1 /*
2  * Copyright(c) 2015 EZchip Technologies.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * The full GNU General Public License is included in this distribution in
14  * the file called "COPYING".
15  */
16 
17 #include <linux/module.h>
18 #include <linux/etherdevice.h>
19 #include <linux/of_address.h>
20 #include <linux/of_irq.h>
21 #include <linux/of_net.h>
22 #include <linux/of_platform.h>
23 #include "nps_enet.h"
24 
25 #define DRV_NAME			"nps_mgt_enet"
26 
27 static inline bool nps_enet_is_tx_pending(struct nps_enet_priv *priv)
28 {
29 	u32 tx_ctrl_value = nps_enet_reg_get(priv, NPS_ENET_REG_TX_CTL);
30 	u32 tx_ctrl_ct = (tx_ctrl_value & TX_CTL_CT_MASK) >> TX_CTL_CT_SHIFT;
31 
32 	return (!tx_ctrl_ct && priv->tx_skb);
33 }
34 
35 static void nps_enet_clean_rx_fifo(struct net_device *ndev, u32 frame_len)
36 {
37 	struct nps_enet_priv *priv = netdev_priv(ndev);
38 	u32 i, len = DIV_ROUND_UP(frame_len, sizeof(u32));
39 
40 	/* Empty Rx FIFO buffer by reading all words */
41 	for (i = 0; i < len; i++)
42 		nps_enet_reg_get(priv, NPS_ENET_REG_RX_BUF);
43 }
44 
45 static void nps_enet_read_rx_fifo(struct net_device *ndev,
46 				  unsigned char *dst, u32 length)
47 {
48 	struct nps_enet_priv *priv = netdev_priv(ndev);
49 	s32 i, last = length & (sizeof(u32) - 1);
50 	u32 *reg = (u32 *)dst, len = length / sizeof(u32);
51 	bool dst_is_aligned = IS_ALIGNED((unsigned long)dst, sizeof(u32));
52 
53 	/* In case dst is not aligned we need an intermediate buffer */
54 	if (dst_is_aligned) {
55 		ioread32_rep(priv->regs_base + NPS_ENET_REG_RX_BUF, reg, len);
56 		reg += len;
57 	} else { /* !dst_is_aligned */
58 		for (i = 0; i < len; i++, reg++) {
59 			u32 buf = nps_enet_reg_get(priv, NPS_ENET_REG_RX_BUF);
60 
61 			put_unaligned_be32(buf, reg);
62 		}
63 	}
64 	/* copy last bytes (if any) */
65 	if (last) {
66 		u32 buf;
67 
68 		ioread32_rep(priv->regs_base + NPS_ENET_REG_RX_BUF, &buf, 1);
69 		memcpy((u8 *)reg, &buf, last);
70 	}
71 }
72 
73 static u32 nps_enet_rx_handler(struct net_device *ndev)
74 {
75 	u32 frame_len, err = 0;
76 	u32 work_done = 0;
77 	struct nps_enet_priv *priv = netdev_priv(ndev);
78 	struct sk_buff *skb;
79 	u32 rx_ctrl_value = nps_enet_reg_get(priv, NPS_ENET_REG_RX_CTL);
80 	u32 rx_ctrl_cr = (rx_ctrl_value & RX_CTL_CR_MASK) >> RX_CTL_CR_SHIFT;
81 	u32 rx_ctrl_er = (rx_ctrl_value & RX_CTL_ER_MASK) >> RX_CTL_ER_SHIFT;
82 	u32 rx_ctrl_crc = (rx_ctrl_value & RX_CTL_CRC_MASK) >> RX_CTL_CRC_SHIFT;
83 
84 	frame_len = (rx_ctrl_value & RX_CTL_NR_MASK) >> RX_CTL_NR_SHIFT;
85 
86 	/* Check if we got RX */
87 	if (!rx_ctrl_cr)
88 		return work_done;
89 
90 	/* If we got here there is a work for us */
91 	work_done++;
92 
93 	/* Check Rx error */
94 	if (rx_ctrl_er) {
95 		ndev->stats.rx_errors++;
96 		err = 1;
97 	}
98 
99 	/* Check Rx CRC error */
100 	if (rx_ctrl_crc) {
101 		ndev->stats.rx_crc_errors++;
102 		ndev->stats.rx_dropped++;
103 		err = 1;
104 	}
105 
106 	/* Check Frame length Min 64b */
107 	if (unlikely(frame_len < ETH_ZLEN)) {
108 		ndev->stats.rx_length_errors++;
109 		ndev->stats.rx_dropped++;
110 		err = 1;
111 	}
112 
113 	if (err)
114 		goto rx_irq_clean;
115 
116 	/* Skb allocation */
117 	skb = netdev_alloc_skb_ip_align(ndev, frame_len);
118 	if (unlikely(!skb)) {
119 		ndev->stats.rx_errors++;
120 		ndev->stats.rx_dropped++;
121 		goto rx_irq_clean;
122 	}
123 
124 	/* Copy frame from Rx fifo into the skb */
125 	nps_enet_read_rx_fifo(ndev, skb->data, frame_len);
126 
127 	skb_put(skb, frame_len);
128 	skb->protocol = eth_type_trans(skb, ndev);
129 	skb->ip_summed = CHECKSUM_UNNECESSARY;
130 
131 	ndev->stats.rx_packets++;
132 	ndev->stats.rx_bytes += frame_len;
133 	netif_receive_skb(skb);
134 
135 	goto rx_irq_frame_done;
136 
137 rx_irq_clean:
138 	/* Clean Rx fifo */
139 	nps_enet_clean_rx_fifo(ndev, frame_len);
140 
141 rx_irq_frame_done:
142 	/* Ack Rx ctrl register */
143 	nps_enet_reg_set(priv, NPS_ENET_REG_RX_CTL, 0);
144 
145 	return work_done;
146 }
147 
148 static void nps_enet_tx_handler(struct net_device *ndev)
149 {
150 	struct nps_enet_priv *priv = netdev_priv(ndev);
151 	u32 tx_ctrl_value = nps_enet_reg_get(priv, NPS_ENET_REG_TX_CTL);
152 	u32 tx_ctrl_et = (tx_ctrl_value & TX_CTL_ET_MASK) >> TX_CTL_ET_SHIFT;
153 	u32 tx_ctrl_nt = (tx_ctrl_value & TX_CTL_NT_MASK) >> TX_CTL_NT_SHIFT;
154 
155 	/* Check if we got TX */
156 	if (!nps_enet_is_tx_pending(priv))
157 		return;
158 
159 	/* Ack Tx ctrl register */
160 	nps_enet_reg_set(priv, NPS_ENET_REG_TX_CTL, 0);
161 
162 	/* Check Tx transmit error */
163 	if (unlikely(tx_ctrl_et)) {
164 		ndev->stats.tx_errors++;
165 	} else {
166 		ndev->stats.tx_packets++;
167 		ndev->stats.tx_bytes += tx_ctrl_nt;
168 	}
169 
170 	dev_kfree_skb(priv->tx_skb);
171 	priv->tx_skb = NULL;
172 
173 	if (netif_queue_stopped(ndev))
174 		netif_wake_queue(ndev);
175 }
176 
177 /**
178  * nps_enet_poll - NAPI poll handler.
179  * @napi:       Pointer to napi_struct structure.
180  * @budget:     How many frames to process on one call.
181  *
182  * returns:     Number of processed frames
183  */
184 static int nps_enet_poll(struct napi_struct *napi, int budget)
185 {
186 	struct net_device *ndev = napi->dev;
187 	struct nps_enet_priv *priv = netdev_priv(ndev);
188 	u32 work_done;
189 
190 	nps_enet_tx_handler(ndev);
191 	work_done = nps_enet_rx_handler(ndev);
192 	if (work_done < budget) {
193 		u32 buf_int_enable_value = 0;
194 
195 		napi_complete(napi);
196 
197 		/* set tx_done and rx_rdy bits */
198 		buf_int_enable_value |= NPS_ENET_ENABLE << RX_RDY_SHIFT;
199 		buf_int_enable_value |= NPS_ENET_ENABLE << TX_DONE_SHIFT;
200 
201 		nps_enet_reg_set(priv, NPS_ENET_REG_BUF_INT_ENABLE,
202 				 buf_int_enable_value);
203 
204 		/* in case we will get a tx interrupt while interrupts
205 		 * are masked, we will lose it since the tx is edge interrupt.
206 		 * specifically, while executing the code section above,
207 		 * between nps_enet_tx_handler and the interrupts enable, all
208 		 * tx requests will be stuck until we will get an rx interrupt.
209 		 * the two code lines below will solve this situation by
210 		 * re-adding ourselves to the poll list.
211 		 */
212 		if (nps_enet_is_tx_pending(priv)) {
213 			nps_enet_reg_set(priv, NPS_ENET_REG_BUF_INT_ENABLE, 0);
214 			napi_reschedule(napi);
215 		}
216 	}
217 
218 	return work_done;
219 }
220 
221 /**
222  * nps_enet_irq_handler - Global interrupt handler for ENET.
223  * @irq:                irq number.
224  * @dev_instance:       device instance.
225  *
226  * returns: IRQ_HANDLED for all cases.
227  *
228  * EZchip ENET has 2 interrupt causes, and depending on bits raised in
229  * CTRL registers we may tell what is a reason for interrupt to fire up.
230  * We got one for RX and the other for TX (completion).
231  */
232 static irqreturn_t nps_enet_irq_handler(s32 irq, void *dev_instance)
233 {
234 	struct net_device *ndev = dev_instance;
235 	struct nps_enet_priv *priv = netdev_priv(ndev);
236 	u32 rx_ctrl_value = nps_enet_reg_get(priv, NPS_ENET_REG_RX_CTL);
237 	u32 rx_ctrl_cr = (rx_ctrl_value & RX_CTL_CR_MASK) >> RX_CTL_CR_SHIFT;
238 
239 	if (nps_enet_is_tx_pending(priv) || rx_ctrl_cr)
240 		if (likely(napi_schedule_prep(&priv->napi))) {
241 			nps_enet_reg_set(priv, NPS_ENET_REG_BUF_INT_ENABLE, 0);
242 			__napi_schedule(&priv->napi);
243 		}
244 
245 	return IRQ_HANDLED;
246 }
247 
248 static void nps_enet_set_hw_mac_address(struct net_device *ndev)
249 {
250 	struct nps_enet_priv *priv = netdev_priv(ndev);
251 	u32 ge_mac_cfg_1_value = 0;
252 	u32 *ge_mac_cfg_2_value = &priv->ge_mac_cfg_2_value;
253 
254 	/* set MAC address in HW */
255 	ge_mac_cfg_1_value |= ndev->dev_addr[0] << CFG_1_OCTET_0_SHIFT;
256 	ge_mac_cfg_1_value |= ndev->dev_addr[1] << CFG_1_OCTET_1_SHIFT;
257 	ge_mac_cfg_1_value |= ndev->dev_addr[2] << CFG_1_OCTET_2_SHIFT;
258 	ge_mac_cfg_1_value |= ndev->dev_addr[3] << CFG_1_OCTET_3_SHIFT;
259 	*ge_mac_cfg_2_value = (*ge_mac_cfg_2_value & ~CFG_2_OCTET_4_MASK)
260 		 | ndev->dev_addr[4] << CFG_2_OCTET_4_SHIFT;
261 	*ge_mac_cfg_2_value = (*ge_mac_cfg_2_value & ~CFG_2_OCTET_5_MASK)
262 		 | ndev->dev_addr[5] << CFG_2_OCTET_5_SHIFT;
263 
264 	nps_enet_reg_set(priv, NPS_ENET_REG_GE_MAC_CFG_1,
265 			 ge_mac_cfg_1_value);
266 
267 	nps_enet_reg_set(priv, NPS_ENET_REG_GE_MAC_CFG_2,
268 			 *ge_mac_cfg_2_value);
269 }
270 
271 /**
272  * nps_enet_hw_reset - Reset the network device.
273  * @ndev:       Pointer to the network device.
274  *
275  * This function reset the PCS and TX fifo.
276  * The programming model is to set the relevant reset bits
277  * wait for some time for this to propagate and then unset
278  * the reset bits. This way we ensure that reset procedure
279  * is done successfully by device.
280  */
281 static void nps_enet_hw_reset(struct net_device *ndev)
282 {
283 	struct nps_enet_priv *priv = netdev_priv(ndev);
284 	u32 ge_rst_value = 0, phase_fifo_ctl_value = 0;
285 
286 	/* Pcs reset sequence*/
287 	ge_rst_value |= NPS_ENET_ENABLE << RST_GMAC_0_SHIFT;
288 	nps_enet_reg_set(priv, NPS_ENET_REG_GE_RST, ge_rst_value);
289 	usleep_range(10, 20);
290 	ge_rst_value = 0;
291 	nps_enet_reg_set(priv, NPS_ENET_REG_GE_RST, ge_rst_value);
292 
293 	/* Tx fifo reset sequence */
294 	phase_fifo_ctl_value |= NPS_ENET_ENABLE << PHASE_FIFO_CTL_RST_SHIFT;
295 	phase_fifo_ctl_value |= NPS_ENET_ENABLE << PHASE_FIFO_CTL_INIT_SHIFT;
296 	nps_enet_reg_set(priv, NPS_ENET_REG_PHASE_FIFO_CTL,
297 			 phase_fifo_ctl_value);
298 	usleep_range(10, 20);
299 	phase_fifo_ctl_value = 0;
300 	nps_enet_reg_set(priv, NPS_ENET_REG_PHASE_FIFO_CTL,
301 			 phase_fifo_ctl_value);
302 }
303 
304 static void nps_enet_hw_enable_control(struct net_device *ndev)
305 {
306 	struct nps_enet_priv *priv = netdev_priv(ndev);
307 	u32 ge_mac_cfg_0_value = 0, buf_int_enable_value = 0;
308 	u32 *ge_mac_cfg_2_value = &priv->ge_mac_cfg_2_value;
309 	u32 *ge_mac_cfg_3_value = &priv->ge_mac_cfg_3_value;
310 	s32 max_frame_length;
311 
312 	/* Enable Rx and Tx statistics */
313 	*ge_mac_cfg_2_value = (*ge_mac_cfg_2_value & ~CFG_2_STAT_EN_MASK)
314 		 | NPS_ENET_GE_MAC_CFG_2_STAT_EN << CFG_2_STAT_EN_SHIFT;
315 
316 	/* Discard packets with different MAC address */
317 	*ge_mac_cfg_2_value = (*ge_mac_cfg_2_value & ~CFG_2_DISK_DA_MASK)
318 		 | NPS_ENET_ENABLE << CFG_2_DISK_DA_SHIFT;
319 
320 	/* Discard multicast packets */
321 	*ge_mac_cfg_2_value = (*ge_mac_cfg_2_value & ~CFG_2_DISK_MC_MASK)
322 		 | NPS_ENET_ENABLE << CFG_2_DISK_MC_SHIFT;
323 
324 	nps_enet_reg_set(priv, NPS_ENET_REG_GE_MAC_CFG_2,
325 			 *ge_mac_cfg_2_value);
326 
327 	/* Discard Packets bigger than max frame length */
328 	max_frame_length = ETH_HLEN + ndev->mtu + ETH_FCS_LEN;
329 	if (max_frame_length <= NPS_ENET_MAX_FRAME_LENGTH) {
330 		*ge_mac_cfg_3_value =
331 			 (*ge_mac_cfg_3_value & ~CFG_3_MAX_LEN_MASK)
332 			 | max_frame_length << CFG_3_MAX_LEN_SHIFT;
333 	}
334 
335 	/* Enable interrupts */
336 	buf_int_enable_value |= NPS_ENET_ENABLE << RX_RDY_SHIFT;
337 	buf_int_enable_value |= NPS_ENET_ENABLE << TX_DONE_SHIFT;
338 	nps_enet_reg_set(priv, NPS_ENET_REG_BUF_INT_ENABLE,
339 			 buf_int_enable_value);
340 
341 	/* Write device MAC address to HW */
342 	nps_enet_set_hw_mac_address(ndev);
343 
344 	/* Rx and Tx HW features */
345 	ge_mac_cfg_0_value |= NPS_ENET_ENABLE << CFG_0_TX_PAD_EN_SHIFT;
346 	ge_mac_cfg_0_value |= NPS_ENET_ENABLE << CFG_0_TX_CRC_EN_SHIFT;
347 	ge_mac_cfg_0_value |= NPS_ENET_ENABLE << CFG_0_RX_CRC_STRIP_SHIFT;
348 
349 	/* IFG configuration */
350 	ge_mac_cfg_0_value |=
351 		 NPS_ENET_GE_MAC_CFG_0_RX_IFG << CFG_0_RX_IFG_SHIFT;
352 	ge_mac_cfg_0_value |=
353 		 NPS_ENET_GE_MAC_CFG_0_TX_IFG << CFG_0_TX_IFG_SHIFT;
354 
355 	/* preamble configuration */
356 	ge_mac_cfg_0_value |= NPS_ENET_ENABLE << CFG_0_RX_PR_CHECK_EN_SHIFT;
357 	ge_mac_cfg_0_value |=
358 		 NPS_ENET_GE_MAC_CFG_0_TX_PR_LEN << CFG_0_TX_PR_LEN_SHIFT;
359 
360 	/* enable flow control frames */
361 	ge_mac_cfg_0_value |= NPS_ENET_ENABLE << CFG_0_TX_FC_EN_SHIFT;
362 	ge_mac_cfg_0_value |= NPS_ENET_ENABLE << CFG_0_RX_FC_EN_SHIFT;
363 	ge_mac_cfg_0_value |=
364 		 NPS_ENET_GE_MAC_CFG_0_TX_FC_RETR << CFG_0_TX_FC_RETR_SHIFT;
365 	*ge_mac_cfg_3_value = (*ge_mac_cfg_3_value & ~CFG_3_CF_DROP_MASK)
366 		 | NPS_ENET_ENABLE << CFG_3_CF_DROP_SHIFT;
367 
368 	/* Enable Rx and Tx */
369 	ge_mac_cfg_0_value |= NPS_ENET_ENABLE << CFG_0_RX_EN_SHIFT;
370 	ge_mac_cfg_0_value |= NPS_ENET_ENABLE << CFG_0_TX_EN_SHIFT;
371 
372 	nps_enet_reg_set(priv, NPS_ENET_REG_GE_MAC_CFG_3,
373 			 *ge_mac_cfg_3_value);
374 	nps_enet_reg_set(priv, NPS_ENET_REG_GE_MAC_CFG_0,
375 			 ge_mac_cfg_0_value);
376 }
377 
378 static void nps_enet_hw_disable_control(struct net_device *ndev)
379 {
380 	struct nps_enet_priv *priv = netdev_priv(ndev);
381 
382 	/* Disable interrupts */
383 	nps_enet_reg_set(priv, NPS_ENET_REG_BUF_INT_ENABLE, 0);
384 
385 	/* Disable Rx and Tx */
386 	nps_enet_reg_set(priv, NPS_ENET_REG_GE_MAC_CFG_0, 0);
387 }
388 
389 static void nps_enet_send_frame(struct net_device *ndev,
390 				struct sk_buff *skb)
391 {
392 	struct nps_enet_priv *priv = netdev_priv(ndev);
393 	u32 tx_ctrl_value = 0;
394 	short length = skb->len;
395 	u32 i, len = DIV_ROUND_UP(length, sizeof(u32));
396 	u32 *src = (void *)skb->data;
397 	bool src_is_aligned = IS_ALIGNED((unsigned long)src, sizeof(u32));
398 
399 	/* In case src is not aligned we need an intermediate buffer */
400 	if (src_is_aligned)
401 		iowrite32_rep(priv->regs_base + NPS_ENET_REG_TX_BUF, src, len);
402 	else /* !src_is_aligned */
403 		for (i = 0; i < len; i++, src++)
404 			nps_enet_reg_set(priv, NPS_ENET_REG_TX_BUF,
405 					 get_unaligned_be32(src));
406 
407 	/* Write the length of the Frame */
408 	tx_ctrl_value |= length << TX_CTL_NT_SHIFT;
409 
410 	tx_ctrl_value |= NPS_ENET_ENABLE << TX_CTL_CT_SHIFT;
411 	/* Send Frame */
412 	nps_enet_reg_set(priv, NPS_ENET_REG_TX_CTL, tx_ctrl_value);
413 }
414 
415 /**
416  * nps_enet_set_mac_address - Set the MAC address for this device.
417  * @ndev:       Pointer to net_device structure.
418  * @p:          6 byte Address to be written as MAC address.
419  *
420  * This function copies the HW address from the sockaddr structure to the
421  * net_device structure and updates the address in HW.
422  *
423  * returns:     -EBUSY if the net device is busy or 0 if the address is set
424  *              successfully.
425  */
426 static s32 nps_enet_set_mac_address(struct net_device *ndev, void *p)
427 {
428 	struct sockaddr *addr = p;
429 	s32 res;
430 
431 	if (netif_running(ndev))
432 		return -EBUSY;
433 
434 	res = eth_mac_addr(ndev, p);
435 	if (!res) {
436 		ether_addr_copy(ndev->dev_addr, addr->sa_data);
437 		nps_enet_set_hw_mac_address(ndev);
438 	}
439 
440 	return res;
441 }
442 
443 /**
444  * nps_enet_set_rx_mode - Change the receive filtering mode.
445  * @ndev:       Pointer to the network device.
446  *
447  * This function enables/disables promiscuous mode
448  */
449 static void nps_enet_set_rx_mode(struct net_device *ndev)
450 {
451 	struct nps_enet_priv *priv = netdev_priv(ndev);
452 	u32 ge_mac_cfg_2_value = priv->ge_mac_cfg_2_value;
453 
454 	if (ndev->flags & IFF_PROMISC) {
455 		ge_mac_cfg_2_value = (ge_mac_cfg_2_value & ~CFG_2_DISK_DA_MASK)
456 			 | NPS_ENET_DISABLE << CFG_2_DISK_DA_SHIFT;
457 		ge_mac_cfg_2_value = (ge_mac_cfg_2_value & ~CFG_2_DISK_MC_MASK)
458 			 | NPS_ENET_DISABLE << CFG_2_DISK_MC_SHIFT;
459 
460 	} else {
461 		ge_mac_cfg_2_value = (ge_mac_cfg_2_value & ~CFG_2_DISK_DA_MASK)
462 			 | NPS_ENET_ENABLE << CFG_2_DISK_DA_SHIFT;
463 		ge_mac_cfg_2_value = (ge_mac_cfg_2_value & ~CFG_2_DISK_MC_MASK)
464 			 | NPS_ENET_ENABLE << CFG_2_DISK_MC_SHIFT;
465 	}
466 
467 	nps_enet_reg_set(priv, NPS_ENET_REG_GE_MAC_CFG_2, ge_mac_cfg_2_value);
468 }
469 
470 /**
471  * nps_enet_open - Open the network device.
472  * @ndev:       Pointer to the network device.
473  *
474  * returns: 0, on success or non-zero error value on failure.
475  *
476  * This function sets the MAC address, requests and enables an IRQ
477  * for the ENET device and starts the Tx queue.
478  */
479 static s32 nps_enet_open(struct net_device *ndev)
480 {
481 	struct nps_enet_priv *priv = netdev_priv(ndev);
482 	s32 err;
483 
484 	/* Reset private variables */
485 	priv->tx_skb = NULL;
486 	priv->ge_mac_cfg_2_value = 0;
487 	priv->ge_mac_cfg_3_value = 0;
488 
489 	/* ge_mac_cfg_3 default values */
490 	priv->ge_mac_cfg_3_value |=
491 		 NPS_ENET_GE_MAC_CFG_3_RX_IFG_TH << CFG_3_RX_IFG_TH_SHIFT;
492 
493 	priv->ge_mac_cfg_3_value |=
494 		 NPS_ENET_GE_MAC_CFG_3_MAX_LEN << CFG_3_MAX_LEN_SHIFT;
495 
496 	/* Disable HW device */
497 	nps_enet_hw_disable_control(ndev);
498 
499 	/* irq Rx allocation */
500 	err = request_irq(priv->irq, nps_enet_irq_handler,
501 			  0, "enet-rx-tx", ndev);
502 	if (err)
503 		return err;
504 
505 	napi_enable(&priv->napi);
506 
507 	/* Enable HW device */
508 	nps_enet_hw_reset(ndev);
509 	nps_enet_hw_enable_control(ndev);
510 
511 	netif_start_queue(ndev);
512 
513 	return 0;
514 }
515 
516 /**
517  * nps_enet_stop - Close the network device.
518  * @ndev:       Pointer to the network device.
519  *
520  * This function stops the Tx queue, disables interrupts for the ENET device.
521  */
522 static s32 nps_enet_stop(struct net_device *ndev)
523 {
524 	struct nps_enet_priv *priv = netdev_priv(ndev);
525 
526 	napi_disable(&priv->napi);
527 	netif_stop_queue(ndev);
528 	nps_enet_hw_disable_control(ndev);
529 	free_irq(priv->irq, ndev);
530 
531 	return 0;
532 }
533 
534 /**
535  * nps_enet_start_xmit - Starts the data transmission.
536  * @skb:        sk_buff pointer that contains data to be Transmitted.
537  * @ndev:       Pointer to net_device structure.
538  *
539  * returns: NETDEV_TX_OK, on success
540  *              NETDEV_TX_BUSY, if any of the descriptors are not free.
541  *
542  * This function is invoked from upper layers to initiate transmission.
543  */
544 static netdev_tx_t nps_enet_start_xmit(struct sk_buff *skb,
545 				       struct net_device *ndev)
546 {
547 	struct nps_enet_priv *priv = netdev_priv(ndev);
548 
549 	/* This driver handles one frame at a time  */
550 	netif_stop_queue(ndev);
551 
552 	priv->tx_skb = skb;
553 
554 	/* make sure tx_skb is actually written to the memory
555 	 * before the HW is informed and the IRQ is fired.
556 	 */
557 	wmb();
558 
559 	nps_enet_send_frame(ndev, skb);
560 
561 	return NETDEV_TX_OK;
562 }
563 
564 #ifdef CONFIG_NET_POLL_CONTROLLER
565 static void nps_enet_poll_controller(struct net_device *ndev)
566 {
567 	disable_irq(ndev->irq);
568 	nps_enet_irq_handler(ndev->irq, ndev);
569 	enable_irq(ndev->irq);
570 }
571 #endif
572 
573 static const struct net_device_ops nps_netdev_ops = {
574 	.ndo_open		= nps_enet_open,
575 	.ndo_stop		= nps_enet_stop,
576 	.ndo_start_xmit		= nps_enet_start_xmit,
577 	.ndo_set_mac_address	= nps_enet_set_mac_address,
578 	.ndo_set_rx_mode        = nps_enet_set_rx_mode,
579 #ifdef CONFIG_NET_POLL_CONTROLLER
580 	.ndo_poll_controller	= nps_enet_poll_controller,
581 #endif
582 };
583 
584 static s32 nps_enet_probe(struct platform_device *pdev)
585 {
586 	struct device *dev = &pdev->dev;
587 	struct net_device *ndev;
588 	struct nps_enet_priv *priv;
589 	s32 err = 0;
590 	const char *mac_addr;
591 	struct resource *res_regs;
592 
593 	if (!dev->of_node)
594 		return -ENODEV;
595 
596 	ndev = alloc_etherdev(sizeof(struct nps_enet_priv));
597 	if (!ndev)
598 		return -ENOMEM;
599 
600 	platform_set_drvdata(pdev, ndev);
601 	SET_NETDEV_DEV(ndev, dev);
602 	priv = netdev_priv(ndev);
603 
604 	/* The EZ NET specific entries in the device structure. */
605 	ndev->netdev_ops = &nps_netdev_ops;
606 	ndev->watchdog_timeo = (400 * HZ / 1000);
607 	/* FIXME :: no multicast support yet */
608 	ndev->flags &= ~IFF_MULTICAST;
609 
610 	res_regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
611 	priv->regs_base = devm_ioremap_resource(dev, res_regs);
612 	if (IS_ERR(priv->regs_base)) {
613 		err = PTR_ERR(priv->regs_base);
614 		goto out_netdev;
615 	}
616 	dev_dbg(dev, "Registers base address is 0x%p\n", priv->regs_base);
617 
618 	/* set kernel MAC address to dev */
619 	mac_addr = of_get_mac_address(dev->of_node);
620 	if (mac_addr)
621 		ether_addr_copy(ndev->dev_addr, mac_addr);
622 	else
623 		eth_hw_addr_random(ndev);
624 
625 	/* Get IRQ number */
626 	priv->irq = platform_get_irq(pdev, 0);
627 	if (!priv->irq) {
628 		dev_err(dev, "failed to retrieve <irq Rx-Tx> value from device tree\n");
629 		err = -ENODEV;
630 		goto out_netdev;
631 	}
632 
633 	netif_napi_add(ndev, &priv->napi, nps_enet_poll,
634 		       NPS_ENET_NAPI_POLL_WEIGHT);
635 
636 	/* Register the driver. Should be the last thing in probe */
637 	err = register_netdev(ndev);
638 	if (err) {
639 		dev_err(dev, "Failed to register ndev for %s, err = 0x%08x\n",
640 			ndev->name, (s32)err);
641 		goto out_netif_api;
642 	}
643 
644 	dev_info(dev, "(rx/tx=%d)\n", priv->irq);
645 	return 0;
646 
647 out_netif_api:
648 	netif_napi_del(&priv->napi);
649 out_netdev:
650 	if (err)
651 		free_netdev(ndev);
652 
653 	return err;
654 }
655 
656 static s32 nps_enet_remove(struct platform_device *pdev)
657 {
658 	struct net_device *ndev = platform_get_drvdata(pdev);
659 	struct nps_enet_priv *priv = netdev_priv(ndev);
660 
661 	unregister_netdev(ndev);
662 	free_netdev(ndev);
663 	netif_napi_del(&priv->napi);
664 
665 	return 0;
666 }
667 
668 static const struct of_device_id nps_enet_dt_ids[] = {
669 	{ .compatible = "ezchip,nps-mgt-enet" },
670 	{ /* Sentinel */ }
671 };
672 MODULE_DEVICE_TABLE(of, nps_enet_dt_ids);
673 
674 static struct platform_driver nps_enet_driver = {
675 	.probe = nps_enet_probe,
676 	.remove = nps_enet_remove,
677 	.driver = {
678 		.name = DRV_NAME,
679 		.of_match_table  = nps_enet_dt_ids,
680 	},
681 };
682 
683 module_platform_driver(nps_enet_driver);
684 
685 MODULE_AUTHOR("EZchip Semiconductor");
686 MODULE_LICENSE("GPL v2");
687