1 /*
2  * Copyright(c) 2015 EZchip Technologies.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * The full GNU General Public License is included in this distribution in
14  * the file called "COPYING".
15  */
16 
17 #include <linux/module.h>
18 #include <linux/etherdevice.h>
19 #include <linux/interrupt.h>
20 #include <linux/of_address.h>
21 #include <linux/of_irq.h>
22 #include <linux/of_net.h>
23 #include <linux/of_platform.h>
24 #include "nps_enet.h"
25 
26 #define DRV_NAME			"nps_mgt_enet"
27 
28 static inline bool nps_enet_is_tx_pending(struct nps_enet_priv *priv)
29 {
30 	u32 tx_ctrl_value = nps_enet_reg_get(priv, NPS_ENET_REG_TX_CTL);
31 	u32 tx_ctrl_ct = (tx_ctrl_value & TX_CTL_CT_MASK) >> TX_CTL_CT_SHIFT;
32 
33 	return (!tx_ctrl_ct && priv->tx_skb);
34 }
35 
36 static void nps_enet_clean_rx_fifo(struct net_device *ndev, u32 frame_len)
37 {
38 	struct nps_enet_priv *priv = netdev_priv(ndev);
39 	u32 i, len = DIV_ROUND_UP(frame_len, sizeof(u32));
40 
41 	/* Empty Rx FIFO buffer by reading all words */
42 	for (i = 0; i < len; i++)
43 		nps_enet_reg_get(priv, NPS_ENET_REG_RX_BUF);
44 }
45 
46 static void nps_enet_read_rx_fifo(struct net_device *ndev,
47 				  unsigned char *dst, u32 length)
48 {
49 	struct nps_enet_priv *priv = netdev_priv(ndev);
50 	s32 i, last = length & (sizeof(u32) - 1);
51 	u32 *reg = (u32 *)dst, len = length / sizeof(u32);
52 	bool dst_is_aligned = IS_ALIGNED((unsigned long)dst, sizeof(u32));
53 
54 	/* In case dst is not aligned we need an intermediate buffer */
55 	if (dst_is_aligned) {
56 		ioread32_rep(priv->regs_base + NPS_ENET_REG_RX_BUF, reg, len);
57 		reg += len;
58 	} else { /* !dst_is_aligned */
59 		for (i = 0; i < len; i++, reg++) {
60 			u32 buf = nps_enet_reg_get(priv, NPS_ENET_REG_RX_BUF);
61 
62 			put_unaligned_be32(buf, reg);
63 		}
64 	}
65 	/* copy last bytes (if any) */
66 	if (last) {
67 		u32 buf;
68 
69 		ioread32_rep(priv->regs_base + NPS_ENET_REG_RX_BUF, &buf, 1);
70 		memcpy((u8 *)reg, &buf, last);
71 	}
72 }
73 
74 static u32 nps_enet_rx_handler(struct net_device *ndev)
75 {
76 	u32 frame_len, err = 0;
77 	u32 work_done = 0;
78 	struct nps_enet_priv *priv = netdev_priv(ndev);
79 	struct sk_buff *skb;
80 	u32 rx_ctrl_value = nps_enet_reg_get(priv, NPS_ENET_REG_RX_CTL);
81 	u32 rx_ctrl_cr = (rx_ctrl_value & RX_CTL_CR_MASK) >> RX_CTL_CR_SHIFT;
82 	u32 rx_ctrl_er = (rx_ctrl_value & RX_CTL_ER_MASK) >> RX_CTL_ER_SHIFT;
83 	u32 rx_ctrl_crc = (rx_ctrl_value & RX_CTL_CRC_MASK) >> RX_CTL_CRC_SHIFT;
84 
85 	frame_len = (rx_ctrl_value & RX_CTL_NR_MASK) >> RX_CTL_NR_SHIFT;
86 
87 	/* Check if we got RX */
88 	if (!rx_ctrl_cr)
89 		return work_done;
90 
91 	/* If we got here there is a work for us */
92 	work_done++;
93 
94 	/* Check Rx error */
95 	if (rx_ctrl_er) {
96 		ndev->stats.rx_errors++;
97 		err = 1;
98 	}
99 
100 	/* Check Rx CRC error */
101 	if (rx_ctrl_crc) {
102 		ndev->stats.rx_crc_errors++;
103 		ndev->stats.rx_dropped++;
104 		err = 1;
105 	}
106 
107 	/* Check Frame length Min 64b */
108 	if (unlikely(frame_len < ETH_ZLEN)) {
109 		ndev->stats.rx_length_errors++;
110 		ndev->stats.rx_dropped++;
111 		err = 1;
112 	}
113 
114 	if (err)
115 		goto rx_irq_clean;
116 
117 	/* Skb allocation */
118 	skb = netdev_alloc_skb_ip_align(ndev, frame_len);
119 	if (unlikely(!skb)) {
120 		ndev->stats.rx_errors++;
121 		ndev->stats.rx_dropped++;
122 		goto rx_irq_clean;
123 	}
124 
125 	/* Copy frame from Rx fifo into the skb */
126 	nps_enet_read_rx_fifo(ndev, skb->data, frame_len);
127 
128 	skb_put(skb, frame_len);
129 	skb->protocol = eth_type_trans(skb, ndev);
130 	skb->ip_summed = CHECKSUM_UNNECESSARY;
131 
132 	ndev->stats.rx_packets++;
133 	ndev->stats.rx_bytes += frame_len;
134 	netif_receive_skb(skb);
135 
136 	goto rx_irq_frame_done;
137 
138 rx_irq_clean:
139 	/* Clean Rx fifo */
140 	nps_enet_clean_rx_fifo(ndev, frame_len);
141 
142 rx_irq_frame_done:
143 	/* Ack Rx ctrl register */
144 	nps_enet_reg_set(priv, NPS_ENET_REG_RX_CTL, 0);
145 
146 	return work_done;
147 }
148 
149 static void nps_enet_tx_handler(struct net_device *ndev)
150 {
151 	struct nps_enet_priv *priv = netdev_priv(ndev);
152 	u32 tx_ctrl_value = nps_enet_reg_get(priv, NPS_ENET_REG_TX_CTL);
153 	u32 tx_ctrl_et = (tx_ctrl_value & TX_CTL_ET_MASK) >> TX_CTL_ET_SHIFT;
154 	u32 tx_ctrl_nt = (tx_ctrl_value & TX_CTL_NT_MASK) >> TX_CTL_NT_SHIFT;
155 
156 	/* Check if we got TX */
157 	if (!nps_enet_is_tx_pending(priv))
158 		return;
159 
160 	/* Ack Tx ctrl register */
161 	nps_enet_reg_set(priv, NPS_ENET_REG_TX_CTL, 0);
162 
163 	/* Check Tx transmit error */
164 	if (unlikely(tx_ctrl_et)) {
165 		ndev->stats.tx_errors++;
166 	} else {
167 		ndev->stats.tx_packets++;
168 		ndev->stats.tx_bytes += tx_ctrl_nt;
169 	}
170 
171 	dev_kfree_skb(priv->tx_skb);
172 	priv->tx_skb = NULL;
173 
174 	if (netif_queue_stopped(ndev))
175 		netif_wake_queue(ndev);
176 }
177 
178 /**
179  * nps_enet_poll - NAPI poll handler.
180  * @napi:       Pointer to napi_struct structure.
181  * @budget:     How many frames to process on one call.
182  *
183  * returns:     Number of processed frames
184  */
185 static int nps_enet_poll(struct napi_struct *napi, int budget)
186 {
187 	struct net_device *ndev = napi->dev;
188 	struct nps_enet_priv *priv = netdev_priv(ndev);
189 	u32 work_done;
190 
191 	nps_enet_tx_handler(ndev);
192 	work_done = nps_enet_rx_handler(ndev);
193 	if ((work_done < budget) && napi_complete_done(napi, work_done)) {
194 		u32 buf_int_enable_value = 0;
195 
196 		/* set tx_done and rx_rdy bits */
197 		buf_int_enable_value |= NPS_ENET_ENABLE << RX_RDY_SHIFT;
198 		buf_int_enable_value |= NPS_ENET_ENABLE << TX_DONE_SHIFT;
199 
200 		nps_enet_reg_set(priv, NPS_ENET_REG_BUF_INT_ENABLE,
201 				 buf_int_enable_value);
202 
203 		/* in case we will get a tx interrupt while interrupts
204 		 * are masked, we will lose it since the tx is edge interrupt.
205 		 * specifically, while executing the code section above,
206 		 * between nps_enet_tx_handler and the interrupts enable, all
207 		 * tx requests will be stuck until we will get an rx interrupt.
208 		 * the two code lines below will solve this situation by
209 		 * re-adding ourselves to the poll list.
210 		 */
211 		if (nps_enet_is_tx_pending(priv)) {
212 			nps_enet_reg_set(priv, NPS_ENET_REG_BUF_INT_ENABLE, 0);
213 			napi_reschedule(napi);
214 		}
215 	}
216 
217 	return work_done;
218 }
219 
220 /**
221  * nps_enet_irq_handler - Global interrupt handler for ENET.
222  * @irq:                irq number.
223  * @dev_instance:       device instance.
224  *
225  * returns: IRQ_HANDLED for all cases.
226  *
227  * EZchip ENET has 2 interrupt causes, and depending on bits raised in
228  * CTRL registers we may tell what is a reason for interrupt to fire up.
229  * We got one for RX and the other for TX (completion).
230  */
231 static irqreturn_t nps_enet_irq_handler(s32 irq, void *dev_instance)
232 {
233 	struct net_device *ndev = dev_instance;
234 	struct nps_enet_priv *priv = netdev_priv(ndev);
235 	u32 rx_ctrl_value = nps_enet_reg_get(priv, NPS_ENET_REG_RX_CTL);
236 	u32 rx_ctrl_cr = (rx_ctrl_value & RX_CTL_CR_MASK) >> RX_CTL_CR_SHIFT;
237 
238 	if (nps_enet_is_tx_pending(priv) || rx_ctrl_cr)
239 		if (likely(napi_schedule_prep(&priv->napi))) {
240 			nps_enet_reg_set(priv, NPS_ENET_REG_BUF_INT_ENABLE, 0);
241 			__napi_schedule(&priv->napi);
242 		}
243 
244 	return IRQ_HANDLED;
245 }
246 
247 static void nps_enet_set_hw_mac_address(struct net_device *ndev)
248 {
249 	struct nps_enet_priv *priv = netdev_priv(ndev);
250 	u32 ge_mac_cfg_1_value = 0;
251 	u32 *ge_mac_cfg_2_value = &priv->ge_mac_cfg_2_value;
252 
253 	/* set MAC address in HW */
254 	ge_mac_cfg_1_value |= ndev->dev_addr[0] << CFG_1_OCTET_0_SHIFT;
255 	ge_mac_cfg_1_value |= ndev->dev_addr[1] << CFG_1_OCTET_1_SHIFT;
256 	ge_mac_cfg_1_value |= ndev->dev_addr[2] << CFG_1_OCTET_2_SHIFT;
257 	ge_mac_cfg_1_value |= ndev->dev_addr[3] << CFG_1_OCTET_3_SHIFT;
258 	*ge_mac_cfg_2_value = (*ge_mac_cfg_2_value & ~CFG_2_OCTET_4_MASK)
259 		 | ndev->dev_addr[4] << CFG_2_OCTET_4_SHIFT;
260 	*ge_mac_cfg_2_value = (*ge_mac_cfg_2_value & ~CFG_2_OCTET_5_MASK)
261 		 | ndev->dev_addr[5] << CFG_2_OCTET_5_SHIFT;
262 
263 	nps_enet_reg_set(priv, NPS_ENET_REG_GE_MAC_CFG_1,
264 			 ge_mac_cfg_1_value);
265 
266 	nps_enet_reg_set(priv, NPS_ENET_REG_GE_MAC_CFG_2,
267 			 *ge_mac_cfg_2_value);
268 }
269 
270 /**
271  * nps_enet_hw_reset - Reset the network device.
272  * @ndev:       Pointer to the network device.
273  *
274  * This function reset the PCS and TX fifo.
275  * The programming model is to set the relevant reset bits
276  * wait for some time for this to propagate and then unset
277  * the reset bits. This way we ensure that reset procedure
278  * is done successfully by device.
279  */
280 static void nps_enet_hw_reset(struct net_device *ndev)
281 {
282 	struct nps_enet_priv *priv = netdev_priv(ndev);
283 	u32 ge_rst_value = 0, phase_fifo_ctl_value = 0;
284 
285 	/* Pcs reset sequence*/
286 	ge_rst_value |= NPS_ENET_ENABLE << RST_GMAC_0_SHIFT;
287 	nps_enet_reg_set(priv, NPS_ENET_REG_GE_RST, ge_rst_value);
288 	usleep_range(10, 20);
289 	ge_rst_value = 0;
290 	nps_enet_reg_set(priv, NPS_ENET_REG_GE_RST, ge_rst_value);
291 
292 	/* Tx fifo reset sequence */
293 	phase_fifo_ctl_value |= NPS_ENET_ENABLE << PHASE_FIFO_CTL_RST_SHIFT;
294 	phase_fifo_ctl_value |= NPS_ENET_ENABLE << PHASE_FIFO_CTL_INIT_SHIFT;
295 	nps_enet_reg_set(priv, NPS_ENET_REG_PHASE_FIFO_CTL,
296 			 phase_fifo_ctl_value);
297 	usleep_range(10, 20);
298 	phase_fifo_ctl_value = 0;
299 	nps_enet_reg_set(priv, NPS_ENET_REG_PHASE_FIFO_CTL,
300 			 phase_fifo_ctl_value);
301 }
302 
303 static void nps_enet_hw_enable_control(struct net_device *ndev)
304 {
305 	struct nps_enet_priv *priv = netdev_priv(ndev);
306 	u32 ge_mac_cfg_0_value = 0, buf_int_enable_value = 0;
307 	u32 *ge_mac_cfg_2_value = &priv->ge_mac_cfg_2_value;
308 	u32 *ge_mac_cfg_3_value = &priv->ge_mac_cfg_3_value;
309 	s32 max_frame_length;
310 
311 	/* Enable Rx and Tx statistics */
312 	*ge_mac_cfg_2_value = (*ge_mac_cfg_2_value & ~CFG_2_STAT_EN_MASK)
313 		 | NPS_ENET_GE_MAC_CFG_2_STAT_EN << CFG_2_STAT_EN_SHIFT;
314 
315 	/* Discard packets with different MAC address */
316 	*ge_mac_cfg_2_value = (*ge_mac_cfg_2_value & ~CFG_2_DISK_DA_MASK)
317 		 | NPS_ENET_ENABLE << CFG_2_DISK_DA_SHIFT;
318 
319 	/* Discard multicast packets */
320 	*ge_mac_cfg_2_value = (*ge_mac_cfg_2_value & ~CFG_2_DISK_MC_MASK)
321 		 | NPS_ENET_ENABLE << CFG_2_DISK_MC_SHIFT;
322 
323 	nps_enet_reg_set(priv, NPS_ENET_REG_GE_MAC_CFG_2,
324 			 *ge_mac_cfg_2_value);
325 
326 	/* Discard Packets bigger than max frame length */
327 	max_frame_length = ETH_HLEN + ndev->mtu + ETH_FCS_LEN;
328 	if (max_frame_length <= NPS_ENET_MAX_FRAME_LENGTH) {
329 		*ge_mac_cfg_3_value =
330 			 (*ge_mac_cfg_3_value & ~CFG_3_MAX_LEN_MASK)
331 			 | max_frame_length << CFG_3_MAX_LEN_SHIFT;
332 	}
333 
334 	/* Enable interrupts */
335 	buf_int_enable_value |= NPS_ENET_ENABLE << RX_RDY_SHIFT;
336 	buf_int_enable_value |= NPS_ENET_ENABLE << TX_DONE_SHIFT;
337 	nps_enet_reg_set(priv, NPS_ENET_REG_BUF_INT_ENABLE,
338 			 buf_int_enable_value);
339 
340 	/* Write device MAC address to HW */
341 	nps_enet_set_hw_mac_address(ndev);
342 
343 	/* Rx and Tx HW features */
344 	ge_mac_cfg_0_value |= NPS_ENET_ENABLE << CFG_0_TX_PAD_EN_SHIFT;
345 	ge_mac_cfg_0_value |= NPS_ENET_ENABLE << CFG_0_TX_CRC_EN_SHIFT;
346 	ge_mac_cfg_0_value |= NPS_ENET_ENABLE << CFG_0_RX_CRC_STRIP_SHIFT;
347 
348 	/* IFG configuration */
349 	ge_mac_cfg_0_value |=
350 		 NPS_ENET_GE_MAC_CFG_0_RX_IFG << CFG_0_RX_IFG_SHIFT;
351 	ge_mac_cfg_0_value |=
352 		 NPS_ENET_GE_MAC_CFG_0_TX_IFG << CFG_0_TX_IFG_SHIFT;
353 
354 	/* preamble configuration */
355 	ge_mac_cfg_0_value |= NPS_ENET_ENABLE << CFG_0_RX_PR_CHECK_EN_SHIFT;
356 	ge_mac_cfg_0_value |=
357 		 NPS_ENET_GE_MAC_CFG_0_TX_PR_LEN << CFG_0_TX_PR_LEN_SHIFT;
358 
359 	/* enable flow control frames */
360 	ge_mac_cfg_0_value |= NPS_ENET_ENABLE << CFG_0_TX_FC_EN_SHIFT;
361 	ge_mac_cfg_0_value |= NPS_ENET_ENABLE << CFG_0_RX_FC_EN_SHIFT;
362 	ge_mac_cfg_0_value |=
363 		 NPS_ENET_GE_MAC_CFG_0_TX_FC_RETR << CFG_0_TX_FC_RETR_SHIFT;
364 	*ge_mac_cfg_3_value = (*ge_mac_cfg_3_value & ~CFG_3_CF_DROP_MASK)
365 		 | NPS_ENET_ENABLE << CFG_3_CF_DROP_SHIFT;
366 
367 	/* Enable Rx and Tx */
368 	ge_mac_cfg_0_value |= NPS_ENET_ENABLE << CFG_0_RX_EN_SHIFT;
369 	ge_mac_cfg_0_value |= NPS_ENET_ENABLE << CFG_0_TX_EN_SHIFT;
370 
371 	nps_enet_reg_set(priv, NPS_ENET_REG_GE_MAC_CFG_3,
372 			 *ge_mac_cfg_3_value);
373 	nps_enet_reg_set(priv, NPS_ENET_REG_GE_MAC_CFG_0,
374 			 ge_mac_cfg_0_value);
375 }
376 
377 static void nps_enet_hw_disable_control(struct net_device *ndev)
378 {
379 	struct nps_enet_priv *priv = netdev_priv(ndev);
380 
381 	/* Disable interrupts */
382 	nps_enet_reg_set(priv, NPS_ENET_REG_BUF_INT_ENABLE, 0);
383 
384 	/* Disable Rx and Tx */
385 	nps_enet_reg_set(priv, NPS_ENET_REG_GE_MAC_CFG_0, 0);
386 }
387 
388 static void nps_enet_send_frame(struct net_device *ndev,
389 				struct sk_buff *skb)
390 {
391 	struct nps_enet_priv *priv = netdev_priv(ndev);
392 	u32 tx_ctrl_value = 0;
393 	short length = skb->len;
394 	u32 i, len = DIV_ROUND_UP(length, sizeof(u32));
395 	u32 *src = (void *)skb->data;
396 	bool src_is_aligned = IS_ALIGNED((unsigned long)src, sizeof(u32));
397 
398 	/* In case src is not aligned we need an intermediate buffer */
399 	if (src_is_aligned)
400 		iowrite32_rep(priv->regs_base + NPS_ENET_REG_TX_BUF, src, len);
401 	else /* !src_is_aligned */
402 		for (i = 0; i < len; i++, src++)
403 			nps_enet_reg_set(priv, NPS_ENET_REG_TX_BUF,
404 					 get_unaligned_be32(src));
405 
406 	/* Write the length of the Frame */
407 	tx_ctrl_value |= length << TX_CTL_NT_SHIFT;
408 
409 	tx_ctrl_value |= NPS_ENET_ENABLE << TX_CTL_CT_SHIFT;
410 	/* Send Frame */
411 	nps_enet_reg_set(priv, NPS_ENET_REG_TX_CTL, tx_ctrl_value);
412 }
413 
414 /**
415  * nps_enet_set_mac_address - Set the MAC address for this device.
416  * @ndev:       Pointer to net_device structure.
417  * @p:          6 byte Address to be written as MAC address.
418  *
419  * This function copies the HW address from the sockaddr structure to the
420  * net_device structure and updates the address in HW.
421  *
422  * returns:     -EBUSY if the net device is busy or 0 if the address is set
423  *              successfully.
424  */
425 static s32 nps_enet_set_mac_address(struct net_device *ndev, void *p)
426 {
427 	struct sockaddr *addr = p;
428 	s32 res;
429 
430 	if (netif_running(ndev))
431 		return -EBUSY;
432 
433 	res = eth_mac_addr(ndev, p);
434 	if (!res) {
435 		ether_addr_copy(ndev->dev_addr, addr->sa_data);
436 		nps_enet_set_hw_mac_address(ndev);
437 	}
438 
439 	return res;
440 }
441 
442 /**
443  * nps_enet_set_rx_mode - Change the receive filtering mode.
444  * @ndev:       Pointer to the network device.
445  *
446  * This function enables/disables promiscuous mode
447  */
448 static void nps_enet_set_rx_mode(struct net_device *ndev)
449 {
450 	struct nps_enet_priv *priv = netdev_priv(ndev);
451 	u32 ge_mac_cfg_2_value = priv->ge_mac_cfg_2_value;
452 
453 	if (ndev->flags & IFF_PROMISC) {
454 		ge_mac_cfg_2_value = (ge_mac_cfg_2_value & ~CFG_2_DISK_DA_MASK)
455 			 | NPS_ENET_DISABLE << CFG_2_DISK_DA_SHIFT;
456 		ge_mac_cfg_2_value = (ge_mac_cfg_2_value & ~CFG_2_DISK_MC_MASK)
457 			 | NPS_ENET_DISABLE << CFG_2_DISK_MC_SHIFT;
458 
459 	} else {
460 		ge_mac_cfg_2_value = (ge_mac_cfg_2_value & ~CFG_2_DISK_DA_MASK)
461 			 | NPS_ENET_ENABLE << CFG_2_DISK_DA_SHIFT;
462 		ge_mac_cfg_2_value = (ge_mac_cfg_2_value & ~CFG_2_DISK_MC_MASK)
463 			 | NPS_ENET_ENABLE << CFG_2_DISK_MC_SHIFT;
464 	}
465 
466 	nps_enet_reg_set(priv, NPS_ENET_REG_GE_MAC_CFG_2, ge_mac_cfg_2_value);
467 }
468 
469 /**
470  * nps_enet_open - Open the network device.
471  * @ndev:       Pointer to the network device.
472  *
473  * returns: 0, on success or non-zero error value on failure.
474  *
475  * This function sets the MAC address, requests and enables an IRQ
476  * for the ENET device and starts the Tx queue.
477  */
478 static s32 nps_enet_open(struct net_device *ndev)
479 {
480 	struct nps_enet_priv *priv = netdev_priv(ndev);
481 	s32 err;
482 
483 	/* Reset private variables */
484 	priv->tx_skb = NULL;
485 	priv->ge_mac_cfg_2_value = 0;
486 	priv->ge_mac_cfg_3_value = 0;
487 
488 	/* ge_mac_cfg_3 default values */
489 	priv->ge_mac_cfg_3_value |=
490 		 NPS_ENET_GE_MAC_CFG_3_RX_IFG_TH << CFG_3_RX_IFG_TH_SHIFT;
491 
492 	priv->ge_mac_cfg_3_value |=
493 		 NPS_ENET_GE_MAC_CFG_3_MAX_LEN << CFG_3_MAX_LEN_SHIFT;
494 
495 	/* Disable HW device */
496 	nps_enet_hw_disable_control(ndev);
497 
498 	/* irq Rx allocation */
499 	err = request_irq(priv->irq, nps_enet_irq_handler,
500 			  0, "enet-rx-tx", ndev);
501 	if (err)
502 		return err;
503 
504 	napi_enable(&priv->napi);
505 
506 	/* Enable HW device */
507 	nps_enet_hw_reset(ndev);
508 	nps_enet_hw_enable_control(ndev);
509 
510 	netif_start_queue(ndev);
511 
512 	return 0;
513 }
514 
515 /**
516  * nps_enet_stop - Close the network device.
517  * @ndev:       Pointer to the network device.
518  *
519  * This function stops the Tx queue, disables interrupts for the ENET device.
520  */
521 static s32 nps_enet_stop(struct net_device *ndev)
522 {
523 	struct nps_enet_priv *priv = netdev_priv(ndev);
524 
525 	napi_disable(&priv->napi);
526 	netif_stop_queue(ndev);
527 	nps_enet_hw_disable_control(ndev);
528 	free_irq(priv->irq, ndev);
529 
530 	return 0;
531 }
532 
533 /**
534  * nps_enet_start_xmit - Starts the data transmission.
535  * @skb:        sk_buff pointer that contains data to be Transmitted.
536  * @ndev:       Pointer to net_device structure.
537  *
538  * returns: NETDEV_TX_OK, on success
539  *              NETDEV_TX_BUSY, if any of the descriptors are not free.
540  *
541  * This function is invoked from upper layers to initiate transmission.
542  */
543 static netdev_tx_t nps_enet_start_xmit(struct sk_buff *skb,
544 				       struct net_device *ndev)
545 {
546 	struct nps_enet_priv *priv = netdev_priv(ndev);
547 
548 	/* This driver handles one frame at a time  */
549 	netif_stop_queue(ndev);
550 
551 	priv->tx_skb = skb;
552 
553 	/* make sure tx_skb is actually written to the memory
554 	 * before the HW is informed and the IRQ is fired.
555 	 */
556 	wmb();
557 
558 	nps_enet_send_frame(ndev, skb);
559 
560 	return NETDEV_TX_OK;
561 }
562 
563 #ifdef CONFIG_NET_POLL_CONTROLLER
564 static void nps_enet_poll_controller(struct net_device *ndev)
565 {
566 	disable_irq(ndev->irq);
567 	nps_enet_irq_handler(ndev->irq, ndev);
568 	enable_irq(ndev->irq);
569 }
570 #endif
571 
572 static const struct net_device_ops nps_netdev_ops = {
573 	.ndo_open		= nps_enet_open,
574 	.ndo_stop		= nps_enet_stop,
575 	.ndo_start_xmit		= nps_enet_start_xmit,
576 	.ndo_set_mac_address	= nps_enet_set_mac_address,
577 	.ndo_set_rx_mode        = nps_enet_set_rx_mode,
578 #ifdef CONFIG_NET_POLL_CONTROLLER
579 	.ndo_poll_controller	= nps_enet_poll_controller,
580 #endif
581 };
582 
583 static s32 nps_enet_probe(struct platform_device *pdev)
584 {
585 	struct device *dev = &pdev->dev;
586 	struct net_device *ndev;
587 	struct nps_enet_priv *priv;
588 	s32 err = 0;
589 	const char *mac_addr;
590 	struct resource *res_regs;
591 
592 	if (!dev->of_node)
593 		return -ENODEV;
594 
595 	ndev = alloc_etherdev(sizeof(struct nps_enet_priv));
596 	if (!ndev)
597 		return -ENOMEM;
598 
599 	platform_set_drvdata(pdev, ndev);
600 	SET_NETDEV_DEV(ndev, dev);
601 	priv = netdev_priv(ndev);
602 
603 	/* The EZ NET specific entries in the device structure. */
604 	ndev->netdev_ops = &nps_netdev_ops;
605 	ndev->watchdog_timeo = (400 * HZ / 1000);
606 	/* FIXME :: no multicast support yet */
607 	ndev->flags &= ~IFF_MULTICAST;
608 
609 	res_regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
610 	priv->regs_base = devm_ioremap_resource(dev, res_regs);
611 	if (IS_ERR(priv->regs_base)) {
612 		err = PTR_ERR(priv->regs_base);
613 		goto out_netdev;
614 	}
615 	dev_dbg(dev, "Registers base address is 0x%p\n", priv->regs_base);
616 
617 	/* set kernel MAC address to dev */
618 	mac_addr = of_get_mac_address(dev->of_node);
619 	if (!IS_ERR(mac_addr))
620 		ether_addr_copy(ndev->dev_addr, mac_addr);
621 	else
622 		eth_hw_addr_random(ndev);
623 
624 	/* Get IRQ number */
625 	priv->irq = platform_get_irq(pdev, 0);
626 	if (!priv->irq) {
627 		dev_err(dev, "failed to retrieve <irq Rx-Tx> value from device tree\n");
628 		err = -ENODEV;
629 		goto out_netdev;
630 	}
631 
632 	netif_napi_add(ndev, &priv->napi, nps_enet_poll,
633 		       NPS_ENET_NAPI_POLL_WEIGHT);
634 
635 	/* Register the driver. Should be the last thing in probe */
636 	err = register_netdev(ndev);
637 	if (err) {
638 		dev_err(dev, "Failed to register ndev for %s, err = 0x%08x\n",
639 			ndev->name, (s32)err);
640 		goto out_netif_api;
641 	}
642 
643 	dev_info(dev, "(rx/tx=%d)\n", priv->irq);
644 	return 0;
645 
646 out_netif_api:
647 	netif_napi_del(&priv->napi);
648 out_netdev:
649 	if (err)
650 		free_netdev(ndev);
651 
652 	return err;
653 }
654 
655 static s32 nps_enet_remove(struct platform_device *pdev)
656 {
657 	struct net_device *ndev = platform_get_drvdata(pdev);
658 	struct nps_enet_priv *priv = netdev_priv(ndev);
659 
660 	unregister_netdev(ndev);
661 	free_netdev(ndev);
662 	netif_napi_del(&priv->napi);
663 
664 	return 0;
665 }
666 
667 static const struct of_device_id nps_enet_dt_ids[] = {
668 	{ .compatible = "ezchip,nps-mgt-enet" },
669 	{ /* Sentinel */ }
670 };
671 MODULE_DEVICE_TABLE(of, nps_enet_dt_ids);
672 
673 static struct platform_driver nps_enet_driver = {
674 	.probe = nps_enet_probe,
675 	.remove = nps_enet_remove,
676 	.driver = {
677 		.name = DRV_NAME,
678 		.of_match_table  = nps_enet_dt_ids,
679 	},
680 };
681 
682 module_platform_driver(nps_enet_driver);
683 
684 MODULE_AUTHOR("EZchip Semiconductor");
685 MODULE_LICENSE("GPL v2");
686