1 /* 2 * linux/drivers/net/ethernet/ethoc.c 3 * 4 * Copyright (C) 2007-2008 Avionic Design Development GmbH 5 * Copyright (C) 2008-2009 Avionic Design GmbH 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 * 11 * Written by Thierry Reding <thierry.reding@avionic-design.de> 12 */ 13 14 #include <linux/dma-mapping.h> 15 #include <linux/etherdevice.h> 16 #include <linux/clk.h> 17 #include <linux/crc32.h> 18 #include <linux/interrupt.h> 19 #include <linux/io.h> 20 #include <linux/mii.h> 21 #include <linux/phy.h> 22 #include <linux/platform_device.h> 23 #include <linux/sched.h> 24 #include <linux/slab.h> 25 #include <linux/of.h> 26 #include <linux/module.h> 27 #include <net/ethoc.h> 28 29 static int buffer_size = 0x8000; /* 32 KBytes */ 30 module_param(buffer_size, int, 0); 31 MODULE_PARM_DESC(buffer_size, "DMA buffer allocation size"); 32 33 /* register offsets */ 34 #define MODER 0x00 35 #define INT_SOURCE 0x04 36 #define INT_MASK 0x08 37 #define IPGT 0x0c 38 #define IPGR1 0x10 39 #define IPGR2 0x14 40 #define PACKETLEN 0x18 41 #define COLLCONF 0x1c 42 #define TX_BD_NUM 0x20 43 #define CTRLMODER 0x24 44 #define MIIMODER 0x28 45 #define MIICOMMAND 0x2c 46 #define MIIADDRESS 0x30 47 #define MIITX_DATA 0x34 48 #define MIIRX_DATA 0x38 49 #define MIISTATUS 0x3c 50 #define MAC_ADDR0 0x40 51 #define MAC_ADDR1 0x44 52 #define ETH_HASH0 0x48 53 #define ETH_HASH1 0x4c 54 #define ETH_TXCTRL 0x50 55 #define ETH_END 0x54 56 57 /* mode register */ 58 #define MODER_RXEN (1 << 0) /* receive enable */ 59 #define MODER_TXEN (1 << 1) /* transmit enable */ 60 #define MODER_NOPRE (1 << 2) /* no preamble */ 61 #define MODER_BRO (1 << 3) /* broadcast address */ 62 #define MODER_IAM (1 << 4) /* individual address mode */ 63 #define MODER_PRO (1 << 5) /* promiscuous mode */ 64 #define MODER_IFG (1 << 6) /* interframe gap for incoming frames */ 65 #define MODER_LOOP (1 << 7) /* loopback */ 66 #define MODER_NBO (1 << 8) /* no back-off */ 67 #define MODER_EDE (1 << 9) /* excess defer enable */ 68 #define MODER_FULLD (1 << 10) /* full duplex */ 69 #define MODER_RESET (1 << 11) /* FIXME: reset (undocumented) */ 70 #define MODER_DCRC (1 << 12) /* delayed CRC enable */ 71 #define MODER_CRC (1 << 13) /* CRC enable */ 72 #define MODER_HUGE (1 << 14) /* huge packets enable */ 73 #define MODER_PAD (1 << 15) /* padding enabled */ 74 #define MODER_RSM (1 << 16) /* receive small packets */ 75 76 /* interrupt source and mask registers */ 77 #define INT_MASK_TXF (1 << 0) /* transmit frame */ 78 #define INT_MASK_TXE (1 << 1) /* transmit error */ 79 #define INT_MASK_RXF (1 << 2) /* receive frame */ 80 #define INT_MASK_RXE (1 << 3) /* receive error */ 81 #define INT_MASK_BUSY (1 << 4) 82 #define INT_MASK_TXC (1 << 5) /* transmit control frame */ 83 #define INT_MASK_RXC (1 << 6) /* receive control frame */ 84 85 #define INT_MASK_TX (INT_MASK_TXF | INT_MASK_TXE) 86 #define INT_MASK_RX (INT_MASK_RXF | INT_MASK_RXE) 87 88 #define INT_MASK_ALL ( \ 89 INT_MASK_TXF | INT_MASK_TXE | \ 90 INT_MASK_RXF | INT_MASK_RXE | \ 91 INT_MASK_TXC | INT_MASK_RXC | \ 92 INT_MASK_BUSY \ 93 ) 94 95 /* packet length register */ 96 #define PACKETLEN_MIN(min) (((min) & 0xffff) << 16) 97 #define PACKETLEN_MAX(max) (((max) & 0xffff) << 0) 98 #define PACKETLEN_MIN_MAX(min, max) (PACKETLEN_MIN(min) | \ 99 PACKETLEN_MAX(max)) 100 101 /* transmit buffer number register */ 102 #define TX_BD_NUM_VAL(x) (((x) <= 0x80) ? (x) : 0x80) 103 104 /* control module mode register */ 105 #define CTRLMODER_PASSALL (1 << 0) /* pass all receive frames */ 106 #define CTRLMODER_RXFLOW (1 << 1) /* receive control flow */ 107 #define CTRLMODER_TXFLOW (1 << 2) /* transmit control flow */ 108 109 /* MII mode register */ 110 #define MIIMODER_CLKDIV(x) ((x) & 0xfe) /* needs to be an even number */ 111 #define MIIMODER_NOPRE (1 << 8) /* no preamble */ 112 113 /* MII command register */ 114 #define MIICOMMAND_SCAN (1 << 0) /* scan status */ 115 #define MIICOMMAND_READ (1 << 1) /* read status */ 116 #define MIICOMMAND_WRITE (1 << 2) /* write control data */ 117 118 /* MII address register */ 119 #define MIIADDRESS_FIAD(x) (((x) & 0x1f) << 0) 120 #define MIIADDRESS_RGAD(x) (((x) & 0x1f) << 8) 121 #define MIIADDRESS_ADDR(phy, reg) (MIIADDRESS_FIAD(phy) | \ 122 MIIADDRESS_RGAD(reg)) 123 124 /* MII transmit data register */ 125 #define MIITX_DATA_VAL(x) ((x) & 0xffff) 126 127 /* MII receive data register */ 128 #define MIIRX_DATA_VAL(x) ((x) & 0xffff) 129 130 /* MII status register */ 131 #define MIISTATUS_LINKFAIL (1 << 0) 132 #define MIISTATUS_BUSY (1 << 1) 133 #define MIISTATUS_INVALID (1 << 2) 134 135 /* TX buffer descriptor */ 136 #define TX_BD_CS (1 << 0) /* carrier sense lost */ 137 #define TX_BD_DF (1 << 1) /* defer indication */ 138 #define TX_BD_LC (1 << 2) /* late collision */ 139 #define TX_BD_RL (1 << 3) /* retransmission limit */ 140 #define TX_BD_RETRY_MASK (0x00f0) 141 #define TX_BD_RETRY(x) (((x) & 0x00f0) >> 4) 142 #define TX_BD_UR (1 << 8) /* transmitter underrun */ 143 #define TX_BD_CRC (1 << 11) /* TX CRC enable */ 144 #define TX_BD_PAD (1 << 12) /* pad enable for short packets */ 145 #define TX_BD_WRAP (1 << 13) 146 #define TX_BD_IRQ (1 << 14) /* interrupt request enable */ 147 #define TX_BD_READY (1 << 15) /* TX buffer ready */ 148 #define TX_BD_LEN(x) (((x) & 0xffff) << 16) 149 #define TX_BD_LEN_MASK (0xffff << 16) 150 151 #define TX_BD_STATS (TX_BD_CS | TX_BD_DF | TX_BD_LC | \ 152 TX_BD_RL | TX_BD_RETRY_MASK | TX_BD_UR) 153 154 /* RX buffer descriptor */ 155 #define RX_BD_LC (1 << 0) /* late collision */ 156 #define RX_BD_CRC (1 << 1) /* RX CRC error */ 157 #define RX_BD_SF (1 << 2) /* short frame */ 158 #define RX_BD_TL (1 << 3) /* too long */ 159 #define RX_BD_DN (1 << 4) /* dribble nibble */ 160 #define RX_BD_IS (1 << 5) /* invalid symbol */ 161 #define RX_BD_OR (1 << 6) /* receiver overrun */ 162 #define RX_BD_MISS (1 << 7) 163 #define RX_BD_CF (1 << 8) /* control frame */ 164 #define RX_BD_WRAP (1 << 13) 165 #define RX_BD_IRQ (1 << 14) /* interrupt request enable */ 166 #define RX_BD_EMPTY (1 << 15) 167 #define RX_BD_LEN(x) (((x) & 0xffff) << 16) 168 169 #define RX_BD_STATS (RX_BD_LC | RX_BD_CRC | RX_BD_SF | RX_BD_TL | \ 170 RX_BD_DN | RX_BD_IS | RX_BD_OR | RX_BD_MISS) 171 172 #define ETHOC_BUFSIZ 1536 173 #define ETHOC_ZLEN 64 174 #define ETHOC_BD_BASE 0x400 175 #define ETHOC_TIMEOUT (HZ / 2) 176 #define ETHOC_MII_TIMEOUT (1 + (HZ / 5)) 177 178 /** 179 * struct ethoc - driver-private device structure 180 * @iobase: pointer to I/O memory region 181 * @membase: pointer to buffer memory region 182 * @dma_alloc: dma allocated buffer size 183 * @io_region_size: I/O memory region size 184 * @num_bd: number of buffer descriptors 185 * @num_tx: number of send buffers 186 * @cur_tx: last send buffer written 187 * @dty_tx: last buffer actually sent 188 * @num_rx: number of receive buffers 189 * @cur_rx: current receive buffer 190 * @vma: pointer to array of virtual memory addresses for buffers 191 * @netdev: pointer to network device structure 192 * @napi: NAPI structure 193 * @msg_enable: device state flags 194 * @lock: device lock 195 * @phy: attached PHY 196 * @mdio: MDIO bus for PHY access 197 * @phy_id: address of attached PHY 198 */ 199 struct ethoc { 200 void __iomem *iobase; 201 void __iomem *membase; 202 int dma_alloc; 203 resource_size_t io_region_size; 204 bool big_endian; 205 206 unsigned int num_bd; 207 unsigned int num_tx; 208 unsigned int cur_tx; 209 unsigned int dty_tx; 210 211 unsigned int num_rx; 212 unsigned int cur_rx; 213 214 void **vma; 215 216 struct net_device *netdev; 217 struct napi_struct napi; 218 u32 msg_enable; 219 220 spinlock_t lock; 221 222 struct phy_device *phy; 223 struct mii_bus *mdio; 224 struct clk *clk; 225 s8 phy_id; 226 }; 227 228 /** 229 * struct ethoc_bd - buffer descriptor 230 * @stat: buffer statistics 231 * @addr: physical memory address 232 */ 233 struct ethoc_bd { 234 u32 stat; 235 u32 addr; 236 }; 237 238 static inline u32 ethoc_read(struct ethoc *dev, loff_t offset) 239 { 240 if (dev->big_endian) 241 return ioread32be(dev->iobase + offset); 242 else 243 return ioread32(dev->iobase + offset); 244 } 245 246 static inline void ethoc_write(struct ethoc *dev, loff_t offset, u32 data) 247 { 248 if (dev->big_endian) 249 iowrite32be(data, dev->iobase + offset); 250 else 251 iowrite32(data, dev->iobase + offset); 252 } 253 254 static inline void ethoc_read_bd(struct ethoc *dev, int index, 255 struct ethoc_bd *bd) 256 { 257 loff_t offset = ETHOC_BD_BASE + (index * sizeof(struct ethoc_bd)); 258 bd->stat = ethoc_read(dev, offset + 0); 259 bd->addr = ethoc_read(dev, offset + 4); 260 } 261 262 static inline void ethoc_write_bd(struct ethoc *dev, int index, 263 const struct ethoc_bd *bd) 264 { 265 loff_t offset = ETHOC_BD_BASE + (index * sizeof(struct ethoc_bd)); 266 ethoc_write(dev, offset + 0, bd->stat); 267 ethoc_write(dev, offset + 4, bd->addr); 268 } 269 270 static inline void ethoc_enable_irq(struct ethoc *dev, u32 mask) 271 { 272 u32 imask = ethoc_read(dev, INT_MASK); 273 imask |= mask; 274 ethoc_write(dev, INT_MASK, imask); 275 } 276 277 static inline void ethoc_disable_irq(struct ethoc *dev, u32 mask) 278 { 279 u32 imask = ethoc_read(dev, INT_MASK); 280 imask &= ~mask; 281 ethoc_write(dev, INT_MASK, imask); 282 } 283 284 static inline void ethoc_ack_irq(struct ethoc *dev, u32 mask) 285 { 286 ethoc_write(dev, INT_SOURCE, mask); 287 } 288 289 static inline void ethoc_enable_rx_and_tx(struct ethoc *dev) 290 { 291 u32 mode = ethoc_read(dev, MODER); 292 mode |= MODER_RXEN | MODER_TXEN; 293 ethoc_write(dev, MODER, mode); 294 } 295 296 static inline void ethoc_disable_rx_and_tx(struct ethoc *dev) 297 { 298 u32 mode = ethoc_read(dev, MODER); 299 mode &= ~(MODER_RXEN | MODER_TXEN); 300 ethoc_write(dev, MODER, mode); 301 } 302 303 static int ethoc_init_ring(struct ethoc *dev, unsigned long mem_start) 304 { 305 struct ethoc_bd bd; 306 int i; 307 void *vma; 308 309 dev->cur_tx = 0; 310 dev->dty_tx = 0; 311 dev->cur_rx = 0; 312 313 ethoc_write(dev, TX_BD_NUM, dev->num_tx); 314 315 /* setup transmission buffers */ 316 bd.addr = mem_start; 317 bd.stat = TX_BD_IRQ | TX_BD_CRC; 318 vma = dev->membase; 319 320 for (i = 0; i < dev->num_tx; i++) { 321 if (i == dev->num_tx - 1) 322 bd.stat |= TX_BD_WRAP; 323 324 ethoc_write_bd(dev, i, &bd); 325 bd.addr += ETHOC_BUFSIZ; 326 327 dev->vma[i] = vma; 328 vma += ETHOC_BUFSIZ; 329 } 330 331 bd.stat = RX_BD_EMPTY | RX_BD_IRQ; 332 333 for (i = 0; i < dev->num_rx; i++) { 334 if (i == dev->num_rx - 1) 335 bd.stat |= RX_BD_WRAP; 336 337 ethoc_write_bd(dev, dev->num_tx + i, &bd); 338 bd.addr += ETHOC_BUFSIZ; 339 340 dev->vma[dev->num_tx + i] = vma; 341 vma += ETHOC_BUFSIZ; 342 } 343 344 return 0; 345 } 346 347 static int ethoc_reset(struct ethoc *dev) 348 { 349 u32 mode; 350 351 /* TODO: reset controller? */ 352 353 ethoc_disable_rx_and_tx(dev); 354 355 /* TODO: setup registers */ 356 357 /* enable FCS generation and automatic padding */ 358 mode = ethoc_read(dev, MODER); 359 mode |= MODER_CRC | MODER_PAD; 360 ethoc_write(dev, MODER, mode); 361 362 /* set full-duplex mode */ 363 mode = ethoc_read(dev, MODER); 364 mode |= MODER_FULLD; 365 ethoc_write(dev, MODER, mode); 366 ethoc_write(dev, IPGT, 0x15); 367 368 ethoc_ack_irq(dev, INT_MASK_ALL); 369 ethoc_enable_irq(dev, INT_MASK_ALL); 370 ethoc_enable_rx_and_tx(dev); 371 return 0; 372 } 373 374 static unsigned int ethoc_update_rx_stats(struct ethoc *dev, 375 struct ethoc_bd *bd) 376 { 377 struct net_device *netdev = dev->netdev; 378 unsigned int ret = 0; 379 380 if (bd->stat & RX_BD_TL) { 381 dev_err(&netdev->dev, "RX: frame too long\n"); 382 netdev->stats.rx_length_errors++; 383 ret++; 384 } 385 386 if (bd->stat & RX_BD_SF) { 387 dev_err(&netdev->dev, "RX: frame too short\n"); 388 netdev->stats.rx_length_errors++; 389 ret++; 390 } 391 392 if (bd->stat & RX_BD_DN) { 393 dev_err(&netdev->dev, "RX: dribble nibble\n"); 394 netdev->stats.rx_frame_errors++; 395 } 396 397 if (bd->stat & RX_BD_CRC) { 398 dev_err(&netdev->dev, "RX: wrong CRC\n"); 399 netdev->stats.rx_crc_errors++; 400 ret++; 401 } 402 403 if (bd->stat & RX_BD_OR) { 404 dev_err(&netdev->dev, "RX: overrun\n"); 405 netdev->stats.rx_over_errors++; 406 ret++; 407 } 408 409 if (bd->stat & RX_BD_MISS) 410 netdev->stats.rx_missed_errors++; 411 412 if (bd->stat & RX_BD_LC) { 413 dev_err(&netdev->dev, "RX: late collision\n"); 414 netdev->stats.collisions++; 415 ret++; 416 } 417 418 return ret; 419 } 420 421 static int ethoc_rx(struct net_device *dev, int limit) 422 { 423 struct ethoc *priv = netdev_priv(dev); 424 int count; 425 426 for (count = 0; count < limit; ++count) { 427 unsigned int entry; 428 struct ethoc_bd bd; 429 430 entry = priv->num_tx + priv->cur_rx; 431 ethoc_read_bd(priv, entry, &bd); 432 if (bd.stat & RX_BD_EMPTY) { 433 ethoc_ack_irq(priv, INT_MASK_RX); 434 /* If packet (interrupt) came in between checking 435 * BD_EMTPY and clearing the interrupt source, then we 436 * risk missing the packet as the RX interrupt won't 437 * trigger right away when we reenable it; hence, check 438 * BD_EMTPY here again to make sure there isn't such a 439 * packet waiting for us... 440 */ 441 ethoc_read_bd(priv, entry, &bd); 442 if (bd.stat & RX_BD_EMPTY) 443 break; 444 } 445 446 if (ethoc_update_rx_stats(priv, &bd) == 0) { 447 int size = bd.stat >> 16; 448 struct sk_buff *skb; 449 450 size -= 4; /* strip the CRC */ 451 skb = netdev_alloc_skb_ip_align(dev, size); 452 453 if (likely(skb)) { 454 void *src = priv->vma[entry]; 455 memcpy_fromio(skb_put(skb, size), src, size); 456 skb->protocol = eth_type_trans(skb, dev); 457 dev->stats.rx_packets++; 458 dev->stats.rx_bytes += size; 459 netif_receive_skb(skb); 460 } else { 461 if (net_ratelimit()) 462 dev_warn(&dev->dev, 463 "low on memory - packet dropped\n"); 464 465 dev->stats.rx_dropped++; 466 break; 467 } 468 } 469 470 /* clear the buffer descriptor so it can be reused */ 471 bd.stat &= ~RX_BD_STATS; 472 bd.stat |= RX_BD_EMPTY; 473 ethoc_write_bd(priv, entry, &bd); 474 if (++priv->cur_rx == priv->num_rx) 475 priv->cur_rx = 0; 476 } 477 478 return count; 479 } 480 481 static void ethoc_update_tx_stats(struct ethoc *dev, struct ethoc_bd *bd) 482 { 483 struct net_device *netdev = dev->netdev; 484 485 if (bd->stat & TX_BD_LC) { 486 dev_err(&netdev->dev, "TX: late collision\n"); 487 netdev->stats.tx_window_errors++; 488 } 489 490 if (bd->stat & TX_BD_RL) { 491 dev_err(&netdev->dev, "TX: retransmit limit\n"); 492 netdev->stats.tx_aborted_errors++; 493 } 494 495 if (bd->stat & TX_BD_UR) { 496 dev_err(&netdev->dev, "TX: underrun\n"); 497 netdev->stats.tx_fifo_errors++; 498 } 499 500 if (bd->stat & TX_BD_CS) { 501 dev_err(&netdev->dev, "TX: carrier sense lost\n"); 502 netdev->stats.tx_carrier_errors++; 503 } 504 505 if (bd->stat & TX_BD_STATS) 506 netdev->stats.tx_errors++; 507 508 netdev->stats.collisions += (bd->stat >> 4) & 0xf; 509 netdev->stats.tx_bytes += bd->stat >> 16; 510 netdev->stats.tx_packets++; 511 } 512 513 static int ethoc_tx(struct net_device *dev, int limit) 514 { 515 struct ethoc *priv = netdev_priv(dev); 516 int count; 517 struct ethoc_bd bd; 518 519 for (count = 0; count < limit; ++count) { 520 unsigned int entry; 521 522 entry = priv->dty_tx & (priv->num_tx-1); 523 524 ethoc_read_bd(priv, entry, &bd); 525 526 if (bd.stat & TX_BD_READY || (priv->dty_tx == priv->cur_tx)) { 527 ethoc_ack_irq(priv, INT_MASK_TX); 528 /* If interrupt came in between reading in the BD 529 * and clearing the interrupt source, then we risk 530 * missing the event as the TX interrupt won't trigger 531 * right away when we reenable it; hence, check 532 * BD_EMPTY here again to make sure there isn't such an 533 * event pending... 534 */ 535 ethoc_read_bd(priv, entry, &bd); 536 if (bd.stat & TX_BD_READY || 537 (priv->dty_tx == priv->cur_tx)) 538 break; 539 } 540 541 ethoc_update_tx_stats(priv, &bd); 542 priv->dty_tx++; 543 } 544 545 if ((priv->cur_tx - priv->dty_tx) <= (priv->num_tx / 2)) 546 netif_wake_queue(dev); 547 548 return count; 549 } 550 551 static irqreturn_t ethoc_interrupt(int irq, void *dev_id) 552 { 553 struct net_device *dev = dev_id; 554 struct ethoc *priv = netdev_priv(dev); 555 u32 pending; 556 u32 mask; 557 558 /* Figure out what triggered the interrupt... 559 * The tricky bit here is that the interrupt source bits get 560 * set in INT_SOURCE for an event regardless of whether that 561 * event is masked or not. Thus, in order to figure out what 562 * triggered the interrupt, we need to remove the sources 563 * for all events that are currently masked. This behaviour 564 * is not particularly well documented but reasonable... 565 */ 566 mask = ethoc_read(priv, INT_MASK); 567 pending = ethoc_read(priv, INT_SOURCE); 568 pending &= mask; 569 570 if (unlikely(pending == 0)) 571 return IRQ_NONE; 572 573 ethoc_ack_irq(priv, pending); 574 575 /* We always handle the dropped packet interrupt */ 576 if (pending & INT_MASK_BUSY) { 577 dev_err(&dev->dev, "packet dropped\n"); 578 dev->stats.rx_dropped++; 579 } 580 581 /* Handle receive/transmit event by switching to polling */ 582 if (pending & (INT_MASK_TX | INT_MASK_RX)) { 583 ethoc_disable_irq(priv, INT_MASK_TX | INT_MASK_RX); 584 napi_schedule(&priv->napi); 585 } 586 587 return IRQ_HANDLED; 588 } 589 590 static int ethoc_get_mac_address(struct net_device *dev, void *addr) 591 { 592 struct ethoc *priv = netdev_priv(dev); 593 u8 *mac = (u8 *)addr; 594 u32 reg; 595 596 reg = ethoc_read(priv, MAC_ADDR0); 597 mac[2] = (reg >> 24) & 0xff; 598 mac[3] = (reg >> 16) & 0xff; 599 mac[4] = (reg >> 8) & 0xff; 600 mac[5] = (reg >> 0) & 0xff; 601 602 reg = ethoc_read(priv, MAC_ADDR1); 603 mac[0] = (reg >> 8) & 0xff; 604 mac[1] = (reg >> 0) & 0xff; 605 606 return 0; 607 } 608 609 static int ethoc_poll(struct napi_struct *napi, int budget) 610 { 611 struct ethoc *priv = container_of(napi, struct ethoc, napi); 612 int rx_work_done = 0; 613 int tx_work_done = 0; 614 615 rx_work_done = ethoc_rx(priv->netdev, budget); 616 tx_work_done = ethoc_tx(priv->netdev, budget); 617 618 if (rx_work_done < budget && tx_work_done < budget) { 619 napi_complete(napi); 620 ethoc_enable_irq(priv, INT_MASK_TX | INT_MASK_RX); 621 } 622 623 return rx_work_done; 624 } 625 626 static int ethoc_mdio_read(struct mii_bus *bus, int phy, int reg) 627 { 628 struct ethoc *priv = bus->priv; 629 int i; 630 631 ethoc_write(priv, MIIADDRESS, MIIADDRESS_ADDR(phy, reg)); 632 ethoc_write(priv, MIICOMMAND, MIICOMMAND_READ); 633 634 for (i = 0; i < 5; i++) { 635 u32 status = ethoc_read(priv, MIISTATUS); 636 if (!(status & MIISTATUS_BUSY)) { 637 u32 data = ethoc_read(priv, MIIRX_DATA); 638 /* reset MII command register */ 639 ethoc_write(priv, MIICOMMAND, 0); 640 return data; 641 } 642 usleep_range(100, 200); 643 } 644 645 return -EBUSY; 646 } 647 648 static int ethoc_mdio_write(struct mii_bus *bus, int phy, int reg, u16 val) 649 { 650 struct ethoc *priv = bus->priv; 651 int i; 652 653 ethoc_write(priv, MIIADDRESS, MIIADDRESS_ADDR(phy, reg)); 654 ethoc_write(priv, MIITX_DATA, val); 655 ethoc_write(priv, MIICOMMAND, MIICOMMAND_WRITE); 656 657 for (i = 0; i < 5; i++) { 658 u32 stat = ethoc_read(priv, MIISTATUS); 659 if (!(stat & MIISTATUS_BUSY)) { 660 /* reset MII command register */ 661 ethoc_write(priv, MIICOMMAND, 0); 662 return 0; 663 } 664 usleep_range(100, 200); 665 } 666 667 return -EBUSY; 668 } 669 670 static void ethoc_mdio_poll(struct net_device *dev) 671 { 672 } 673 674 static int ethoc_mdio_probe(struct net_device *dev) 675 { 676 struct ethoc *priv = netdev_priv(dev); 677 struct phy_device *phy; 678 int err; 679 680 if (priv->phy_id != -1) 681 phy = priv->mdio->phy_map[priv->phy_id]; 682 else 683 phy = phy_find_first(priv->mdio); 684 685 if (!phy) { 686 dev_err(&dev->dev, "no PHY found\n"); 687 return -ENXIO; 688 } 689 690 err = phy_connect_direct(dev, phy, ethoc_mdio_poll, 691 PHY_INTERFACE_MODE_GMII); 692 if (err) { 693 dev_err(&dev->dev, "could not attach to PHY\n"); 694 return err; 695 } 696 697 priv->phy = phy; 698 phy->advertising &= ~(ADVERTISED_1000baseT_Full | 699 ADVERTISED_1000baseT_Half); 700 phy->supported &= ~(SUPPORTED_1000baseT_Full | 701 SUPPORTED_1000baseT_Half); 702 703 return 0; 704 } 705 706 static int ethoc_open(struct net_device *dev) 707 { 708 struct ethoc *priv = netdev_priv(dev); 709 int ret; 710 711 ret = request_irq(dev->irq, ethoc_interrupt, IRQF_SHARED, 712 dev->name, dev); 713 if (ret) 714 return ret; 715 716 ethoc_init_ring(priv, dev->mem_start); 717 ethoc_reset(priv); 718 719 if (netif_queue_stopped(dev)) { 720 dev_dbg(&dev->dev, " resuming queue\n"); 721 netif_wake_queue(dev); 722 } else { 723 dev_dbg(&dev->dev, " starting queue\n"); 724 netif_start_queue(dev); 725 } 726 727 phy_start(priv->phy); 728 napi_enable(&priv->napi); 729 730 if (netif_msg_ifup(priv)) { 731 dev_info(&dev->dev, "I/O: %08lx Memory: %08lx-%08lx\n", 732 dev->base_addr, dev->mem_start, dev->mem_end); 733 } 734 735 return 0; 736 } 737 738 static int ethoc_stop(struct net_device *dev) 739 { 740 struct ethoc *priv = netdev_priv(dev); 741 742 napi_disable(&priv->napi); 743 744 if (priv->phy) 745 phy_stop(priv->phy); 746 747 ethoc_disable_rx_and_tx(priv); 748 free_irq(dev->irq, dev); 749 750 if (!netif_queue_stopped(dev)) 751 netif_stop_queue(dev); 752 753 return 0; 754 } 755 756 static int ethoc_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) 757 { 758 struct ethoc *priv = netdev_priv(dev); 759 struct mii_ioctl_data *mdio = if_mii(ifr); 760 struct phy_device *phy = NULL; 761 762 if (!netif_running(dev)) 763 return -EINVAL; 764 765 if (cmd != SIOCGMIIPHY) { 766 if (mdio->phy_id >= PHY_MAX_ADDR) 767 return -ERANGE; 768 769 phy = priv->mdio->phy_map[mdio->phy_id]; 770 if (!phy) 771 return -ENODEV; 772 } else { 773 phy = priv->phy; 774 } 775 776 return phy_mii_ioctl(phy, ifr, cmd); 777 } 778 779 static void ethoc_do_set_mac_address(struct net_device *dev) 780 { 781 struct ethoc *priv = netdev_priv(dev); 782 unsigned char *mac = dev->dev_addr; 783 784 ethoc_write(priv, MAC_ADDR0, (mac[2] << 24) | (mac[3] << 16) | 785 (mac[4] << 8) | (mac[5] << 0)); 786 ethoc_write(priv, MAC_ADDR1, (mac[0] << 8) | (mac[1] << 0)); 787 } 788 789 static int ethoc_set_mac_address(struct net_device *dev, void *p) 790 { 791 const struct sockaddr *addr = p; 792 793 if (!is_valid_ether_addr(addr->sa_data)) 794 return -EADDRNOTAVAIL; 795 memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN); 796 ethoc_do_set_mac_address(dev); 797 return 0; 798 } 799 800 static void ethoc_set_multicast_list(struct net_device *dev) 801 { 802 struct ethoc *priv = netdev_priv(dev); 803 u32 mode = ethoc_read(priv, MODER); 804 struct netdev_hw_addr *ha; 805 u32 hash[2] = { 0, 0 }; 806 807 /* set loopback mode if requested */ 808 if (dev->flags & IFF_LOOPBACK) 809 mode |= MODER_LOOP; 810 else 811 mode &= ~MODER_LOOP; 812 813 /* receive broadcast frames if requested */ 814 if (dev->flags & IFF_BROADCAST) 815 mode &= ~MODER_BRO; 816 else 817 mode |= MODER_BRO; 818 819 /* enable promiscuous mode if requested */ 820 if (dev->flags & IFF_PROMISC) 821 mode |= MODER_PRO; 822 else 823 mode &= ~MODER_PRO; 824 825 ethoc_write(priv, MODER, mode); 826 827 /* receive multicast frames */ 828 if (dev->flags & IFF_ALLMULTI) { 829 hash[0] = 0xffffffff; 830 hash[1] = 0xffffffff; 831 } else { 832 netdev_for_each_mc_addr(ha, dev) { 833 u32 crc = ether_crc(ETH_ALEN, ha->addr); 834 int bit = (crc >> 26) & 0x3f; 835 hash[bit >> 5] |= 1 << (bit & 0x1f); 836 } 837 } 838 839 ethoc_write(priv, ETH_HASH0, hash[0]); 840 ethoc_write(priv, ETH_HASH1, hash[1]); 841 } 842 843 static int ethoc_change_mtu(struct net_device *dev, int new_mtu) 844 { 845 return -ENOSYS; 846 } 847 848 static void ethoc_tx_timeout(struct net_device *dev) 849 { 850 struct ethoc *priv = netdev_priv(dev); 851 u32 pending = ethoc_read(priv, INT_SOURCE); 852 if (likely(pending)) 853 ethoc_interrupt(dev->irq, dev); 854 } 855 856 static netdev_tx_t ethoc_start_xmit(struct sk_buff *skb, struct net_device *dev) 857 { 858 struct ethoc *priv = netdev_priv(dev); 859 struct ethoc_bd bd; 860 unsigned int entry; 861 void *dest; 862 863 if (unlikely(skb->len > ETHOC_BUFSIZ)) { 864 dev->stats.tx_errors++; 865 goto out; 866 } 867 868 entry = priv->cur_tx % priv->num_tx; 869 spin_lock_irq(&priv->lock); 870 priv->cur_tx++; 871 872 ethoc_read_bd(priv, entry, &bd); 873 if (unlikely(skb->len < ETHOC_ZLEN)) 874 bd.stat |= TX_BD_PAD; 875 else 876 bd.stat &= ~TX_BD_PAD; 877 878 dest = priv->vma[entry]; 879 memcpy_toio(dest, skb->data, skb->len); 880 881 bd.stat &= ~(TX_BD_STATS | TX_BD_LEN_MASK); 882 bd.stat |= TX_BD_LEN(skb->len); 883 ethoc_write_bd(priv, entry, &bd); 884 885 bd.stat |= TX_BD_READY; 886 ethoc_write_bd(priv, entry, &bd); 887 888 if (priv->cur_tx == (priv->dty_tx + priv->num_tx)) { 889 dev_dbg(&dev->dev, "stopping queue\n"); 890 netif_stop_queue(dev); 891 } 892 893 spin_unlock_irq(&priv->lock); 894 skb_tx_timestamp(skb); 895 out: 896 dev_kfree_skb(skb); 897 return NETDEV_TX_OK; 898 } 899 900 static int ethoc_get_settings(struct net_device *dev, struct ethtool_cmd *cmd) 901 { 902 struct ethoc *priv = netdev_priv(dev); 903 struct phy_device *phydev = priv->phy; 904 905 if (!phydev) 906 return -EOPNOTSUPP; 907 908 return phy_ethtool_gset(phydev, cmd); 909 } 910 911 static int ethoc_set_settings(struct net_device *dev, struct ethtool_cmd *cmd) 912 { 913 struct ethoc *priv = netdev_priv(dev); 914 struct phy_device *phydev = priv->phy; 915 916 if (!phydev) 917 return -EOPNOTSUPP; 918 919 return phy_ethtool_sset(phydev, cmd); 920 } 921 922 static int ethoc_get_regs_len(struct net_device *netdev) 923 { 924 return ETH_END; 925 } 926 927 static void ethoc_get_regs(struct net_device *dev, struct ethtool_regs *regs, 928 void *p) 929 { 930 struct ethoc *priv = netdev_priv(dev); 931 u32 *regs_buff = p; 932 unsigned i; 933 934 regs->version = 0; 935 for (i = 0; i < ETH_END / sizeof(u32); ++i) 936 regs_buff[i] = ethoc_read(priv, i * sizeof(u32)); 937 } 938 939 static void ethoc_get_ringparam(struct net_device *dev, 940 struct ethtool_ringparam *ring) 941 { 942 struct ethoc *priv = netdev_priv(dev); 943 944 ring->rx_max_pending = priv->num_bd - 1; 945 ring->rx_mini_max_pending = 0; 946 ring->rx_jumbo_max_pending = 0; 947 ring->tx_max_pending = priv->num_bd - 1; 948 949 ring->rx_pending = priv->num_rx; 950 ring->rx_mini_pending = 0; 951 ring->rx_jumbo_pending = 0; 952 ring->tx_pending = priv->num_tx; 953 } 954 955 static int ethoc_set_ringparam(struct net_device *dev, 956 struct ethtool_ringparam *ring) 957 { 958 struct ethoc *priv = netdev_priv(dev); 959 960 if (ring->tx_pending < 1 || ring->rx_pending < 1 || 961 ring->tx_pending + ring->rx_pending > priv->num_bd) 962 return -EINVAL; 963 if (ring->rx_mini_pending || ring->rx_jumbo_pending) 964 return -EINVAL; 965 966 if (netif_running(dev)) { 967 netif_tx_disable(dev); 968 ethoc_disable_rx_and_tx(priv); 969 ethoc_disable_irq(priv, INT_MASK_TX | INT_MASK_RX); 970 synchronize_irq(dev->irq); 971 } 972 973 priv->num_tx = rounddown_pow_of_two(ring->tx_pending); 974 priv->num_rx = ring->rx_pending; 975 ethoc_init_ring(priv, dev->mem_start); 976 977 if (netif_running(dev)) { 978 ethoc_enable_irq(priv, INT_MASK_TX | INT_MASK_RX); 979 ethoc_enable_rx_and_tx(priv); 980 netif_wake_queue(dev); 981 } 982 return 0; 983 } 984 985 const struct ethtool_ops ethoc_ethtool_ops = { 986 .get_settings = ethoc_get_settings, 987 .set_settings = ethoc_set_settings, 988 .get_regs_len = ethoc_get_regs_len, 989 .get_regs = ethoc_get_regs, 990 .get_link = ethtool_op_get_link, 991 .get_ringparam = ethoc_get_ringparam, 992 .set_ringparam = ethoc_set_ringparam, 993 .get_ts_info = ethtool_op_get_ts_info, 994 }; 995 996 static const struct net_device_ops ethoc_netdev_ops = { 997 .ndo_open = ethoc_open, 998 .ndo_stop = ethoc_stop, 999 .ndo_do_ioctl = ethoc_ioctl, 1000 .ndo_set_mac_address = ethoc_set_mac_address, 1001 .ndo_set_rx_mode = ethoc_set_multicast_list, 1002 .ndo_change_mtu = ethoc_change_mtu, 1003 .ndo_tx_timeout = ethoc_tx_timeout, 1004 .ndo_start_xmit = ethoc_start_xmit, 1005 }; 1006 1007 /** 1008 * ethoc_probe - initialize OpenCores ethernet MAC 1009 * pdev: platform device 1010 */ 1011 static int ethoc_probe(struct platform_device *pdev) 1012 { 1013 struct net_device *netdev = NULL; 1014 struct resource *res = NULL; 1015 struct resource *mmio = NULL; 1016 struct resource *mem = NULL; 1017 struct ethoc *priv = NULL; 1018 unsigned int phy; 1019 int num_bd; 1020 int ret = 0; 1021 bool random_mac = false; 1022 struct ethoc_platform_data *pdata = dev_get_platdata(&pdev->dev); 1023 u32 eth_clkfreq = pdata ? pdata->eth_clkfreq : 0; 1024 1025 /* allocate networking device */ 1026 netdev = alloc_etherdev(sizeof(struct ethoc)); 1027 if (!netdev) { 1028 ret = -ENOMEM; 1029 goto out; 1030 } 1031 1032 SET_NETDEV_DEV(netdev, &pdev->dev); 1033 platform_set_drvdata(pdev, netdev); 1034 1035 /* obtain I/O memory space */ 1036 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1037 if (!res) { 1038 dev_err(&pdev->dev, "cannot obtain I/O memory space\n"); 1039 ret = -ENXIO; 1040 goto free; 1041 } 1042 1043 mmio = devm_request_mem_region(&pdev->dev, res->start, 1044 resource_size(res), res->name); 1045 if (!mmio) { 1046 dev_err(&pdev->dev, "cannot request I/O memory space\n"); 1047 ret = -ENXIO; 1048 goto free; 1049 } 1050 1051 netdev->base_addr = mmio->start; 1052 1053 /* obtain buffer memory space */ 1054 res = platform_get_resource(pdev, IORESOURCE_MEM, 1); 1055 if (res) { 1056 mem = devm_request_mem_region(&pdev->dev, res->start, 1057 resource_size(res), res->name); 1058 if (!mem) { 1059 dev_err(&pdev->dev, "cannot request memory space\n"); 1060 ret = -ENXIO; 1061 goto free; 1062 } 1063 1064 netdev->mem_start = mem->start; 1065 netdev->mem_end = mem->end; 1066 } 1067 1068 1069 /* obtain device IRQ number */ 1070 res = platform_get_resource(pdev, IORESOURCE_IRQ, 0); 1071 if (!res) { 1072 dev_err(&pdev->dev, "cannot obtain IRQ\n"); 1073 ret = -ENXIO; 1074 goto free; 1075 } 1076 1077 netdev->irq = res->start; 1078 1079 /* setup driver-private data */ 1080 priv = netdev_priv(netdev); 1081 priv->netdev = netdev; 1082 priv->dma_alloc = 0; 1083 priv->io_region_size = resource_size(mmio); 1084 1085 priv->iobase = devm_ioremap_nocache(&pdev->dev, netdev->base_addr, 1086 resource_size(mmio)); 1087 if (!priv->iobase) { 1088 dev_err(&pdev->dev, "cannot remap I/O memory space\n"); 1089 ret = -ENXIO; 1090 goto error; 1091 } 1092 1093 if (netdev->mem_end) { 1094 priv->membase = devm_ioremap_nocache(&pdev->dev, 1095 netdev->mem_start, resource_size(mem)); 1096 if (!priv->membase) { 1097 dev_err(&pdev->dev, "cannot remap memory space\n"); 1098 ret = -ENXIO; 1099 goto error; 1100 } 1101 } else { 1102 /* Allocate buffer memory */ 1103 priv->membase = dmam_alloc_coherent(&pdev->dev, 1104 buffer_size, (void *)&netdev->mem_start, 1105 GFP_KERNEL); 1106 if (!priv->membase) { 1107 dev_err(&pdev->dev, "cannot allocate %dB buffer\n", 1108 buffer_size); 1109 ret = -ENOMEM; 1110 goto error; 1111 } 1112 netdev->mem_end = netdev->mem_start + buffer_size; 1113 priv->dma_alloc = buffer_size; 1114 } 1115 1116 priv->big_endian = pdata ? pdata->big_endian : 1117 of_device_is_big_endian(pdev->dev.of_node); 1118 1119 /* calculate the number of TX/RX buffers, maximum 128 supported */ 1120 num_bd = min_t(unsigned int, 1121 128, (netdev->mem_end - netdev->mem_start + 1) / ETHOC_BUFSIZ); 1122 if (num_bd < 4) { 1123 ret = -ENODEV; 1124 goto error; 1125 } 1126 priv->num_bd = num_bd; 1127 /* num_tx must be a power of two */ 1128 priv->num_tx = rounddown_pow_of_two(num_bd >> 1); 1129 priv->num_rx = num_bd - priv->num_tx; 1130 1131 dev_dbg(&pdev->dev, "ethoc: num_tx: %d num_rx: %d\n", 1132 priv->num_tx, priv->num_rx); 1133 1134 priv->vma = devm_kzalloc(&pdev->dev, num_bd*sizeof(void *), GFP_KERNEL); 1135 if (!priv->vma) { 1136 ret = -ENOMEM; 1137 goto error; 1138 } 1139 1140 /* Allow the platform setup code to pass in a MAC address. */ 1141 if (pdata) { 1142 memcpy(netdev->dev_addr, pdata->hwaddr, IFHWADDRLEN); 1143 priv->phy_id = pdata->phy_id; 1144 } else { 1145 const uint8_t *mac; 1146 1147 mac = of_get_property(pdev->dev.of_node, 1148 "local-mac-address", 1149 NULL); 1150 if (mac) 1151 memcpy(netdev->dev_addr, mac, IFHWADDRLEN); 1152 priv->phy_id = -1; 1153 } 1154 1155 /* Check that the given MAC address is valid. If it isn't, read the 1156 * current MAC from the controller. 1157 */ 1158 if (!is_valid_ether_addr(netdev->dev_addr)) 1159 ethoc_get_mac_address(netdev, netdev->dev_addr); 1160 1161 /* Check the MAC again for validity, if it still isn't choose and 1162 * program a random one. 1163 */ 1164 if (!is_valid_ether_addr(netdev->dev_addr)) { 1165 eth_random_addr(netdev->dev_addr); 1166 random_mac = true; 1167 } 1168 1169 ethoc_do_set_mac_address(netdev); 1170 1171 if (random_mac) 1172 netdev->addr_assign_type = NET_ADDR_RANDOM; 1173 1174 /* Allow the platform setup code to adjust MII management bus clock. */ 1175 if (!eth_clkfreq) { 1176 struct clk *clk = devm_clk_get(&pdev->dev, NULL); 1177 1178 if (!IS_ERR(clk)) { 1179 priv->clk = clk; 1180 clk_prepare_enable(clk); 1181 eth_clkfreq = clk_get_rate(clk); 1182 } 1183 } 1184 if (eth_clkfreq) { 1185 u32 clkdiv = MIIMODER_CLKDIV(eth_clkfreq / 2500000 + 1); 1186 1187 if (!clkdiv) 1188 clkdiv = 2; 1189 dev_dbg(&pdev->dev, "setting MII clkdiv to %u\n", clkdiv); 1190 ethoc_write(priv, MIIMODER, 1191 (ethoc_read(priv, MIIMODER) & MIIMODER_NOPRE) | 1192 clkdiv); 1193 } 1194 1195 /* register MII bus */ 1196 priv->mdio = mdiobus_alloc(); 1197 if (!priv->mdio) { 1198 ret = -ENOMEM; 1199 goto free; 1200 } 1201 1202 priv->mdio->name = "ethoc-mdio"; 1203 snprintf(priv->mdio->id, MII_BUS_ID_SIZE, "%s-%d", 1204 priv->mdio->name, pdev->id); 1205 priv->mdio->read = ethoc_mdio_read; 1206 priv->mdio->write = ethoc_mdio_write; 1207 priv->mdio->priv = priv; 1208 1209 priv->mdio->irq = kmalloc(sizeof(int) * PHY_MAX_ADDR, GFP_KERNEL); 1210 if (!priv->mdio->irq) { 1211 ret = -ENOMEM; 1212 goto free_mdio; 1213 } 1214 1215 for (phy = 0; phy < PHY_MAX_ADDR; phy++) 1216 priv->mdio->irq[phy] = PHY_POLL; 1217 1218 ret = mdiobus_register(priv->mdio); 1219 if (ret) { 1220 dev_err(&netdev->dev, "failed to register MDIO bus\n"); 1221 goto free_mdio; 1222 } 1223 1224 ret = ethoc_mdio_probe(netdev); 1225 if (ret) { 1226 dev_err(&netdev->dev, "failed to probe MDIO bus\n"); 1227 goto error; 1228 } 1229 1230 /* setup the net_device structure */ 1231 netdev->netdev_ops = ðoc_netdev_ops; 1232 netdev->watchdog_timeo = ETHOC_TIMEOUT; 1233 netdev->features |= 0; 1234 netdev->ethtool_ops = ðoc_ethtool_ops; 1235 1236 /* setup NAPI */ 1237 netif_napi_add(netdev, &priv->napi, ethoc_poll, 64); 1238 1239 spin_lock_init(&priv->lock); 1240 1241 ret = register_netdev(netdev); 1242 if (ret < 0) { 1243 dev_err(&netdev->dev, "failed to register interface\n"); 1244 goto error2; 1245 } 1246 1247 goto out; 1248 1249 error2: 1250 netif_napi_del(&priv->napi); 1251 error: 1252 mdiobus_unregister(priv->mdio); 1253 free_mdio: 1254 kfree(priv->mdio->irq); 1255 mdiobus_free(priv->mdio); 1256 free: 1257 if (priv->clk) 1258 clk_disable_unprepare(priv->clk); 1259 free_netdev(netdev); 1260 out: 1261 return ret; 1262 } 1263 1264 /** 1265 * ethoc_remove - shutdown OpenCores ethernet MAC 1266 * @pdev: platform device 1267 */ 1268 static int ethoc_remove(struct platform_device *pdev) 1269 { 1270 struct net_device *netdev = platform_get_drvdata(pdev); 1271 struct ethoc *priv = netdev_priv(netdev); 1272 1273 if (netdev) { 1274 netif_napi_del(&priv->napi); 1275 phy_disconnect(priv->phy); 1276 priv->phy = NULL; 1277 1278 if (priv->mdio) { 1279 mdiobus_unregister(priv->mdio); 1280 kfree(priv->mdio->irq); 1281 mdiobus_free(priv->mdio); 1282 } 1283 if (priv->clk) 1284 clk_disable_unprepare(priv->clk); 1285 unregister_netdev(netdev); 1286 free_netdev(netdev); 1287 } 1288 1289 return 0; 1290 } 1291 1292 #ifdef CONFIG_PM 1293 static int ethoc_suspend(struct platform_device *pdev, pm_message_t state) 1294 { 1295 return -ENOSYS; 1296 } 1297 1298 static int ethoc_resume(struct platform_device *pdev) 1299 { 1300 return -ENOSYS; 1301 } 1302 #else 1303 # define ethoc_suspend NULL 1304 # define ethoc_resume NULL 1305 #endif 1306 1307 static const struct of_device_id ethoc_match[] = { 1308 { .compatible = "opencores,ethoc", }, 1309 {}, 1310 }; 1311 MODULE_DEVICE_TABLE(of, ethoc_match); 1312 1313 static struct platform_driver ethoc_driver = { 1314 .probe = ethoc_probe, 1315 .remove = ethoc_remove, 1316 .suspend = ethoc_suspend, 1317 .resume = ethoc_resume, 1318 .driver = { 1319 .name = "ethoc", 1320 .of_match_table = ethoc_match, 1321 }, 1322 }; 1323 1324 module_platform_driver(ethoc_driver); 1325 1326 MODULE_AUTHOR("Thierry Reding <thierry.reding@avionic-design.de>"); 1327 MODULE_DESCRIPTION("OpenCores Ethernet MAC driver"); 1328 MODULE_LICENSE("GPL v2"); 1329 1330