1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/drivers/net/ethernet/ethoc.c 4 * 5 * Copyright (C) 2007-2008 Avionic Design Development GmbH 6 * Copyright (C) 2008-2009 Avionic Design GmbH 7 * 8 * Written by Thierry Reding <thierry.reding@avionic-design.de> 9 */ 10 11 #include <linux/dma-mapping.h> 12 #include <linux/etherdevice.h> 13 #include <linux/clk.h> 14 #include <linux/crc32.h> 15 #include <linux/interrupt.h> 16 #include <linux/io.h> 17 #include <linux/mii.h> 18 #include <linux/phy.h> 19 #include <linux/platform_device.h> 20 #include <linux/sched.h> 21 #include <linux/slab.h> 22 #include <linux/of.h> 23 #include <linux/of_net.h> 24 #include <linux/module.h> 25 #include <net/ethoc.h> 26 27 static int buffer_size = 0x8000; /* 32 KBytes */ 28 module_param(buffer_size, int, 0); 29 MODULE_PARM_DESC(buffer_size, "DMA buffer allocation size"); 30 31 /* register offsets */ 32 #define MODER 0x00 33 #define INT_SOURCE 0x04 34 #define INT_MASK 0x08 35 #define IPGT 0x0c 36 #define IPGR1 0x10 37 #define IPGR2 0x14 38 #define PACKETLEN 0x18 39 #define COLLCONF 0x1c 40 #define TX_BD_NUM 0x20 41 #define CTRLMODER 0x24 42 #define MIIMODER 0x28 43 #define MIICOMMAND 0x2c 44 #define MIIADDRESS 0x30 45 #define MIITX_DATA 0x34 46 #define MIIRX_DATA 0x38 47 #define MIISTATUS 0x3c 48 #define MAC_ADDR0 0x40 49 #define MAC_ADDR1 0x44 50 #define ETH_HASH0 0x48 51 #define ETH_HASH1 0x4c 52 #define ETH_TXCTRL 0x50 53 #define ETH_END 0x54 54 55 /* mode register */ 56 #define MODER_RXEN (1 << 0) /* receive enable */ 57 #define MODER_TXEN (1 << 1) /* transmit enable */ 58 #define MODER_NOPRE (1 << 2) /* no preamble */ 59 #define MODER_BRO (1 << 3) /* broadcast address */ 60 #define MODER_IAM (1 << 4) /* individual address mode */ 61 #define MODER_PRO (1 << 5) /* promiscuous mode */ 62 #define MODER_IFG (1 << 6) /* interframe gap for incoming frames */ 63 #define MODER_LOOP (1 << 7) /* loopback */ 64 #define MODER_NBO (1 << 8) /* no back-off */ 65 #define MODER_EDE (1 << 9) /* excess defer enable */ 66 #define MODER_FULLD (1 << 10) /* full duplex */ 67 #define MODER_RESET (1 << 11) /* FIXME: reset (undocumented) */ 68 #define MODER_DCRC (1 << 12) /* delayed CRC enable */ 69 #define MODER_CRC (1 << 13) /* CRC enable */ 70 #define MODER_HUGE (1 << 14) /* huge packets enable */ 71 #define MODER_PAD (1 << 15) /* padding enabled */ 72 #define MODER_RSM (1 << 16) /* receive small packets */ 73 74 /* interrupt source and mask registers */ 75 #define INT_MASK_TXF (1 << 0) /* transmit frame */ 76 #define INT_MASK_TXE (1 << 1) /* transmit error */ 77 #define INT_MASK_RXF (1 << 2) /* receive frame */ 78 #define INT_MASK_RXE (1 << 3) /* receive error */ 79 #define INT_MASK_BUSY (1 << 4) 80 #define INT_MASK_TXC (1 << 5) /* transmit control frame */ 81 #define INT_MASK_RXC (1 << 6) /* receive control frame */ 82 83 #define INT_MASK_TX (INT_MASK_TXF | INT_MASK_TXE) 84 #define INT_MASK_RX (INT_MASK_RXF | INT_MASK_RXE) 85 86 #define INT_MASK_ALL ( \ 87 INT_MASK_TXF | INT_MASK_TXE | \ 88 INT_MASK_RXF | INT_MASK_RXE | \ 89 INT_MASK_TXC | INT_MASK_RXC | \ 90 INT_MASK_BUSY \ 91 ) 92 93 /* packet length register */ 94 #define PACKETLEN_MIN(min) (((min) & 0xffff) << 16) 95 #define PACKETLEN_MAX(max) (((max) & 0xffff) << 0) 96 #define PACKETLEN_MIN_MAX(min, max) (PACKETLEN_MIN(min) | \ 97 PACKETLEN_MAX(max)) 98 99 /* transmit buffer number register */ 100 #define TX_BD_NUM_VAL(x) (((x) <= 0x80) ? (x) : 0x80) 101 102 /* control module mode register */ 103 #define CTRLMODER_PASSALL (1 << 0) /* pass all receive frames */ 104 #define CTRLMODER_RXFLOW (1 << 1) /* receive control flow */ 105 #define CTRLMODER_TXFLOW (1 << 2) /* transmit control flow */ 106 107 /* MII mode register */ 108 #define MIIMODER_CLKDIV(x) ((x) & 0xfe) /* needs to be an even number */ 109 #define MIIMODER_NOPRE (1 << 8) /* no preamble */ 110 111 /* MII command register */ 112 #define MIICOMMAND_SCAN (1 << 0) /* scan status */ 113 #define MIICOMMAND_READ (1 << 1) /* read status */ 114 #define MIICOMMAND_WRITE (1 << 2) /* write control data */ 115 116 /* MII address register */ 117 #define MIIADDRESS_FIAD(x) (((x) & 0x1f) << 0) 118 #define MIIADDRESS_RGAD(x) (((x) & 0x1f) << 8) 119 #define MIIADDRESS_ADDR(phy, reg) (MIIADDRESS_FIAD(phy) | \ 120 MIIADDRESS_RGAD(reg)) 121 122 /* MII transmit data register */ 123 #define MIITX_DATA_VAL(x) ((x) & 0xffff) 124 125 /* MII receive data register */ 126 #define MIIRX_DATA_VAL(x) ((x) & 0xffff) 127 128 /* MII status register */ 129 #define MIISTATUS_LINKFAIL (1 << 0) 130 #define MIISTATUS_BUSY (1 << 1) 131 #define MIISTATUS_INVALID (1 << 2) 132 133 /* TX buffer descriptor */ 134 #define TX_BD_CS (1 << 0) /* carrier sense lost */ 135 #define TX_BD_DF (1 << 1) /* defer indication */ 136 #define TX_BD_LC (1 << 2) /* late collision */ 137 #define TX_BD_RL (1 << 3) /* retransmission limit */ 138 #define TX_BD_RETRY_MASK (0x00f0) 139 #define TX_BD_RETRY(x) (((x) & 0x00f0) >> 4) 140 #define TX_BD_UR (1 << 8) /* transmitter underrun */ 141 #define TX_BD_CRC (1 << 11) /* TX CRC enable */ 142 #define TX_BD_PAD (1 << 12) /* pad enable for short packets */ 143 #define TX_BD_WRAP (1 << 13) 144 #define TX_BD_IRQ (1 << 14) /* interrupt request enable */ 145 #define TX_BD_READY (1 << 15) /* TX buffer ready */ 146 #define TX_BD_LEN(x) (((x) & 0xffff) << 16) 147 #define TX_BD_LEN_MASK (0xffff << 16) 148 149 #define TX_BD_STATS (TX_BD_CS | TX_BD_DF | TX_BD_LC | \ 150 TX_BD_RL | TX_BD_RETRY_MASK | TX_BD_UR) 151 152 /* RX buffer descriptor */ 153 #define RX_BD_LC (1 << 0) /* late collision */ 154 #define RX_BD_CRC (1 << 1) /* RX CRC error */ 155 #define RX_BD_SF (1 << 2) /* short frame */ 156 #define RX_BD_TL (1 << 3) /* too long */ 157 #define RX_BD_DN (1 << 4) /* dribble nibble */ 158 #define RX_BD_IS (1 << 5) /* invalid symbol */ 159 #define RX_BD_OR (1 << 6) /* receiver overrun */ 160 #define RX_BD_MISS (1 << 7) 161 #define RX_BD_CF (1 << 8) /* control frame */ 162 #define RX_BD_WRAP (1 << 13) 163 #define RX_BD_IRQ (1 << 14) /* interrupt request enable */ 164 #define RX_BD_EMPTY (1 << 15) 165 #define RX_BD_LEN(x) (((x) & 0xffff) << 16) 166 167 #define RX_BD_STATS (RX_BD_LC | RX_BD_CRC | RX_BD_SF | RX_BD_TL | \ 168 RX_BD_DN | RX_BD_IS | RX_BD_OR | RX_BD_MISS) 169 170 #define ETHOC_BUFSIZ 1536 171 #define ETHOC_ZLEN 64 172 #define ETHOC_BD_BASE 0x400 173 #define ETHOC_TIMEOUT (HZ / 2) 174 #define ETHOC_MII_TIMEOUT (1 + (HZ / 5)) 175 176 /** 177 * struct ethoc - driver-private device structure 178 * @iobase: pointer to I/O memory region 179 * @membase: pointer to buffer memory region 180 * @big_endian: just big or little (endian) 181 * @num_bd: number of buffer descriptors 182 * @num_tx: number of send buffers 183 * @cur_tx: last send buffer written 184 * @dty_tx: last buffer actually sent 185 * @num_rx: number of receive buffers 186 * @cur_rx: current receive buffer 187 * @vma: pointer to array of virtual memory addresses for buffers 188 * @netdev: pointer to network device structure 189 * @napi: NAPI structure 190 * @msg_enable: device state flags 191 * @lock: device lock 192 * @mdio: MDIO bus for PHY access 193 * @clk: clock 194 * @phy_id: address of attached PHY 195 * @old_link: previous link info 196 * @old_duplex: previous duplex info 197 */ 198 struct ethoc { 199 void __iomem *iobase; 200 void __iomem *membase; 201 bool big_endian; 202 203 unsigned int num_bd; 204 unsigned int num_tx; 205 unsigned int cur_tx; 206 unsigned int dty_tx; 207 208 unsigned int num_rx; 209 unsigned int cur_rx; 210 211 void **vma; 212 213 struct net_device *netdev; 214 struct napi_struct napi; 215 u32 msg_enable; 216 217 spinlock_t lock; 218 219 struct mii_bus *mdio; 220 struct clk *clk; 221 s8 phy_id; 222 223 int old_link; 224 int old_duplex; 225 }; 226 227 /** 228 * struct ethoc_bd - buffer descriptor 229 * @stat: buffer statistics 230 * @addr: physical memory address 231 */ 232 struct ethoc_bd { 233 u32 stat; 234 u32 addr; 235 }; 236 237 static inline u32 ethoc_read(struct ethoc *dev, loff_t offset) 238 { 239 if (dev->big_endian) 240 return ioread32be(dev->iobase + offset); 241 else 242 return ioread32(dev->iobase + offset); 243 } 244 245 static inline void ethoc_write(struct ethoc *dev, loff_t offset, u32 data) 246 { 247 if (dev->big_endian) 248 iowrite32be(data, dev->iobase + offset); 249 else 250 iowrite32(data, dev->iobase + offset); 251 } 252 253 static inline void ethoc_read_bd(struct ethoc *dev, int index, 254 struct ethoc_bd *bd) 255 { 256 loff_t offset = ETHOC_BD_BASE + (index * sizeof(struct ethoc_bd)); 257 bd->stat = ethoc_read(dev, offset + 0); 258 bd->addr = ethoc_read(dev, offset + 4); 259 } 260 261 static inline void ethoc_write_bd(struct ethoc *dev, int index, 262 const struct ethoc_bd *bd) 263 { 264 loff_t offset = ETHOC_BD_BASE + (index * sizeof(struct ethoc_bd)); 265 ethoc_write(dev, offset + 0, bd->stat); 266 ethoc_write(dev, offset + 4, bd->addr); 267 } 268 269 static inline void ethoc_enable_irq(struct ethoc *dev, u32 mask) 270 { 271 u32 imask = ethoc_read(dev, INT_MASK); 272 imask |= mask; 273 ethoc_write(dev, INT_MASK, imask); 274 } 275 276 static inline void ethoc_disable_irq(struct ethoc *dev, u32 mask) 277 { 278 u32 imask = ethoc_read(dev, INT_MASK); 279 imask &= ~mask; 280 ethoc_write(dev, INT_MASK, imask); 281 } 282 283 static inline void ethoc_ack_irq(struct ethoc *dev, u32 mask) 284 { 285 ethoc_write(dev, INT_SOURCE, mask); 286 } 287 288 static inline void ethoc_enable_rx_and_tx(struct ethoc *dev) 289 { 290 u32 mode = ethoc_read(dev, MODER); 291 mode |= MODER_RXEN | MODER_TXEN; 292 ethoc_write(dev, MODER, mode); 293 } 294 295 static inline void ethoc_disable_rx_and_tx(struct ethoc *dev) 296 { 297 u32 mode = ethoc_read(dev, MODER); 298 mode &= ~(MODER_RXEN | MODER_TXEN); 299 ethoc_write(dev, MODER, mode); 300 } 301 302 static int ethoc_init_ring(struct ethoc *dev, unsigned long mem_start) 303 { 304 struct ethoc_bd bd; 305 int i; 306 void *vma; 307 308 dev->cur_tx = 0; 309 dev->dty_tx = 0; 310 dev->cur_rx = 0; 311 312 ethoc_write(dev, TX_BD_NUM, dev->num_tx); 313 314 /* setup transmission buffers */ 315 bd.addr = mem_start; 316 bd.stat = TX_BD_IRQ | TX_BD_CRC; 317 vma = dev->membase; 318 319 for (i = 0; i < dev->num_tx; i++) { 320 if (i == dev->num_tx - 1) 321 bd.stat |= TX_BD_WRAP; 322 323 ethoc_write_bd(dev, i, &bd); 324 bd.addr += ETHOC_BUFSIZ; 325 326 dev->vma[i] = vma; 327 vma += ETHOC_BUFSIZ; 328 } 329 330 bd.stat = RX_BD_EMPTY | RX_BD_IRQ; 331 332 for (i = 0; i < dev->num_rx; i++) { 333 if (i == dev->num_rx - 1) 334 bd.stat |= RX_BD_WRAP; 335 336 ethoc_write_bd(dev, dev->num_tx + i, &bd); 337 bd.addr += ETHOC_BUFSIZ; 338 339 dev->vma[dev->num_tx + i] = vma; 340 vma += ETHOC_BUFSIZ; 341 } 342 343 return 0; 344 } 345 346 static int ethoc_reset(struct ethoc *dev) 347 { 348 u32 mode; 349 350 /* TODO: reset controller? */ 351 352 ethoc_disable_rx_and_tx(dev); 353 354 /* TODO: setup registers */ 355 356 /* enable FCS generation and automatic padding */ 357 mode = ethoc_read(dev, MODER); 358 mode |= MODER_CRC | MODER_PAD; 359 ethoc_write(dev, MODER, mode); 360 361 /* set full-duplex mode */ 362 mode = ethoc_read(dev, MODER); 363 mode |= MODER_FULLD; 364 ethoc_write(dev, MODER, mode); 365 ethoc_write(dev, IPGT, 0x15); 366 367 ethoc_ack_irq(dev, INT_MASK_ALL); 368 ethoc_enable_irq(dev, INT_MASK_ALL); 369 ethoc_enable_rx_and_tx(dev); 370 return 0; 371 } 372 373 static unsigned int ethoc_update_rx_stats(struct ethoc *dev, 374 struct ethoc_bd *bd) 375 { 376 struct net_device *netdev = dev->netdev; 377 unsigned int ret = 0; 378 379 if (bd->stat & RX_BD_TL) { 380 dev_err(&netdev->dev, "RX: frame too long\n"); 381 netdev->stats.rx_length_errors++; 382 ret++; 383 } 384 385 if (bd->stat & RX_BD_SF) { 386 dev_err(&netdev->dev, "RX: frame too short\n"); 387 netdev->stats.rx_length_errors++; 388 ret++; 389 } 390 391 if (bd->stat & RX_BD_DN) { 392 dev_err(&netdev->dev, "RX: dribble nibble\n"); 393 netdev->stats.rx_frame_errors++; 394 } 395 396 if (bd->stat & RX_BD_CRC) { 397 dev_err(&netdev->dev, "RX: wrong CRC\n"); 398 netdev->stats.rx_crc_errors++; 399 ret++; 400 } 401 402 if (bd->stat & RX_BD_OR) { 403 dev_err(&netdev->dev, "RX: overrun\n"); 404 netdev->stats.rx_over_errors++; 405 ret++; 406 } 407 408 if (bd->stat & RX_BD_MISS) 409 netdev->stats.rx_missed_errors++; 410 411 if (bd->stat & RX_BD_LC) { 412 dev_err(&netdev->dev, "RX: late collision\n"); 413 netdev->stats.collisions++; 414 ret++; 415 } 416 417 return ret; 418 } 419 420 static int ethoc_rx(struct net_device *dev, int limit) 421 { 422 struct ethoc *priv = netdev_priv(dev); 423 int count; 424 425 for (count = 0; count < limit; ++count) { 426 unsigned int entry; 427 struct ethoc_bd bd; 428 429 entry = priv->num_tx + priv->cur_rx; 430 ethoc_read_bd(priv, entry, &bd); 431 if (bd.stat & RX_BD_EMPTY) { 432 ethoc_ack_irq(priv, INT_MASK_RX); 433 /* If packet (interrupt) came in between checking 434 * BD_EMTPY and clearing the interrupt source, then we 435 * risk missing the packet as the RX interrupt won't 436 * trigger right away when we reenable it; hence, check 437 * BD_EMTPY here again to make sure there isn't such a 438 * packet waiting for us... 439 */ 440 ethoc_read_bd(priv, entry, &bd); 441 if (bd.stat & RX_BD_EMPTY) 442 break; 443 } 444 445 if (ethoc_update_rx_stats(priv, &bd) == 0) { 446 int size = bd.stat >> 16; 447 struct sk_buff *skb; 448 449 size -= 4; /* strip the CRC */ 450 skb = netdev_alloc_skb_ip_align(dev, size); 451 452 if (likely(skb)) { 453 void *src = priv->vma[entry]; 454 memcpy_fromio(skb_put(skb, size), src, size); 455 skb->protocol = eth_type_trans(skb, dev); 456 dev->stats.rx_packets++; 457 dev->stats.rx_bytes += size; 458 netif_receive_skb(skb); 459 } else { 460 if (net_ratelimit()) 461 dev_warn(&dev->dev, 462 "low on memory - packet dropped\n"); 463 464 dev->stats.rx_dropped++; 465 break; 466 } 467 } 468 469 /* clear the buffer descriptor so it can be reused */ 470 bd.stat &= ~RX_BD_STATS; 471 bd.stat |= RX_BD_EMPTY; 472 ethoc_write_bd(priv, entry, &bd); 473 if (++priv->cur_rx == priv->num_rx) 474 priv->cur_rx = 0; 475 } 476 477 return count; 478 } 479 480 static void ethoc_update_tx_stats(struct ethoc *dev, struct ethoc_bd *bd) 481 { 482 struct net_device *netdev = dev->netdev; 483 484 if (bd->stat & TX_BD_LC) { 485 dev_err(&netdev->dev, "TX: late collision\n"); 486 netdev->stats.tx_window_errors++; 487 } 488 489 if (bd->stat & TX_BD_RL) { 490 dev_err(&netdev->dev, "TX: retransmit limit\n"); 491 netdev->stats.tx_aborted_errors++; 492 } 493 494 if (bd->stat & TX_BD_UR) { 495 dev_err(&netdev->dev, "TX: underrun\n"); 496 netdev->stats.tx_fifo_errors++; 497 } 498 499 if (bd->stat & TX_BD_CS) { 500 dev_err(&netdev->dev, "TX: carrier sense lost\n"); 501 netdev->stats.tx_carrier_errors++; 502 } 503 504 if (bd->stat & TX_BD_STATS) 505 netdev->stats.tx_errors++; 506 507 netdev->stats.collisions += (bd->stat >> 4) & 0xf; 508 netdev->stats.tx_bytes += bd->stat >> 16; 509 netdev->stats.tx_packets++; 510 } 511 512 static int ethoc_tx(struct net_device *dev, int limit) 513 { 514 struct ethoc *priv = netdev_priv(dev); 515 int count; 516 struct ethoc_bd bd; 517 518 for (count = 0; count < limit; ++count) { 519 unsigned int entry; 520 521 entry = priv->dty_tx & (priv->num_tx-1); 522 523 ethoc_read_bd(priv, entry, &bd); 524 525 if (bd.stat & TX_BD_READY || (priv->dty_tx == priv->cur_tx)) { 526 ethoc_ack_irq(priv, INT_MASK_TX); 527 /* If interrupt came in between reading in the BD 528 * and clearing the interrupt source, then we risk 529 * missing the event as the TX interrupt won't trigger 530 * right away when we reenable it; hence, check 531 * BD_EMPTY here again to make sure there isn't such an 532 * event pending... 533 */ 534 ethoc_read_bd(priv, entry, &bd); 535 if (bd.stat & TX_BD_READY || 536 (priv->dty_tx == priv->cur_tx)) 537 break; 538 } 539 540 ethoc_update_tx_stats(priv, &bd); 541 priv->dty_tx++; 542 } 543 544 if ((priv->cur_tx - priv->dty_tx) <= (priv->num_tx / 2)) 545 netif_wake_queue(dev); 546 547 return count; 548 } 549 550 static irqreturn_t ethoc_interrupt(int irq, void *dev_id) 551 { 552 struct net_device *dev = dev_id; 553 struct ethoc *priv = netdev_priv(dev); 554 u32 pending; 555 u32 mask; 556 557 /* Figure out what triggered the interrupt... 558 * The tricky bit here is that the interrupt source bits get 559 * set in INT_SOURCE for an event regardless of whether that 560 * event is masked or not. Thus, in order to figure out what 561 * triggered the interrupt, we need to remove the sources 562 * for all events that are currently masked. This behaviour 563 * is not particularly well documented but reasonable... 564 */ 565 mask = ethoc_read(priv, INT_MASK); 566 pending = ethoc_read(priv, INT_SOURCE); 567 pending &= mask; 568 569 if (unlikely(pending == 0)) 570 return IRQ_NONE; 571 572 ethoc_ack_irq(priv, pending); 573 574 /* We always handle the dropped packet interrupt */ 575 if (pending & INT_MASK_BUSY) { 576 dev_dbg(&dev->dev, "packet dropped\n"); 577 dev->stats.rx_dropped++; 578 } 579 580 /* Handle receive/transmit event by switching to polling */ 581 if (pending & (INT_MASK_TX | INT_MASK_RX)) { 582 ethoc_disable_irq(priv, INT_MASK_TX | INT_MASK_RX); 583 napi_schedule(&priv->napi); 584 } 585 586 return IRQ_HANDLED; 587 } 588 589 static int ethoc_get_mac_address(struct net_device *dev, void *addr) 590 { 591 struct ethoc *priv = netdev_priv(dev); 592 u8 *mac = (u8 *)addr; 593 u32 reg; 594 595 reg = ethoc_read(priv, MAC_ADDR0); 596 mac[2] = (reg >> 24) & 0xff; 597 mac[3] = (reg >> 16) & 0xff; 598 mac[4] = (reg >> 8) & 0xff; 599 mac[5] = (reg >> 0) & 0xff; 600 601 reg = ethoc_read(priv, MAC_ADDR1); 602 mac[0] = (reg >> 8) & 0xff; 603 mac[1] = (reg >> 0) & 0xff; 604 605 return 0; 606 } 607 608 static int ethoc_poll(struct napi_struct *napi, int budget) 609 { 610 struct ethoc *priv = container_of(napi, struct ethoc, napi); 611 int rx_work_done = 0; 612 int tx_work_done = 0; 613 614 rx_work_done = ethoc_rx(priv->netdev, budget); 615 tx_work_done = ethoc_tx(priv->netdev, budget); 616 617 if (rx_work_done < budget && tx_work_done < budget) { 618 napi_complete_done(napi, rx_work_done); 619 ethoc_enable_irq(priv, INT_MASK_TX | INT_MASK_RX); 620 } 621 622 return rx_work_done; 623 } 624 625 static int ethoc_mdio_read(struct mii_bus *bus, int phy, int reg) 626 { 627 struct ethoc *priv = bus->priv; 628 int i; 629 630 ethoc_write(priv, MIIADDRESS, MIIADDRESS_ADDR(phy, reg)); 631 ethoc_write(priv, MIICOMMAND, MIICOMMAND_READ); 632 633 for (i = 0; i < 5; i++) { 634 u32 status = ethoc_read(priv, MIISTATUS); 635 if (!(status & MIISTATUS_BUSY)) { 636 u32 data = ethoc_read(priv, MIIRX_DATA); 637 /* reset MII command register */ 638 ethoc_write(priv, MIICOMMAND, 0); 639 return data; 640 } 641 usleep_range(100, 200); 642 } 643 644 return -EBUSY; 645 } 646 647 static int ethoc_mdio_write(struct mii_bus *bus, int phy, int reg, u16 val) 648 { 649 struct ethoc *priv = bus->priv; 650 int i; 651 652 ethoc_write(priv, MIIADDRESS, MIIADDRESS_ADDR(phy, reg)); 653 ethoc_write(priv, MIITX_DATA, val); 654 ethoc_write(priv, MIICOMMAND, MIICOMMAND_WRITE); 655 656 for (i = 0; i < 5; i++) { 657 u32 stat = ethoc_read(priv, MIISTATUS); 658 if (!(stat & MIISTATUS_BUSY)) { 659 /* reset MII command register */ 660 ethoc_write(priv, MIICOMMAND, 0); 661 return 0; 662 } 663 usleep_range(100, 200); 664 } 665 666 return -EBUSY; 667 } 668 669 static void ethoc_mdio_poll(struct net_device *dev) 670 { 671 struct ethoc *priv = netdev_priv(dev); 672 struct phy_device *phydev = dev->phydev; 673 bool changed = false; 674 u32 mode; 675 676 if (priv->old_link != phydev->link) { 677 changed = true; 678 priv->old_link = phydev->link; 679 } 680 681 if (priv->old_duplex != phydev->duplex) { 682 changed = true; 683 priv->old_duplex = phydev->duplex; 684 } 685 686 if (!changed) 687 return; 688 689 mode = ethoc_read(priv, MODER); 690 if (phydev->duplex == DUPLEX_FULL) 691 mode |= MODER_FULLD; 692 else 693 mode &= ~MODER_FULLD; 694 ethoc_write(priv, MODER, mode); 695 696 phy_print_status(phydev); 697 } 698 699 static int ethoc_mdio_probe(struct net_device *dev) 700 { 701 struct ethoc *priv = netdev_priv(dev); 702 struct phy_device *phy; 703 int err; 704 705 if (priv->phy_id != -1) 706 phy = mdiobus_get_phy(priv->mdio, priv->phy_id); 707 else 708 phy = phy_find_first(priv->mdio); 709 710 if (!phy) 711 return dev_err_probe(&dev->dev, -ENXIO, "no PHY found\n"); 712 713 priv->old_duplex = -1; 714 priv->old_link = -1; 715 716 err = phy_connect_direct(dev, phy, ethoc_mdio_poll, 717 PHY_INTERFACE_MODE_GMII); 718 if (err) 719 return dev_err_probe(&dev->dev, err, "could not attach to PHY\n"); 720 721 phy_set_max_speed(phy, SPEED_100); 722 723 return 0; 724 } 725 726 static int ethoc_open(struct net_device *dev) 727 { 728 struct ethoc *priv = netdev_priv(dev); 729 int ret; 730 731 ret = request_irq(dev->irq, ethoc_interrupt, IRQF_SHARED, 732 dev->name, dev); 733 if (ret) 734 return ret; 735 736 napi_enable(&priv->napi); 737 738 ethoc_init_ring(priv, dev->mem_start); 739 ethoc_reset(priv); 740 741 if (netif_queue_stopped(dev)) { 742 dev_dbg(&dev->dev, " resuming queue\n"); 743 netif_wake_queue(dev); 744 } else { 745 dev_dbg(&dev->dev, " starting queue\n"); 746 netif_start_queue(dev); 747 } 748 749 priv->old_link = -1; 750 priv->old_duplex = -1; 751 752 phy_start(dev->phydev); 753 754 if (netif_msg_ifup(priv)) { 755 dev_info(&dev->dev, "I/O: %08lx Memory: %08lx-%08lx\n", 756 dev->base_addr, dev->mem_start, dev->mem_end); 757 } 758 759 return 0; 760 } 761 762 static int ethoc_stop(struct net_device *dev) 763 { 764 struct ethoc *priv = netdev_priv(dev); 765 766 napi_disable(&priv->napi); 767 768 if (dev->phydev) 769 phy_stop(dev->phydev); 770 771 ethoc_disable_rx_and_tx(priv); 772 free_irq(dev->irq, dev); 773 774 if (!netif_queue_stopped(dev)) 775 netif_stop_queue(dev); 776 777 return 0; 778 } 779 780 static int ethoc_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 781 { 782 struct ethoc *priv = netdev_priv(dev); 783 struct mii_ioctl_data *mdio = if_mii(ifr); 784 struct phy_device *phy = NULL; 785 786 if (!netif_running(dev)) 787 return -EINVAL; 788 789 if (cmd != SIOCGMIIPHY) { 790 if (mdio->phy_id >= PHY_MAX_ADDR) 791 return -ERANGE; 792 793 phy = mdiobus_get_phy(priv->mdio, mdio->phy_id); 794 if (!phy) 795 return -ENODEV; 796 } else { 797 phy = dev->phydev; 798 } 799 800 return phy_mii_ioctl(phy, ifr, cmd); 801 } 802 803 static void ethoc_do_set_mac_address(struct net_device *dev) 804 { 805 const unsigned char *mac = dev->dev_addr; 806 struct ethoc *priv = netdev_priv(dev); 807 808 ethoc_write(priv, MAC_ADDR0, (mac[2] << 24) | (mac[3] << 16) | 809 (mac[4] << 8) | (mac[5] << 0)); 810 ethoc_write(priv, MAC_ADDR1, (mac[0] << 8) | (mac[1] << 0)); 811 } 812 813 static int ethoc_set_mac_address(struct net_device *dev, void *p) 814 { 815 const struct sockaddr *addr = p; 816 817 if (!is_valid_ether_addr(addr->sa_data)) 818 return -EADDRNOTAVAIL; 819 eth_hw_addr_set(dev, addr->sa_data); 820 ethoc_do_set_mac_address(dev); 821 return 0; 822 } 823 824 static void ethoc_set_multicast_list(struct net_device *dev) 825 { 826 struct ethoc *priv = netdev_priv(dev); 827 u32 mode = ethoc_read(priv, MODER); 828 struct netdev_hw_addr *ha; 829 u32 hash[2] = { 0, 0 }; 830 831 /* set loopback mode if requested */ 832 if (dev->flags & IFF_LOOPBACK) 833 mode |= MODER_LOOP; 834 else 835 mode &= ~MODER_LOOP; 836 837 /* receive broadcast frames if requested */ 838 if (dev->flags & IFF_BROADCAST) 839 mode &= ~MODER_BRO; 840 else 841 mode |= MODER_BRO; 842 843 /* enable promiscuous mode if requested */ 844 if (dev->flags & IFF_PROMISC) 845 mode |= MODER_PRO; 846 else 847 mode &= ~MODER_PRO; 848 849 ethoc_write(priv, MODER, mode); 850 851 /* receive multicast frames */ 852 if (dev->flags & IFF_ALLMULTI) { 853 hash[0] = 0xffffffff; 854 hash[1] = 0xffffffff; 855 } else { 856 netdev_for_each_mc_addr(ha, dev) { 857 u32 crc = ether_crc(ETH_ALEN, ha->addr); 858 int bit = (crc >> 26) & 0x3f; 859 hash[bit >> 5] |= 1 << (bit & 0x1f); 860 } 861 } 862 863 ethoc_write(priv, ETH_HASH0, hash[0]); 864 ethoc_write(priv, ETH_HASH1, hash[1]); 865 } 866 867 static int ethoc_change_mtu(struct net_device *dev, int new_mtu) 868 { 869 return -ENOSYS; 870 } 871 872 static void ethoc_tx_timeout(struct net_device *dev, unsigned int txqueue) 873 { 874 struct ethoc *priv = netdev_priv(dev); 875 u32 pending = ethoc_read(priv, INT_SOURCE); 876 if (likely(pending)) 877 ethoc_interrupt(dev->irq, dev); 878 } 879 880 static netdev_tx_t ethoc_start_xmit(struct sk_buff *skb, struct net_device *dev) 881 { 882 struct ethoc *priv = netdev_priv(dev); 883 struct ethoc_bd bd; 884 unsigned int entry; 885 void *dest; 886 887 if (skb_put_padto(skb, ETHOC_ZLEN)) { 888 dev->stats.tx_errors++; 889 goto out_no_free; 890 } 891 892 if (unlikely(skb->len > ETHOC_BUFSIZ)) { 893 dev->stats.tx_errors++; 894 goto out; 895 } 896 897 entry = priv->cur_tx % priv->num_tx; 898 spin_lock_irq(&priv->lock); 899 priv->cur_tx++; 900 901 ethoc_read_bd(priv, entry, &bd); 902 if (unlikely(skb->len < ETHOC_ZLEN)) 903 bd.stat |= TX_BD_PAD; 904 else 905 bd.stat &= ~TX_BD_PAD; 906 907 dest = priv->vma[entry]; 908 memcpy_toio(dest, skb->data, skb->len); 909 910 bd.stat &= ~(TX_BD_STATS | TX_BD_LEN_MASK); 911 bd.stat |= TX_BD_LEN(skb->len); 912 ethoc_write_bd(priv, entry, &bd); 913 914 bd.stat |= TX_BD_READY; 915 ethoc_write_bd(priv, entry, &bd); 916 917 if (priv->cur_tx == (priv->dty_tx + priv->num_tx)) { 918 dev_dbg(&dev->dev, "stopping queue\n"); 919 netif_stop_queue(dev); 920 } 921 922 spin_unlock_irq(&priv->lock); 923 skb_tx_timestamp(skb); 924 out: 925 dev_kfree_skb(skb); 926 out_no_free: 927 return NETDEV_TX_OK; 928 } 929 930 static int ethoc_get_regs_len(struct net_device *netdev) 931 { 932 return ETH_END; 933 } 934 935 static void ethoc_get_regs(struct net_device *dev, struct ethtool_regs *regs, 936 void *p) 937 { 938 struct ethoc *priv = netdev_priv(dev); 939 u32 *regs_buff = p; 940 unsigned i; 941 942 regs->version = 0; 943 for (i = 0; i < ETH_END / sizeof(u32); ++i) 944 regs_buff[i] = ethoc_read(priv, i * sizeof(u32)); 945 } 946 947 static void ethoc_get_ringparam(struct net_device *dev, 948 struct ethtool_ringparam *ring, 949 struct kernel_ethtool_ringparam *kernel_ring, 950 struct netlink_ext_ack *extack) 951 { 952 struct ethoc *priv = netdev_priv(dev); 953 954 ring->rx_max_pending = priv->num_bd - 1; 955 ring->rx_mini_max_pending = 0; 956 ring->rx_jumbo_max_pending = 0; 957 ring->tx_max_pending = priv->num_bd - 1; 958 959 ring->rx_pending = priv->num_rx; 960 ring->rx_mini_pending = 0; 961 ring->rx_jumbo_pending = 0; 962 ring->tx_pending = priv->num_tx; 963 } 964 965 static int ethoc_set_ringparam(struct net_device *dev, 966 struct ethtool_ringparam *ring, 967 struct kernel_ethtool_ringparam *kernel_ring, 968 struct netlink_ext_ack *extack) 969 { 970 struct ethoc *priv = netdev_priv(dev); 971 972 if (ring->tx_pending < 1 || ring->rx_pending < 1 || 973 ring->tx_pending + ring->rx_pending > priv->num_bd) 974 return -EINVAL; 975 if (ring->rx_mini_pending || ring->rx_jumbo_pending) 976 return -EINVAL; 977 978 if (netif_running(dev)) { 979 netif_tx_disable(dev); 980 ethoc_disable_rx_and_tx(priv); 981 ethoc_disable_irq(priv, INT_MASK_TX | INT_MASK_RX); 982 synchronize_irq(dev->irq); 983 } 984 985 priv->num_tx = rounddown_pow_of_two(ring->tx_pending); 986 priv->num_rx = ring->rx_pending; 987 ethoc_init_ring(priv, dev->mem_start); 988 989 if (netif_running(dev)) { 990 ethoc_enable_irq(priv, INT_MASK_TX | INT_MASK_RX); 991 ethoc_enable_rx_and_tx(priv); 992 netif_wake_queue(dev); 993 } 994 return 0; 995 } 996 997 static const struct ethtool_ops ethoc_ethtool_ops = { 998 .get_regs_len = ethoc_get_regs_len, 999 .get_regs = ethoc_get_regs, 1000 .nway_reset = phy_ethtool_nway_reset, 1001 .get_link = ethtool_op_get_link, 1002 .get_ringparam = ethoc_get_ringparam, 1003 .set_ringparam = ethoc_set_ringparam, 1004 .get_ts_info = ethtool_op_get_ts_info, 1005 .get_link_ksettings = phy_ethtool_get_link_ksettings, 1006 .set_link_ksettings = phy_ethtool_set_link_ksettings, 1007 }; 1008 1009 static const struct net_device_ops ethoc_netdev_ops = { 1010 .ndo_open = ethoc_open, 1011 .ndo_stop = ethoc_stop, 1012 .ndo_eth_ioctl = ethoc_ioctl, 1013 .ndo_set_mac_address = ethoc_set_mac_address, 1014 .ndo_set_rx_mode = ethoc_set_multicast_list, 1015 .ndo_change_mtu = ethoc_change_mtu, 1016 .ndo_tx_timeout = ethoc_tx_timeout, 1017 .ndo_start_xmit = ethoc_start_xmit, 1018 }; 1019 1020 /** 1021 * ethoc_probe - initialize OpenCores ethernet MAC 1022 * @pdev: platform device 1023 */ 1024 static int ethoc_probe(struct platform_device *pdev) 1025 { 1026 struct net_device *netdev = NULL; 1027 struct resource *res = NULL; 1028 struct resource *mmio = NULL; 1029 struct resource *mem = NULL; 1030 struct ethoc *priv = NULL; 1031 int num_bd; 1032 int ret = 0; 1033 struct ethoc_platform_data *pdata = dev_get_platdata(&pdev->dev); 1034 u32 eth_clkfreq = pdata ? pdata->eth_clkfreq : 0; 1035 1036 /* allocate networking device */ 1037 netdev = alloc_etherdev(sizeof(struct ethoc)); 1038 if (!netdev) { 1039 ret = -ENOMEM; 1040 goto out; 1041 } 1042 1043 SET_NETDEV_DEV(netdev, &pdev->dev); 1044 platform_set_drvdata(pdev, netdev); 1045 1046 /* obtain I/O memory space */ 1047 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1048 if (!res) { 1049 dev_err(&pdev->dev, "cannot obtain I/O memory space\n"); 1050 ret = -ENXIO; 1051 goto free; 1052 } 1053 1054 mmio = devm_request_mem_region(&pdev->dev, res->start, 1055 resource_size(res), res->name); 1056 if (!mmio) { 1057 dev_err(&pdev->dev, "cannot request I/O memory space\n"); 1058 ret = -ENXIO; 1059 goto free; 1060 } 1061 1062 netdev->base_addr = mmio->start; 1063 1064 /* obtain buffer memory space */ 1065 res = platform_get_resource(pdev, IORESOURCE_MEM, 1); 1066 if (res) { 1067 mem = devm_request_mem_region(&pdev->dev, res->start, 1068 resource_size(res), res->name); 1069 if (!mem) { 1070 dev_err(&pdev->dev, "cannot request memory space\n"); 1071 ret = -ENXIO; 1072 goto free; 1073 } 1074 1075 netdev->mem_start = mem->start; 1076 netdev->mem_end = mem->end; 1077 } 1078 1079 1080 /* obtain device IRQ number */ 1081 ret = platform_get_irq(pdev, 0); 1082 if (ret < 0) 1083 goto free; 1084 1085 netdev->irq = ret; 1086 1087 /* setup driver-private data */ 1088 priv = netdev_priv(netdev); 1089 priv->netdev = netdev; 1090 1091 priv->iobase = devm_ioremap(&pdev->dev, netdev->base_addr, 1092 resource_size(mmio)); 1093 if (!priv->iobase) { 1094 dev_err(&pdev->dev, "cannot remap I/O memory space\n"); 1095 ret = -ENXIO; 1096 goto free; 1097 } 1098 1099 if (netdev->mem_end) { 1100 priv->membase = devm_ioremap(&pdev->dev, 1101 netdev->mem_start, resource_size(mem)); 1102 if (!priv->membase) { 1103 dev_err(&pdev->dev, "cannot remap memory space\n"); 1104 ret = -ENXIO; 1105 goto free; 1106 } 1107 } else { 1108 /* Allocate buffer memory */ 1109 priv->membase = dmam_alloc_coherent(&pdev->dev, 1110 buffer_size, (void *)&netdev->mem_start, 1111 GFP_KERNEL); 1112 if (!priv->membase) { 1113 dev_err(&pdev->dev, "cannot allocate %dB buffer\n", 1114 buffer_size); 1115 ret = -ENOMEM; 1116 goto free; 1117 } 1118 netdev->mem_end = netdev->mem_start + buffer_size; 1119 } 1120 1121 priv->big_endian = pdata ? pdata->big_endian : 1122 of_device_is_big_endian(pdev->dev.of_node); 1123 1124 /* calculate the number of TX/RX buffers, maximum 128 supported */ 1125 num_bd = min_t(unsigned int, 1126 128, (netdev->mem_end - netdev->mem_start + 1) / ETHOC_BUFSIZ); 1127 if (num_bd < 4) { 1128 ret = -ENODEV; 1129 goto free; 1130 } 1131 priv->num_bd = num_bd; 1132 /* num_tx must be a power of two */ 1133 priv->num_tx = rounddown_pow_of_two(num_bd >> 1); 1134 priv->num_rx = num_bd - priv->num_tx; 1135 1136 dev_dbg(&pdev->dev, "ethoc: num_tx: %d num_rx: %d\n", 1137 priv->num_tx, priv->num_rx); 1138 1139 priv->vma = devm_kcalloc(&pdev->dev, num_bd, sizeof(void *), 1140 GFP_KERNEL); 1141 if (!priv->vma) { 1142 ret = -ENOMEM; 1143 goto free; 1144 } 1145 1146 /* Allow the platform setup code to pass in a MAC address. */ 1147 if (pdata) { 1148 eth_hw_addr_set(netdev, pdata->hwaddr); 1149 priv->phy_id = pdata->phy_id; 1150 } else { 1151 of_get_ethdev_address(pdev->dev.of_node, netdev); 1152 priv->phy_id = -1; 1153 } 1154 1155 /* Check that the given MAC address is valid. If it isn't, read the 1156 * current MAC from the controller. 1157 */ 1158 if (!is_valid_ether_addr(netdev->dev_addr)) { 1159 u8 addr[ETH_ALEN]; 1160 1161 ethoc_get_mac_address(netdev, addr); 1162 eth_hw_addr_set(netdev, addr); 1163 } 1164 1165 /* Check the MAC again for validity, if it still isn't choose and 1166 * program a random one. 1167 */ 1168 if (!is_valid_ether_addr(netdev->dev_addr)) 1169 eth_hw_addr_random(netdev); 1170 1171 ethoc_do_set_mac_address(netdev); 1172 1173 /* Allow the platform setup code to adjust MII management bus clock. */ 1174 if (!eth_clkfreq) { 1175 struct clk *clk = devm_clk_get(&pdev->dev, NULL); 1176 1177 if (!IS_ERR(clk)) { 1178 priv->clk = clk; 1179 clk_prepare_enable(clk); 1180 eth_clkfreq = clk_get_rate(clk); 1181 } 1182 } 1183 if (eth_clkfreq) { 1184 u32 clkdiv = MIIMODER_CLKDIV(eth_clkfreq / 2500000 + 1); 1185 1186 if (!clkdiv) 1187 clkdiv = 2; 1188 dev_dbg(&pdev->dev, "setting MII clkdiv to %u\n", clkdiv); 1189 ethoc_write(priv, MIIMODER, 1190 (ethoc_read(priv, MIIMODER) & MIIMODER_NOPRE) | 1191 clkdiv); 1192 } 1193 1194 /* register MII bus */ 1195 priv->mdio = mdiobus_alloc(); 1196 if (!priv->mdio) { 1197 ret = -ENOMEM; 1198 goto free2; 1199 } 1200 1201 priv->mdio->name = "ethoc-mdio"; 1202 snprintf(priv->mdio->id, MII_BUS_ID_SIZE, "%s-%d", 1203 priv->mdio->name, pdev->id); 1204 priv->mdio->read = ethoc_mdio_read; 1205 priv->mdio->write = ethoc_mdio_write; 1206 priv->mdio->priv = priv; 1207 1208 ret = mdiobus_register(priv->mdio); 1209 if (ret) { 1210 dev_err(&netdev->dev, "failed to register MDIO bus\n"); 1211 goto free3; 1212 } 1213 1214 ret = ethoc_mdio_probe(netdev); 1215 if (ret) { 1216 dev_err(&netdev->dev, "failed to probe MDIO bus\n"); 1217 goto error; 1218 } 1219 1220 /* setup the net_device structure */ 1221 netdev->netdev_ops = ðoc_netdev_ops; 1222 netdev->watchdog_timeo = ETHOC_TIMEOUT; 1223 netdev->features |= 0; 1224 netdev->ethtool_ops = ðoc_ethtool_ops; 1225 1226 /* setup NAPI */ 1227 netif_napi_add(netdev, &priv->napi, ethoc_poll, 64); 1228 1229 spin_lock_init(&priv->lock); 1230 1231 ret = register_netdev(netdev); 1232 if (ret < 0) { 1233 dev_err(&netdev->dev, "failed to register interface\n"); 1234 goto error2; 1235 } 1236 1237 goto out; 1238 1239 error2: 1240 netif_napi_del(&priv->napi); 1241 error: 1242 mdiobus_unregister(priv->mdio); 1243 free3: 1244 mdiobus_free(priv->mdio); 1245 free2: 1246 clk_disable_unprepare(priv->clk); 1247 free: 1248 free_netdev(netdev); 1249 out: 1250 return ret; 1251 } 1252 1253 /** 1254 * ethoc_remove - shutdown OpenCores ethernet MAC 1255 * @pdev: platform device 1256 */ 1257 static int ethoc_remove(struct platform_device *pdev) 1258 { 1259 struct net_device *netdev = platform_get_drvdata(pdev); 1260 struct ethoc *priv = netdev_priv(netdev); 1261 1262 if (netdev) { 1263 netif_napi_del(&priv->napi); 1264 phy_disconnect(netdev->phydev); 1265 1266 if (priv->mdio) { 1267 mdiobus_unregister(priv->mdio); 1268 mdiobus_free(priv->mdio); 1269 } 1270 clk_disable_unprepare(priv->clk); 1271 unregister_netdev(netdev); 1272 free_netdev(netdev); 1273 } 1274 1275 return 0; 1276 } 1277 1278 #ifdef CONFIG_PM 1279 static int ethoc_suspend(struct platform_device *pdev, pm_message_t state) 1280 { 1281 return -ENOSYS; 1282 } 1283 1284 static int ethoc_resume(struct platform_device *pdev) 1285 { 1286 return -ENOSYS; 1287 } 1288 #else 1289 # define ethoc_suspend NULL 1290 # define ethoc_resume NULL 1291 #endif 1292 1293 static const struct of_device_id ethoc_match[] = { 1294 { .compatible = "opencores,ethoc", }, 1295 {}, 1296 }; 1297 MODULE_DEVICE_TABLE(of, ethoc_match); 1298 1299 static struct platform_driver ethoc_driver = { 1300 .probe = ethoc_probe, 1301 .remove = ethoc_remove, 1302 .suspend = ethoc_suspend, 1303 .resume = ethoc_resume, 1304 .driver = { 1305 .name = "ethoc", 1306 .of_match_table = ethoc_match, 1307 }, 1308 }; 1309 1310 module_platform_driver(ethoc_driver); 1311 1312 MODULE_AUTHOR("Thierry Reding <thierry.reding@avionic-design.de>"); 1313 MODULE_DESCRIPTION("OpenCores Ethernet MAC driver"); 1314 MODULE_LICENSE("GPL v2"); 1315 1316