1 /* 2 * linux/drivers/net/ethernet/ethoc.c 3 * 4 * Copyright (C) 2007-2008 Avionic Design Development GmbH 5 * Copyright (C) 2008-2009 Avionic Design GmbH 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 * 11 * Written by Thierry Reding <thierry.reding@avionic-design.de> 12 */ 13 14 #include <linux/dma-mapping.h> 15 #include <linux/etherdevice.h> 16 #include <linux/clk.h> 17 #include <linux/crc32.h> 18 #include <linux/interrupt.h> 19 #include <linux/io.h> 20 #include <linux/mii.h> 21 #include <linux/phy.h> 22 #include <linux/platform_device.h> 23 #include <linux/sched.h> 24 #include <linux/slab.h> 25 #include <linux/of.h> 26 #include <linux/module.h> 27 #include <net/ethoc.h> 28 29 static int buffer_size = 0x8000; /* 32 KBytes */ 30 module_param(buffer_size, int, 0); 31 MODULE_PARM_DESC(buffer_size, "DMA buffer allocation size"); 32 33 /* register offsets */ 34 #define MODER 0x00 35 #define INT_SOURCE 0x04 36 #define INT_MASK 0x08 37 #define IPGT 0x0c 38 #define IPGR1 0x10 39 #define IPGR2 0x14 40 #define PACKETLEN 0x18 41 #define COLLCONF 0x1c 42 #define TX_BD_NUM 0x20 43 #define CTRLMODER 0x24 44 #define MIIMODER 0x28 45 #define MIICOMMAND 0x2c 46 #define MIIADDRESS 0x30 47 #define MIITX_DATA 0x34 48 #define MIIRX_DATA 0x38 49 #define MIISTATUS 0x3c 50 #define MAC_ADDR0 0x40 51 #define MAC_ADDR1 0x44 52 #define ETH_HASH0 0x48 53 #define ETH_HASH1 0x4c 54 #define ETH_TXCTRL 0x50 55 #define ETH_END 0x54 56 57 /* mode register */ 58 #define MODER_RXEN (1 << 0) /* receive enable */ 59 #define MODER_TXEN (1 << 1) /* transmit enable */ 60 #define MODER_NOPRE (1 << 2) /* no preamble */ 61 #define MODER_BRO (1 << 3) /* broadcast address */ 62 #define MODER_IAM (1 << 4) /* individual address mode */ 63 #define MODER_PRO (1 << 5) /* promiscuous mode */ 64 #define MODER_IFG (1 << 6) /* interframe gap for incoming frames */ 65 #define MODER_LOOP (1 << 7) /* loopback */ 66 #define MODER_NBO (1 << 8) /* no back-off */ 67 #define MODER_EDE (1 << 9) /* excess defer enable */ 68 #define MODER_FULLD (1 << 10) /* full duplex */ 69 #define MODER_RESET (1 << 11) /* FIXME: reset (undocumented) */ 70 #define MODER_DCRC (1 << 12) /* delayed CRC enable */ 71 #define MODER_CRC (1 << 13) /* CRC enable */ 72 #define MODER_HUGE (1 << 14) /* huge packets enable */ 73 #define MODER_PAD (1 << 15) /* padding enabled */ 74 #define MODER_RSM (1 << 16) /* receive small packets */ 75 76 /* interrupt source and mask registers */ 77 #define INT_MASK_TXF (1 << 0) /* transmit frame */ 78 #define INT_MASK_TXE (1 << 1) /* transmit error */ 79 #define INT_MASK_RXF (1 << 2) /* receive frame */ 80 #define INT_MASK_RXE (1 << 3) /* receive error */ 81 #define INT_MASK_BUSY (1 << 4) 82 #define INT_MASK_TXC (1 << 5) /* transmit control frame */ 83 #define INT_MASK_RXC (1 << 6) /* receive control frame */ 84 85 #define INT_MASK_TX (INT_MASK_TXF | INT_MASK_TXE) 86 #define INT_MASK_RX (INT_MASK_RXF | INT_MASK_RXE) 87 88 #define INT_MASK_ALL ( \ 89 INT_MASK_TXF | INT_MASK_TXE | \ 90 INT_MASK_RXF | INT_MASK_RXE | \ 91 INT_MASK_TXC | INT_MASK_RXC | \ 92 INT_MASK_BUSY \ 93 ) 94 95 /* packet length register */ 96 #define PACKETLEN_MIN(min) (((min) & 0xffff) << 16) 97 #define PACKETLEN_MAX(max) (((max) & 0xffff) << 0) 98 #define PACKETLEN_MIN_MAX(min, max) (PACKETLEN_MIN(min) | \ 99 PACKETLEN_MAX(max)) 100 101 /* transmit buffer number register */ 102 #define TX_BD_NUM_VAL(x) (((x) <= 0x80) ? (x) : 0x80) 103 104 /* control module mode register */ 105 #define CTRLMODER_PASSALL (1 << 0) /* pass all receive frames */ 106 #define CTRLMODER_RXFLOW (1 << 1) /* receive control flow */ 107 #define CTRLMODER_TXFLOW (1 << 2) /* transmit control flow */ 108 109 /* MII mode register */ 110 #define MIIMODER_CLKDIV(x) ((x) & 0xfe) /* needs to be an even number */ 111 #define MIIMODER_NOPRE (1 << 8) /* no preamble */ 112 113 /* MII command register */ 114 #define MIICOMMAND_SCAN (1 << 0) /* scan status */ 115 #define MIICOMMAND_READ (1 << 1) /* read status */ 116 #define MIICOMMAND_WRITE (1 << 2) /* write control data */ 117 118 /* MII address register */ 119 #define MIIADDRESS_FIAD(x) (((x) & 0x1f) << 0) 120 #define MIIADDRESS_RGAD(x) (((x) & 0x1f) << 8) 121 #define MIIADDRESS_ADDR(phy, reg) (MIIADDRESS_FIAD(phy) | \ 122 MIIADDRESS_RGAD(reg)) 123 124 /* MII transmit data register */ 125 #define MIITX_DATA_VAL(x) ((x) & 0xffff) 126 127 /* MII receive data register */ 128 #define MIIRX_DATA_VAL(x) ((x) & 0xffff) 129 130 /* MII status register */ 131 #define MIISTATUS_LINKFAIL (1 << 0) 132 #define MIISTATUS_BUSY (1 << 1) 133 #define MIISTATUS_INVALID (1 << 2) 134 135 /* TX buffer descriptor */ 136 #define TX_BD_CS (1 << 0) /* carrier sense lost */ 137 #define TX_BD_DF (1 << 1) /* defer indication */ 138 #define TX_BD_LC (1 << 2) /* late collision */ 139 #define TX_BD_RL (1 << 3) /* retransmission limit */ 140 #define TX_BD_RETRY_MASK (0x00f0) 141 #define TX_BD_RETRY(x) (((x) & 0x00f0) >> 4) 142 #define TX_BD_UR (1 << 8) /* transmitter underrun */ 143 #define TX_BD_CRC (1 << 11) /* TX CRC enable */ 144 #define TX_BD_PAD (1 << 12) /* pad enable for short packets */ 145 #define TX_BD_WRAP (1 << 13) 146 #define TX_BD_IRQ (1 << 14) /* interrupt request enable */ 147 #define TX_BD_READY (1 << 15) /* TX buffer ready */ 148 #define TX_BD_LEN(x) (((x) & 0xffff) << 16) 149 #define TX_BD_LEN_MASK (0xffff << 16) 150 151 #define TX_BD_STATS (TX_BD_CS | TX_BD_DF | TX_BD_LC | \ 152 TX_BD_RL | TX_BD_RETRY_MASK | TX_BD_UR) 153 154 /* RX buffer descriptor */ 155 #define RX_BD_LC (1 << 0) /* late collision */ 156 #define RX_BD_CRC (1 << 1) /* RX CRC error */ 157 #define RX_BD_SF (1 << 2) /* short frame */ 158 #define RX_BD_TL (1 << 3) /* too long */ 159 #define RX_BD_DN (1 << 4) /* dribble nibble */ 160 #define RX_BD_IS (1 << 5) /* invalid symbol */ 161 #define RX_BD_OR (1 << 6) /* receiver overrun */ 162 #define RX_BD_MISS (1 << 7) 163 #define RX_BD_CF (1 << 8) /* control frame */ 164 #define RX_BD_WRAP (1 << 13) 165 #define RX_BD_IRQ (1 << 14) /* interrupt request enable */ 166 #define RX_BD_EMPTY (1 << 15) 167 #define RX_BD_LEN(x) (((x) & 0xffff) << 16) 168 169 #define RX_BD_STATS (RX_BD_LC | RX_BD_CRC | RX_BD_SF | RX_BD_TL | \ 170 RX_BD_DN | RX_BD_IS | RX_BD_OR | RX_BD_MISS) 171 172 #define ETHOC_BUFSIZ 1536 173 #define ETHOC_ZLEN 64 174 #define ETHOC_BD_BASE 0x400 175 #define ETHOC_TIMEOUT (HZ / 2) 176 #define ETHOC_MII_TIMEOUT (1 + (HZ / 5)) 177 178 /** 179 * struct ethoc - driver-private device structure 180 * @iobase: pointer to I/O memory region 181 * @membase: pointer to buffer memory region 182 * @dma_alloc: dma allocated buffer size 183 * @io_region_size: I/O memory region size 184 * @num_bd: number of buffer descriptors 185 * @num_tx: number of send buffers 186 * @cur_tx: last send buffer written 187 * @dty_tx: last buffer actually sent 188 * @num_rx: number of receive buffers 189 * @cur_rx: current receive buffer 190 * @vma: pointer to array of virtual memory addresses for buffers 191 * @netdev: pointer to network device structure 192 * @napi: NAPI structure 193 * @msg_enable: device state flags 194 * @lock: device lock 195 * @phy: attached PHY 196 * @mdio: MDIO bus for PHY access 197 * @phy_id: address of attached PHY 198 */ 199 struct ethoc { 200 void __iomem *iobase; 201 void __iomem *membase; 202 int dma_alloc; 203 resource_size_t io_region_size; 204 205 unsigned int num_bd; 206 unsigned int num_tx; 207 unsigned int cur_tx; 208 unsigned int dty_tx; 209 210 unsigned int num_rx; 211 unsigned int cur_rx; 212 213 void **vma; 214 215 struct net_device *netdev; 216 struct napi_struct napi; 217 u32 msg_enable; 218 219 spinlock_t lock; 220 221 struct phy_device *phy; 222 struct mii_bus *mdio; 223 struct clk *clk; 224 s8 phy_id; 225 }; 226 227 /** 228 * struct ethoc_bd - buffer descriptor 229 * @stat: buffer statistics 230 * @addr: physical memory address 231 */ 232 struct ethoc_bd { 233 u32 stat; 234 u32 addr; 235 }; 236 237 static inline u32 ethoc_read(struct ethoc *dev, loff_t offset) 238 { 239 return ioread32(dev->iobase + offset); 240 } 241 242 static inline void ethoc_write(struct ethoc *dev, loff_t offset, u32 data) 243 { 244 iowrite32(data, dev->iobase + offset); 245 } 246 247 static inline void ethoc_read_bd(struct ethoc *dev, int index, 248 struct ethoc_bd *bd) 249 { 250 loff_t offset = ETHOC_BD_BASE + (index * sizeof(struct ethoc_bd)); 251 bd->stat = ethoc_read(dev, offset + 0); 252 bd->addr = ethoc_read(dev, offset + 4); 253 } 254 255 static inline void ethoc_write_bd(struct ethoc *dev, int index, 256 const struct ethoc_bd *bd) 257 { 258 loff_t offset = ETHOC_BD_BASE + (index * sizeof(struct ethoc_bd)); 259 ethoc_write(dev, offset + 0, bd->stat); 260 ethoc_write(dev, offset + 4, bd->addr); 261 } 262 263 static inline void ethoc_enable_irq(struct ethoc *dev, u32 mask) 264 { 265 u32 imask = ethoc_read(dev, INT_MASK); 266 imask |= mask; 267 ethoc_write(dev, INT_MASK, imask); 268 } 269 270 static inline void ethoc_disable_irq(struct ethoc *dev, u32 mask) 271 { 272 u32 imask = ethoc_read(dev, INT_MASK); 273 imask &= ~mask; 274 ethoc_write(dev, INT_MASK, imask); 275 } 276 277 static inline void ethoc_ack_irq(struct ethoc *dev, u32 mask) 278 { 279 ethoc_write(dev, INT_SOURCE, mask); 280 } 281 282 static inline void ethoc_enable_rx_and_tx(struct ethoc *dev) 283 { 284 u32 mode = ethoc_read(dev, MODER); 285 mode |= MODER_RXEN | MODER_TXEN; 286 ethoc_write(dev, MODER, mode); 287 } 288 289 static inline void ethoc_disable_rx_and_tx(struct ethoc *dev) 290 { 291 u32 mode = ethoc_read(dev, MODER); 292 mode &= ~(MODER_RXEN | MODER_TXEN); 293 ethoc_write(dev, MODER, mode); 294 } 295 296 static int ethoc_init_ring(struct ethoc *dev, unsigned long mem_start) 297 { 298 struct ethoc_bd bd; 299 int i; 300 void *vma; 301 302 dev->cur_tx = 0; 303 dev->dty_tx = 0; 304 dev->cur_rx = 0; 305 306 ethoc_write(dev, TX_BD_NUM, dev->num_tx); 307 308 /* setup transmission buffers */ 309 bd.addr = mem_start; 310 bd.stat = TX_BD_IRQ | TX_BD_CRC; 311 vma = dev->membase; 312 313 for (i = 0; i < dev->num_tx; i++) { 314 if (i == dev->num_tx - 1) 315 bd.stat |= TX_BD_WRAP; 316 317 ethoc_write_bd(dev, i, &bd); 318 bd.addr += ETHOC_BUFSIZ; 319 320 dev->vma[i] = vma; 321 vma += ETHOC_BUFSIZ; 322 } 323 324 bd.stat = RX_BD_EMPTY | RX_BD_IRQ; 325 326 for (i = 0; i < dev->num_rx; i++) { 327 if (i == dev->num_rx - 1) 328 bd.stat |= RX_BD_WRAP; 329 330 ethoc_write_bd(dev, dev->num_tx + i, &bd); 331 bd.addr += ETHOC_BUFSIZ; 332 333 dev->vma[dev->num_tx + i] = vma; 334 vma += ETHOC_BUFSIZ; 335 } 336 337 return 0; 338 } 339 340 static int ethoc_reset(struct ethoc *dev) 341 { 342 u32 mode; 343 344 /* TODO: reset controller? */ 345 346 ethoc_disable_rx_and_tx(dev); 347 348 /* TODO: setup registers */ 349 350 /* enable FCS generation and automatic padding */ 351 mode = ethoc_read(dev, MODER); 352 mode |= MODER_CRC | MODER_PAD; 353 ethoc_write(dev, MODER, mode); 354 355 /* set full-duplex mode */ 356 mode = ethoc_read(dev, MODER); 357 mode |= MODER_FULLD; 358 ethoc_write(dev, MODER, mode); 359 ethoc_write(dev, IPGT, 0x15); 360 361 ethoc_ack_irq(dev, INT_MASK_ALL); 362 ethoc_enable_irq(dev, INT_MASK_ALL); 363 ethoc_enable_rx_and_tx(dev); 364 return 0; 365 } 366 367 static unsigned int ethoc_update_rx_stats(struct ethoc *dev, 368 struct ethoc_bd *bd) 369 { 370 struct net_device *netdev = dev->netdev; 371 unsigned int ret = 0; 372 373 if (bd->stat & RX_BD_TL) { 374 dev_err(&netdev->dev, "RX: frame too long\n"); 375 netdev->stats.rx_length_errors++; 376 ret++; 377 } 378 379 if (bd->stat & RX_BD_SF) { 380 dev_err(&netdev->dev, "RX: frame too short\n"); 381 netdev->stats.rx_length_errors++; 382 ret++; 383 } 384 385 if (bd->stat & RX_BD_DN) { 386 dev_err(&netdev->dev, "RX: dribble nibble\n"); 387 netdev->stats.rx_frame_errors++; 388 } 389 390 if (bd->stat & RX_BD_CRC) { 391 dev_err(&netdev->dev, "RX: wrong CRC\n"); 392 netdev->stats.rx_crc_errors++; 393 ret++; 394 } 395 396 if (bd->stat & RX_BD_OR) { 397 dev_err(&netdev->dev, "RX: overrun\n"); 398 netdev->stats.rx_over_errors++; 399 ret++; 400 } 401 402 if (bd->stat & RX_BD_MISS) 403 netdev->stats.rx_missed_errors++; 404 405 if (bd->stat & RX_BD_LC) { 406 dev_err(&netdev->dev, "RX: late collision\n"); 407 netdev->stats.collisions++; 408 ret++; 409 } 410 411 return ret; 412 } 413 414 static int ethoc_rx(struct net_device *dev, int limit) 415 { 416 struct ethoc *priv = netdev_priv(dev); 417 int count; 418 419 for (count = 0; count < limit; ++count) { 420 unsigned int entry; 421 struct ethoc_bd bd; 422 423 entry = priv->num_tx + priv->cur_rx; 424 ethoc_read_bd(priv, entry, &bd); 425 if (bd.stat & RX_BD_EMPTY) { 426 ethoc_ack_irq(priv, INT_MASK_RX); 427 /* If packet (interrupt) came in between checking 428 * BD_EMTPY and clearing the interrupt source, then we 429 * risk missing the packet as the RX interrupt won't 430 * trigger right away when we reenable it; hence, check 431 * BD_EMTPY here again to make sure there isn't such a 432 * packet waiting for us... 433 */ 434 ethoc_read_bd(priv, entry, &bd); 435 if (bd.stat & RX_BD_EMPTY) 436 break; 437 } 438 439 if (ethoc_update_rx_stats(priv, &bd) == 0) { 440 int size = bd.stat >> 16; 441 struct sk_buff *skb; 442 443 size -= 4; /* strip the CRC */ 444 skb = netdev_alloc_skb_ip_align(dev, size); 445 446 if (likely(skb)) { 447 void *src = priv->vma[entry]; 448 memcpy_fromio(skb_put(skb, size), src, size); 449 skb->protocol = eth_type_trans(skb, dev); 450 dev->stats.rx_packets++; 451 dev->stats.rx_bytes += size; 452 netif_receive_skb(skb); 453 } else { 454 if (net_ratelimit()) 455 dev_warn(&dev->dev, 456 "low on memory - packet dropped\n"); 457 458 dev->stats.rx_dropped++; 459 break; 460 } 461 } 462 463 /* clear the buffer descriptor so it can be reused */ 464 bd.stat &= ~RX_BD_STATS; 465 bd.stat |= RX_BD_EMPTY; 466 ethoc_write_bd(priv, entry, &bd); 467 if (++priv->cur_rx == priv->num_rx) 468 priv->cur_rx = 0; 469 } 470 471 return count; 472 } 473 474 static void ethoc_update_tx_stats(struct ethoc *dev, struct ethoc_bd *bd) 475 { 476 struct net_device *netdev = dev->netdev; 477 478 if (bd->stat & TX_BD_LC) { 479 dev_err(&netdev->dev, "TX: late collision\n"); 480 netdev->stats.tx_window_errors++; 481 } 482 483 if (bd->stat & TX_BD_RL) { 484 dev_err(&netdev->dev, "TX: retransmit limit\n"); 485 netdev->stats.tx_aborted_errors++; 486 } 487 488 if (bd->stat & TX_BD_UR) { 489 dev_err(&netdev->dev, "TX: underrun\n"); 490 netdev->stats.tx_fifo_errors++; 491 } 492 493 if (bd->stat & TX_BD_CS) { 494 dev_err(&netdev->dev, "TX: carrier sense lost\n"); 495 netdev->stats.tx_carrier_errors++; 496 } 497 498 if (bd->stat & TX_BD_STATS) 499 netdev->stats.tx_errors++; 500 501 netdev->stats.collisions += (bd->stat >> 4) & 0xf; 502 netdev->stats.tx_bytes += bd->stat >> 16; 503 netdev->stats.tx_packets++; 504 } 505 506 static int ethoc_tx(struct net_device *dev, int limit) 507 { 508 struct ethoc *priv = netdev_priv(dev); 509 int count; 510 struct ethoc_bd bd; 511 512 for (count = 0; count < limit; ++count) { 513 unsigned int entry; 514 515 entry = priv->dty_tx & (priv->num_tx-1); 516 517 ethoc_read_bd(priv, entry, &bd); 518 519 if (bd.stat & TX_BD_READY || (priv->dty_tx == priv->cur_tx)) { 520 ethoc_ack_irq(priv, INT_MASK_TX); 521 /* If interrupt came in between reading in the BD 522 * and clearing the interrupt source, then we risk 523 * missing the event as the TX interrupt won't trigger 524 * right away when we reenable it; hence, check 525 * BD_EMPTY here again to make sure there isn't such an 526 * event pending... 527 */ 528 ethoc_read_bd(priv, entry, &bd); 529 if (bd.stat & TX_BD_READY || 530 (priv->dty_tx == priv->cur_tx)) 531 break; 532 } 533 534 ethoc_update_tx_stats(priv, &bd); 535 priv->dty_tx++; 536 } 537 538 if ((priv->cur_tx - priv->dty_tx) <= (priv->num_tx / 2)) 539 netif_wake_queue(dev); 540 541 return count; 542 } 543 544 static irqreturn_t ethoc_interrupt(int irq, void *dev_id) 545 { 546 struct net_device *dev = dev_id; 547 struct ethoc *priv = netdev_priv(dev); 548 u32 pending; 549 u32 mask; 550 551 /* Figure out what triggered the interrupt... 552 * The tricky bit here is that the interrupt source bits get 553 * set in INT_SOURCE for an event regardless of whether that 554 * event is masked or not. Thus, in order to figure out what 555 * triggered the interrupt, we need to remove the sources 556 * for all events that are currently masked. This behaviour 557 * is not particularly well documented but reasonable... 558 */ 559 mask = ethoc_read(priv, INT_MASK); 560 pending = ethoc_read(priv, INT_SOURCE); 561 pending &= mask; 562 563 if (unlikely(pending == 0)) 564 return IRQ_NONE; 565 566 ethoc_ack_irq(priv, pending); 567 568 /* We always handle the dropped packet interrupt */ 569 if (pending & INT_MASK_BUSY) { 570 dev_err(&dev->dev, "packet dropped\n"); 571 dev->stats.rx_dropped++; 572 } 573 574 /* Handle receive/transmit event by switching to polling */ 575 if (pending & (INT_MASK_TX | INT_MASK_RX)) { 576 ethoc_disable_irq(priv, INT_MASK_TX | INT_MASK_RX); 577 napi_schedule(&priv->napi); 578 } 579 580 return IRQ_HANDLED; 581 } 582 583 static int ethoc_get_mac_address(struct net_device *dev, void *addr) 584 { 585 struct ethoc *priv = netdev_priv(dev); 586 u8 *mac = (u8 *)addr; 587 u32 reg; 588 589 reg = ethoc_read(priv, MAC_ADDR0); 590 mac[2] = (reg >> 24) & 0xff; 591 mac[3] = (reg >> 16) & 0xff; 592 mac[4] = (reg >> 8) & 0xff; 593 mac[5] = (reg >> 0) & 0xff; 594 595 reg = ethoc_read(priv, MAC_ADDR1); 596 mac[0] = (reg >> 8) & 0xff; 597 mac[1] = (reg >> 0) & 0xff; 598 599 return 0; 600 } 601 602 static int ethoc_poll(struct napi_struct *napi, int budget) 603 { 604 struct ethoc *priv = container_of(napi, struct ethoc, napi); 605 int rx_work_done = 0; 606 int tx_work_done = 0; 607 608 rx_work_done = ethoc_rx(priv->netdev, budget); 609 tx_work_done = ethoc_tx(priv->netdev, budget); 610 611 if (rx_work_done < budget && tx_work_done < budget) { 612 napi_complete(napi); 613 ethoc_enable_irq(priv, INT_MASK_TX | INT_MASK_RX); 614 } 615 616 return rx_work_done; 617 } 618 619 static int ethoc_mdio_read(struct mii_bus *bus, int phy, int reg) 620 { 621 struct ethoc *priv = bus->priv; 622 int i; 623 624 ethoc_write(priv, MIIADDRESS, MIIADDRESS_ADDR(phy, reg)); 625 ethoc_write(priv, MIICOMMAND, MIICOMMAND_READ); 626 627 for (i = 0; i < 5; i++) { 628 u32 status = ethoc_read(priv, MIISTATUS); 629 if (!(status & MIISTATUS_BUSY)) { 630 u32 data = ethoc_read(priv, MIIRX_DATA); 631 /* reset MII command register */ 632 ethoc_write(priv, MIICOMMAND, 0); 633 return data; 634 } 635 usleep_range(100, 200); 636 } 637 638 return -EBUSY; 639 } 640 641 static int ethoc_mdio_write(struct mii_bus *bus, int phy, int reg, u16 val) 642 { 643 struct ethoc *priv = bus->priv; 644 int i; 645 646 ethoc_write(priv, MIIADDRESS, MIIADDRESS_ADDR(phy, reg)); 647 ethoc_write(priv, MIITX_DATA, val); 648 ethoc_write(priv, MIICOMMAND, MIICOMMAND_WRITE); 649 650 for (i = 0; i < 5; i++) { 651 u32 stat = ethoc_read(priv, MIISTATUS); 652 if (!(stat & MIISTATUS_BUSY)) { 653 /* reset MII command register */ 654 ethoc_write(priv, MIICOMMAND, 0); 655 return 0; 656 } 657 usleep_range(100, 200); 658 } 659 660 return -EBUSY; 661 } 662 663 static void ethoc_mdio_poll(struct net_device *dev) 664 { 665 } 666 667 static int ethoc_mdio_probe(struct net_device *dev) 668 { 669 struct ethoc *priv = netdev_priv(dev); 670 struct phy_device *phy; 671 int err; 672 673 if (priv->phy_id != -1) 674 phy = priv->mdio->phy_map[priv->phy_id]; 675 else 676 phy = phy_find_first(priv->mdio); 677 678 if (!phy) { 679 dev_err(&dev->dev, "no PHY found\n"); 680 return -ENXIO; 681 } 682 683 err = phy_connect_direct(dev, phy, ethoc_mdio_poll, 684 PHY_INTERFACE_MODE_GMII); 685 if (err) { 686 dev_err(&dev->dev, "could not attach to PHY\n"); 687 return err; 688 } 689 690 priv->phy = phy; 691 phy->advertising &= ~(ADVERTISED_1000baseT_Full | 692 ADVERTISED_1000baseT_Half); 693 phy->supported &= ~(SUPPORTED_1000baseT_Full | 694 SUPPORTED_1000baseT_Half); 695 696 return 0; 697 } 698 699 static int ethoc_open(struct net_device *dev) 700 { 701 struct ethoc *priv = netdev_priv(dev); 702 int ret; 703 704 ret = request_irq(dev->irq, ethoc_interrupt, IRQF_SHARED, 705 dev->name, dev); 706 if (ret) 707 return ret; 708 709 ethoc_init_ring(priv, dev->mem_start); 710 ethoc_reset(priv); 711 712 if (netif_queue_stopped(dev)) { 713 dev_dbg(&dev->dev, " resuming queue\n"); 714 netif_wake_queue(dev); 715 } else { 716 dev_dbg(&dev->dev, " starting queue\n"); 717 netif_start_queue(dev); 718 } 719 720 phy_start(priv->phy); 721 napi_enable(&priv->napi); 722 723 if (netif_msg_ifup(priv)) { 724 dev_info(&dev->dev, "I/O: %08lx Memory: %08lx-%08lx\n", 725 dev->base_addr, dev->mem_start, dev->mem_end); 726 } 727 728 return 0; 729 } 730 731 static int ethoc_stop(struct net_device *dev) 732 { 733 struct ethoc *priv = netdev_priv(dev); 734 735 napi_disable(&priv->napi); 736 737 if (priv->phy) 738 phy_stop(priv->phy); 739 740 ethoc_disable_rx_and_tx(priv); 741 free_irq(dev->irq, dev); 742 743 if (!netif_queue_stopped(dev)) 744 netif_stop_queue(dev); 745 746 return 0; 747 } 748 749 static int ethoc_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 750 { 751 struct ethoc *priv = netdev_priv(dev); 752 struct mii_ioctl_data *mdio = if_mii(ifr); 753 struct phy_device *phy = NULL; 754 755 if (!netif_running(dev)) 756 return -EINVAL; 757 758 if (cmd != SIOCGMIIPHY) { 759 if (mdio->phy_id >= PHY_MAX_ADDR) 760 return -ERANGE; 761 762 phy = priv->mdio->phy_map[mdio->phy_id]; 763 if (!phy) 764 return -ENODEV; 765 } else { 766 phy = priv->phy; 767 } 768 769 return phy_mii_ioctl(phy, ifr, cmd); 770 } 771 772 static void ethoc_do_set_mac_address(struct net_device *dev) 773 { 774 struct ethoc *priv = netdev_priv(dev); 775 unsigned char *mac = dev->dev_addr; 776 777 ethoc_write(priv, MAC_ADDR0, (mac[2] << 24) | (mac[3] << 16) | 778 (mac[4] << 8) | (mac[5] << 0)); 779 ethoc_write(priv, MAC_ADDR1, (mac[0] << 8) | (mac[1] << 0)); 780 } 781 782 static int ethoc_set_mac_address(struct net_device *dev, void *p) 783 { 784 const struct sockaddr *addr = p; 785 786 if (!is_valid_ether_addr(addr->sa_data)) 787 return -EADDRNOTAVAIL; 788 memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN); 789 ethoc_do_set_mac_address(dev); 790 return 0; 791 } 792 793 static void ethoc_set_multicast_list(struct net_device *dev) 794 { 795 struct ethoc *priv = netdev_priv(dev); 796 u32 mode = ethoc_read(priv, MODER); 797 struct netdev_hw_addr *ha; 798 u32 hash[2] = { 0, 0 }; 799 800 /* set loopback mode if requested */ 801 if (dev->flags & IFF_LOOPBACK) 802 mode |= MODER_LOOP; 803 else 804 mode &= ~MODER_LOOP; 805 806 /* receive broadcast frames if requested */ 807 if (dev->flags & IFF_BROADCAST) 808 mode &= ~MODER_BRO; 809 else 810 mode |= MODER_BRO; 811 812 /* enable promiscuous mode if requested */ 813 if (dev->flags & IFF_PROMISC) 814 mode |= MODER_PRO; 815 else 816 mode &= ~MODER_PRO; 817 818 ethoc_write(priv, MODER, mode); 819 820 /* receive multicast frames */ 821 if (dev->flags & IFF_ALLMULTI) { 822 hash[0] = 0xffffffff; 823 hash[1] = 0xffffffff; 824 } else { 825 netdev_for_each_mc_addr(ha, dev) { 826 u32 crc = ether_crc(ETH_ALEN, ha->addr); 827 int bit = (crc >> 26) & 0x3f; 828 hash[bit >> 5] |= 1 << (bit & 0x1f); 829 } 830 } 831 832 ethoc_write(priv, ETH_HASH0, hash[0]); 833 ethoc_write(priv, ETH_HASH1, hash[1]); 834 } 835 836 static int ethoc_change_mtu(struct net_device *dev, int new_mtu) 837 { 838 return -ENOSYS; 839 } 840 841 static void ethoc_tx_timeout(struct net_device *dev) 842 { 843 struct ethoc *priv = netdev_priv(dev); 844 u32 pending = ethoc_read(priv, INT_SOURCE); 845 if (likely(pending)) 846 ethoc_interrupt(dev->irq, dev); 847 } 848 849 static netdev_tx_t ethoc_start_xmit(struct sk_buff *skb, struct net_device *dev) 850 { 851 struct ethoc *priv = netdev_priv(dev); 852 struct ethoc_bd bd; 853 unsigned int entry; 854 void *dest; 855 856 if (unlikely(skb->len > ETHOC_BUFSIZ)) { 857 dev->stats.tx_errors++; 858 goto out; 859 } 860 861 entry = priv->cur_tx % priv->num_tx; 862 spin_lock_irq(&priv->lock); 863 priv->cur_tx++; 864 865 ethoc_read_bd(priv, entry, &bd); 866 if (unlikely(skb->len < ETHOC_ZLEN)) 867 bd.stat |= TX_BD_PAD; 868 else 869 bd.stat &= ~TX_BD_PAD; 870 871 dest = priv->vma[entry]; 872 memcpy_toio(dest, skb->data, skb->len); 873 874 bd.stat &= ~(TX_BD_STATS | TX_BD_LEN_MASK); 875 bd.stat |= TX_BD_LEN(skb->len); 876 ethoc_write_bd(priv, entry, &bd); 877 878 bd.stat |= TX_BD_READY; 879 ethoc_write_bd(priv, entry, &bd); 880 881 if (priv->cur_tx == (priv->dty_tx + priv->num_tx)) { 882 dev_dbg(&dev->dev, "stopping queue\n"); 883 netif_stop_queue(dev); 884 } 885 886 spin_unlock_irq(&priv->lock); 887 skb_tx_timestamp(skb); 888 out: 889 dev_kfree_skb(skb); 890 return NETDEV_TX_OK; 891 } 892 893 static int ethoc_get_settings(struct net_device *dev, struct ethtool_cmd *cmd) 894 { 895 struct ethoc *priv = netdev_priv(dev); 896 struct phy_device *phydev = priv->phy; 897 898 if (!phydev) 899 return -EOPNOTSUPP; 900 901 return phy_ethtool_gset(phydev, cmd); 902 } 903 904 static int ethoc_set_settings(struct net_device *dev, struct ethtool_cmd *cmd) 905 { 906 struct ethoc *priv = netdev_priv(dev); 907 struct phy_device *phydev = priv->phy; 908 909 if (!phydev) 910 return -EOPNOTSUPP; 911 912 return phy_ethtool_sset(phydev, cmd); 913 } 914 915 static int ethoc_get_regs_len(struct net_device *netdev) 916 { 917 return ETH_END; 918 } 919 920 static void ethoc_get_regs(struct net_device *dev, struct ethtool_regs *regs, 921 void *p) 922 { 923 struct ethoc *priv = netdev_priv(dev); 924 u32 *regs_buff = p; 925 unsigned i; 926 927 regs->version = 0; 928 for (i = 0; i < ETH_END / sizeof(u32); ++i) 929 regs_buff[i] = ethoc_read(priv, i * sizeof(u32)); 930 } 931 932 static void ethoc_get_ringparam(struct net_device *dev, 933 struct ethtool_ringparam *ring) 934 { 935 struct ethoc *priv = netdev_priv(dev); 936 937 ring->rx_max_pending = priv->num_bd - 1; 938 ring->rx_mini_max_pending = 0; 939 ring->rx_jumbo_max_pending = 0; 940 ring->tx_max_pending = priv->num_bd - 1; 941 942 ring->rx_pending = priv->num_rx; 943 ring->rx_mini_pending = 0; 944 ring->rx_jumbo_pending = 0; 945 ring->tx_pending = priv->num_tx; 946 } 947 948 static int ethoc_set_ringparam(struct net_device *dev, 949 struct ethtool_ringparam *ring) 950 { 951 struct ethoc *priv = netdev_priv(dev); 952 953 if (ring->tx_pending < 1 || ring->rx_pending < 1 || 954 ring->tx_pending + ring->rx_pending > priv->num_bd) 955 return -EINVAL; 956 if (ring->rx_mini_pending || ring->rx_jumbo_pending) 957 return -EINVAL; 958 959 if (netif_running(dev)) { 960 netif_tx_disable(dev); 961 ethoc_disable_rx_and_tx(priv); 962 ethoc_disable_irq(priv, INT_MASK_TX | INT_MASK_RX); 963 synchronize_irq(dev->irq); 964 } 965 966 priv->num_tx = rounddown_pow_of_two(ring->tx_pending); 967 priv->num_rx = ring->rx_pending; 968 ethoc_init_ring(priv, dev->mem_start); 969 970 if (netif_running(dev)) { 971 ethoc_enable_irq(priv, INT_MASK_TX | INT_MASK_RX); 972 ethoc_enable_rx_and_tx(priv); 973 netif_wake_queue(dev); 974 } 975 return 0; 976 } 977 978 const struct ethtool_ops ethoc_ethtool_ops = { 979 .get_settings = ethoc_get_settings, 980 .set_settings = ethoc_set_settings, 981 .get_regs_len = ethoc_get_regs_len, 982 .get_regs = ethoc_get_regs, 983 .get_link = ethtool_op_get_link, 984 .get_ringparam = ethoc_get_ringparam, 985 .set_ringparam = ethoc_set_ringparam, 986 .get_ts_info = ethtool_op_get_ts_info, 987 }; 988 989 static const struct net_device_ops ethoc_netdev_ops = { 990 .ndo_open = ethoc_open, 991 .ndo_stop = ethoc_stop, 992 .ndo_do_ioctl = ethoc_ioctl, 993 .ndo_set_mac_address = ethoc_set_mac_address, 994 .ndo_set_rx_mode = ethoc_set_multicast_list, 995 .ndo_change_mtu = ethoc_change_mtu, 996 .ndo_tx_timeout = ethoc_tx_timeout, 997 .ndo_start_xmit = ethoc_start_xmit, 998 }; 999 1000 /** 1001 * ethoc_probe - initialize OpenCores ethernet MAC 1002 * pdev: platform device 1003 */ 1004 static int ethoc_probe(struct platform_device *pdev) 1005 { 1006 struct net_device *netdev = NULL; 1007 struct resource *res = NULL; 1008 struct resource *mmio = NULL; 1009 struct resource *mem = NULL; 1010 struct ethoc *priv = NULL; 1011 unsigned int phy; 1012 int num_bd; 1013 int ret = 0; 1014 bool random_mac = false; 1015 struct ethoc_platform_data *pdata = dev_get_platdata(&pdev->dev); 1016 u32 eth_clkfreq = pdata ? pdata->eth_clkfreq : 0; 1017 1018 /* allocate networking device */ 1019 netdev = alloc_etherdev(sizeof(struct ethoc)); 1020 if (!netdev) { 1021 ret = -ENOMEM; 1022 goto out; 1023 } 1024 1025 SET_NETDEV_DEV(netdev, &pdev->dev); 1026 platform_set_drvdata(pdev, netdev); 1027 1028 /* obtain I/O memory space */ 1029 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1030 if (!res) { 1031 dev_err(&pdev->dev, "cannot obtain I/O memory space\n"); 1032 ret = -ENXIO; 1033 goto free; 1034 } 1035 1036 mmio = devm_request_mem_region(&pdev->dev, res->start, 1037 resource_size(res), res->name); 1038 if (!mmio) { 1039 dev_err(&pdev->dev, "cannot request I/O memory space\n"); 1040 ret = -ENXIO; 1041 goto free; 1042 } 1043 1044 netdev->base_addr = mmio->start; 1045 1046 /* obtain buffer memory space */ 1047 res = platform_get_resource(pdev, IORESOURCE_MEM, 1); 1048 if (res) { 1049 mem = devm_request_mem_region(&pdev->dev, res->start, 1050 resource_size(res), res->name); 1051 if (!mem) { 1052 dev_err(&pdev->dev, "cannot request memory space\n"); 1053 ret = -ENXIO; 1054 goto free; 1055 } 1056 1057 netdev->mem_start = mem->start; 1058 netdev->mem_end = mem->end; 1059 } 1060 1061 1062 /* obtain device IRQ number */ 1063 res = platform_get_resource(pdev, IORESOURCE_IRQ, 0); 1064 if (!res) { 1065 dev_err(&pdev->dev, "cannot obtain IRQ\n"); 1066 ret = -ENXIO; 1067 goto free; 1068 } 1069 1070 netdev->irq = res->start; 1071 1072 /* setup driver-private data */ 1073 priv = netdev_priv(netdev); 1074 priv->netdev = netdev; 1075 priv->dma_alloc = 0; 1076 priv->io_region_size = resource_size(mmio); 1077 1078 priv->iobase = devm_ioremap_nocache(&pdev->dev, netdev->base_addr, 1079 resource_size(mmio)); 1080 if (!priv->iobase) { 1081 dev_err(&pdev->dev, "cannot remap I/O memory space\n"); 1082 ret = -ENXIO; 1083 goto error; 1084 } 1085 1086 if (netdev->mem_end) { 1087 priv->membase = devm_ioremap_nocache(&pdev->dev, 1088 netdev->mem_start, resource_size(mem)); 1089 if (!priv->membase) { 1090 dev_err(&pdev->dev, "cannot remap memory space\n"); 1091 ret = -ENXIO; 1092 goto error; 1093 } 1094 } else { 1095 /* Allocate buffer memory */ 1096 priv->membase = dmam_alloc_coherent(&pdev->dev, 1097 buffer_size, (void *)&netdev->mem_start, 1098 GFP_KERNEL); 1099 if (!priv->membase) { 1100 dev_err(&pdev->dev, "cannot allocate %dB buffer\n", 1101 buffer_size); 1102 ret = -ENOMEM; 1103 goto error; 1104 } 1105 netdev->mem_end = netdev->mem_start + buffer_size; 1106 priv->dma_alloc = buffer_size; 1107 } 1108 1109 /* calculate the number of TX/RX buffers, maximum 128 supported */ 1110 num_bd = min_t(unsigned int, 1111 128, (netdev->mem_end - netdev->mem_start + 1) / ETHOC_BUFSIZ); 1112 if (num_bd < 4) { 1113 ret = -ENODEV; 1114 goto error; 1115 } 1116 priv->num_bd = num_bd; 1117 /* num_tx must be a power of two */ 1118 priv->num_tx = rounddown_pow_of_two(num_bd >> 1); 1119 priv->num_rx = num_bd - priv->num_tx; 1120 1121 dev_dbg(&pdev->dev, "ethoc: num_tx: %d num_rx: %d\n", 1122 priv->num_tx, priv->num_rx); 1123 1124 priv->vma = devm_kzalloc(&pdev->dev, num_bd*sizeof(void *), GFP_KERNEL); 1125 if (!priv->vma) { 1126 ret = -ENOMEM; 1127 goto error; 1128 } 1129 1130 /* Allow the platform setup code to pass in a MAC address. */ 1131 if (pdata) { 1132 memcpy(netdev->dev_addr, pdata->hwaddr, IFHWADDRLEN); 1133 priv->phy_id = pdata->phy_id; 1134 } else { 1135 priv->phy_id = -1; 1136 1137 #ifdef CONFIG_OF 1138 { 1139 const uint8_t *mac; 1140 1141 mac = of_get_property(pdev->dev.of_node, 1142 "local-mac-address", 1143 NULL); 1144 if (mac) 1145 memcpy(netdev->dev_addr, mac, IFHWADDRLEN); 1146 } 1147 #endif 1148 } 1149 1150 /* Check that the given MAC address is valid. If it isn't, read the 1151 * current MAC from the controller. 1152 */ 1153 if (!is_valid_ether_addr(netdev->dev_addr)) 1154 ethoc_get_mac_address(netdev, netdev->dev_addr); 1155 1156 /* Check the MAC again for validity, if it still isn't choose and 1157 * program a random one. 1158 */ 1159 if (!is_valid_ether_addr(netdev->dev_addr)) { 1160 eth_random_addr(netdev->dev_addr); 1161 random_mac = true; 1162 } 1163 1164 ethoc_do_set_mac_address(netdev); 1165 1166 if (random_mac) 1167 netdev->addr_assign_type = NET_ADDR_RANDOM; 1168 1169 /* Allow the platform setup code to adjust MII management bus clock. */ 1170 if (!eth_clkfreq) { 1171 struct clk *clk = devm_clk_get(&pdev->dev, NULL); 1172 1173 if (!IS_ERR(clk)) { 1174 priv->clk = clk; 1175 clk_prepare_enable(clk); 1176 eth_clkfreq = clk_get_rate(clk); 1177 } 1178 } 1179 if (eth_clkfreq) { 1180 u32 clkdiv = MIIMODER_CLKDIV(eth_clkfreq / 2500000 + 1); 1181 1182 if (!clkdiv) 1183 clkdiv = 2; 1184 dev_dbg(&pdev->dev, "setting MII clkdiv to %u\n", clkdiv); 1185 ethoc_write(priv, MIIMODER, 1186 (ethoc_read(priv, MIIMODER) & MIIMODER_NOPRE) | 1187 clkdiv); 1188 } 1189 1190 /* register MII bus */ 1191 priv->mdio = mdiobus_alloc(); 1192 if (!priv->mdio) { 1193 ret = -ENOMEM; 1194 goto free; 1195 } 1196 1197 priv->mdio->name = "ethoc-mdio"; 1198 snprintf(priv->mdio->id, MII_BUS_ID_SIZE, "%s-%d", 1199 priv->mdio->name, pdev->id); 1200 priv->mdio->read = ethoc_mdio_read; 1201 priv->mdio->write = ethoc_mdio_write; 1202 priv->mdio->priv = priv; 1203 1204 priv->mdio->irq = kmalloc(sizeof(int) * PHY_MAX_ADDR, GFP_KERNEL); 1205 if (!priv->mdio->irq) { 1206 ret = -ENOMEM; 1207 goto free_mdio; 1208 } 1209 1210 for (phy = 0; phy < PHY_MAX_ADDR; phy++) 1211 priv->mdio->irq[phy] = PHY_POLL; 1212 1213 ret = mdiobus_register(priv->mdio); 1214 if (ret) { 1215 dev_err(&netdev->dev, "failed to register MDIO bus\n"); 1216 goto free_mdio; 1217 } 1218 1219 ret = ethoc_mdio_probe(netdev); 1220 if (ret) { 1221 dev_err(&netdev->dev, "failed to probe MDIO bus\n"); 1222 goto error; 1223 } 1224 1225 ether_setup(netdev); 1226 1227 /* setup the net_device structure */ 1228 netdev->netdev_ops = ðoc_netdev_ops; 1229 netdev->watchdog_timeo = ETHOC_TIMEOUT; 1230 netdev->features |= 0; 1231 netdev->ethtool_ops = ðoc_ethtool_ops; 1232 1233 /* setup NAPI */ 1234 netif_napi_add(netdev, &priv->napi, ethoc_poll, 64); 1235 1236 spin_lock_init(&priv->lock); 1237 1238 ret = register_netdev(netdev); 1239 if (ret < 0) { 1240 dev_err(&netdev->dev, "failed to register interface\n"); 1241 goto error2; 1242 } 1243 1244 goto out; 1245 1246 error2: 1247 netif_napi_del(&priv->napi); 1248 error: 1249 mdiobus_unregister(priv->mdio); 1250 free_mdio: 1251 kfree(priv->mdio->irq); 1252 mdiobus_free(priv->mdio); 1253 free: 1254 if (priv->clk) 1255 clk_disable_unprepare(priv->clk); 1256 free_netdev(netdev); 1257 out: 1258 return ret; 1259 } 1260 1261 /** 1262 * ethoc_remove - shutdown OpenCores ethernet MAC 1263 * @pdev: platform device 1264 */ 1265 static int ethoc_remove(struct platform_device *pdev) 1266 { 1267 struct net_device *netdev = platform_get_drvdata(pdev); 1268 struct ethoc *priv = netdev_priv(netdev); 1269 1270 if (netdev) { 1271 netif_napi_del(&priv->napi); 1272 phy_disconnect(priv->phy); 1273 priv->phy = NULL; 1274 1275 if (priv->mdio) { 1276 mdiobus_unregister(priv->mdio); 1277 kfree(priv->mdio->irq); 1278 mdiobus_free(priv->mdio); 1279 } 1280 if (priv->clk) 1281 clk_disable_unprepare(priv->clk); 1282 unregister_netdev(netdev); 1283 free_netdev(netdev); 1284 } 1285 1286 return 0; 1287 } 1288 1289 #ifdef CONFIG_PM 1290 static int ethoc_suspend(struct platform_device *pdev, pm_message_t state) 1291 { 1292 return -ENOSYS; 1293 } 1294 1295 static int ethoc_resume(struct platform_device *pdev) 1296 { 1297 return -ENOSYS; 1298 } 1299 #else 1300 # define ethoc_suspend NULL 1301 # define ethoc_resume NULL 1302 #endif 1303 1304 static struct of_device_id ethoc_match[] = { 1305 { .compatible = "opencores,ethoc", }, 1306 {}, 1307 }; 1308 MODULE_DEVICE_TABLE(of, ethoc_match); 1309 1310 static struct platform_driver ethoc_driver = { 1311 .probe = ethoc_probe, 1312 .remove = ethoc_remove, 1313 .suspend = ethoc_suspend, 1314 .resume = ethoc_resume, 1315 .driver = { 1316 .name = "ethoc", 1317 .owner = THIS_MODULE, 1318 .of_match_table = ethoc_match, 1319 }, 1320 }; 1321 1322 module_platform_driver(ethoc_driver); 1323 1324 MODULE_AUTHOR("Thierry Reding <thierry.reding@avionic-design.de>"); 1325 MODULE_DESCRIPTION("OpenCores Ethernet MAC driver"); 1326 MODULE_LICENSE("GPL v2"); 1327 1328