1 /*
2  * Copyright(c) 2015 EZchip Technologies.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * The full GNU General Public License is included in this distribution in
14  * the file called "COPYING".
15  */
16 
17 #include <linux/module.h>
18 #include <linux/etherdevice.h>
19 #include <linux/of_address.h>
20 #include <linux/of_irq.h>
21 #include <linux/of_net.h>
22 #include <linux/of_platform.h>
23 #include "nps_enet.h"
24 
25 #define DRV_NAME			"nps_mgt_enet"
26 
27 static void nps_enet_clean_rx_fifo(struct net_device *ndev, u32 frame_len)
28 {
29 	struct nps_enet_priv *priv = netdev_priv(ndev);
30 	u32 i, len = DIV_ROUND_UP(frame_len, sizeof(u32));
31 
32 	/* Empty Rx FIFO buffer by reading all words */
33 	for (i = 0; i < len; i++)
34 		nps_enet_reg_get(priv, NPS_ENET_REG_RX_BUF);
35 }
36 
37 static void nps_enet_read_rx_fifo(struct net_device *ndev,
38 				  unsigned char *dst, u32 length)
39 {
40 	struct nps_enet_priv *priv = netdev_priv(ndev);
41 	s32 i, last = length & (sizeof(u32) - 1);
42 	u32 *reg = (u32 *)dst, len = length / sizeof(u32);
43 	bool dst_is_aligned = IS_ALIGNED((unsigned long)dst, sizeof(u32));
44 
45 	/* In case dst is not aligned we need an intermediate buffer */
46 	if (dst_is_aligned) {
47 		ioread32_rep(priv->regs_base + NPS_ENET_REG_RX_BUF, reg, len);
48 		reg += len;
49 	}
50 	else { /* !dst_is_aligned */
51 		for (i = 0; i < len; i++, reg++) {
52 			u32 buf = nps_enet_reg_get(priv, NPS_ENET_REG_RX_BUF);
53 			put_unaligned_be32(buf, reg);
54 		}
55 	}
56 	/* copy last bytes (if any) */
57 	if (last) {
58 		u32 buf;
59 		ioread32_rep(priv->regs_base + NPS_ENET_REG_RX_BUF, &buf, 1);
60 		memcpy((u8 *)reg, &buf, last);
61 	}
62 }
63 
64 static u32 nps_enet_rx_handler(struct net_device *ndev)
65 {
66 	u32 frame_len, err = 0;
67 	u32 work_done = 0;
68 	struct nps_enet_priv *priv = netdev_priv(ndev);
69 	struct sk_buff *skb;
70 	u32 rx_ctrl_value = nps_enet_reg_get(priv, NPS_ENET_REG_RX_CTL);
71 	u32 rx_ctrl_cr = (rx_ctrl_value & RX_CTL_CR_MASK) >> RX_CTL_CR_SHIFT;
72 	u32 rx_ctrl_er = (rx_ctrl_value & RX_CTL_ER_MASK) >> RX_CTL_ER_SHIFT;
73 	u32 rx_ctrl_crc = (rx_ctrl_value & RX_CTL_CRC_MASK) >> RX_CTL_CRC_SHIFT;
74 
75 	frame_len = (rx_ctrl_value & RX_CTL_NR_MASK) >> RX_CTL_NR_SHIFT;
76 
77 	/* Check if we got RX */
78 	if (!rx_ctrl_cr)
79 		return work_done;
80 
81 	/* If we got here there is a work for us */
82 	work_done++;
83 
84 	/* Check Rx error */
85 	if (rx_ctrl_er) {
86 		ndev->stats.rx_errors++;
87 		err = 1;
88 	}
89 
90 	/* Check Rx CRC error */
91 	if (rx_ctrl_crc) {
92 		ndev->stats.rx_crc_errors++;
93 		ndev->stats.rx_dropped++;
94 		err = 1;
95 	}
96 
97 	/* Check Frame length Min 64b */
98 	if (unlikely(frame_len < ETH_ZLEN)) {
99 		ndev->stats.rx_length_errors++;
100 		ndev->stats.rx_dropped++;
101 		err = 1;
102 	}
103 
104 	if (err)
105 		goto rx_irq_clean;
106 
107 	/* Skb allocation */
108 	skb = netdev_alloc_skb_ip_align(ndev, frame_len);
109 	if (unlikely(!skb)) {
110 		ndev->stats.rx_errors++;
111 		ndev->stats.rx_dropped++;
112 		goto rx_irq_clean;
113 	}
114 
115 	/* Copy frame from Rx fifo into the skb */
116 	nps_enet_read_rx_fifo(ndev, skb->data, frame_len);
117 
118 	skb_put(skb, frame_len);
119 	skb->protocol = eth_type_trans(skb, ndev);
120 	skb->ip_summed = CHECKSUM_UNNECESSARY;
121 
122 	ndev->stats.rx_packets++;
123 	ndev->stats.rx_bytes += frame_len;
124 	netif_receive_skb(skb);
125 
126 	goto rx_irq_frame_done;
127 
128 rx_irq_clean:
129 	/* Clean Rx fifo */
130 	nps_enet_clean_rx_fifo(ndev, frame_len);
131 
132 rx_irq_frame_done:
133 	/* Ack Rx ctrl register */
134 	nps_enet_reg_set(priv, NPS_ENET_REG_RX_CTL, 0);
135 
136 	return work_done;
137 }
138 
139 static void nps_enet_tx_handler(struct net_device *ndev)
140 {
141 	struct nps_enet_priv *priv = netdev_priv(ndev);
142 	u32 tx_ctrl_value = nps_enet_reg_get(priv, NPS_ENET_REG_TX_CTL);
143 	u32 tx_ctrl_ct = (tx_ctrl_value & TX_CTL_CT_MASK) >> TX_CTL_CT_SHIFT;
144 	u32 tx_ctrl_et = (tx_ctrl_value & TX_CTL_ET_MASK) >> TX_CTL_ET_SHIFT;
145 	u32 tx_ctrl_nt = (tx_ctrl_value & TX_CTL_NT_MASK) >> TX_CTL_NT_SHIFT;
146 
147 	/* Check if we got TX */
148 	if (!priv->tx_skb || tx_ctrl_ct)
149 		return;
150 
151 	/* Ack Tx ctrl register */
152 	nps_enet_reg_set(priv, NPS_ENET_REG_TX_CTL, 0);
153 
154 	/* Check Tx transmit error */
155 	if (unlikely(tx_ctrl_et)) {
156 		ndev->stats.tx_errors++;
157 	} else {
158 		ndev->stats.tx_packets++;
159 		ndev->stats.tx_bytes += tx_ctrl_nt;
160 	}
161 
162 	dev_kfree_skb(priv->tx_skb);
163 	priv->tx_skb = NULL;
164 
165 	if (netif_queue_stopped(ndev))
166 		netif_wake_queue(ndev);
167 }
168 
169 /**
170  * nps_enet_poll - NAPI poll handler.
171  * @napi:       Pointer to napi_struct structure.
172  * @budget:     How many frames to process on one call.
173  *
174  * returns:     Number of processed frames
175  */
176 static int nps_enet_poll(struct napi_struct *napi, int budget)
177 {
178 	struct net_device *ndev = napi->dev;
179 	struct nps_enet_priv *priv = netdev_priv(ndev);
180 	u32 work_done;
181 
182 	nps_enet_tx_handler(ndev);
183 	work_done = nps_enet_rx_handler(ndev);
184 	if (work_done < budget) {
185 		u32 buf_int_enable_value = 0;
186 		u32 tx_ctrl_value = nps_enet_reg_get(priv, NPS_ENET_REG_TX_CTL);
187 		u32 tx_ctrl_ct =
188 			(tx_ctrl_value & TX_CTL_CT_MASK) >> TX_CTL_CT_SHIFT;
189 
190 		napi_complete(napi);
191 
192 		/* set tx_done and rx_rdy bits */
193 		buf_int_enable_value |= NPS_ENET_ENABLE << RX_RDY_SHIFT;
194 		buf_int_enable_value |= NPS_ENET_ENABLE << TX_DONE_SHIFT;
195 
196 		nps_enet_reg_set(priv, NPS_ENET_REG_BUF_INT_ENABLE,
197 				 buf_int_enable_value);
198 
199 		/* in case we will get a tx interrupt while interrupts
200 		 * are masked, we will lose it since the tx is edge interrupt.
201 		 * specifically, while executing the code section above,
202 		 * between nps_enet_tx_handler and the interrupts enable, all
203 		 * tx requests will be stuck until we will get an rx interrupt.
204 		 * the two code lines below will solve this situation by
205 		 * re-adding ourselves to the poll list.
206 		 */
207 
208 		if (priv->tx_skb && !tx_ctrl_ct)
209 			napi_reschedule(napi);
210 	}
211 
212 	return work_done;
213 }
214 
215 /**
216  * nps_enet_irq_handler - Global interrupt handler for ENET.
217  * @irq:                irq number.
218  * @dev_instance:       device instance.
219  *
220  * returns: IRQ_HANDLED for all cases.
221  *
222  * EZchip ENET has 2 interrupt causes, and depending on bits raised in
223  * CTRL registers we may tell what is a reason for interrupt to fire up.
224  * We got one for RX and the other for TX (completion).
225  */
226 static irqreturn_t nps_enet_irq_handler(s32 irq, void *dev_instance)
227 {
228 	struct net_device *ndev = dev_instance;
229 	struct nps_enet_priv *priv = netdev_priv(ndev);
230 	u32 rx_ctrl_value = nps_enet_reg_get(priv, NPS_ENET_REG_RX_CTL);
231 	u32 tx_ctrl_value = nps_enet_reg_get(priv, NPS_ENET_REG_TX_CTL);
232 	u32 tx_ctrl_ct = (tx_ctrl_value & TX_CTL_CT_MASK) >> TX_CTL_CT_SHIFT;
233 	u32 rx_ctrl_cr = (rx_ctrl_value & RX_CTL_CR_MASK) >> RX_CTL_CR_SHIFT;
234 
235 	if ((!tx_ctrl_ct && priv->tx_skb) || rx_ctrl_cr)
236 		if (likely(napi_schedule_prep(&priv->napi))) {
237 			nps_enet_reg_set(priv, NPS_ENET_REG_BUF_INT_ENABLE, 0);
238 			__napi_schedule(&priv->napi);
239 		}
240 
241 	return IRQ_HANDLED;
242 }
243 
244 static void nps_enet_set_hw_mac_address(struct net_device *ndev)
245 {
246 	struct nps_enet_priv *priv = netdev_priv(ndev);
247 	u32 ge_mac_cfg_1_value = 0;
248 	u32 *ge_mac_cfg_2_value = &priv->ge_mac_cfg_2_value;
249 
250 	/* set MAC address in HW */
251 	ge_mac_cfg_1_value |= ndev->dev_addr[0] << CFG_1_OCTET_0_SHIFT;
252 	ge_mac_cfg_1_value |= ndev->dev_addr[1] << CFG_1_OCTET_1_SHIFT;
253 	ge_mac_cfg_1_value |= ndev->dev_addr[2] << CFG_1_OCTET_2_SHIFT;
254 	ge_mac_cfg_1_value |= ndev->dev_addr[3] << CFG_1_OCTET_3_SHIFT;
255 	*ge_mac_cfg_2_value = (*ge_mac_cfg_2_value & ~CFG_2_OCTET_4_MASK)
256 		 | ndev->dev_addr[4] << CFG_2_OCTET_4_SHIFT;
257 	*ge_mac_cfg_2_value = (*ge_mac_cfg_2_value & ~CFG_2_OCTET_5_MASK)
258 		 | ndev->dev_addr[5] << CFG_2_OCTET_5_SHIFT;
259 
260 	nps_enet_reg_set(priv, NPS_ENET_REG_GE_MAC_CFG_1,
261 			 ge_mac_cfg_1_value);
262 
263 	nps_enet_reg_set(priv, NPS_ENET_REG_GE_MAC_CFG_2,
264 			 *ge_mac_cfg_2_value);
265 }
266 
267 /**
268  * nps_enet_hw_reset - Reset the network device.
269  * @ndev:       Pointer to the network device.
270  *
271  * This function reset the PCS and TX fifo.
272  * The programming model is to set the relevant reset bits
273  * wait for some time for this to propagate and then unset
274  * the reset bits. This way we ensure that reset procedure
275  * is done successfully by device.
276  */
277 static void nps_enet_hw_reset(struct net_device *ndev)
278 {
279 	struct nps_enet_priv *priv = netdev_priv(ndev);
280 	u32 ge_rst_value = 0, phase_fifo_ctl_value = 0;
281 
282 	/* Pcs reset sequence*/
283 	ge_rst_value |= NPS_ENET_ENABLE << RST_GMAC_0_SHIFT;
284 	nps_enet_reg_set(priv, NPS_ENET_REG_GE_RST, ge_rst_value);
285 	usleep_range(10, 20);
286 	nps_enet_reg_set(priv, NPS_ENET_REG_GE_RST, ge_rst_value);
287 
288 	/* Tx fifo reset sequence */
289 	phase_fifo_ctl_value |= NPS_ENET_ENABLE << PHASE_FIFO_CTL_RST_SHIFT;
290 	phase_fifo_ctl_value |= NPS_ENET_ENABLE << PHASE_FIFO_CTL_INIT_SHIFT;
291 	nps_enet_reg_set(priv, NPS_ENET_REG_PHASE_FIFO_CTL,
292 			 phase_fifo_ctl_value);
293 	usleep_range(10, 20);
294 	phase_fifo_ctl_value = 0;
295 	nps_enet_reg_set(priv, NPS_ENET_REG_PHASE_FIFO_CTL,
296 			 phase_fifo_ctl_value);
297 }
298 
299 static void nps_enet_hw_enable_control(struct net_device *ndev)
300 {
301 	struct nps_enet_priv *priv = netdev_priv(ndev);
302 	u32 ge_mac_cfg_0_value = 0, buf_int_enable_value = 0;
303 	u32 *ge_mac_cfg_2_value = &priv->ge_mac_cfg_2_value;
304 	u32 *ge_mac_cfg_3_value = &priv->ge_mac_cfg_3_value;
305 	s32 max_frame_length;
306 
307 	/* Enable Rx and Tx statistics */
308 	*ge_mac_cfg_2_value = (*ge_mac_cfg_2_value & ~CFG_2_STAT_EN_MASK)
309 		 | NPS_ENET_GE_MAC_CFG_2_STAT_EN << CFG_2_STAT_EN_SHIFT;
310 
311 	/* Discard packets with different MAC address */
312 	*ge_mac_cfg_2_value = (*ge_mac_cfg_2_value & ~CFG_2_DISK_DA_MASK)
313 		 | NPS_ENET_ENABLE << CFG_2_DISK_DA_SHIFT;
314 
315 	/* Discard multicast packets */
316 	*ge_mac_cfg_2_value = (*ge_mac_cfg_2_value & ~CFG_2_DISK_MC_MASK)
317 		 | NPS_ENET_ENABLE << CFG_2_DISK_MC_SHIFT;
318 
319 	nps_enet_reg_set(priv, NPS_ENET_REG_GE_MAC_CFG_2,
320 			 *ge_mac_cfg_2_value);
321 
322 	/* Discard Packets bigger than max frame length */
323 	max_frame_length = ETH_HLEN + ndev->mtu + ETH_FCS_LEN;
324 	if (max_frame_length <= NPS_ENET_MAX_FRAME_LENGTH) {
325 		*ge_mac_cfg_3_value =
326 			 (*ge_mac_cfg_3_value & ~CFG_3_MAX_LEN_MASK)
327 			 | max_frame_length << CFG_3_MAX_LEN_SHIFT;
328 	}
329 
330 	/* Enable interrupts */
331 	buf_int_enable_value |= NPS_ENET_ENABLE << RX_RDY_SHIFT;
332 	buf_int_enable_value |= NPS_ENET_ENABLE << TX_DONE_SHIFT;
333 	nps_enet_reg_set(priv, NPS_ENET_REG_BUF_INT_ENABLE,
334 			 buf_int_enable_value);
335 
336 	/* Write device MAC address to HW */
337 	nps_enet_set_hw_mac_address(ndev);
338 
339 	/* Rx and Tx HW features */
340 	ge_mac_cfg_0_value |= NPS_ENET_ENABLE << CFG_0_TX_PAD_EN_SHIFT;
341 	ge_mac_cfg_0_value |= NPS_ENET_ENABLE << CFG_0_TX_CRC_EN_SHIFT;
342 	ge_mac_cfg_0_value |= NPS_ENET_ENABLE << CFG_0_RX_CRC_STRIP_SHIFT;
343 
344 	/* IFG configuration */
345 	ge_mac_cfg_0_value |=
346 		 NPS_ENET_GE_MAC_CFG_0_RX_IFG << CFG_0_RX_IFG_SHIFT;
347 	ge_mac_cfg_0_value |=
348 		 NPS_ENET_GE_MAC_CFG_0_TX_IFG << CFG_0_TX_IFG_SHIFT;
349 
350 	/* preamble configuration */
351 	ge_mac_cfg_0_value |= NPS_ENET_ENABLE << CFG_0_RX_PR_CHECK_EN_SHIFT;
352 	ge_mac_cfg_0_value |=
353 		 NPS_ENET_GE_MAC_CFG_0_TX_PR_LEN << CFG_0_TX_PR_LEN_SHIFT;
354 
355 	/* enable flow control frames */
356 	ge_mac_cfg_0_value |= NPS_ENET_ENABLE << CFG_0_TX_FC_EN_SHIFT;
357 	ge_mac_cfg_0_value |= NPS_ENET_ENABLE << CFG_0_RX_FC_EN_SHIFT;
358 	ge_mac_cfg_0_value |=
359 		 NPS_ENET_GE_MAC_CFG_0_TX_FC_RETR << CFG_0_TX_FC_RETR_SHIFT;
360 	*ge_mac_cfg_3_value = (*ge_mac_cfg_3_value & ~CFG_3_CF_DROP_MASK)
361 		 | NPS_ENET_ENABLE << CFG_3_CF_DROP_SHIFT;
362 
363 	/* Enable Rx and Tx */
364 	ge_mac_cfg_0_value |= NPS_ENET_ENABLE << CFG_0_RX_EN_SHIFT;
365 	ge_mac_cfg_0_value |= NPS_ENET_ENABLE << CFG_0_TX_EN_SHIFT;
366 
367 	nps_enet_reg_set(priv, NPS_ENET_REG_GE_MAC_CFG_3,
368 			 *ge_mac_cfg_3_value);
369 	nps_enet_reg_set(priv, NPS_ENET_REG_GE_MAC_CFG_0,
370 			 ge_mac_cfg_0_value);
371 }
372 
373 static void nps_enet_hw_disable_control(struct net_device *ndev)
374 {
375 	struct nps_enet_priv *priv = netdev_priv(ndev);
376 
377 	/* Disable interrupts */
378 	nps_enet_reg_set(priv, NPS_ENET_REG_BUF_INT_ENABLE, 0);
379 
380 	/* Disable Rx and Tx */
381 	nps_enet_reg_set(priv, NPS_ENET_REG_GE_MAC_CFG_0, 0);
382 }
383 
384 static void nps_enet_send_frame(struct net_device *ndev,
385 				struct sk_buff *skb)
386 {
387 	struct nps_enet_priv *priv = netdev_priv(ndev);
388 	u32 tx_ctrl_value = 0;
389 	short length = skb->len;
390 	u32 i, len = DIV_ROUND_UP(length, sizeof(u32));
391 	u32 *src = (void *)skb->data;
392 	bool src_is_aligned = IS_ALIGNED((unsigned long)src, sizeof(u32));
393 
394 	/* In case src is not aligned we need an intermediate buffer */
395 	if (src_is_aligned)
396 		iowrite32_rep(priv->regs_base + NPS_ENET_REG_TX_BUF, src, len);
397 	else /* !src_is_aligned */
398 		for (i = 0; i < len; i++, src++)
399 			nps_enet_reg_set(priv, NPS_ENET_REG_TX_BUF,
400 					 get_unaligned_be32(src));
401 
402 	/* Write the length of the Frame */
403 	tx_ctrl_value |= length << TX_CTL_NT_SHIFT;
404 
405 	tx_ctrl_value |= NPS_ENET_ENABLE << TX_CTL_CT_SHIFT;
406 	/* Send Frame */
407 	nps_enet_reg_set(priv, NPS_ENET_REG_TX_CTL, tx_ctrl_value);
408 }
409 
410 /**
411  * nps_enet_set_mac_address - Set the MAC address for this device.
412  * @ndev:       Pointer to net_device structure.
413  * @p:          6 byte Address to be written as MAC address.
414  *
415  * This function copies the HW address from the sockaddr structure to the
416  * net_device structure and updates the address in HW.
417  *
418  * returns:     -EBUSY if the net device is busy or 0 if the address is set
419  *              successfully.
420  */
421 static s32 nps_enet_set_mac_address(struct net_device *ndev, void *p)
422 {
423 	struct sockaddr *addr = p;
424 	s32 res;
425 
426 	if (netif_running(ndev))
427 		return -EBUSY;
428 
429 	res = eth_mac_addr(ndev, p);
430 	if (!res) {
431 		ether_addr_copy(ndev->dev_addr, addr->sa_data);
432 		nps_enet_set_hw_mac_address(ndev);
433 	}
434 
435 	return res;
436 }
437 
438 /**
439  * nps_enet_set_rx_mode - Change the receive filtering mode.
440  * @ndev:       Pointer to the network device.
441  *
442  * This function enables/disables promiscuous mode
443  */
444 static void nps_enet_set_rx_mode(struct net_device *ndev)
445 {
446 	struct nps_enet_priv *priv = netdev_priv(ndev);
447 	u32 ge_mac_cfg_2_value = priv->ge_mac_cfg_2_value;
448 
449 	if (ndev->flags & IFF_PROMISC) {
450 		ge_mac_cfg_2_value = (ge_mac_cfg_2_value & ~CFG_2_DISK_DA_MASK)
451 			 | NPS_ENET_DISABLE << CFG_2_DISK_DA_SHIFT;
452 		ge_mac_cfg_2_value = (ge_mac_cfg_2_value & ~CFG_2_DISK_MC_MASK)
453 			 | NPS_ENET_DISABLE << CFG_2_DISK_MC_SHIFT;
454 
455 	} else {
456 		ge_mac_cfg_2_value = (ge_mac_cfg_2_value & ~CFG_2_DISK_DA_MASK)
457 			 | NPS_ENET_ENABLE << CFG_2_DISK_DA_SHIFT;
458 		ge_mac_cfg_2_value = (ge_mac_cfg_2_value & ~CFG_2_DISK_MC_MASK)
459 			 | NPS_ENET_ENABLE << CFG_2_DISK_MC_SHIFT;
460 
461 	}
462 
463 	nps_enet_reg_set(priv, NPS_ENET_REG_GE_MAC_CFG_2, ge_mac_cfg_2_value);
464 }
465 
466 /**
467  * nps_enet_open - Open the network device.
468  * @ndev:       Pointer to the network device.
469  *
470  * returns: 0, on success or non-zero error value on failure.
471  *
472  * This function sets the MAC address, requests and enables an IRQ
473  * for the ENET device and starts the Tx queue.
474  */
475 static s32 nps_enet_open(struct net_device *ndev)
476 {
477 	struct nps_enet_priv *priv = netdev_priv(ndev);
478 	s32 err;
479 
480 	/* Reset private variables */
481 	priv->tx_skb = NULL;
482 	priv->ge_mac_cfg_2_value = 0;
483 	priv->ge_mac_cfg_3_value = 0;
484 
485 	/* ge_mac_cfg_3 default values */
486 	priv->ge_mac_cfg_3_value |=
487 		 NPS_ENET_GE_MAC_CFG_3_RX_IFG_TH << CFG_3_RX_IFG_TH_SHIFT;
488 
489 	priv->ge_mac_cfg_3_value |=
490 		 NPS_ENET_GE_MAC_CFG_3_MAX_LEN << CFG_3_MAX_LEN_SHIFT;
491 
492 	/* Disable HW device */
493 	nps_enet_hw_disable_control(ndev);
494 
495 	/* irq Rx allocation */
496 	err = request_irq(priv->irq, nps_enet_irq_handler,
497 			  0, "enet-rx-tx", ndev);
498 	if (err)
499 		return err;
500 
501 	napi_enable(&priv->napi);
502 
503 	/* Enable HW device */
504 	nps_enet_hw_reset(ndev);
505 	nps_enet_hw_enable_control(ndev);
506 
507 	netif_start_queue(ndev);
508 
509 	return 0;
510 }
511 
512 /**
513  * nps_enet_stop - Close the network device.
514  * @ndev:       Pointer to the network device.
515  *
516  * This function stops the Tx queue, disables interrupts for the ENET device.
517  */
518 static s32 nps_enet_stop(struct net_device *ndev)
519 {
520 	struct nps_enet_priv *priv = netdev_priv(ndev);
521 
522 	napi_disable(&priv->napi);
523 	netif_stop_queue(ndev);
524 	nps_enet_hw_disable_control(ndev);
525 	free_irq(priv->irq, ndev);
526 
527 	return 0;
528 }
529 
530 /**
531  * nps_enet_start_xmit - Starts the data transmission.
532  * @skb:        sk_buff pointer that contains data to be Transmitted.
533  * @ndev:       Pointer to net_device structure.
534  *
535  * returns: NETDEV_TX_OK, on success
536  *              NETDEV_TX_BUSY, if any of the descriptors are not free.
537  *
538  * This function is invoked from upper layers to initiate transmission.
539  */
540 static netdev_tx_t nps_enet_start_xmit(struct sk_buff *skb,
541 				       struct net_device *ndev)
542 {
543 	struct nps_enet_priv *priv = netdev_priv(ndev);
544 
545 	/* This driver handles one frame at a time  */
546 	netif_stop_queue(ndev);
547 
548 	priv->tx_skb = skb;
549 
550 	/* make sure tx_skb is actually written to the memory
551 	 * before the HW is informed and the IRQ is fired.
552 	 */
553 	wmb();
554 
555 	nps_enet_send_frame(ndev, skb);
556 
557 	return NETDEV_TX_OK;
558 }
559 
560 #ifdef CONFIG_NET_POLL_CONTROLLER
561 static void nps_enet_poll_controller(struct net_device *ndev)
562 {
563 	disable_irq(ndev->irq);
564 	nps_enet_irq_handler(ndev->irq, ndev);
565 	enable_irq(ndev->irq);
566 }
567 #endif
568 
569 static const struct net_device_ops nps_netdev_ops = {
570 	.ndo_open		= nps_enet_open,
571 	.ndo_stop		= nps_enet_stop,
572 	.ndo_start_xmit		= nps_enet_start_xmit,
573 	.ndo_set_mac_address	= nps_enet_set_mac_address,
574 	.ndo_set_rx_mode        = nps_enet_set_rx_mode,
575 #ifdef CONFIG_NET_POLL_CONTROLLER
576 	.ndo_poll_controller	= nps_enet_poll_controller,
577 #endif
578 };
579 
580 static s32 nps_enet_probe(struct platform_device *pdev)
581 {
582 	struct device *dev = &pdev->dev;
583 	struct net_device *ndev;
584 	struct nps_enet_priv *priv;
585 	s32 err = 0;
586 	const char *mac_addr;
587 	struct resource *res_regs;
588 
589 	if (!dev->of_node)
590 		return -ENODEV;
591 
592 	ndev = alloc_etherdev(sizeof(struct nps_enet_priv));
593 	if (!ndev)
594 		return -ENOMEM;
595 
596 	platform_set_drvdata(pdev, ndev);
597 	SET_NETDEV_DEV(ndev, dev);
598 	priv = netdev_priv(ndev);
599 
600 	/* The EZ NET specific entries in the device structure. */
601 	ndev->netdev_ops = &nps_netdev_ops;
602 	ndev->watchdog_timeo = (400 * HZ / 1000);
603 	/* FIXME :: no multicast support yet */
604 	ndev->flags &= ~IFF_MULTICAST;
605 
606 	res_regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
607 	priv->regs_base = devm_ioremap_resource(dev, res_regs);
608 	if (IS_ERR(priv->regs_base)) {
609 		err = PTR_ERR(priv->regs_base);
610 		goto out_netdev;
611 	}
612 	dev_dbg(dev, "Registers base address is 0x%p\n", priv->regs_base);
613 
614 	/* set kernel MAC address to dev */
615 	mac_addr = of_get_mac_address(dev->of_node);
616 	if (mac_addr)
617 		ether_addr_copy(ndev->dev_addr, mac_addr);
618 	else
619 		eth_hw_addr_random(ndev);
620 
621 	/* Get IRQ number */
622 	priv->irq = platform_get_irq(pdev, 0);
623 	if (!priv->irq) {
624 		dev_err(dev, "failed to retrieve <irq Rx-Tx> value from device tree\n");
625 		err = -ENODEV;
626 		goto out_netdev;
627 	}
628 
629 	netif_napi_add(ndev, &priv->napi, nps_enet_poll,
630 		       NPS_ENET_NAPI_POLL_WEIGHT);
631 
632 	/* Register the driver. Should be the last thing in probe */
633 	err = register_netdev(ndev);
634 	if (err) {
635 		dev_err(dev, "Failed to register ndev for %s, err = 0x%08x\n",
636 			ndev->name, (s32)err);
637 		goto out_netif_api;
638 	}
639 
640 	dev_info(dev, "(rx/tx=%d)\n", priv->irq);
641 	return 0;
642 
643 out_netif_api:
644 	netif_napi_del(&priv->napi);
645 out_netdev:
646 	if (err)
647 		free_netdev(ndev);
648 
649 	return err;
650 }
651 
652 static s32 nps_enet_remove(struct platform_device *pdev)
653 {
654 	struct net_device *ndev = platform_get_drvdata(pdev);
655 	struct nps_enet_priv *priv = netdev_priv(ndev);
656 
657 	unregister_netdev(ndev);
658 	free_netdev(ndev);
659 	netif_napi_del(&priv->napi);
660 
661 	return 0;
662 }
663 
664 static const struct of_device_id nps_enet_dt_ids[] = {
665 	{ .compatible = "ezchip,nps-mgt-enet" },
666 	{ /* Sentinel */ }
667 };
668 
669 static struct platform_driver nps_enet_driver = {
670 	.probe = nps_enet_probe,
671 	.remove = nps_enet_remove,
672 	.driver = {
673 		.name = DRV_NAME,
674 		.of_match_table  = nps_enet_dt_ids,
675 	},
676 };
677 
678 module_platform_driver(nps_enet_driver);
679 
680 MODULE_AUTHOR("EZchip Semiconductor");
681 MODULE_LICENSE("GPL v2");
682