1 /* 2 * Copyright(c) 2015 EZchip Technologies. 3 * 4 * This program is free software; you can redistribute it and/or modify it 5 * under the terms and conditions of the GNU General Public License, 6 * version 2, as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope it will be useful, but WITHOUT 9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 11 * more details. 12 * 13 * The full GNU General Public License is included in this distribution in 14 * the file called "COPYING". 15 */ 16 17 #include <linux/module.h> 18 #include <linux/etherdevice.h> 19 #include <linux/interrupt.h> 20 #include <linux/of_address.h> 21 #include <linux/of_irq.h> 22 #include <linux/of_net.h> 23 #include <linux/of_platform.h> 24 #include "nps_enet.h" 25 26 #define DRV_NAME "nps_mgt_enet" 27 28 static inline bool nps_enet_is_tx_pending(struct nps_enet_priv *priv) 29 { 30 u32 tx_ctrl_value = nps_enet_reg_get(priv, NPS_ENET_REG_TX_CTL); 31 u32 tx_ctrl_ct = (tx_ctrl_value & TX_CTL_CT_MASK) >> TX_CTL_CT_SHIFT; 32 33 return (!tx_ctrl_ct && priv->tx_skb); 34 } 35 36 static void nps_enet_clean_rx_fifo(struct net_device *ndev, u32 frame_len) 37 { 38 struct nps_enet_priv *priv = netdev_priv(ndev); 39 u32 i, len = DIV_ROUND_UP(frame_len, sizeof(u32)); 40 41 /* Empty Rx FIFO buffer by reading all words */ 42 for (i = 0; i < len; i++) 43 nps_enet_reg_get(priv, NPS_ENET_REG_RX_BUF); 44 } 45 46 static void nps_enet_read_rx_fifo(struct net_device *ndev, 47 unsigned char *dst, u32 length) 48 { 49 struct nps_enet_priv *priv = netdev_priv(ndev); 50 s32 i, last = length & (sizeof(u32) - 1); 51 u32 *reg = (u32 *)dst, len = length / sizeof(u32); 52 bool dst_is_aligned = IS_ALIGNED((unsigned long)dst, sizeof(u32)); 53 54 /* In case dst is not aligned we need an intermediate buffer */ 55 if (dst_is_aligned) { 56 ioread32_rep(priv->regs_base + NPS_ENET_REG_RX_BUF, reg, len); 57 reg += len; 58 } else { /* !dst_is_aligned */ 59 for (i = 0; i < len; i++, reg++) { 60 u32 buf = nps_enet_reg_get(priv, NPS_ENET_REG_RX_BUF); 61 62 put_unaligned_be32(buf, reg); 63 } 64 } 65 /* copy last bytes (if any) */ 66 if (last) { 67 u32 buf; 68 69 ioread32_rep(priv->regs_base + NPS_ENET_REG_RX_BUF, &buf, 1); 70 memcpy((u8 *)reg, &buf, last); 71 } 72 } 73 74 static u32 nps_enet_rx_handler(struct net_device *ndev) 75 { 76 u32 frame_len, err = 0; 77 u32 work_done = 0; 78 struct nps_enet_priv *priv = netdev_priv(ndev); 79 struct sk_buff *skb; 80 u32 rx_ctrl_value = nps_enet_reg_get(priv, NPS_ENET_REG_RX_CTL); 81 u32 rx_ctrl_cr = (rx_ctrl_value & RX_CTL_CR_MASK) >> RX_CTL_CR_SHIFT; 82 u32 rx_ctrl_er = (rx_ctrl_value & RX_CTL_ER_MASK) >> RX_CTL_ER_SHIFT; 83 u32 rx_ctrl_crc = (rx_ctrl_value & RX_CTL_CRC_MASK) >> RX_CTL_CRC_SHIFT; 84 85 frame_len = (rx_ctrl_value & RX_CTL_NR_MASK) >> RX_CTL_NR_SHIFT; 86 87 /* Check if we got RX */ 88 if (!rx_ctrl_cr) 89 return work_done; 90 91 /* If we got here there is a work for us */ 92 work_done++; 93 94 /* Check Rx error */ 95 if (rx_ctrl_er) { 96 ndev->stats.rx_errors++; 97 err = 1; 98 } 99 100 /* Check Rx CRC error */ 101 if (rx_ctrl_crc) { 102 ndev->stats.rx_crc_errors++; 103 ndev->stats.rx_dropped++; 104 err = 1; 105 } 106 107 /* Check Frame length Min 64b */ 108 if (unlikely(frame_len < ETH_ZLEN)) { 109 ndev->stats.rx_length_errors++; 110 ndev->stats.rx_dropped++; 111 err = 1; 112 } 113 114 if (err) 115 goto rx_irq_clean; 116 117 /* Skb allocation */ 118 skb = netdev_alloc_skb_ip_align(ndev, frame_len); 119 if (unlikely(!skb)) { 120 ndev->stats.rx_errors++; 121 ndev->stats.rx_dropped++; 122 goto rx_irq_clean; 123 } 124 125 /* Copy frame from Rx fifo into the skb */ 126 nps_enet_read_rx_fifo(ndev, skb->data, frame_len); 127 128 skb_put(skb, frame_len); 129 skb->protocol = eth_type_trans(skb, ndev); 130 skb->ip_summed = CHECKSUM_UNNECESSARY; 131 132 ndev->stats.rx_packets++; 133 ndev->stats.rx_bytes += frame_len; 134 netif_receive_skb(skb); 135 136 goto rx_irq_frame_done; 137 138 rx_irq_clean: 139 /* Clean Rx fifo */ 140 nps_enet_clean_rx_fifo(ndev, frame_len); 141 142 rx_irq_frame_done: 143 /* Ack Rx ctrl register */ 144 nps_enet_reg_set(priv, NPS_ENET_REG_RX_CTL, 0); 145 146 return work_done; 147 } 148 149 static void nps_enet_tx_handler(struct net_device *ndev) 150 { 151 struct nps_enet_priv *priv = netdev_priv(ndev); 152 u32 tx_ctrl_value = nps_enet_reg_get(priv, NPS_ENET_REG_TX_CTL); 153 u32 tx_ctrl_et = (tx_ctrl_value & TX_CTL_ET_MASK) >> TX_CTL_ET_SHIFT; 154 u32 tx_ctrl_nt = (tx_ctrl_value & TX_CTL_NT_MASK) >> TX_CTL_NT_SHIFT; 155 156 /* Check if we got TX */ 157 if (!nps_enet_is_tx_pending(priv)) 158 return; 159 160 /* Ack Tx ctrl register */ 161 nps_enet_reg_set(priv, NPS_ENET_REG_TX_CTL, 0); 162 163 /* Check Tx transmit error */ 164 if (unlikely(tx_ctrl_et)) { 165 ndev->stats.tx_errors++; 166 } else { 167 ndev->stats.tx_packets++; 168 ndev->stats.tx_bytes += tx_ctrl_nt; 169 } 170 171 dev_kfree_skb(priv->tx_skb); 172 priv->tx_skb = NULL; 173 174 if (netif_queue_stopped(ndev)) 175 netif_wake_queue(ndev); 176 } 177 178 /** 179 * nps_enet_poll - NAPI poll handler. 180 * @napi: Pointer to napi_struct structure. 181 * @budget: How many frames to process on one call. 182 * 183 * returns: Number of processed frames 184 */ 185 static int nps_enet_poll(struct napi_struct *napi, int budget) 186 { 187 struct net_device *ndev = napi->dev; 188 struct nps_enet_priv *priv = netdev_priv(ndev); 189 u32 work_done; 190 191 nps_enet_tx_handler(ndev); 192 work_done = nps_enet_rx_handler(ndev); 193 if ((work_done < budget) && napi_complete_done(napi, work_done)) { 194 u32 buf_int_enable_value = 0; 195 196 /* set tx_done and rx_rdy bits */ 197 buf_int_enable_value |= NPS_ENET_ENABLE << RX_RDY_SHIFT; 198 buf_int_enable_value |= NPS_ENET_ENABLE << TX_DONE_SHIFT; 199 200 nps_enet_reg_set(priv, NPS_ENET_REG_BUF_INT_ENABLE, 201 buf_int_enable_value); 202 203 /* in case we will get a tx interrupt while interrupts 204 * are masked, we will lose it since the tx is edge interrupt. 205 * specifically, while executing the code section above, 206 * between nps_enet_tx_handler and the interrupts enable, all 207 * tx requests will be stuck until we will get an rx interrupt. 208 * the two code lines below will solve this situation by 209 * re-adding ourselves to the poll list. 210 */ 211 if (nps_enet_is_tx_pending(priv)) { 212 nps_enet_reg_set(priv, NPS_ENET_REG_BUF_INT_ENABLE, 0); 213 napi_reschedule(napi); 214 } 215 } 216 217 return work_done; 218 } 219 220 /** 221 * nps_enet_irq_handler - Global interrupt handler for ENET. 222 * @irq: irq number. 223 * @dev_instance: device instance. 224 * 225 * returns: IRQ_HANDLED for all cases. 226 * 227 * EZchip ENET has 2 interrupt causes, and depending on bits raised in 228 * CTRL registers we may tell what is a reason for interrupt to fire up. 229 * We got one for RX and the other for TX (completion). 230 */ 231 static irqreturn_t nps_enet_irq_handler(s32 irq, void *dev_instance) 232 { 233 struct net_device *ndev = dev_instance; 234 struct nps_enet_priv *priv = netdev_priv(ndev); 235 u32 rx_ctrl_value = nps_enet_reg_get(priv, NPS_ENET_REG_RX_CTL); 236 u32 rx_ctrl_cr = (rx_ctrl_value & RX_CTL_CR_MASK) >> RX_CTL_CR_SHIFT; 237 238 if (nps_enet_is_tx_pending(priv) || rx_ctrl_cr) 239 if (likely(napi_schedule_prep(&priv->napi))) { 240 nps_enet_reg_set(priv, NPS_ENET_REG_BUF_INT_ENABLE, 0); 241 __napi_schedule(&priv->napi); 242 } 243 244 return IRQ_HANDLED; 245 } 246 247 static void nps_enet_set_hw_mac_address(struct net_device *ndev) 248 { 249 struct nps_enet_priv *priv = netdev_priv(ndev); 250 u32 ge_mac_cfg_1_value = 0; 251 u32 *ge_mac_cfg_2_value = &priv->ge_mac_cfg_2_value; 252 253 /* set MAC address in HW */ 254 ge_mac_cfg_1_value |= ndev->dev_addr[0] << CFG_1_OCTET_0_SHIFT; 255 ge_mac_cfg_1_value |= ndev->dev_addr[1] << CFG_1_OCTET_1_SHIFT; 256 ge_mac_cfg_1_value |= ndev->dev_addr[2] << CFG_1_OCTET_2_SHIFT; 257 ge_mac_cfg_1_value |= ndev->dev_addr[3] << CFG_1_OCTET_3_SHIFT; 258 *ge_mac_cfg_2_value = (*ge_mac_cfg_2_value & ~CFG_2_OCTET_4_MASK) 259 | ndev->dev_addr[4] << CFG_2_OCTET_4_SHIFT; 260 *ge_mac_cfg_2_value = (*ge_mac_cfg_2_value & ~CFG_2_OCTET_5_MASK) 261 | ndev->dev_addr[5] << CFG_2_OCTET_5_SHIFT; 262 263 nps_enet_reg_set(priv, NPS_ENET_REG_GE_MAC_CFG_1, 264 ge_mac_cfg_1_value); 265 266 nps_enet_reg_set(priv, NPS_ENET_REG_GE_MAC_CFG_2, 267 *ge_mac_cfg_2_value); 268 } 269 270 /** 271 * nps_enet_hw_reset - Reset the network device. 272 * @ndev: Pointer to the network device. 273 * 274 * This function reset the PCS and TX fifo. 275 * The programming model is to set the relevant reset bits 276 * wait for some time for this to propagate and then unset 277 * the reset bits. This way we ensure that reset procedure 278 * is done successfully by device. 279 */ 280 static void nps_enet_hw_reset(struct net_device *ndev) 281 { 282 struct nps_enet_priv *priv = netdev_priv(ndev); 283 u32 ge_rst_value = 0, phase_fifo_ctl_value = 0; 284 285 /* Pcs reset sequence*/ 286 ge_rst_value |= NPS_ENET_ENABLE << RST_GMAC_0_SHIFT; 287 nps_enet_reg_set(priv, NPS_ENET_REG_GE_RST, ge_rst_value); 288 usleep_range(10, 20); 289 ge_rst_value = 0; 290 nps_enet_reg_set(priv, NPS_ENET_REG_GE_RST, ge_rst_value); 291 292 /* Tx fifo reset sequence */ 293 phase_fifo_ctl_value |= NPS_ENET_ENABLE << PHASE_FIFO_CTL_RST_SHIFT; 294 phase_fifo_ctl_value |= NPS_ENET_ENABLE << PHASE_FIFO_CTL_INIT_SHIFT; 295 nps_enet_reg_set(priv, NPS_ENET_REG_PHASE_FIFO_CTL, 296 phase_fifo_ctl_value); 297 usleep_range(10, 20); 298 phase_fifo_ctl_value = 0; 299 nps_enet_reg_set(priv, NPS_ENET_REG_PHASE_FIFO_CTL, 300 phase_fifo_ctl_value); 301 } 302 303 static void nps_enet_hw_enable_control(struct net_device *ndev) 304 { 305 struct nps_enet_priv *priv = netdev_priv(ndev); 306 u32 ge_mac_cfg_0_value = 0, buf_int_enable_value = 0; 307 u32 *ge_mac_cfg_2_value = &priv->ge_mac_cfg_2_value; 308 u32 *ge_mac_cfg_3_value = &priv->ge_mac_cfg_3_value; 309 s32 max_frame_length; 310 311 /* Enable Rx and Tx statistics */ 312 *ge_mac_cfg_2_value = (*ge_mac_cfg_2_value & ~CFG_2_STAT_EN_MASK) 313 | NPS_ENET_GE_MAC_CFG_2_STAT_EN << CFG_2_STAT_EN_SHIFT; 314 315 /* Discard packets with different MAC address */ 316 *ge_mac_cfg_2_value = (*ge_mac_cfg_2_value & ~CFG_2_DISK_DA_MASK) 317 | NPS_ENET_ENABLE << CFG_2_DISK_DA_SHIFT; 318 319 /* Discard multicast packets */ 320 *ge_mac_cfg_2_value = (*ge_mac_cfg_2_value & ~CFG_2_DISK_MC_MASK) 321 | NPS_ENET_ENABLE << CFG_2_DISK_MC_SHIFT; 322 323 nps_enet_reg_set(priv, NPS_ENET_REG_GE_MAC_CFG_2, 324 *ge_mac_cfg_2_value); 325 326 /* Discard Packets bigger than max frame length */ 327 max_frame_length = ETH_HLEN + ndev->mtu + ETH_FCS_LEN; 328 if (max_frame_length <= NPS_ENET_MAX_FRAME_LENGTH) { 329 *ge_mac_cfg_3_value = 330 (*ge_mac_cfg_3_value & ~CFG_3_MAX_LEN_MASK) 331 | max_frame_length << CFG_3_MAX_LEN_SHIFT; 332 } 333 334 /* Enable interrupts */ 335 buf_int_enable_value |= NPS_ENET_ENABLE << RX_RDY_SHIFT; 336 buf_int_enable_value |= NPS_ENET_ENABLE << TX_DONE_SHIFT; 337 nps_enet_reg_set(priv, NPS_ENET_REG_BUF_INT_ENABLE, 338 buf_int_enable_value); 339 340 /* Write device MAC address to HW */ 341 nps_enet_set_hw_mac_address(ndev); 342 343 /* Rx and Tx HW features */ 344 ge_mac_cfg_0_value |= NPS_ENET_ENABLE << CFG_0_TX_PAD_EN_SHIFT; 345 ge_mac_cfg_0_value |= NPS_ENET_ENABLE << CFG_0_TX_CRC_EN_SHIFT; 346 ge_mac_cfg_0_value |= NPS_ENET_ENABLE << CFG_0_RX_CRC_STRIP_SHIFT; 347 348 /* IFG configuration */ 349 ge_mac_cfg_0_value |= 350 NPS_ENET_GE_MAC_CFG_0_RX_IFG << CFG_0_RX_IFG_SHIFT; 351 ge_mac_cfg_0_value |= 352 NPS_ENET_GE_MAC_CFG_0_TX_IFG << CFG_0_TX_IFG_SHIFT; 353 354 /* preamble configuration */ 355 ge_mac_cfg_0_value |= NPS_ENET_ENABLE << CFG_0_RX_PR_CHECK_EN_SHIFT; 356 ge_mac_cfg_0_value |= 357 NPS_ENET_GE_MAC_CFG_0_TX_PR_LEN << CFG_0_TX_PR_LEN_SHIFT; 358 359 /* enable flow control frames */ 360 ge_mac_cfg_0_value |= NPS_ENET_ENABLE << CFG_0_TX_FC_EN_SHIFT; 361 ge_mac_cfg_0_value |= NPS_ENET_ENABLE << CFG_0_RX_FC_EN_SHIFT; 362 ge_mac_cfg_0_value |= 363 NPS_ENET_GE_MAC_CFG_0_TX_FC_RETR << CFG_0_TX_FC_RETR_SHIFT; 364 *ge_mac_cfg_3_value = (*ge_mac_cfg_3_value & ~CFG_3_CF_DROP_MASK) 365 | NPS_ENET_ENABLE << CFG_3_CF_DROP_SHIFT; 366 367 /* Enable Rx and Tx */ 368 ge_mac_cfg_0_value |= NPS_ENET_ENABLE << CFG_0_RX_EN_SHIFT; 369 ge_mac_cfg_0_value |= NPS_ENET_ENABLE << CFG_0_TX_EN_SHIFT; 370 371 nps_enet_reg_set(priv, NPS_ENET_REG_GE_MAC_CFG_3, 372 *ge_mac_cfg_3_value); 373 nps_enet_reg_set(priv, NPS_ENET_REG_GE_MAC_CFG_0, 374 ge_mac_cfg_0_value); 375 } 376 377 static void nps_enet_hw_disable_control(struct net_device *ndev) 378 { 379 struct nps_enet_priv *priv = netdev_priv(ndev); 380 381 /* Disable interrupts */ 382 nps_enet_reg_set(priv, NPS_ENET_REG_BUF_INT_ENABLE, 0); 383 384 /* Disable Rx and Tx */ 385 nps_enet_reg_set(priv, NPS_ENET_REG_GE_MAC_CFG_0, 0); 386 } 387 388 static void nps_enet_send_frame(struct net_device *ndev, 389 struct sk_buff *skb) 390 { 391 struct nps_enet_priv *priv = netdev_priv(ndev); 392 u32 tx_ctrl_value = 0; 393 short length = skb->len; 394 u32 i, len = DIV_ROUND_UP(length, sizeof(u32)); 395 u32 *src = (void *)skb->data; 396 bool src_is_aligned = IS_ALIGNED((unsigned long)src, sizeof(u32)); 397 398 /* In case src is not aligned we need an intermediate buffer */ 399 if (src_is_aligned) 400 iowrite32_rep(priv->regs_base + NPS_ENET_REG_TX_BUF, src, len); 401 else /* !src_is_aligned */ 402 for (i = 0; i < len; i++, src++) 403 nps_enet_reg_set(priv, NPS_ENET_REG_TX_BUF, 404 get_unaligned_be32(src)); 405 406 /* Write the length of the Frame */ 407 tx_ctrl_value |= length << TX_CTL_NT_SHIFT; 408 409 tx_ctrl_value |= NPS_ENET_ENABLE << TX_CTL_CT_SHIFT; 410 /* Send Frame */ 411 nps_enet_reg_set(priv, NPS_ENET_REG_TX_CTL, tx_ctrl_value); 412 } 413 414 /** 415 * nps_enet_set_mac_address - Set the MAC address for this device. 416 * @ndev: Pointer to net_device structure. 417 * @p: 6 byte Address to be written as MAC address. 418 * 419 * This function copies the HW address from the sockaddr structure to the 420 * net_device structure and updates the address in HW. 421 * 422 * returns: -EBUSY if the net device is busy or 0 if the address is set 423 * successfully. 424 */ 425 static s32 nps_enet_set_mac_address(struct net_device *ndev, void *p) 426 { 427 struct sockaddr *addr = p; 428 s32 res; 429 430 if (netif_running(ndev)) 431 return -EBUSY; 432 433 res = eth_mac_addr(ndev, p); 434 if (!res) { 435 ether_addr_copy(ndev->dev_addr, addr->sa_data); 436 nps_enet_set_hw_mac_address(ndev); 437 } 438 439 return res; 440 } 441 442 /** 443 * nps_enet_set_rx_mode - Change the receive filtering mode. 444 * @ndev: Pointer to the network device. 445 * 446 * This function enables/disables promiscuous mode 447 */ 448 static void nps_enet_set_rx_mode(struct net_device *ndev) 449 { 450 struct nps_enet_priv *priv = netdev_priv(ndev); 451 u32 ge_mac_cfg_2_value = priv->ge_mac_cfg_2_value; 452 453 if (ndev->flags & IFF_PROMISC) { 454 ge_mac_cfg_2_value = (ge_mac_cfg_2_value & ~CFG_2_DISK_DA_MASK) 455 | NPS_ENET_DISABLE << CFG_2_DISK_DA_SHIFT; 456 ge_mac_cfg_2_value = (ge_mac_cfg_2_value & ~CFG_2_DISK_MC_MASK) 457 | NPS_ENET_DISABLE << CFG_2_DISK_MC_SHIFT; 458 459 } else { 460 ge_mac_cfg_2_value = (ge_mac_cfg_2_value & ~CFG_2_DISK_DA_MASK) 461 | NPS_ENET_ENABLE << CFG_2_DISK_DA_SHIFT; 462 ge_mac_cfg_2_value = (ge_mac_cfg_2_value & ~CFG_2_DISK_MC_MASK) 463 | NPS_ENET_ENABLE << CFG_2_DISK_MC_SHIFT; 464 } 465 466 nps_enet_reg_set(priv, NPS_ENET_REG_GE_MAC_CFG_2, ge_mac_cfg_2_value); 467 } 468 469 /** 470 * nps_enet_open - Open the network device. 471 * @ndev: Pointer to the network device. 472 * 473 * returns: 0, on success or non-zero error value on failure. 474 * 475 * This function sets the MAC address, requests and enables an IRQ 476 * for the ENET device and starts the Tx queue. 477 */ 478 static s32 nps_enet_open(struct net_device *ndev) 479 { 480 struct nps_enet_priv *priv = netdev_priv(ndev); 481 s32 err; 482 483 /* Reset private variables */ 484 priv->tx_skb = NULL; 485 priv->ge_mac_cfg_2_value = 0; 486 priv->ge_mac_cfg_3_value = 0; 487 488 /* ge_mac_cfg_3 default values */ 489 priv->ge_mac_cfg_3_value |= 490 NPS_ENET_GE_MAC_CFG_3_RX_IFG_TH << CFG_3_RX_IFG_TH_SHIFT; 491 492 priv->ge_mac_cfg_3_value |= 493 NPS_ENET_GE_MAC_CFG_3_MAX_LEN << CFG_3_MAX_LEN_SHIFT; 494 495 /* Disable HW device */ 496 nps_enet_hw_disable_control(ndev); 497 498 /* irq Rx allocation */ 499 err = request_irq(priv->irq, nps_enet_irq_handler, 500 0, "enet-rx-tx", ndev); 501 if (err) 502 return err; 503 504 napi_enable(&priv->napi); 505 506 /* Enable HW device */ 507 nps_enet_hw_reset(ndev); 508 nps_enet_hw_enable_control(ndev); 509 510 netif_start_queue(ndev); 511 512 return 0; 513 } 514 515 /** 516 * nps_enet_stop - Close the network device. 517 * @ndev: Pointer to the network device. 518 * 519 * This function stops the Tx queue, disables interrupts for the ENET device. 520 */ 521 static s32 nps_enet_stop(struct net_device *ndev) 522 { 523 struct nps_enet_priv *priv = netdev_priv(ndev); 524 525 napi_disable(&priv->napi); 526 netif_stop_queue(ndev); 527 nps_enet_hw_disable_control(ndev); 528 free_irq(priv->irq, ndev); 529 530 return 0; 531 } 532 533 /** 534 * nps_enet_start_xmit - Starts the data transmission. 535 * @skb: sk_buff pointer that contains data to be Transmitted. 536 * @ndev: Pointer to net_device structure. 537 * 538 * returns: NETDEV_TX_OK, on success 539 * NETDEV_TX_BUSY, if any of the descriptors are not free. 540 * 541 * This function is invoked from upper layers to initiate transmission. 542 */ 543 static netdev_tx_t nps_enet_start_xmit(struct sk_buff *skb, 544 struct net_device *ndev) 545 { 546 struct nps_enet_priv *priv = netdev_priv(ndev); 547 548 /* This driver handles one frame at a time */ 549 netif_stop_queue(ndev); 550 551 priv->tx_skb = skb; 552 553 /* make sure tx_skb is actually written to the memory 554 * before the HW is informed and the IRQ is fired. 555 */ 556 wmb(); 557 558 nps_enet_send_frame(ndev, skb); 559 560 return NETDEV_TX_OK; 561 } 562 563 #ifdef CONFIG_NET_POLL_CONTROLLER 564 static void nps_enet_poll_controller(struct net_device *ndev) 565 { 566 disable_irq(ndev->irq); 567 nps_enet_irq_handler(ndev->irq, ndev); 568 enable_irq(ndev->irq); 569 } 570 #endif 571 572 static const struct net_device_ops nps_netdev_ops = { 573 .ndo_open = nps_enet_open, 574 .ndo_stop = nps_enet_stop, 575 .ndo_start_xmit = nps_enet_start_xmit, 576 .ndo_set_mac_address = nps_enet_set_mac_address, 577 .ndo_set_rx_mode = nps_enet_set_rx_mode, 578 #ifdef CONFIG_NET_POLL_CONTROLLER 579 .ndo_poll_controller = nps_enet_poll_controller, 580 #endif 581 }; 582 583 static s32 nps_enet_probe(struct platform_device *pdev) 584 { 585 struct device *dev = &pdev->dev; 586 struct net_device *ndev; 587 struct nps_enet_priv *priv; 588 s32 err = 0; 589 const char *mac_addr; 590 struct resource *res_regs; 591 592 if (!dev->of_node) 593 return -ENODEV; 594 595 ndev = alloc_etherdev(sizeof(struct nps_enet_priv)); 596 if (!ndev) 597 return -ENOMEM; 598 599 platform_set_drvdata(pdev, ndev); 600 SET_NETDEV_DEV(ndev, dev); 601 priv = netdev_priv(ndev); 602 603 /* The EZ NET specific entries in the device structure. */ 604 ndev->netdev_ops = &nps_netdev_ops; 605 ndev->watchdog_timeo = (400 * HZ / 1000); 606 /* FIXME :: no multicast support yet */ 607 ndev->flags &= ~IFF_MULTICAST; 608 609 res_regs = platform_get_resource(pdev, IORESOURCE_MEM, 0); 610 priv->regs_base = devm_ioremap_resource(dev, res_regs); 611 if (IS_ERR(priv->regs_base)) { 612 err = PTR_ERR(priv->regs_base); 613 goto out_netdev; 614 } 615 dev_dbg(dev, "Registers base address is 0x%p\n", priv->regs_base); 616 617 /* set kernel MAC address to dev */ 618 mac_addr = of_get_mac_address(dev->of_node); 619 if (!IS_ERR(mac_addr)) 620 ether_addr_copy(ndev->dev_addr, mac_addr); 621 else 622 eth_hw_addr_random(ndev); 623 624 /* Get IRQ number */ 625 priv->irq = platform_get_irq(pdev, 0); 626 if (!priv->irq) { 627 dev_err(dev, "failed to retrieve <irq Rx-Tx> value from device tree\n"); 628 err = -ENODEV; 629 goto out_netdev; 630 } 631 632 netif_napi_add(ndev, &priv->napi, nps_enet_poll, 633 NPS_ENET_NAPI_POLL_WEIGHT); 634 635 /* Register the driver. Should be the last thing in probe */ 636 err = register_netdev(ndev); 637 if (err) { 638 dev_err(dev, "Failed to register ndev for %s, err = 0x%08x\n", 639 ndev->name, (s32)err); 640 goto out_netif_api; 641 } 642 643 dev_info(dev, "(rx/tx=%d)\n", priv->irq); 644 return 0; 645 646 out_netif_api: 647 netif_napi_del(&priv->napi); 648 out_netdev: 649 if (err) 650 free_netdev(ndev); 651 652 return err; 653 } 654 655 static s32 nps_enet_remove(struct platform_device *pdev) 656 { 657 struct net_device *ndev = platform_get_drvdata(pdev); 658 struct nps_enet_priv *priv = netdev_priv(ndev); 659 660 unregister_netdev(ndev); 661 free_netdev(ndev); 662 netif_napi_del(&priv->napi); 663 664 return 0; 665 } 666 667 static const struct of_device_id nps_enet_dt_ids[] = { 668 { .compatible = "ezchip,nps-mgt-enet" }, 669 { /* Sentinel */ } 670 }; 671 MODULE_DEVICE_TABLE(of, nps_enet_dt_ids); 672 673 static struct platform_driver nps_enet_driver = { 674 .probe = nps_enet_probe, 675 .remove = nps_enet_remove, 676 .driver = { 677 .name = DRV_NAME, 678 .of_match_table = nps_enet_dt_ids, 679 }, 680 }; 681 682 module_platform_driver(nps_enet_driver); 683 684 MODULE_AUTHOR("EZchip Semiconductor"); 685 MODULE_LICENSE("GPL v2"); 686