xref: /openbmc/linux/drivers/net/ethernet/ethoc.c (revision f6723b56)
1 /*
2  * linux/drivers/net/ethernet/ethoc.c
3  *
4  * Copyright (C) 2007-2008 Avionic Design Development GmbH
5  * Copyright (C) 2008-2009 Avionic Design GmbH
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  *
11  * Written by Thierry Reding <thierry.reding@avionic-design.de>
12  */
13 
14 #include <linux/dma-mapping.h>
15 #include <linux/etherdevice.h>
16 #include <linux/clk.h>
17 #include <linux/crc32.h>
18 #include <linux/interrupt.h>
19 #include <linux/io.h>
20 #include <linux/mii.h>
21 #include <linux/phy.h>
22 #include <linux/platform_device.h>
23 #include <linux/sched.h>
24 #include <linux/slab.h>
25 #include <linux/of.h>
26 #include <linux/module.h>
27 #include <net/ethoc.h>
28 
29 static int buffer_size = 0x8000; /* 32 KBytes */
30 module_param(buffer_size, int, 0);
31 MODULE_PARM_DESC(buffer_size, "DMA buffer allocation size");
32 
33 /* register offsets */
34 #define	MODER		0x00
35 #define	INT_SOURCE	0x04
36 #define	INT_MASK	0x08
37 #define	IPGT		0x0c
38 #define	IPGR1		0x10
39 #define	IPGR2		0x14
40 #define	PACKETLEN	0x18
41 #define	COLLCONF	0x1c
42 #define	TX_BD_NUM	0x20
43 #define	CTRLMODER	0x24
44 #define	MIIMODER	0x28
45 #define	MIICOMMAND	0x2c
46 #define	MIIADDRESS	0x30
47 #define	MIITX_DATA	0x34
48 #define	MIIRX_DATA	0x38
49 #define	MIISTATUS	0x3c
50 #define	MAC_ADDR0	0x40
51 #define	MAC_ADDR1	0x44
52 #define	ETH_HASH0	0x48
53 #define	ETH_HASH1	0x4c
54 #define	ETH_TXCTRL	0x50
55 #define	ETH_END		0x54
56 
57 /* mode register */
58 #define	MODER_RXEN	(1 <<  0) /* receive enable */
59 #define	MODER_TXEN	(1 <<  1) /* transmit enable */
60 #define	MODER_NOPRE	(1 <<  2) /* no preamble */
61 #define	MODER_BRO	(1 <<  3) /* broadcast address */
62 #define	MODER_IAM	(1 <<  4) /* individual address mode */
63 #define	MODER_PRO	(1 <<  5) /* promiscuous mode */
64 #define	MODER_IFG	(1 <<  6) /* interframe gap for incoming frames */
65 #define	MODER_LOOP	(1 <<  7) /* loopback */
66 #define	MODER_NBO	(1 <<  8) /* no back-off */
67 #define	MODER_EDE	(1 <<  9) /* excess defer enable */
68 #define	MODER_FULLD	(1 << 10) /* full duplex */
69 #define	MODER_RESET	(1 << 11) /* FIXME: reset (undocumented) */
70 #define	MODER_DCRC	(1 << 12) /* delayed CRC enable */
71 #define	MODER_CRC	(1 << 13) /* CRC enable */
72 #define	MODER_HUGE	(1 << 14) /* huge packets enable */
73 #define	MODER_PAD	(1 << 15) /* padding enabled */
74 #define	MODER_RSM	(1 << 16) /* receive small packets */
75 
76 /* interrupt source and mask registers */
77 #define	INT_MASK_TXF	(1 << 0) /* transmit frame */
78 #define	INT_MASK_TXE	(1 << 1) /* transmit error */
79 #define	INT_MASK_RXF	(1 << 2) /* receive frame */
80 #define	INT_MASK_RXE	(1 << 3) /* receive error */
81 #define	INT_MASK_BUSY	(1 << 4)
82 #define	INT_MASK_TXC	(1 << 5) /* transmit control frame */
83 #define	INT_MASK_RXC	(1 << 6) /* receive control frame */
84 
85 #define	INT_MASK_TX	(INT_MASK_TXF | INT_MASK_TXE)
86 #define	INT_MASK_RX	(INT_MASK_RXF | INT_MASK_RXE)
87 
88 #define	INT_MASK_ALL ( \
89 		INT_MASK_TXF | INT_MASK_TXE | \
90 		INT_MASK_RXF | INT_MASK_RXE | \
91 		INT_MASK_TXC | INT_MASK_RXC | \
92 		INT_MASK_BUSY \
93 	)
94 
95 /* packet length register */
96 #define	PACKETLEN_MIN(min)		(((min) & 0xffff) << 16)
97 #define	PACKETLEN_MAX(max)		(((max) & 0xffff) <<  0)
98 #define	PACKETLEN_MIN_MAX(min, max)	(PACKETLEN_MIN(min) | \
99 					PACKETLEN_MAX(max))
100 
101 /* transmit buffer number register */
102 #define	TX_BD_NUM_VAL(x)	(((x) <= 0x80) ? (x) : 0x80)
103 
104 /* control module mode register */
105 #define	CTRLMODER_PASSALL	(1 << 0) /* pass all receive frames */
106 #define	CTRLMODER_RXFLOW	(1 << 1) /* receive control flow */
107 #define	CTRLMODER_TXFLOW	(1 << 2) /* transmit control flow */
108 
109 /* MII mode register */
110 #define	MIIMODER_CLKDIV(x)	((x) & 0xfe) /* needs to be an even number */
111 #define	MIIMODER_NOPRE		(1 << 8) /* no preamble */
112 
113 /* MII command register */
114 #define	MIICOMMAND_SCAN		(1 << 0) /* scan status */
115 #define	MIICOMMAND_READ		(1 << 1) /* read status */
116 #define	MIICOMMAND_WRITE	(1 << 2) /* write control data */
117 
118 /* MII address register */
119 #define	MIIADDRESS_FIAD(x)		(((x) & 0x1f) << 0)
120 #define	MIIADDRESS_RGAD(x)		(((x) & 0x1f) << 8)
121 #define	MIIADDRESS_ADDR(phy, reg)	(MIIADDRESS_FIAD(phy) | \
122 					MIIADDRESS_RGAD(reg))
123 
124 /* MII transmit data register */
125 #define	MIITX_DATA_VAL(x)	((x) & 0xffff)
126 
127 /* MII receive data register */
128 #define	MIIRX_DATA_VAL(x)	((x) & 0xffff)
129 
130 /* MII status register */
131 #define	MIISTATUS_LINKFAIL	(1 << 0)
132 #define	MIISTATUS_BUSY		(1 << 1)
133 #define	MIISTATUS_INVALID	(1 << 2)
134 
135 /* TX buffer descriptor */
136 #define	TX_BD_CS		(1 <<  0) /* carrier sense lost */
137 #define	TX_BD_DF		(1 <<  1) /* defer indication */
138 #define	TX_BD_LC		(1 <<  2) /* late collision */
139 #define	TX_BD_RL		(1 <<  3) /* retransmission limit */
140 #define	TX_BD_RETRY_MASK	(0x00f0)
141 #define	TX_BD_RETRY(x)		(((x) & 0x00f0) >>  4)
142 #define	TX_BD_UR		(1 <<  8) /* transmitter underrun */
143 #define	TX_BD_CRC		(1 << 11) /* TX CRC enable */
144 #define	TX_BD_PAD		(1 << 12) /* pad enable for short packets */
145 #define	TX_BD_WRAP		(1 << 13)
146 #define	TX_BD_IRQ		(1 << 14) /* interrupt request enable */
147 #define	TX_BD_READY		(1 << 15) /* TX buffer ready */
148 #define	TX_BD_LEN(x)		(((x) & 0xffff) << 16)
149 #define	TX_BD_LEN_MASK		(0xffff << 16)
150 
151 #define	TX_BD_STATS		(TX_BD_CS | TX_BD_DF | TX_BD_LC | \
152 				TX_BD_RL | TX_BD_RETRY_MASK | TX_BD_UR)
153 
154 /* RX buffer descriptor */
155 #define	RX_BD_LC	(1 <<  0) /* late collision */
156 #define	RX_BD_CRC	(1 <<  1) /* RX CRC error */
157 #define	RX_BD_SF	(1 <<  2) /* short frame */
158 #define	RX_BD_TL	(1 <<  3) /* too long */
159 #define	RX_BD_DN	(1 <<  4) /* dribble nibble */
160 #define	RX_BD_IS	(1 <<  5) /* invalid symbol */
161 #define	RX_BD_OR	(1 <<  6) /* receiver overrun */
162 #define	RX_BD_MISS	(1 <<  7)
163 #define	RX_BD_CF	(1 <<  8) /* control frame */
164 #define	RX_BD_WRAP	(1 << 13)
165 #define	RX_BD_IRQ	(1 << 14) /* interrupt request enable */
166 #define	RX_BD_EMPTY	(1 << 15)
167 #define	RX_BD_LEN(x)	(((x) & 0xffff) << 16)
168 
169 #define	RX_BD_STATS	(RX_BD_LC | RX_BD_CRC | RX_BD_SF | RX_BD_TL | \
170 			RX_BD_DN | RX_BD_IS | RX_BD_OR | RX_BD_MISS)
171 
172 #define	ETHOC_BUFSIZ		1536
173 #define	ETHOC_ZLEN		64
174 #define	ETHOC_BD_BASE		0x400
175 #define	ETHOC_TIMEOUT		(HZ / 2)
176 #define	ETHOC_MII_TIMEOUT	(1 + (HZ / 5))
177 
178 /**
179  * struct ethoc - driver-private device structure
180  * @iobase:	pointer to I/O memory region
181  * @membase:	pointer to buffer memory region
182  * @dma_alloc:	dma allocated buffer size
183  * @io_region_size:	I/O memory region size
184  * @num_bd:	number of buffer descriptors
185  * @num_tx:	number of send buffers
186  * @cur_tx:	last send buffer written
187  * @dty_tx:	last buffer actually sent
188  * @num_rx:	number of receive buffers
189  * @cur_rx:	current receive buffer
190  * @vma:        pointer to array of virtual memory addresses for buffers
191  * @netdev:	pointer to network device structure
192  * @napi:	NAPI structure
193  * @msg_enable:	device state flags
194  * @lock:	device lock
195  * @phy:	attached PHY
196  * @mdio:	MDIO bus for PHY access
197  * @phy_id:	address of attached PHY
198  */
199 struct ethoc {
200 	void __iomem *iobase;
201 	void __iomem *membase;
202 	int dma_alloc;
203 	resource_size_t io_region_size;
204 
205 	unsigned int num_bd;
206 	unsigned int num_tx;
207 	unsigned int cur_tx;
208 	unsigned int dty_tx;
209 
210 	unsigned int num_rx;
211 	unsigned int cur_rx;
212 
213 	void **vma;
214 
215 	struct net_device *netdev;
216 	struct napi_struct napi;
217 	u32 msg_enable;
218 
219 	spinlock_t lock;
220 
221 	struct phy_device *phy;
222 	struct mii_bus *mdio;
223 	struct clk *clk;
224 	s8 phy_id;
225 };
226 
227 /**
228  * struct ethoc_bd - buffer descriptor
229  * @stat:	buffer statistics
230  * @addr:	physical memory address
231  */
232 struct ethoc_bd {
233 	u32 stat;
234 	u32 addr;
235 };
236 
237 static inline u32 ethoc_read(struct ethoc *dev, loff_t offset)
238 {
239 	return ioread32(dev->iobase + offset);
240 }
241 
242 static inline void ethoc_write(struct ethoc *dev, loff_t offset, u32 data)
243 {
244 	iowrite32(data, dev->iobase + offset);
245 }
246 
247 static inline void ethoc_read_bd(struct ethoc *dev, int index,
248 		struct ethoc_bd *bd)
249 {
250 	loff_t offset = ETHOC_BD_BASE + (index * sizeof(struct ethoc_bd));
251 	bd->stat = ethoc_read(dev, offset + 0);
252 	bd->addr = ethoc_read(dev, offset + 4);
253 }
254 
255 static inline void ethoc_write_bd(struct ethoc *dev, int index,
256 		const struct ethoc_bd *bd)
257 {
258 	loff_t offset = ETHOC_BD_BASE + (index * sizeof(struct ethoc_bd));
259 	ethoc_write(dev, offset + 0, bd->stat);
260 	ethoc_write(dev, offset + 4, bd->addr);
261 }
262 
263 static inline void ethoc_enable_irq(struct ethoc *dev, u32 mask)
264 {
265 	u32 imask = ethoc_read(dev, INT_MASK);
266 	imask |= mask;
267 	ethoc_write(dev, INT_MASK, imask);
268 }
269 
270 static inline void ethoc_disable_irq(struct ethoc *dev, u32 mask)
271 {
272 	u32 imask = ethoc_read(dev, INT_MASK);
273 	imask &= ~mask;
274 	ethoc_write(dev, INT_MASK, imask);
275 }
276 
277 static inline void ethoc_ack_irq(struct ethoc *dev, u32 mask)
278 {
279 	ethoc_write(dev, INT_SOURCE, mask);
280 }
281 
282 static inline void ethoc_enable_rx_and_tx(struct ethoc *dev)
283 {
284 	u32 mode = ethoc_read(dev, MODER);
285 	mode |= MODER_RXEN | MODER_TXEN;
286 	ethoc_write(dev, MODER, mode);
287 }
288 
289 static inline void ethoc_disable_rx_and_tx(struct ethoc *dev)
290 {
291 	u32 mode = ethoc_read(dev, MODER);
292 	mode &= ~(MODER_RXEN | MODER_TXEN);
293 	ethoc_write(dev, MODER, mode);
294 }
295 
296 static int ethoc_init_ring(struct ethoc *dev, unsigned long mem_start)
297 {
298 	struct ethoc_bd bd;
299 	int i;
300 	void *vma;
301 
302 	dev->cur_tx = 0;
303 	dev->dty_tx = 0;
304 	dev->cur_rx = 0;
305 
306 	ethoc_write(dev, TX_BD_NUM, dev->num_tx);
307 
308 	/* setup transmission buffers */
309 	bd.addr = mem_start;
310 	bd.stat = TX_BD_IRQ | TX_BD_CRC;
311 	vma = dev->membase;
312 
313 	for (i = 0; i < dev->num_tx; i++) {
314 		if (i == dev->num_tx - 1)
315 			bd.stat |= TX_BD_WRAP;
316 
317 		ethoc_write_bd(dev, i, &bd);
318 		bd.addr += ETHOC_BUFSIZ;
319 
320 		dev->vma[i] = vma;
321 		vma += ETHOC_BUFSIZ;
322 	}
323 
324 	bd.stat = RX_BD_EMPTY | RX_BD_IRQ;
325 
326 	for (i = 0; i < dev->num_rx; i++) {
327 		if (i == dev->num_rx - 1)
328 			bd.stat |= RX_BD_WRAP;
329 
330 		ethoc_write_bd(dev, dev->num_tx + i, &bd);
331 		bd.addr += ETHOC_BUFSIZ;
332 
333 		dev->vma[dev->num_tx + i] = vma;
334 		vma += ETHOC_BUFSIZ;
335 	}
336 
337 	return 0;
338 }
339 
340 static int ethoc_reset(struct ethoc *dev)
341 {
342 	u32 mode;
343 
344 	/* TODO: reset controller? */
345 
346 	ethoc_disable_rx_and_tx(dev);
347 
348 	/* TODO: setup registers */
349 
350 	/* enable FCS generation and automatic padding */
351 	mode = ethoc_read(dev, MODER);
352 	mode |= MODER_CRC | MODER_PAD;
353 	ethoc_write(dev, MODER, mode);
354 
355 	/* set full-duplex mode */
356 	mode = ethoc_read(dev, MODER);
357 	mode |= MODER_FULLD;
358 	ethoc_write(dev, MODER, mode);
359 	ethoc_write(dev, IPGT, 0x15);
360 
361 	ethoc_ack_irq(dev, INT_MASK_ALL);
362 	ethoc_enable_irq(dev, INT_MASK_ALL);
363 	ethoc_enable_rx_and_tx(dev);
364 	return 0;
365 }
366 
367 static unsigned int ethoc_update_rx_stats(struct ethoc *dev,
368 		struct ethoc_bd *bd)
369 {
370 	struct net_device *netdev = dev->netdev;
371 	unsigned int ret = 0;
372 
373 	if (bd->stat & RX_BD_TL) {
374 		dev_err(&netdev->dev, "RX: frame too long\n");
375 		netdev->stats.rx_length_errors++;
376 		ret++;
377 	}
378 
379 	if (bd->stat & RX_BD_SF) {
380 		dev_err(&netdev->dev, "RX: frame too short\n");
381 		netdev->stats.rx_length_errors++;
382 		ret++;
383 	}
384 
385 	if (bd->stat & RX_BD_DN) {
386 		dev_err(&netdev->dev, "RX: dribble nibble\n");
387 		netdev->stats.rx_frame_errors++;
388 	}
389 
390 	if (bd->stat & RX_BD_CRC) {
391 		dev_err(&netdev->dev, "RX: wrong CRC\n");
392 		netdev->stats.rx_crc_errors++;
393 		ret++;
394 	}
395 
396 	if (bd->stat & RX_BD_OR) {
397 		dev_err(&netdev->dev, "RX: overrun\n");
398 		netdev->stats.rx_over_errors++;
399 		ret++;
400 	}
401 
402 	if (bd->stat & RX_BD_MISS)
403 		netdev->stats.rx_missed_errors++;
404 
405 	if (bd->stat & RX_BD_LC) {
406 		dev_err(&netdev->dev, "RX: late collision\n");
407 		netdev->stats.collisions++;
408 		ret++;
409 	}
410 
411 	return ret;
412 }
413 
414 static int ethoc_rx(struct net_device *dev, int limit)
415 {
416 	struct ethoc *priv = netdev_priv(dev);
417 	int count;
418 
419 	for (count = 0; count < limit; ++count) {
420 		unsigned int entry;
421 		struct ethoc_bd bd;
422 
423 		entry = priv->num_tx + priv->cur_rx;
424 		ethoc_read_bd(priv, entry, &bd);
425 		if (bd.stat & RX_BD_EMPTY) {
426 			ethoc_ack_irq(priv, INT_MASK_RX);
427 			/* If packet (interrupt) came in between checking
428 			 * BD_EMTPY and clearing the interrupt source, then we
429 			 * risk missing the packet as the RX interrupt won't
430 			 * trigger right away when we reenable it; hence, check
431 			 * BD_EMTPY here again to make sure there isn't such a
432 			 * packet waiting for us...
433 			 */
434 			ethoc_read_bd(priv, entry, &bd);
435 			if (bd.stat & RX_BD_EMPTY)
436 				break;
437 		}
438 
439 		if (ethoc_update_rx_stats(priv, &bd) == 0) {
440 			int size = bd.stat >> 16;
441 			struct sk_buff *skb;
442 
443 			size -= 4; /* strip the CRC */
444 			skb = netdev_alloc_skb_ip_align(dev, size);
445 
446 			if (likely(skb)) {
447 				void *src = priv->vma[entry];
448 				memcpy_fromio(skb_put(skb, size), src, size);
449 				skb->protocol = eth_type_trans(skb, dev);
450 				dev->stats.rx_packets++;
451 				dev->stats.rx_bytes += size;
452 				netif_receive_skb(skb);
453 			} else {
454 				if (net_ratelimit())
455 					dev_warn(&dev->dev,
456 					    "low on memory - packet dropped\n");
457 
458 				dev->stats.rx_dropped++;
459 				break;
460 			}
461 		}
462 
463 		/* clear the buffer descriptor so it can be reused */
464 		bd.stat &= ~RX_BD_STATS;
465 		bd.stat |=  RX_BD_EMPTY;
466 		ethoc_write_bd(priv, entry, &bd);
467 		if (++priv->cur_rx == priv->num_rx)
468 			priv->cur_rx = 0;
469 	}
470 
471 	return count;
472 }
473 
474 static void ethoc_update_tx_stats(struct ethoc *dev, struct ethoc_bd *bd)
475 {
476 	struct net_device *netdev = dev->netdev;
477 
478 	if (bd->stat & TX_BD_LC) {
479 		dev_err(&netdev->dev, "TX: late collision\n");
480 		netdev->stats.tx_window_errors++;
481 	}
482 
483 	if (bd->stat & TX_BD_RL) {
484 		dev_err(&netdev->dev, "TX: retransmit limit\n");
485 		netdev->stats.tx_aborted_errors++;
486 	}
487 
488 	if (bd->stat & TX_BD_UR) {
489 		dev_err(&netdev->dev, "TX: underrun\n");
490 		netdev->stats.tx_fifo_errors++;
491 	}
492 
493 	if (bd->stat & TX_BD_CS) {
494 		dev_err(&netdev->dev, "TX: carrier sense lost\n");
495 		netdev->stats.tx_carrier_errors++;
496 	}
497 
498 	if (bd->stat & TX_BD_STATS)
499 		netdev->stats.tx_errors++;
500 
501 	netdev->stats.collisions += (bd->stat >> 4) & 0xf;
502 	netdev->stats.tx_bytes += bd->stat >> 16;
503 	netdev->stats.tx_packets++;
504 }
505 
506 static int ethoc_tx(struct net_device *dev, int limit)
507 {
508 	struct ethoc *priv = netdev_priv(dev);
509 	int count;
510 	struct ethoc_bd bd;
511 
512 	for (count = 0; count < limit; ++count) {
513 		unsigned int entry;
514 
515 		entry = priv->dty_tx & (priv->num_tx-1);
516 
517 		ethoc_read_bd(priv, entry, &bd);
518 
519 		if (bd.stat & TX_BD_READY || (priv->dty_tx == priv->cur_tx)) {
520 			ethoc_ack_irq(priv, INT_MASK_TX);
521 			/* If interrupt came in between reading in the BD
522 			 * and clearing the interrupt source, then we risk
523 			 * missing the event as the TX interrupt won't trigger
524 			 * right away when we reenable it; hence, check
525 			 * BD_EMPTY here again to make sure there isn't such an
526 			 * event pending...
527 			 */
528 			ethoc_read_bd(priv, entry, &bd);
529 			if (bd.stat & TX_BD_READY ||
530 			    (priv->dty_tx == priv->cur_tx))
531 				break;
532 		}
533 
534 		ethoc_update_tx_stats(priv, &bd);
535 		priv->dty_tx++;
536 	}
537 
538 	if ((priv->cur_tx - priv->dty_tx) <= (priv->num_tx / 2))
539 		netif_wake_queue(dev);
540 
541 	return count;
542 }
543 
544 static irqreturn_t ethoc_interrupt(int irq, void *dev_id)
545 {
546 	struct net_device *dev = dev_id;
547 	struct ethoc *priv = netdev_priv(dev);
548 	u32 pending;
549 	u32 mask;
550 
551 	/* Figure out what triggered the interrupt...
552 	 * The tricky bit here is that the interrupt source bits get
553 	 * set in INT_SOURCE for an event regardless of whether that
554 	 * event is masked or not.  Thus, in order to figure out what
555 	 * triggered the interrupt, we need to remove the sources
556 	 * for all events that are currently masked.  This behaviour
557 	 * is not particularly well documented but reasonable...
558 	 */
559 	mask = ethoc_read(priv, INT_MASK);
560 	pending = ethoc_read(priv, INT_SOURCE);
561 	pending &= mask;
562 
563 	if (unlikely(pending == 0))
564 		return IRQ_NONE;
565 
566 	ethoc_ack_irq(priv, pending);
567 
568 	/* We always handle the dropped packet interrupt */
569 	if (pending & INT_MASK_BUSY) {
570 		dev_err(&dev->dev, "packet dropped\n");
571 		dev->stats.rx_dropped++;
572 	}
573 
574 	/* Handle receive/transmit event by switching to polling */
575 	if (pending & (INT_MASK_TX | INT_MASK_RX)) {
576 		ethoc_disable_irq(priv, INT_MASK_TX | INT_MASK_RX);
577 		napi_schedule(&priv->napi);
578 	}
579 
580 	return IRQ_HANDLED;
581 }
582 
583 static int ethoc_get_mac_address(struct net_device *dev, void *addr)
584 {
585 	struct ethoc *priv = netdev_priv(dev);
586 	u8 *mac = (u8 *)addr;
587 	u32 reg;
588 
589 	reg = ethoc_read(priv, MAC_ADDR0);
590 	mac[2] = (reg >> 24) & 0xff;
591 	mac[3] = (reg >> 16) & 0xff;
592 	mac[4] = (reg >>  8) & 0xff;
593 	mac[5] = (reg >>  0) & 0xff;
594 
595 	reg = ethoc_read(priv, MAC_ADDR1);
596 	mac[0] = (reg >>  8) & 0xff;
597 	mac[1] = (reg >>  0) & 0xff;
598 
599 	return 0;
600 }
601 
602 static int ethoc_poll(struct napi_struct *napi, int budget)
603 {
604 	struct ethoc *priv = container_of(napi, struct ethoc, napi);
605 	int rx_work_done = 0;
606 	int tx_work_done = 0;
607 
608 	rx_work_done = ethoc_rx(priv->netdev, budget);
609 	tx_work_done = ethoc_tx(priv->netdev, budget);
610 
611 	if (rx_work_done < budget && tx_work_done < budget) {
612 		napi_complete(napi);
613 		ethoc_enable_irq(priv, INT_MASK_TX | INT_MASK_RX);
614 	}
615 
616 	return rx_work_done;
617 }
618 
619 static int ethoc_mdio_read(struct mii_bus *bus, int phy, int reg)
620 {
621 	struct ethoc *priv = bus->priv;
622 	int i;
623 
624 	ethoc_write(priv, MIIADDRESS, MIIADDRESS_ADDR(phy, reg));
625 	ethoc_write(priv, MIICOMMAND, MIICOMMAND_READ);
626 
627 	for (i = 0; i < 5; i++) {
628 		u32 status = ethoc_read(priv, MIISTATUS);
629 		if (!(status & MIISTATUS_BUSY)) {
630 			u32 data = ethoc_read(priv, MIIRX_DATA);
631 			/* reset MII command register */
632 			ethoc_write(priv, MIICOMMAND, 0);
633 			return data;
634 		}
635 		usleep_range(100, 200);
636 	}
637 
638 	return -EBUSY;
639 }
640 
641 static int ethoc_mdio_write(struct mii_bus *bus, int phy, int reg, u16 val)
642 {
643 	struct ethoc *priv = bus->priv;
644 	int i;
645 
646 	ethoc_write(priv, MIIADDRESS, MIIADDRESS_ADDR(phy, reg));
647 	ethoc_write(priv, MIITX_DATA, val);
648 	ethoc_write(priv, MIICOMMAND, MIICOMMAND_WRITE);
649 
650 	for (i = 0; i < 5; i++) {
651 		u32 stat = ethoc_read(priv, MIISTATUS);
652 		if (!(stat & MIISTATUS_BUSY)) {
653 			/* reset MII command register */
654 			ethoc_write(priv, MIICOMMAND, 0);
655 			return 0;
656 		}
657 		usleep_range(100, 200);
658 	}
659 
660 	return -EBUSY;
661 }
662 
663 static int ethoc_mdio_reset(struct mii_bus *bus)
664 {
665 	return 0;
666 }
667 
668 static void ethoc_mdio_poll(struct net_device *dev)
669 {
670 }
671 
672 static int ethoc_mdio_probe(struct net_device *dev)
673 {
674 	struct ethoc *priv = netdev_priv(dev);
675 	struct phy_device *phy;
676 	int err;
677 
678 	if (priv->phy_id != -1)
679 		phy = priv->mdio->phy_map[priv->phy_id];
680 	else
681 		phy = phy_find_first(priv->mdio);
682 
683 	if (!phy) {
684 		dev_err(&dev->dev, "no PHY found\n");
685 		return -ENXIO;
686 	}
687 
688 	err = phy_connect_direct(dev, phy, ethoc_mdio_poll,
689 				 PHY_INTERFACE_MODE_GMII);
690 	if (err) {
691 		dev_err(&dev->dev, "could not attach to PHY\n");
692 		return err;
693 	}
694 
695 	priv->phy = phy;
696 	phy->advertising &= ~(ADVERTISED_1000baseT_Full |
697 			      ADVERTISED_1000baseT_Half);
698 	phy->supported &= ~(SUPPORTED_1000baseT_Full |
699 			    SUPPORTED_1000baseT_Half);
700 
701 	return 0;
702 }
703 
704 static int ethoc_open(struct net_device *dev)
705 {
706 	struct ethoc *priv = netdev_priv(dev);
707 	int ret;
708 
709 	ret = request_irq(dev->irq, ethoc_interrupt, IRQF_SHARED,
710 			dev->name, dev);
711 	if (ret)
712 		return ret;
713 
714 	ethoc_init_ring(priv, dev->mem_start);
715 	ethoc_reset(priv);
716 
717 	if (netif_queue_stopped(dev)) {
718 		dev_dbg(&dev->dev, " resuming queue\n");
719 		netif_wake_queue(dev);
720 	} else {
721 		dev_dbg(&dev->dev, " starting queue\n");
722 		netif_start_queue(dev);
723 	}
724 
725 	phy_start(priv->phy);
726 	napi_enable(&priv->napi);
727 
728 	if (netif_msg_ifup(priv)) {
729 		dev_info(&dev->dev, "I/O: %08lx Memory: %08lx-%08lx\n",
730 				dev->base_addr, dev->mem_start, dev->mem_end);
731 	}
732 
733 	return 0;
734 }
735 
736 static int ethoc_stop(struct net_device *dev)
737 {
738 	struct ethoc *priv = netdev_priv(dev);
739 
740 	napi_disable(&priv->napi);
741 
742 	if (priv->phy)
743 		phy_stop(priv->phy);
744 
745 	ethoc_disable_rx_and_tx(priv);
746 	free_irq(dev->irq, dev);
747 
748 	if (!netif_queue_stopped(dev))
749 		netif_stop_queue(dev);
750 
751 	return 0;
752 }
753 
754 static int ethoc_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
755 {
756 	struct ethoc *priv = netdev_priv(dev);
757 	struct mii_ioctl_data *mdio = if_mii(ifr);
758 	struct phy_device *phy = NULL;
759 
760 	if (!netif_running(dev))
761 		return -EINVAL;
762 
763 	if (cmd != SIOCGMIIPHY) {
764 		if (mdio->phy_id >= PHY_MAX_ADDR)
765 			return -ERANGE;
766 
767 		phy = priv->mdio->phy_map[mdio->phy_id];
768 		if (!phy)
769 			return -ENODEV;
770 	} else {
771 		phy = priv->phy;
772 	}
773 
774 	return phy_mii_ioctl(phy, ifr, cmd);
775 }
776 
777 static int ethoc_config(struct net_device *dev, struct ifmap *map)
778 {
779 	return -ENOSYS;
780 }
781 
782 static void ethoc_do_set_mac_address(struct net_device *dev)
783 {
784 	struct ethoc *priv = netdev_priv(dev);
785 	unsigned char *mac = dev->dev_addr;
786 
787 	ethoc_write(priv, MAC_ADDR0, (mac[2] << 24) | (mac[3] << 16) |
788 				     (mac[4] <<  8) | (mac[5] <<  0));
789 	ethoc_write(priv, MAC_ADDR1, (mac[0] <<  8) | (mac[1] <<  0));
790 }
791 
792 static int ethoc_set_mac_address(struct net_device *dev, void *p)
793 {
794 	const struct sockaddr *addr = p;
795 
796 	if (!is_valid_ether_addr(addr->sa_data))
797 		return -EADDRNOTAVAIL;
798 	memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
799 	ethoc_do_set_mac_address(dev);
800 	return 0;
801 }
802 
803 static void ethoc_set_multicast_list(struct net_device *dev)
804 {
805 	struct ethoc *priv = netdev_priv(dev);
806 	u32 mode = ethoc_read(priv, MODER);
807 	struct netdev_hw_addr *ha;
808 	u32 hash[2] = { 0, 0 };
809 
810 	/* set loopback mode if requested */
811 	if (dev->flags & IFF_LOOPBACK)
812 		mode |=  MODER_LOOP;
813 	else
814 		mode &= ~MODER_LOOP;
815 
816 	/* receive broadcast frames if requested */
817 	if (dev->flags & IFF_BROADCAST)
818 		mode &= ~MODER_BRO;
819 	else
820 		mode |=  MODER_BRO;
821 
822 	/* enable promiscuous mode if requested */
823 	if (dev->flags & IFF_PROMISC)
824 		mode |=  MODER_PRO;
825 	else
826 		mode &= ~MODER_PRO;
827 
828 	ethoc_write(priv, MODER, mode);
829 
830 	/* receive multicast frames */
831 	if (dev->flags & IFF_ALLMULTI) {
832 		hash[0] = 0xffffffff;
833 		hash[1] = 0xffffffff;
834 	} else {
835 		netdev_for_each_mc_addr(ha, dev) {
836 			u32 crc = ether_crc(ETH_ALEN, ha->addr);
837 			int bit = (crc >> 26) & 0x3f;
838 			hash[bit >> 5] |= 1 << (bit & 0x1f);
839 		}
840 	}
841 
842 	ethoc_write(priv, ETH_HASH0, hash[0]);
843 	ethoc_write(priv, ETH_HASH1, hash[1]);
844 }
845 
846 static int ethoc_change_mtu(struct net_device *dev, int new_mtu)
847 {
848 	return -ENOSYS;
849 }
850 
851 static void ethoc_tx_timeout(struct net_device *dev)
852 {
853 	struct ethoc *priv = netdev_priv(dev);
854 	u32 pending = ethoc_read(priv, INT_SOURCE);
855 	if (likely(pending))
856 		ethoc_interrupt(dev->irq, dev);
857 }
858 
859 static netdev_tx_t ethoc_start_xmit(struct sk_buff *skb, struct net_device *dev)
860 {
861 	struct ethoc *priv = netdev_priv(dev);
862 	struct ethoc_bd bd;
863 	unsigned int entry;
864 	void *dest;
865 
866 	if (unlikely(skb->len > ETHOC_BUFSIZ)) {
867 		dev->stats.tx_errors++;
868 		goto out;
869 	}
870 
871 	entry = priv->cur_tx % priv->num_tx;
872 	spin_lock_irq(&priv->lock);
873 	priv->cur_tx++;
874 
875 	ethoc_read_bd(priv, entry, &bd);
876 	if (unlikely(skb->len < ETHOC_ZLEN))
877 		bd.stat |=  TX_BD_PAD;
878 	else
879 		bd.stat &= ~TX_BD_PAD;
880 
881 	dest = priv->vma[entry];
882 	memcpy_toio(dest, skb->data, skb->len);
883 
884 	bd.stat &= ~(TX_BD_STATS | TX_BD_LEN_MASK);
885 	bd.stat |= TX_BD_LEN(skb->len);
886 	ethoc_write_bd(priv, entry, &bd);
887 
888 	bd.stat |= TX_BD_READY;
889 	ethoc_write_bd(priv, entry, &bd);
890 
891 	if (priv->cur_tx == (priv->dty_tx + priv->num_tx)) {
892 		dev_dbg(&dev->dev, "stopping queue\n");
893 		netif_stop_queue(dev);
894 	}
895 
896 	spin_unlock_irq(&priv->lock);
897 	skb_tx_timestamp(skb);
898 out:
899 	dev_kfree_skb(skb);
900 	return NETDEV_TX_OK;
901 }
902 
903 static int ethoc_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
904 {
905 	struct ethoc *priv = netdev_priv(dev);
906 	struct phy_device *phydev = priv->phy;
907 
908 	if (!phydev)
909 		return -EOPNOTSUPP;
910 
911 	return phy_ethtool_gset(phydev, cmd);
912 }
913 
914 static int ethoc_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
915 {
916 	struct ethoc *priv = netdev_priv(dev);
917 	struct phy_device *phydev = priv->phy;
918 
919 	if (!phydev)
920 		return -EOPNOTSUPP;
921 
922 	return phy_ethtool_sset(phydev, cmd);
923 }
924 
925 static int ethoc_get_regs_len(struct net_device *netdev)
926 {
927 	return ETH_END;
928 }
929 
930 static void ethoc_get_regs(struct net_device *dev, struct ethtool_regs *regs,
931 			   void *p)
932 {
933 	struct ethoc *priv = netdev_priv(dev);
934 	u32 *regs_buff = p;
935 	unsigned i;
936 
937 	regs->version = 0;
938 	for (i = 0; i < ETH_END / sizeof(u32); ++i)
939 		regs_buff[i] = ethoc_read(priv, i * sizeof(u32));
940 }
941 
942 static void ethoc_get_ringparam(struct net_device *dev,
943 				struct ethtool_ringparam *ring)
944 {
945 	struct ethoc *priv = netdev_priv(dev);
946 
947 	ring->rx_max_pending = priv->num_bd - 1;
948 	ring->rx_mini_max_pending = 0;
949 	ring->rx_jumbo_max_pending = 0;
950 	ring->tx_max_pending = priv->num_bd - 1;
951 
952 	ring->rx_pending = priv->num_rx;
953 	ring->rx_mini_pending = 0;
954 	ring->rx_jumbo_pending = 0;
955 	ring->tx_pending = priv->num_tx;
956 }
957 
958 static int ethoc_set_ringparam(struct net_device *dev,
959 			       struct ethtool_ringparam *ring)
960 {
961 	struct ethoc *priv = netdev_priv(dev);
962 
963 	if (ring->tx_pending < 1 || ring->rx_pending < 1 ||
964 	    ring->tx_pending + ring->rx_pending > priv->num_bd)
965 		return -EINVAL;
966 	if (ring->rx_mini_pending || ring->rx_jumbo_pending)
967 		return -EINVAL;
968 
969 	if (netif_running(dev)) {
970 		netif_tx_disable(dev);
971 		ethoc_disable_rx_and_tx(priv);
972 		ethoc_disable_irq(priv, INT_MASK_TX | INT_MASK_RX);
973 		synchronize_irq(dev->irq);
974 	}
975 
976 	priv->num_tx = rounddown_pow_of_two(ring->tx_pending);
977 	priv->num_rx = ring->rx_pending;
978 	ethoc_init_ring(priv, dev->mem_start);
979 
980 	if (netif_running(dev)) {
981 		ethoc_enable_irq(priv, INT_MASK_TX | INT_MASK_RX);
982 		ethoc_enable_rx_and_tx(priv);
983 		netif_wake_queue(dev);
984 	}
985 	return 0;
986 }
987 
988 const struct ethtool_ops ethoc_ethtool_ops = {
989 	.get_settings = ethoc_get_settings,
990 	.set_settings = ethoc_set_settings,
991 	.get_regs_len = ethoc_get_regs_len,
992 	.get_regs = ethoc_get_regs,
993 	.get_link = ethtool_op_get_link,
994 	.get_ringparam = ethoc_get_ringparam,
995 	.set_ringparam = ethoc_set_ringparam,
996 	.get_ts_info = ethtool_op_get_ts_info,
997 };
998 
999 static const struct net_device_ops ethoc_netdev_ops = {
1000 	.ndo_open = ethoc_open,
1001 	.ndo_stop = ethoc_stop,
1002 	.ndo_do_ioctl = ethoc_ioctl,
1003 	.ndo_set_config = ethoc_config,
1004 	.ndo_set_mac_address = ethoc_set_mac_address,
1005 	.ndo_set_rx_mode = ethoc_set_multicast_list,
1006 	.ndo_change_mtu = ethoc_change_mtu,
1007 	.ndo_tx_timeout = ethoc_tx_timeout,
1008 	.ndo_start_xmit = ethoc_start_xmit,
1009 };
1010 
1011 /**
1012  * ethoc_probe - initialize OpenCores ethernet MAC
1013  * pdev:	platform device
1014  */
1015 static int ethoc_probe(struct platform_device *pdev)
1016 {
1017 	struct net_device *netdev = NULL;
1018 	struct resource *res = NULL;
1019 	struct resource *mmio = NULL;
1020 	struct resource *mem = NULL;
1021 	struct ethoc *priv = NULL;
1022 	unsigned int phy;
1023 	int num_bd;
1024 	int ret = 0;
1025 	bool random_mac = false;
1026 	struct ethoc_platform_data *pdata = dev_get_platdata(&pdev->dev);
1027 	u32 eth_clkfreq = pdata ? pdata->eth_clkfreq : 0;
1028 
1029 	/* allocate networking device */
1030 	netdev = alloc_etherdev(sizeof(struct ethoc));
1031 	if (!netdev) {
1032 		ret = -ENOMEM;
1033 		goto out;
1034 	}
1035 
1036 	SET_NETDEV_DEV(netdev, &pdev->dev);
1037 	platform_set_drvdata(pdev, netdev);
1038 
1039 	/* obtain I/O memory space */
1040 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1041 	if (!res) {
1042 		dev_err(&pdev->dev, "cannot obtain I/O memory space\n");
1043 		ret = -ENXIO;
1044 		goto free;
1045 	}
1046 
1047 	mmio = devm_request_mem_region(&pdev->dev, res->start,
1048 			resource_size(res), res->name);
1049 	if (!mmio) {
1050 		dev_err(&pdev->dev, "cannot request I/O memory space\n");
1051 		ret = -ENXIO;
1052 		goto free;
1053 	}
1054 
1055 	netdev->base_addr = mmio->start;
1056 
1057 	/* obtain buffer memory space */
1058 	res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1059 	if (res) {
1060 		mem = devm_request_mem_region(&pdev->dev, res->start,
1061 			resource_size(res), res->name);
1062 		if (!mem) {
1063 			dev_err(&pdev->dev, "cannot request memory space\n");
1064 			ret = -ENXIO;
1065 			goto free;
1066 		}
1067 
1068 		netdev->mem_start = mem->start;
1069 		netdev->mem_end   = mem->end;
1070 	}
1071 
1072 
1073 	/* obtain device IRQ number */
1074 	res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
1075 	if (!res) {
1076 		dev_err(&pdev->dev, "cannot obtain IRQ\n");
1077 		ret = -ENXIO;
1078 		goto free;
1079 	}
1080 
1081 	netdev->irq = res->start;
1082 
1083 	/* setup driver-private data */
1084 	priv = netdev_priv(netdev);
1085 	priv->netdev = netdev;
1086 	priv->dma_alloc = 0;
1087 	priv->io_region_size = resource_size(mmio);
1088 
1089 	priv->iobase = devm_ioremap_nocache(&pdev->dev, netdev->base_addr,
1090 			resource_size(mmio));
1091 	if (!priv->iobase) {
1092 		dev_err(&pdev->dev, "cannot remap I/O memory space\n");
1093 		ret = -ENXIO;
1094 		goto error;
1095 	}
1096 
1097 	if (netdev->mem_end) {
1098 		priv->membase = devm_ioremap_nocache(&pdev->dev,
1099 			netdev->mem_start, resource_size(mem));
1100 		if (!priv->membase) {
1101 			dev_err(&pdev->dev, "cannot remap memory space\n");
1102 			ret = -ENXIO;
1103 			goto error;
1104 		}
1105 	} else {
1106 		/* Allocate buffer memory */
1107 		priv->membase = dmam_alloc_coherent(&pdev->dev,
1108 			buffer_size, (void *)&netdev->mem_start,
1109 			GFP_KERNEL);
1110 		if (!priv->membase) {
1111 			dev_err(&pdev->dev, "cannot allocate %dB buffer\n",
1112 				buffer_size);
1113 			ret = -ENOMEM;
1114 			goto error;
1115 		}
1116 		netdev->mem_end = netdev->mem_start + buffer_size;
1117 		priv->dma_alloc = buffer_size;
1118 	}
1119 
1120 	/* calculate the number of TX/RX buffers, maximum 128 supported */
1121 	num_bd = min_t(unsigned int,
1122 		128, (netdev->mem_end - netdev->mem_start + 1) / ETHOC_BUFSIZ);
1123 	if (num_bd < 4) {
1124 		ret = -ENODEV;
1125 		goto error;
1126 	}
1127 	priv->num_bd = num_bd;
1128 	/* num_tx must be a power of two */
1129 	priv->num_tx = rounddown_pow_of_two(num_bd >> 1);
1130 	priv->num_rx = num_bd - priv->num_tx;
1131 
1132 	dev_dbg(&pdev->dev, "ethoc: num_tx: %d num_rx: %d\n",
1133 		priv->num_tx, priv->num_rx);
1134 
1135 	priv->vma = devm_kzalloc(&pdev->dev, num_bd*sizeof(void *), GFP_KERNEL);
1136 	if (!priv->vma) {
1137 		ret = -ENOMEM;
1138 		goto error;
1139 	}
1140 
1141 	/* Allow the platform setup code to pass in a MAC address. */
1142 	if (pdata) {
1143 		memcpy(netdev->dev_addr, pdata->hwaddr, IFHWADDRLEN);
1144 		priv->phy_id = pdata->phy_id;
1145 	} else {
1146 		priv->phy_id = -1;
1147 
1148 #ifdef CONFIG_OF
1149 		{
1150 		const uint8_t *mac;
1151 
1152 		mac = of_get_property(pdev->dev.of_node,
1153 				      "local-mac-address",
1154 				      NULL);
1155 		if (mac)
1156 			memcpy(netdev->dev_addr, mac, IFHWADDRLEN);
1157 		}
1158 #endif
1159 	}
1160 
1161 	/* Check that the given MAC address is valid. If it isn't, read the
1162 	 * current MAC from the controller.
1163 	 */
1164 	if (!is_valid_ether_addr(netdev->dev_addr))
1165 		ethoc_get_mac_address(netdev, netdev->dev_addr);
1166 
1167 	/* Check the MAC again for validity, if it still isn't choose and
1168 	 * program a random one.
1169 	 */
1170 	if (!is_valid_ether_addr(netdev->dev_addr)) {
1171 		eth_random_addr(netdev->dev_addr);
1172 		random_mac = true;
1173 	}
1174 
1175 	ethoc_do_set_mac_address(netdev);
1176 
1177 	if (random_mac)
1178 		netdev->addr_assign_type = NET_ADDR_RANDOM;
1179 
1180 	/* Allow the platform setup code to adjust MII management bus clock. */
1181 	if (!eth_clkfreq) {
1182 		struct clk *clk = devm_clk_get(&pdev->dev, NULL);
1183 
1184 		if (!IS_ERR(clk)) {
1185 			priv->clk = clk;
1186 			clk_prepare_enable(clk);
1187 			eth_clkfreq = clk_get_rate(clk);
1188 		}
1189 	}
1190 	if (eth_clkfreq) {
1191 		u32 clkdiv = MIIMODER_CLKDIV(eth_clkfreq / 2500000 + 1);
1192 
1193 		if (!clkdiv)
1194 			clkdiv = 2;
1195 		dev_dbg(&pdev->dev, "setting MII clkdiv to %u\n", clkdiv);
1196 		ethoc_write(priv, MIIMODER,
1197 			    (ethoc_read(priv, MIIMODER) & MIIMODER_NOPRE) |
1198 			    clkdiv);
1199 	}
1200 
1201 	/* register MII bus */
1202 	priv->mdio = mdiobus_alloc();
1203 	if (!priv->mdio) {
1204 		ret = -ENOMEM;
1205 		goto free;
1206 	}
1207 
1208 	priv->mdio->name = "ethoc-mdio";
1209 	snprintf(priv->mdio->id, MII_BUS_ID_SIZE, "%s-%d",
1210 			priv->mdio->name, pdev->id);
1211 	priv->mdio->read = ethoc_mdio_read;
1212 	priv->mdio->write = ethoc_mdio_write;
1213 	priv->mdio->reset = ethoc_mdio_reset;
1214 	priv->mdio->priv = priv;
1215 
1216 	priv->mdio->irq = kmalloc(sizeof(int) * PHY_MAX_ADDR, GFP_KERNEL);
1217 	if (!priv->mdio->irq) {
1218 		ret = -ENOMEM;
1219 		goto free_mdio;
1220 	}
1221 
1222 	for (phy = 0; phy < PHY_MAX_ADDR; phy++)
1223 		priv->mdio->irq[phy] = PHY_POLL;
1224 
1225 	ret = mdiobus_register(priv->mdio);
1226 	if (ret) {
1227 		dev_err(&netdev->dev, "failed to register MDIO bus\n");
1228 		goto free_mdio;
1229 	}
1230 
1231 	ret = ethoc_mdio_probe(netdev);
1232 	if (ret) {
1233 		dev_err(&netdev->dev, "failed to probe MDIO bus\n");
1234 		goto error;
1235 	}
1236 
1237 	ether_setup(netdev);
1238 
1239 	/* setup the net_device structure */
1240 	netdev->netdev_ops = &ethoc_netdev_ops;
1241 	netdev->watchdog_timeo = ETHOC_TIMEOUT;
1242 	netdev->features |= 0;
1243 	netdev->ethtool_ops = &ethoc_ethtool_ops;
1244 
1245 	/* setup NAPI */
1246 	netif_napi_add(netdev, &priv->napi, ethoc_poll, 64);
1247 
1248 	spin_lock_init(&priv->lock);
1249 
1250 	ret = register_netdev(netdev);
1251 	if (ret < 0) {
1252 		dev_err(&netdev->dev, "failed to register interface\n");
1253 		goto error2;
1254 	}
1255 
1256 	goto out;
1257 
1258 error2:
1259 	netif_napi_del(&priv->napi);
1260 error:
1261 	mdiobus_unregister(priv->mdio);
1262 free_mdio:
1263 	kfree(priv->mdio->irq);
1264 	mdiobus_free(priv->mdio);
1265 free:
1266 	if (priv->clk)
1267 		clk_disable_unprepare(priv->clk);
1268 	free_netdev(netdev);
1269 out:
1270 	return ret;
1271 }
1272 
1273 /**
1274  * ethoc_remove - shutdown OpenCores ethernet MAC
1275  * @pdev:	platform device
1276  */
1277 static int ethoc_remove(struct platform_device *pdev)
1278 {
1279 	struct net_device *netdev = platform_get_drvdata(pdev);
1280 	struct ethoc *priv = netdev_priv(netdev);
1281 
1282 	if (netdev) {
1283 		netif_napi_del(&priv->napi);
1284 		phy_disconnect(priv->phy);
1285 		priv->phy = NULL;
1286 
1287 		if (priv->mdio) {
1288 			mdiobus_unregister(priv->mdio);
1289 			kfree(priv->mdio->irq);
1290 			mdiobus_free(priv->mdio);
1291 		}
1292 		if (priv->clk)
1293 			clk_disable_unprepare(priv->clk);
1294 		unregister_netdev(netdev);
1295 		free_netdev(netdev);
1296 	}
1297 
1298 	return 0;
1299 }
1300 
1301 #ifdef CONFIG_PM
1302 static int ethoc_suspend(struct platform_device *pdev, pm_message_t state)
1303 {
1304 	return -ENOSYS;
1305 }
1306 
1307 static int ethoc_resume(struct platform_device *pdev)
1308 {
1309 	return -ENOSYS;
1310 }
1311 #else
1312 # define ethoc_suspend NULL
1313 # define ethoc_resume  NULL
1314 #endif
1315 
1316 static struct of_device_id ethoc_match[] = {
1317 	{ .compatible = "opencores,ethoc", },
1318 	{},
1319 };
1320 MODULE_DEVICE_TABLE(of, ethoc_match);
1321 
1322 static struct platform_driver ethoc_driver = {
1323 	.probe   = ethoc_probe,
1324 	.remove  = ethoc_remove,
1325 	.suspend = ethoc_suspend,
1326 	.resume  = ethoc_resume,
1327 	.driver  = {
1328 		.name = "ethoc",
1329 		.owner = THIS_MODULE,
1330 		.of_match_table = ethoc_match,
1331 	},
1332 };
1333 
1334 module_platform_driver(ethoc_driver);
1335 
1336 MODULE_AUTHOR("Thierry Reding <thierry.reding@avionic-design.de>");
1337 MODULE_DESCRIPTION("OpenCores Ethernet MAC driver");
1338 MODULE_LICENSE("GPL v2");
1339 
1340