(0, ioaddr + IMR);
1426 
1427 	do {
1428 		u32 intr_status = ioread32(ioaddr + ISR);
1429 
1430 		/* Acknowledge all of the current interrupt sources ASAP. */
1431 		iowrite32(intr_status, ioaddr + ISR);
1432 
1433 		if (debug)
1434 			printk(KERN_DEBUG "%s: Interrupt, status %4.4x.\n", dev->name,
1435 			       intr_status);
1436 
1437 		if (!(intr_status & np->imrvalue))
1438 			break;
1439 
1440 		handled = 1;
1441 
1442 // 90/1/16 delete,
1443 //
1444 //      if (intr_status & FBE)
1445 //      {   /* fatal error */
1446 //          stop_nic_tx(ioaddr, 0);
1447 //          stop_nic_rx(ioaddr, 0);
1448 //          break;
1449 //      };
1450 
1451 		if (intr_status & TUNF)
1452 			iowrite32(0, ioaddr + TXPDR);
1453 
1454 		if (intr_status & CNTOVF) {
1455 			/* missed pkts */
1456 			dev->stats.rx_missed_errors +=
1457 				ioread32(ioaddr + TALLY) & 0x7fff;
1458 
1459 			/* crc error */
1460 			dev->stats.rx_crc_errors +=
1461 			    (ioread32(ioaddr + TALLY) & 0x7fff0000) >> 16;
1462 		}
1463 
1464 		if (intr_status & (RI | RBU)) {
1465 			if (intr_status & RI)
1466 				netdev_rx(dev);
1467 			else {
1468 				stop_nic_rx(ioaddr, np->crvalue);
1469 				reset_rx_descriptors(dev);
1470 				iowrite32(np->crvalue, ioaddr + TCRRCR);
1471 			}
1472 		}
1473 
1474 		while (np->really_tx_count) {
1475 			long tx_status = np->cur_tx->status;
1476 			long tx_control = np->cur_tx->control;
1477 
1478 			if (!(tx_control & TXLD)) {	/* this pkt is combined by two tx descriptors */
1479 				struct fealnx_desc *next;
1480 
1481 				next = np->cur_tx->next_desc_logical;
1482 				tx_status = next->status;
1483 				tx_control = next->control;
1484 			}
1485 
1486 			if (tx_status & TXOWN)
1487 				break;
1488 
1489 			if (!(np->crvalue & CR_W_ENH)) {
1490 				if (tx_status & (CSL | LC | EC | UDF | HF)) {
1491 					dev->stats.tx_errors++;
1492 					if (tx_status & EC)
1493 						dev->stats.tx_aborted_errors++;
1494 					if (tx_status & CSL)
1495 						dev->stats.tx_carrier_errors++;
1496 					if (tx_status & LC)
1497 						dev->stats.tx_window_errors++;
1498 					if (tx_status & UDF)
1499 						dev->stats.tx_fifo_errors++;
1500 					if ((tx_status & HF) && np->mii.full_duplex == 0)
1501 						dev->stats.tx_heartbeat_errors++;
1502 
1503 				} else {
1504 					dev->stats.tx_bytes +=
1505 					    ((tx_control & PKTSMask) >> PKTSShift);
1506 
1507 					dev->stats.collisions +=
1508 					    ((tx_status & NCRMask) >> NCRShift);
1509 					dev->stats.tx_packets++;
1510 				}
1511 			} else {
1512 				dev->stats.tx_bytes +=
1513 				    ((tx_control & PKTSMask) >> PKTSShift);
1514 				dev->stats.tx_packets++;
1515 			}
1516 
1517 			/* Free the original skb. */
1518 			pci_unmap_single(np->pci_dev, np->cur_tx->buffer,
1519 				np->cur_tx->skbuff->len, PCI_DMA_TODEVICE);
1520 			dev_consume_skb_irq(np->cur_tx->skbuff);
1521 			np->cur_tx->skbuff = NULL;
1522 			--np->really_tx_count;
1523 			if (np->cur_tx->control & TXLD) {
1524 				np->cur_tx = np->cur_tx->next_desc_logical;
1525 				++np->free_tx_count;
1526 			} else {
1527 				np->cur_tx = np->cur_tx->next_desc_logical;
1528 				np->cur_tx = np->cur_tx->next_desc_logical;
1529 				np->free_tx_count += 2;
1530 			}
1531 			num_tx++;
1532 		}		/* end of for loop */
1533 
1534 		if (num_tx && np->free_tx_count >= 2)
1535 			netif_wake_queue(dev);
1536 
1537 		/* read transmit status for enhanced mode only */
1538 		if (np->crvalue & CR_W_ENH) {
1539 			long data;
1540 
1541 			data = ioread32(ioaddr + TSR);
1542 			dev->stats.tx_errors += (data & 0xff000000) >> 24;
1543 			dev->stats.tx_aborted_errors +=
1544 				(data & 0xff000000) >> 24;
1545 			dev->stats.tx_window_errors +=
1546 				(data & 0x00ff0000) >> 16;
1547 			dev->stats.collisions += (data & 0x0000ffff);
1548 		}
1549 
1550 		if (--boguscnt < 0) {
1551 			printk(KERN_WARNING "%s: Too much work at interrupt, "
1552 			       "status=0x%4.4x.\n", dev->name, intr_status);
1553 			if (!np->reset_timer_armed) {
1554 				np->reset_timer_armed = 1;
1555 				np->reset_timer.expires = RUN_AT(HZ/2);
1556 				add_timer(&np->reset_timer);
1557 				stop_nic_rxtx(ioaddr, 0);
1558 				netif_stop_queue(dev);
1559 				/* or netif_tx_disable(dev); ?? */
1560 				/* Prevent other paths from enabling tx,rx,intrs */
1561 				np->crvalue_sv = np->crvalue;
1562 				np->imrvalue_sv = np->imrvalue;
1563 				np->crvalue &= ~(CR_W_TXEN | CR_W_RXEN); /* or simply = 0? */
1564 				np->imrvalue = 0;
1565 			}
1566 
1567 			break;
1568 		}
1569 	} while (1);
1570 
1571 	/* read the tally counters */
1572 	/* missed pkts */
1573 	dev->stats.rx_missed_errors += ioread32(ioaddr + TALLY) & 0x7fff;
1574 
1575 	/* crc error */
1576 	dev->stats.rx_crc_errors +=
1577 		(ioread32(ioaddr + TALLY) & 0x7fff0000) >> 16;
1578 
1579 	if (debug)
1580 		printk(KERN_DEBUG "%s: exiting interrupt, status=%#4.4x.\n",
1581 		       dev->name, ioread32(ioaddr + ISR));
1582 
1583 	iowrite32(np->imrvalue, ioaddr + IMR);
1584 
1585 	spin_unlock(&np->lock);
1586 
1587 	return IRQ_RETVAL(handled);
1588 }
1589 
1590 
1591 /* This routine is logically part of the interrupt handler, but separated
1592    for clarity and better register allocation. */
1593 static int netdev_rx(struct net_device *dev)
1594 {
1595 	struct netdev_private *np = netdev_priv(dev);
1596 	void __iomem *ioaddr = np->mem;
1597 
1598 	/* If EOP is set on the next entry, it's a new packet. Send it up. */
1599 	while (!(np->cur_rx->status & RXOWN) && np->cur_rx->skbuff) {
1600 		s32 rx_status = np->cur_rx->status;
1601 
1602 		if (np->really_rx_count == 0)
1603 			break;
1604 
1605 		if (debug)
1606 			printk(KERN_DEBUG "  netdev_rx() status was %8.8x.\n", rx_status);
1607 
1608 		if ((!((rx_status & RXFSD) && (rx_status & RXLSD))) ||
1609 		    (rx_status & ErrorSummary)) {
1610 			if (rx_status & ErrorSummary) {	/* there was a fatal error */
1611 				if (debug)
1612 					printk(KERN_DEBUG
1613 					       "%s: Receive error, Rx status %8.8x.\n",
1614 					       dev->name, rx_status);
1615 
1616 				dev->stats.rx_errors++;	/* end of a packet. */
1617 				if (rx_status & (LONGPKT | RUNTPKT))
1618 					dev->stats.rx_length_errors++;
1619 				if (rx_status & RXER)
1620 					dev->stats.rx_frame_errors++;
1621 				if (rx_status & CRC)
1622 					dev->stats.rx_crc_errors++;
1623 			} else {
1624 				int need_to_reset = 0;
1625 				int desno = 0;
1626 
1627 				if (rx_status & RXFSD) {	/* this pkt is too long, over one rx buffer */
1628 					struct fealnx_desc *cur;
1629 
1630 					/* check this packet is received completely? */
1631 					cur = np->cur_rx;
1632 					while (desno <= np->really_rx_count) {
1633 						++desno;
1634 						if ((!(cur->status & RXOWN)) &&
1635 						    (cur->status & RXLSD))
1636 							break;
1637 						/* goto next rx descriptor */
1638 						cur = cur->next_desc_logical;
1639 					}
1640 					if (desno > np->really_rx_count)
1641 						need_to_reset = 1;
1642 				} else	/* RXLSD did not find, something error */
1643 					need_to_reset = 1;
1644 
1645 				if (need_to_reset == 0) {
1646 					int i;
1647 
1648 					dev->stats.rx_length_errors++;
1649 
1650 					/* free all rx descriptors related this long pkt */
1651 					for (i = 0; i < desno; ++i) {
1652 						if (!np->cur_rx->skbuff) {
1653 							printk(KERN_DEBUG
1654 								"%s: I'm scared\n", dev->name);
1655 							break;
1656 						}
1657 						np->cur_rx->status = RXOWN;
1658 						np->cur_rx = np->cur_rx->next_desc_logical;
1659 					}
1660 					continue;
1661 				} else {        /* rx error, need to reset this chip */
1662 					stop_nic_rx(ioaddr, np->crvalue);
1663 					reset_rx_descriptors(dev);
1664 					iowrite32(np->crvalue, ioaddr + TCRRCR);
1665 				}
1666 				break;	/* exit the while loop */
1667 			}
1668 		} else {	/* this received pkt is ok */
1669 
1670 			struct sk_buff *skb;
1671 			/* Omit the four octet CRC from the length. */
1672 			short pkt_len = ((rx_status & FLNGMASK) >> FLNGShift) - 4;
1673 
1674 #ifndef final_version
1675 			if (debug)
1676 				printk(KERN_DEBUG "  netdev_rx() normal Rx pkt length %d"
1677 				       " status %x.\n", pkt_len, rx_status);
1678 #endif
1679 
1680 			/* Check if the packet is long enough to accept without copying
1681 			   to a minimally-sized skbuff. */
1682 			if (pkt_len < rx_copybreak &&
1683 			    (skb = netdev_alloc_skb(dev, pkt_len + 2)) != NULL) {
1684 				skb_reserve(skb, 2);	/* 16 byte align the IP header */
1685 				pci_dma_sync_single_for_cpu(np->pci_dev,
1686 							    np->cur_rx->buffer,
1687 							    np->rx_buf_sz,
1688 							    PCI_DMA_FROMDEVICE);
1689 				/* Call copy + cksum if available. */
1690 
1691 #if ! defined(__alpha__)
1692 				skb_copy_to_linear_data(skb,
1693 					np->cur_rx->skbuff->data, pkt_len);
1694 				skb_put(skb, pkt_len);
1695 #else
1696 				skb_put_data(skb, np->cur_rx->skbuff->data,
1697 					     pkt_len);
1698 #endif
1699 				pci_dma_sync_single_for_device(np->pci_dev,
1700 							       np->cur_rx->buffer,
1701 							       np->rx_buf_sz,
1702 							       PCI_DMA_FROMDEVICE);
1703 			} else {
1704 				pci_unmap_single(np->pci_dev,
1705 						 np->cur_rx->buffer,
1706 						 np->rx_buf_sz,
1707 						 PCI_DMA_FROMDEVICE);
1708 				skb_put(skb = np->cur_rx->skbuff, pkt_len);
1709 				np->cur_rx->skbuff = NULL;
1710 				--np->really_rx_count;
1711 			}
1712 			skb->protocol = eth_type_trans(skb, dev);
1713 			netif_rx(skb);
1714 			dev->stats.rx_packets++;
1715 			dev->stats.rx_bytes += pkt_len;
1716 		}
1717 
1718 		np->cur_rx = np->cur_rx->next_desc_logical;
1719 	}			/* end of while loop */
1720 
1721 	/*  allocate skb for rx buffers */
1722 	allocate_rx_buffers(dev);
1723 
1724 	return 0;
1725 }
1726 
1727 
1728 static struct net_device_stats *get_stats(struct net_device *dev)
1729 {
1730 	struct netdev_private *np = netdev_priv(dev);
1731 	void __iomem *ioaddr = np->mem;
1732 
1733 	/* The chip only need report frame silently dropped. */
1734 	if (netif_running(dev)) {
1735 		dev->stats.rx_missed_errors +=
1736 			ioread32(ioaddr + TALLY) & 0x7fff;
1737 		dev->stats.rx_crc_errors +=
1738 			(ioread32(ioaddr + TALLY) & 0x7fff0000) >> 16;
1739 	}
1740 
1741 	return &dev->stats;
1742 }
1743 
1744 
1745 /* for dev->set_multicast_list */
1746 static void set_rx_mode(struct net_device *dev)
1747 {
1748 	spinlock_t *lp = &((struct netdev_private *)netdev_priv(dev))->lock;
1749 	unsigned long flags;
1750 	spin_lock_irqsave(lp, flags);
1751 	__set_rx_mode(dev);
1752 	spin_unlock_irqrestore(lp, flags);
1753 }
1754 
1755 
1756 /* Take lock before calling */
1757 static void __set_rx_mode(struct net_device *dev)
1758 {
1759 	struct netdev_private *np = netdev_priv(dev);
1760 	void __iomem *ioaddr = np->mem;
1761 	u32 mc_filter[2];	/* Multicast hash filter */
1762 	u32 rx_mode;
1763 
1764 	if (dev->flags & IFF_PROMISC) {	/* Set promiscuous. */
1765 		memset(mc_filter, 0xff, sizeof(mc_filter));
1766 		rx_mode = CR_W_PROM | CR_W_AB | CR_W_AM;
1767 	} else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
1768 		   (dev->flags & IFF_ALLMULTI)) {
1769 		/* Too many to match, or accept all multicasts. */
1770 		memset(mc_filter, 0xff, sizeof(mc_filter));
1771 		rx_mode = CR_W_AB | CR_W_AM;
1772 	} else {
1773 		struct netdev_hw_addr *ha;
1774 
1775 		memset(mc_filter, 0, sizeof(mc_filter));
1776 		netdev_for_each_mc_addr(ha, dev) {
1777 			unsigned int bit;
1778 			bit = (ether_crc(ETH_ALEN, ha->addr) >> 26) ^ 0x3F;
1779 			mc_filter[bit >> 5] |= (1 << bit);
1780 		}
1781 		rx_mode = CR_W_AB | CR_W_AM;
1782 	}
1783 
1784 	stop_nic_rxtx(ioaddr, np->crvalue);
1785 
1786 	iowrite32(mc_filter[0], ioaddr + MAR0);
1787 	iowrite32(mc_filter[1], ioaddr + MAR1);
1788 	np->crvalue &= ~CR_W_RXMODEMASK;
1789 	np->crvalue |= rx_mode;
1790 	iowrite32(np->crvalue, ioaddr + TCRRCR);
1791 }
1792 
1793 static void netdev_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1794 {
1795 	struct netdev_private *np = netdev_priv(dev);
1796 
1797 	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1798 	strlcpy(info->bus_info, pci_name(np->pci_dev), sizeof(info->bus_info));
1799 }
1800 
1801 static int netdev_get_link_ksettings(struct net_device *dev,
1802 				     struct ethtool_link_ksettings *cmd)
1803 {
1804 	struct netdev_private *np = netdev_priv(dev);
1805 
1806 	spin_lock_irq(&np->lock);
1807 	mii_ethtool_get_link_ksettings(&np->mii, cmd);
1808 	spin_unlock_irq(&np->lock);
1809 
1810 	return 0;
1811 }
1812 
1813 static int netdev_set_link_ksettings(struct net_device *dev,
1814 				     const struct ethtool_link_ksettings *cmd)
1815 {
1816 	struct netdev_private *np = netdev_priv(dev);
1817 	int rc;
1818 
1819 	spin_lock_irq(&np->lock);
1820 	rc = mii_ethtool_set_link_ksettings(&np->mii, cmd);
1821 	spin_unlock_irq(&np->lock);
1822 
1823 	return rc;
1824 }
1825 
1826 static int netdev_nway_reset(struct net_device *dev)
1827 {
1828 	struct netdev_private *np = netdev_priv(dev);
1829 	return mii_nway_restart(&np->mii);
1830 }
1831 
1832 static u32 netdev_get_link(struct net_device *dev)
1833 {
1834 	struct netdev_private *np = netdev_priv(dev);
1835 	return mii_link_ok(&np->mii);
1836 }
1837 
1838 static u32 netdev_get_msglevel(struct net_device *dev)
1839 {
1840 	return debug;
1841 }
1842 
1843 static void netdev_set_msglevel(struct net_device *dev, u32 value)
1844 {
1845 	debug = value;
1846 }
1847 
1848 static const struct ethtool_ops netdev_ethtool_ops = {
1849 	.get_drvinfo		= netdev_get_drvinfo,
1850 	.nway_reset		= netdev_nway_reset,
1851 	.get_link		= netdev_get_link,
1852 	.get_msglevel		= netdev_get_msglevel,
1853 	.set_msglevel		= netdev_set_msglevel,
1854 	.get_link_ksettings	= netdev_get_link_ksettings,
1855 	.set_link_ksettings	= netdev_set_link_ksettings,
1856 };
1857 
1858 static int mii_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1859 {
1860 	struct netdev_private *np = netdev_priv(dev);
1861 	int rc;
1862 
1863 	if (!netif_running(dev))
1864 		return -EINVAL;
1865 
1866 	spin_lock_irq(&np->lock);
1867 	rc = generic_mii_ioctl(&np->mii, if_mii(rq), cmd, NULL);
1868 	spin_unlock_irq(&np->lock);
1869 
1870 	return rc;
1871 }
1872 
1873 
1874 static int netdev_close(struct net_device *dev)
1875 {
1876 	struct netdev_private *np = netdev_priv(dev);
1877 	void __iomem *ioaddr = np->mem;
1878 	int i;
1879 
1880 	netif_stop_queue(dev);
1881 
1882 	/* Disable interrupts by clearing the interrupt mask. */
1883 	iowrite32(0x0000, ioaddr + IMR);
1884 
1885 	/* Stop the chip's Tx and Rx processes. */
1886 	stop_nic_rxtx(ioaddr, 0);
1887 
1888 	del_timer_sync(&np->timer);
1889 	del_timer_sync(&np->reset_timer);
1890 
1891 	free_irq(np->pci_dev->irq, dev);
1892 
1893 	/* Free all the skbuffs in the Rx queue. */
1894 	for (i = 0; i < RX_RING_SIZE; i++) {
1895 		struct sk_buff *skb = np->rx_ring[i].skbuff;
1896 
1897 		np->rx_ring[i].status = 0;
1898 		if (skb) {
1899 			pci_unmap_single(np->pci_dev, np->rx_ring[i].buffer,
1900 				np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1901 			dev_kfree_skb(skb);
1902 			np->rx_ring[i].skbuff = NULL;
1903 		}
1904 	}
1905 
1906 	for (i = 0; i < TX_RING_SIZE; i++) {
1907 		struct sk_buff *skb = np->tx_ring[i].skbuff;
1908 
1909 		if (skb) {
1910 			pci_unmap_single(np->pci_dev, np->tx_ring[i].buffer,
1911 				skb->len, PCI_DMA_TODEVICE);
1912 			dev_kfree_skb(skb);
1913 			np->tx_ring[i].skbuff = NULL;
1914 		}
1915 	}
1916 
1917 	return 0;
1918 }
1919 
1920 static const struct pci_device_id fealnx_pci_tbl[] = {
1921 	{0x1516, 0x0800, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
1922 	{0x1516, 0x0803, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 1},
1923 	{0x1516, 0x0891, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 2},
1924 	{} /* terminate list */
1925 };
1926 MODULE_DEVICE_TABLE(pci, fealnx_pci_tbl);
1927 
1928 
1929 static struct pci_driver fealnx_driver = {
1930 	.name		= "fealnx",
1931 	.id_table	= fealnx_pci_tbl,
1932 	.probe		= fealnx_init_one,
1933 	.remove		= fealnx_remove_one,
1934 };
1935 
1936 static int __init fealnx_init(void)
1937 {
1938 	return pci_register_driver(&fealnx_driver);
1939 }
1940 
1941 static void __exit fealnx_exit(void)
1942 {
1943 	pci_unregister_driver(&fealnx_driver);
1944 }
1945 
1946 module_init(fealnx_init);
1947 module_exit(fealnx_exit);
1948