xref: /openbmc/linux/drivers/net/ethernet/engleder/tsnep_main.c (revision bbdd33769d319d1e7bb8fec09124a49b3573a2d3)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (C) 2021 Gerhard Engleder <gerhard@engleder-embedded.com> */
3 
4 /* TSN endpoint Ethernet MAC driver
5  *
6  * The TSN endpoint Ethernet MAC is a FPGA based network device for real-time
7  * communication. It is designed for endpoints within TSN (Time Sensitive
8  * Networking) networks; e.g., for PLCs in the industrial automation case.
9  *
10  * It supports multiple TX/RX queue pairs. The first TX/RX queue pair is used
11  * by the driver.
12  *
13  * More information can be found here:
14  * - www.embedded-experts.at/tsn
15  * - www.engleder-embedded.com
16  */
17 
18 #include "tsnep.h"
19 #include "tsnep_hw.h"
20 
21 #include <linux/module.h>
22 #include <linux/of.h>
23 #include <linux/of_net.h>
24 #include <linux/of_mdio.h>
25 #include <linux/interrupt.h>
26 #include <linux/etherdevice.h>
27 #include <linux/phy.h>
28 #include <linux/iopoll.h>
29 #include <linux/bpf.h>
30 #include <linux/bpf_trace.h>
31 
32 #define TSNEP_RX_OFFSET (max(NET_SKB_PAD, XDP_PACKET_HEADROOM) + NET_IP_ALIGN)
33 #define TSNEP_HEADROOM ALIGN(TSNEP_RX_OFFSET, 4)
34 #define TSNEP_MAX_RX_BUF_SIZE (PAGE_SIZE - TSNEP_HEADROOM - \
35 			       SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
36 
37 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
38 #define DMA_ADDR_HIGH(dma_addr) ((u32)(((dma_addr) >> 32) & 0xFFFFFFFF))
39 #else
40 #define DMA_ADDR_HIGH(dma_addr) ((u32)(0))
41 #endif
42 #define DMA_ADDR_LOW(dma_addr) ((u32)((dma_addr) & 0xFFFFFFFF))
43 
44 #define TSNEP_COALESCE_USECS_DEFAULT 64
45 #define TSNEP_COALESCE_USECS_MAX     ((ECM_INT_DELAY_MASK >> ECM_INT_DELAY_SHIFT) * \
46 				      ECM_INT_DELAY_BASE_US + ECM_INT_DELAY_BASE_US - 1)
47 
48 #define TSNEP_TX_TYPE_SKB	BIT(0)
49 #define TSNEP_TX_TYPE_SKB_FRAG	BIT(1)
50 #define TSNEP_TX_TYPE_XDP_TX	BIT(2)
51 #define TSNEP_TX_TYPE_XDP_NDO	BIT(3)
52 
53 #define TSNEP_XDP_TX		BIT(0)
54 #define TSNEP_XDP_REDIRECT	BIT(1)
55 
56 static void tsnep_enable_irq(struct tsnep_adapter *adapter, u32 mask)
57 {
58 	iowrite32(mask, adapter->addr + ECM_INT_ENABLE);
59 }
60 
61 static void tsnep_disable_irq(struct tsnep_adapter *adapter, u32 mask)
62 {
63 	mask |= ECM_INT_DISABLE;
64 	iowrite32(mask, adapter->addr + ECM_INT_ENABLE);
65 }
66 
67 static irqreturn_t tsnep_irq(int irq, void *arg)
68 {
69 	struct tsnep_adapter *adapter = arg;
70 	u32 active = ioread32(adapter->addr + ECM_INT_ACTIVE);
71 
72 	/* acknowledge interrupt */
73 	if (active != 0)
74 		iowrite32(active, adapter->addr + ECM_INT_ACKNOWLEDGE);
75 
76 	/* handle link interrupt */
77 	if ((active & ECM_INT_LINK) != 0)
78 		phy_mac_interrupt(adapter->netdev->phydev);
79 
80 	/* handle TX/RX queue 0 interrupt */
81 	if ((active & adapter->queue[0].irq_mask) != 0) {
82 		tsnep_disable_irq(adapter, adapter->queue[0].irq_mask);
83 		napi_schedule(&adapter->queue[0].napi);
84 	}
85 
86 	return IRQ_HANDLED;
87 }
88 
89 static irqreturn_t tsnep_irq_txrx(int irq, void *arg)
90 {
91 	struct tsnep_queue *queue = arg;
92 
93 	/* handle TX/RX queue interrupt */
94 	tsnep_disable_irq(queue->adapter, queue->irq_mask);
95 	napi_schedule(&queue->napi);
96 
97 	return IRQ_HANDLED;
98 }
99 
100 int tsnep_set_irq_coalesce(struct tsnep_queue *queue, u32 usecs)
101 {
102 	if (usecs > TSNEP_COALESCE_USECS_MAX)
103 		return -ERANGE;
104 
105 	usecs /= ECM_INT_DELAY_BASE_US;
106 	usecs <<= ECM_INT_DELAY_SHIFT;
107 	usecs &= ECM_INT_DELAY_MASK;
108 
109 	queue->irq_delay &= ~ECM_INT_DELAY_MASK;
110 	queue->irq_delay |= usecs;
111 	iowrite8(queue->irq_delay, queue->irq_delay_addr);
112 
113 	return 0;
114 }
115 
116 u32 tsnep_get_irq_coalesce(struct tsnep_queue *queue)
117 {
118 	u32 usecs;
119 
120 	usecs = (queue->irq_delay & ECM_INT_DELAY_MASK);
121 	usecs >>= ECM_INT_DELAY_SHIFT;
122 	usecs *= ECM_INT_DELAY_BASE_US;
123 
124 	return usecs;
125 }
126 
127 static int tsnep_mdiobus_read(struct mii_bus *bus, int addr, int regnum)
128 {
129 	struct tsnep_adapter *adapter = bus->priv;
130 	u32 md;
131 	int retval;
132 
133 	md = ECM_MD_READ;
134 	if (!adapter->suppress_preamble)
135 		md |= ECM_MD_PREAMBLE;
136 	md |= (regnum << ECM_MD_ADDR_SHIFT) & ECM_MD_ADDR_MASK;
137 	md |= (addr << ECM_MD_PHY_ADDR_SHIFT) & ECM_MD_PHY_ADDR_MASK;
138 	iowrite32(md, adapter->addr + ECM_MD_CONTROL);
139 	retval = readl_poll_timeout_atomic(adapter->addr + ECM_MD_STATUS, md,
140 					   !(md & ECM_MD_BUSY), 16, 1000);
141 	if (retval != 0)
142 		return retval;
143 
144 	return (md & ECM_MD_DATA_MASK) >> ECM_MD_DATA_SHIFT;
145 }
146 
147 static int tsnep_mdiobus_write(struct mii_bus *bus, int addr, int regnum,
148 			       u16 val)
149 {
150 	struct tsnep_adapter *adapter = bus->priv;
151 	u32 md;
152 	int retval;
153 
154 	md = ECM_MD_WRITE;
155 	if (!adapter->suppress_preamble)
156 		md |= ECM_MD_PREAMBLE;
157 	md |= (regnum << ECM_MD_ADDR_SHIFT) & ECM_MD_ADDR_MASK;
158 	md |= (addr << ECM_MD_PHY_ADDR_SHIFT) & ECM_MD_PHY_ADDR_MASK;
159 	md |= ((u32)val << ECM_MD_DATA_SHIFT) & ECM_MD_DATA_MASK;
160 	iowrite32(md, adapter->addr + ECM_MD_CONTROL);
161 	retval = readl_poll_timeout_atomic(adapter->addr + ECM_MD_STATUS, md,
162 					   !(md & ECM_MD_BUSY), 16, 1000);
163 	if (retval != 0)
164 		return retval;
165 
166 	return 0;
167 }
168 
169 static void tsnep_set_link_mode(struct tsnep_adapter *adapter)
170 {
171 	u32 mode;
172 
173 	switch (adapter->phydev->speed) {
174 	case SPEED_100:
175 		mode = ECM_LINK_MODE_100;
176 		break;
177 	case SPEED_1000:
178 		mode = ECM_LINK_MODE_1000;
179 		break;
180 	default:
181 		mode = ECM_LINK_MODE_OFF;
182 		break;
183 	}
184 	iowrite32(mode, adapter->addr + ECM_STATUS);
185 }
186 
187 static void tsnep_phy_link_status_change(struct net_device *netdev)
188 {
189 	struct tsnep_adapter *adapter = netdev_priv(netdev);
190 	struct phy_device *phydev = netdev->phydev;
191 
192 	if (phydev->link)
193 		tsnep_set_link_mode(adapter);
194 
195 	phy_print_status(netdev->phydev);
196 }
197 
198 static int tsnep_phy_loopback(struct tsnep_adapter *adapter, bool enable)
199 {
200 	int retval;
201 
202 	retval = phy_loopback(adapter->phydev, enable);
203 
204 	/* PHY link state change is not signaled if loopback is enabled, it
205 	 * would delay a working loopback anyway, let's ensure that loopback
206 	 * is working immediately by setting link mode directly
207 	 */
208 	if (!retval && enable)
209 		tsnep_set_link_mode(adapter);
210 
211 	return retval;
212 }
213 
214 static int tsnep_phy_open(struct tsnep_adapter *adapter)
215 {
216 	struct phy_device *phydev;
217 	struct ethtool_eee ethtool_eee;
218 	int retval;
219 
220 	retval = phy_connect_direct(adapter->netdev, adapter->phydev,
221 				    tsnep_phy_link_status_change,
222 				    adapter->phy_mode);
223 	if (retval)
224 		return retval;
225 	phydev = adapter->netdev->phydev;
226 
227 	/* MAC supports only 100Mbps|1000Mbps full duplex
228 	 * SPE (Single Pair Ethernet) is also an option but not implemented yet
229 	 */
230 	phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_10baseT_Half_BIT);
231 	phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_10baseT_Full_BIT);
232 	phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_100baseT_Half_BIT);
233 	phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_1000baseT_Half_BIT);
234 
235 	/* disable EEE autoneg, EEE not supported by TSNEP */
236 	memset(&ethtool_eee, 0, sizeof(ethtool_eee));
237 	phy_ethtool_set_eee(adapter->phydev, &ethtool_eee);
238 
239 	adapter->phydev->irq = PHY_MAC_INTERRUPT;
240 	phy_start(adapter->phydev);
241 
242 	return 0;
243 }
244 
245 static void tsnep_phy_close(struct tsnep_adapter *adapter)
246 {
247 	phy_stop(adapter->netdev->phydev);
248 	phy_disconnect(adapter->netdev->phydev);
249 	adapter->netdev->phydev = NULL;
250 }
251 
252 static void tsnep_tx_ring_cleanup(struct tsnep_tx *tx)
253 {
254 	struct device *dmadev = tx->adapter->dmadev;
255 	int i;
256 
257 	memset(tx->entry, 0, sizeof(tx->entry));
258 
259 	for (i = 0; i < TSNEP_RING_PAGE_COUNT; i++) {
260 		if (tx->page[i]) {
261 			dma_free_coherent(dmadev, PAGE_SIZE, tx->page[i],
262 					  tx->page_dma[i]);
263 			tx->page[i] = NULL;
264 			tx->page_dma[i] = 0;
265 		}
266 	}
267 }
268 
269 static int tsnep_tx_ring_init(struct tsnep_tx *tx)
270 {
271 	struct device *dmadev = tx->adapter->dmadev;
272 	struct tsnep_tx_entry *entry;
273 	struct tsnep_tx_entry *next_entry;
274 	int i, j;
275 	int retval;
276 
277 	for (i = 0; i < TSNEP_RING_PAGE_COUNT; i++) {
278 		tx->page[i] =
279 			dma_alloc_coherent(dmadev, PAGE_SIZE, &tx->page_dma[i],
280 					   GFP_KERNEL);
281 		if (!tx->page[i]) {
282 			retval = -ENOMEM;
283 			goto alloc_failed;
284 		}
285 		for (j = 0; j < TSNEP_RING_ENTRIES_PER_PAGE; j++) {
286 			entry = &tx->entry[TSNEP_RING_ENTRIES_PER_PAGE * i + j];
287 			entry->desc_wb = (struct tsnep_tx_desc_wb *)
288 				(((u8 *)tx->page[i]) + TSNEP_DESC_SIZE * j);
289 			entry->desc = (struct tsnep_tx_desc *)
290 				(((u8 *)entry->desc_wb) + TSNEP_DESC_OFFSET);
291 			entry->desc_dma = tx->page_dma[i] + TSNEP_DESC_SIZE * j;
292 		}
293 	}
294 	for (i = 0; i < TSNEP_RING_SIZE; i++) {
295 		entry = &tx->entry[i];
296 		next_entry = &tx->entry[(i + 1) % TSNEP_RING_SIZE];
297 		entry->desc->next = __cpu_to_le64(next_entry->desc_dma);
298 	}
299 
300 	return 0;
301 
302 alloc_failed:
303 	tsnep_tx_ring_cleanup(tx);
304 	return retval;
305 }
306 
307 static void tsnep_tx_activate(struct tsnep_tx *tx, int index, int length,
308 			      bool last)
309 {
310 	struct tsnep_tx_entry *entry = &tx->entry[index];
311 
312 	entry->properties = 0;
313 	/* xdpf is union with skb */
314 	if (entry->skb) {
315 		entry->properties = length & TSNEP_DESC_LENGTH_MASK;
316 		entry->properties |= TSNEP_DESC_INTERRUPT_FLAG;
317 		if ((entry->type & TSNEP_TX_TYPE_SKB) &&
318 		    (skb_shinfo(entry->skb)->tx_flags & SKBTX_IN_PROGRESS))
319 			entry->properties |= TSNEP_DESC_EXTENDED_WRITEBACK_FLAG;
320 
321 		/* toggle user flag to prevent false acknowledge
322 		 *
323 		 * Only the first fragment is acknowledged. For all other
324 		 * fragments no acknowledge is done and the last written owner
325 		 * counter stays in the writeback descriptor. Therefore, it is
326 		 * possible that the last written owner counter is identical to
327 		 * the new incremented owner counter and a false acknowledge is
328 		 * detected before the real acknowledge has been done by
329 		 * hardware.
330 		 *
331 		 * The user flag is used to prevent this situation. The user
332 		 * flag is copied to the writeback descriptor by the hardware
333 		 * and is used as additional acknowledge data. By toggeling the
334 		 * user flag only for the first fragment (which is
335 		 * acknowledged), it is guaranteed that the last acknowledge
336 		 * done for this descriptor has used a different user flag and
337 		 * cannot be detected as false acknowledge.
338 		 */
339 		entry->owner_user_flag = !entry->owner_user_flag;
340 	}
341 	if (last)
342 		entry->properties |= TSNEP_TX_DESC_LAST_FRAGMENT_FLAG;
343 	if (index == tx->increment_owner_counter) {
344 		tx->owner_counter++;
345 		if (tx->owner_counter == 4)
346 			tx->owner_counter = 1;
347 		tx->increment_owner_counter--;
348 		if (tx->increment_owner_counter < 0)
349 			tx->increment_owner_counter = TSNEP_RING_SIZE - 1;
350 	}
351 	entry->properties |=
352 		(tx->owner_counter << TSNEP_DESC_OWNER_COUNTER_SHIFT) &
353 		TSNEP_DESC_OWNER_COUNTER_MASK;
354 	if (entry->owner_user_flag)
355 		entry->properties |= TSNEP_TX_DESC_OWNER_USER_FLAG;
356 	entry->desc->more_properties =
357 		__cpu_to_le32(entry->len & TSNEP_DESC_LENGTH_MASK);
358 
359 	/* descriptor properties shall be written last, because valid data is
360 	 * signaled there
361 	 */
362 	dma_wmb();
363 
364 	entry->desc->properties = __cpu_to_le32(entry->properties);
365 }
366 
367 static int tsnep_tx_desc_available(struct tsnep_tx *tx)
368 {
369 	if (tx->read <= tx->write)
370 		return TSNEP_RING_SIZE - tx->write + tx->read - 1;
371 	else
372 		return tx->read - tx->write - 1;
373 }
374 
375 static int tsnep_tx_map(struct sk_buff *skb, struct tsnep_tx *tx, int count)
376 {
377 	struct device *dmadev = tx->adapter->dmadev;
378 	struct tsnep_tx_entry *entry;
379 	unsigned int len;
380 	dma_addr_t dma;
381 	int map_len = 0;
382 	int i;
383 
384 	for (i = 0; i < count; i++) {
385 		entry = &tx->entry[(tx->write + i) % TSNEP_RING_SIZE];
386 
387 		if (!i) {
388 			len = skb_headlen(skb);
389 			dma = dma_map_single(dmadev, skb->data, len,
390 					     DMA_TO_DEVICE);
391 
392 			entry->type = TSNEP_TX_TYPE_SKB;
393 		} else {
394 			len = skb_frag_size(&skb_shinfo(skb)->frags[i - 1]);
395 			dma = skb_frag_dma_map(dmadev,
396 					       &skb_shinfo(skb)->frags[i - 1],
397 					       0, len, DMA_TO_DEVICE);
398 
399 			entry->type = TSNEP_TX_TYPE_SKB_FRAG;
400 		}
401 		if (dma_mapping_error(dmadev, dma))
402 			return -ENOMEM;
403 
404 		entry->len = len;
405 		dma_unmap_addr_set(entry, dma, dma);
406 
407 		entry->desc->tx = __cpu_to_le64(dma);
408 
409 		map_len += len;
410 	}
411 
412 	return map_len;
413 }
414 
415 static int tsnep_tx_unmap(struct tsnep_tx *tx, int index, int count)
416 {
417 	struct device *dmadev = tx->adapter->dmadev;
418 	struct tsnep_tx_entry *entry;
419 	int map_len = 0;
420 	int i;
421 
422 	for (i = 0; i < count; i++) {
423 		entry = &tx->entry[(index + i) % TSNEP_RING_SIZE];
424 
425 		if (entry->len) {
426 			if (entry->type & TSNEP_TX_TYPE_SKB)
427 				dma_unmap_single(dmadev,
428 						 dma_unmap_addr(entry, dma),
429 						 dma_unmap_len(entry, len),
430 						 DMA_TO_DEVICE);
431 			else if (entry->type &
432 				 (TSNEP_TX_TYPE_SKB_FRAG | TSNEP_TX_TYPE_XDP_NDO))
433 				dma_unmap_page(dmadev,
434 					       dma_unmap_addr(entry, dma),
435 					       dma_unmap_len(entry, len),
436 					       DMA_TO_DEVICE);
437 			map_len += entry->len;
438 			entry->len = 0;
439 		}
440 	}
441 
442 	return map_len;
443 }
444 
445 static netdev_tx_t tsnep_xmit_frame_ring(struct sk_buff *skb,
446 					 struct tsnep_tx *tx)
447 {
448 	int count = 1;
449 	struct tsnep_tx_entry *entry;
450 	int length;
451 	int i;
452 	int retval;
453 
454 	if (skb_shinfo(skb)->nr_frags > 0)
455 		count += skb_shinfo(skb)->nr_frags;
456 
457 	if (tsnep_tx_desc_available(tx) < count) {
458 		/* ring full, shall not happen because queue is stopped if full
459 		 * below
460 		 */
461 		netif_stop_subqueue(tx->adapter->netdev, tx->queue_index);
462 
463 		return NETDEV_TX_BUSY;
464 	}
465 
466 	entry = &tx->entry[tx->write];
467 	entry->skb = skb;
468 
469 	retval = tsnep_tx_map(skb, tx, count);
470 	if (retval < 0) {
471 		tsnep_tx_unmap(tx, tx->write, count);
472 		dev_kfree_skb_any(entry->skb);
473 		entry->skb = NULL;
474 
475 		tx->dropped++;
476 
477 		return NETDEV_TX_OK;
478 	}
479 	length = retval;
480 
481 	if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)
482 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
483 
484 	for (i = 0; i < count; i++)
485 		tsnep_tx_activate(tx, (tx->write + i) % TSNEP_RING_SIZE, length,
486 				  i == count - 1);
487 	tx->write = (tx->write + count) % TSNEP_RING_SIZE;
488 
489 	skb_tx_timestamp(skb);
490 
491 	/* descriptor properties shall be valid before hardware is notified */
492 	dma_wmb();
493 
494 	iowrite32(TSNEP_CONTROL_TX_ENABLE, tx->addr + TSNEP_CONTROL);
495 
496 	if (tsnep_tx_desc_available(tx) < (MAX_SKB_FRAGS + 1)) {
497 		/* ring can get full with next frame */
498 		netif_stop_subqueue(tx->adapter->netdev, tx->queue_index);
499 	}
500 
501 	return NETDEV_TX_OK;
502 }
503 
504 static int tsnep_xdp_tx_map(struct xdp_frame *xdpf, struct tsnep_tx *tx,
505 			    struct skb_shared_info *shinfo, int count, u32 type)
506 {
507 	struct device *dmadev = tx->adapter->dmadev;
508 	struct tsnep_tx_entry *entry;
509 	struct page *page;
510 	skb_frag_t *frag;
511 	unsigned int len;
512 	int map_len = 0;
513 	dma_addr_t dma;
514 	void *data;
515 	int i;
516 
517 	frag = NULL;
518 	len = xdpf->len;
519 	for (i = 0; i < count; i++) {
520 		entry = &tx->entry[(tx->write + i) % TSNEP_RING_SIZE];
521 		if (type & TSNEP_TX_TYPE_XDP_NDO) {
522 			data = unlikely(frag) ? skb_frag_address(frag) :
523 						xdpf->data;
524 			dma = dma_map_single(dmadev, data, len, DMA_TO_DEVICE);
525 			if (dma_mapping_error(dmadev, dma))
526 				return -ENOMEM;
527 
528 			entry->type = TSNEP_TX_TYPE_XDP_NDO;
529 		} else {
530 			page = unlikely(frag) ? skb_frag_page(frag) :
531 						virt_to_page(xdpf->data);
532 			dma = page_pool_get_dma_addr(page);
533 			if (unlikely(frag))
534 				dma += skb_frag_off(frag);
535 			else
536 				dma += sizeof(*xdpf) + xdpf->headroom;
537 			dma_sync_single_for_device(dmadev, dma, len,
538 						   DMA_BIDIRECTIONAL);
539 
540 			entry->type = TSNEP_TX_TYPE_XDP_TX;
541 		}
542 
543 		entry->len = len;
544 		dma_unmap_addr_set(entry, dma, dma);
545 
546 		entry->desc->tx = __cpu_to_le64(dma);
547 
548 		map_len += len;
549 
550 		if (i + 1 < count) {
551 			frag = &shinfo->frags[i];
552 			len = skb_frag_size(frag);
553 		}
554 	}
555 
556 	return map_len;
557 }
558 
559 /* This function requires __netif_tx_lock is held by the caller. */
560 static bool tsnep_xdp_xmit_frame_ring(struct xdp_frame *xdpf,
561 				      struct tsnep_tx *tx, u32 type)
562 {
563 	struct skb_shared_info *shinfo = xdp_get_shared_info_from_frame(xdpf);
564 	struct tsnep_tx_entry *entry;
565 	int count, length, retval, i;
566 
567 	count = 1;
568 	if (unlikely(xdp_frame_has_frags(xdpf)))
569 		count += shinfo->nr_frags;
570 
571 	/* ensure that TX ring is not filled up by XDP, always MAX_SKB_FRAGS
572 	 * will be available for normal TX path and queue is stopped there if
573 	 * necessary
574 	 */
575 	if (tsnep_tx_desc_available(tx) < (MAX_SKB_FRAGS + 1 + count))
576 		return false;
577 
578 	entry = &tx->entry[tx->write];
579 	entry->xdpf = xdpf;
580 
581 	retval = tsnep_xdp_tx_map(xdpf, tx, shinfo, count, type);
582 	if (retval < 0) {
583 		tsnep_tx_unmap(tx, tx->write, count);
584 		entry->xdpf = NULL;
585 
586 		tx->dropped++;
587 
588 		return false;
589 	}
590 	length = retval;
591 
592 	for (i = 0; i < count; i++)
593 		tsnep_tx_activate(tx, (tx->write + i) % TSNEP_RING_SIZE, length,
594 				  i == count - 1);
595 	tx->write = (tx->write + count) % TSNEP_RING_SIZE;
596 
597 	/* descriptor properties shall be valid before hardware is notified */
598 	dma_wmb();
599 
600 	return true;
601 }
602 
603 static void tsnep_xdp_xmit_flush(struct tsnep_tx *tx)
604 {
605 	iowrite32(TSNEP_CONTROL_TX_ENABLE, tx->addr + TSNEP_CONTROL);
606 }
607 
608 static bool tsnep_xdp_xmit_back(struct tsnep_adapter *adapter,
609 				struct xdp_buff *xdp,
610 				struct netdev_queue *tx_nq, struct tsnep_tx *tx)
611 {
612 	struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
613 	bool xmit;
614 
615 	if (unlikely(!xdpf))
616 		return false;
617 
618 	__netif_tx_lock(tx_nq, smp_processor_id());
619 
620 	xmit = tsnep_xdp_xmit_frame_ring(xdpf, tx, TSNEP_TX_TYPE_XDP_TX);
621 
622 	/* Avoid transmit queue timeout since we share it with the slow path */
623 	if (xmit)
624 		txq_trans_cond_update(tx_nq);
625 
626 	__netif_tx_unlock(tx_nq);
627 
628 	return xmit;
629 }
630 
631 static bool tsnep_tx_poll(struct tsnep_tx *tx, int napi_budget)
632 {
633 	struct tsnep_tx_entry *entry;
634 	struct netdev_queue *nq;
635 	int budget = 128;
636 	int length;
637 	int count;
638 
639 	nq = netdev_get_tx_queue(tx->adapter->netdev, tx->queue_index);
640 	__netif_tx_lock(nq, smp_processor_id());
641 
642 	do {
643 		if (tx->read == tx->write)
644 			break;
645 
646 		entry = &tx->entry[tx->read];
647 		if ((__le32_to_cpu(entry->desc_wb->properties) &
648 		     TSNEP_TX_DESC_OWNER_MASK) !=
649 		    (entry->properties & TSNEP_TX_DESC_OWNER_MASK))
650 			break;
651 
652 		/* descriptor properties shall be read first, because valid data
653 		 * is signaled there
654 		 */
655 		dma_rmb();
656 
657 		count = 1;
658 		if ((entry->type & TSNEP_TX_TYPE_SKB) &&
659 		    skb_shinfo(entry->skb)->nr_frags > 0)
660 			count += skb_shinfo(entry->skb)->nr_frags;
661 		else if (!(entry->type & TSNEP_TX_TYPE_SKB) &&
662 			 xdp_frame_has_frags(entry->xdpf))
663 			count += xdp_get_shared_info_from_frame(entry->xdpf)->nr_frags;
664 
665 		length = tsnep_tx_unmap(tx, tx->read, count);
666 
667 		if ((entry->type & TSNEP_TX_TYPE_SKB) &&
668 		    (skb_shinfo(entry->skb)->tx_flags & SKBTX_IN_PROGRESS) &&
669 		    (__le32_to_cpu(entry->desc_wb->properties) &
670 		     TSNEP_DESC_EXTENDED_WRITEBACK_FLAG)) {
671 			struct skb_shared_hwtstamps hwtstamps;
672 			u64 timestamp;
673 
674 			if (skb_shinfo(entry->skb)->tx_flags &
675 			    SKBTX_HW_TSTAMP_USE_CYCLES)
676 				timestamp =
677 					__le64_to_cpu(entry->desc_wb->counter);
678 			else
679 				timestamp =
680 					__le64_to_cpu(entry->desc_wb->timestamp);
681 
682 			memset(&hwtstamps, 0, sizeof(hwtstamps));
683 			hwtstamps.hwtstamp = ns_to_ktime(timestamp);
684 
685 			skb_tstamp_tx(entry->skb, &hwtstamps);
686 		}
687 
688 		if (entry->type & TSNEP_TX_TYPE_SKB)
689 			napi_consume_skb(entry->skb, napi_budget);
690 		else
691 			xdp_return_frame_rx_napi(entry->xdpf);
692 		/* xdpf is union with skb */
693 		entry->skb = NULL;
694 
695 		tx->read = (tx->read + count) % TSNEP_RING_SIZE;
696 
697 		tx->packets++;
698 		tx->bytes += length + ETH_FCS_LEN;
699 
700 		budget--;
701 	} while (likely(budget));
702 
703 	if ((tsnep_tx_desc_available(tx) >= ((MAX_SKB_FRAGS + 1) * 2)) &&
704 	    netif_tx_queue_stopped(nq)) {
705 		netif_tx_wake_queue(nq);
706 	}
707 
708 	__netif_tx_unlock(nq);
709 
710 	return budget != 0;
711 }
712 
713 static bool tsnep_tx_pending(struct tsnep_tx *tx)
714 {
715 	struct tsnep_tx_entry *entry;
716 	struct netdev_queue *nq;
717 	bool pending = false;
718 
719 	nq = netdev_get_tx_queue(tx->adapter->netdev, tx->queue_index);
720 	__netif_tx_lock(nq, smp_processor_id());
721 
722 	if (tx->read != tx->write) {
723 		entry = &tx->entry[tx->read];
724 		if ((__le32_to_cpu(entry->desc_wb->properties) &
725 		     TSNEP_TX_DESC_OWNER_MASK) ==
726 		    (entry->properties & TSNEP_TX_DESC_OWNER_MASK))
727 			pending = true;
728 	}
729 
730 	__netif_tx_unlock(nq);
731 
732 	return pending;
733 }
734 
735 static int tsnep_tx_open(struct tsnep_adapter *adapter, void __iomem *addr,
736 			 int queue_index, struct tsnep_tx *tx)
737 {
738 	dma_addr_t dma;
739 	int retval;
740 
741 	memset(tx, 0, sizeof(*tx));
742 	tx->adapter = adapter;
743 	tx->addr = addr;
744 	tx->queue_index = queue_index;
745 
746 	retval = tsnep_tx_ring_init(tx);
747 	if (retval)
748 		return retval;
749 
750 	dma = tx->entry[0].desc_dma | TSNEP_RESET_OWNER_COUNTER;
751 	iowrite32(DMA_ADDR_LOW(dma), tx->addr + TSNEP_TX_DESC_ADDR_LOW);
752 	iowrite32(DMA_ADDR_HIGH(dma), tx->addr + TSNEP_TX_DESC_ADDR_HIGH);
753 	tx->owner_counter = 1;
754 	tx->increment_owner_counter = TSNEP_RING_SIZE - 1;
755 
756 	return 0;
757 }
758 
759 static void tsnep_tx_close(struct tsnep_tx *tx)
760 {
761 	u32 val;
762 
763 	readx_poll_timeout(ioread32, tx->addr + TSNEP_CONTROL, val,
764 			   ((val & TSNEP_CONTROL_TX_ENABLE) == 0), 10000,
765 			   1000000);
766 
767 	tsnep_tx_ring_cleanup(tx);
768 }
769 
770 static void tsnep_rx_ring_cleanup(struct tsnep_rx *rx)
771 {
772 	struct device *dmadev = rx->adapter->dmadev;
773 	struct tsnep_rx_entry *entry;
774 	int i;
775 
776 	for (i = 0; i < TSNEP_RING_SIZE; i++) {
777 		entry = &rx->entry[i];
778 		if (entry->page)
779 			page_pool_put_full_page(rx->page_pool, entry->page,
780 						false);
781 		entry->page = NULL;
782 	}
783 
784 	if (rx->page_pool)
785 		page_pool_destroy(rx->page_pool);
786 
787 	memset(rx->entry, 0, sizeof(rx->entry));
788 
789 	for (i = 0; i < TSNEP_RING_PAGE_COUNT; i++) {
790 		if (rx->page[i]) {
791 			dma_free_coherent(dmadev, PAGE_SIZE, rx->page[i],
792 					  rx->page_dma[i]);
793 			rx->page[i] = NULL;
794 			rx->page_dma[i] = 0;
795 		}
796 	}
797 }
798 
799 static int tsnep_rx_ring_init(struct tsnep_rx *rx)
800 {
801 	struct device *dmadev = rx->adapter->dmadev;
802 	struct tsnep_rx_entry *entry;
803 	struct page_pool_params pp_params = { 0 };
804 	struct tsnep_rx_entry *next_entry;
805 	int i, j;
806 	int retval;
807 
808 	for (i = 0; i < TSNEP_RING_PAGE_COUNT; i++) {
809 		rx->page[i] =
810 			dma_alloc_coherent(dmadev, PAGE_SIZE, &rx->page_dma[i],
811 					   GFP_KERNEL);
812 		if (!rx->page[i]) {
813 			retval = -ENOMEM;
814 			goto failed;
815 		}
816 		for (j = 0; j < TSNEP_RING_ENTRIES_PER_PAGE; j++) {
817 			entry = &rx->entry[TSNEP_RING_ENTRIES_PER_PAGE * i + j];
818 			entry->desc_wb = (struct tsnep_rx_desc_wb *)
819 				(((u8 *)rx->page[i]) + TSNEP_DESC_SIZE * j);
820 			entry->desc = (struct tsnep_rx_desc *)
821 				(((u8 *)entry->desc_wb) + TSNEP_DESC_OFFSET);
822 			entry->desc_dma = rx->page_dma[i] + TSNEP_DESC_SIZE * j;
823 		}
824 	}
825 
826 	pp_params.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV;
827 	pp_params.order = 0;
828 	pp_params.pool_size = TSNEP_RING_SIZE;
829 	pp_params.nid = dev_to_node(dmadev);
830 	pp_params.dev = dmadev;
831 	pp_params.dma_dir = DMA_BIDIRECTIONAL;
832 	pp_params.max_len = TSNEP_MAX_RX_BUF_SIZE;
833 	pp_params.offset = TSNEP_RX_OFFSET;
834 	rx->page_pool = page_pool_create(&pp_params);
835 	if (IS_ERR(rx->page_pool)) {
836 		retval = PTR_ERR(rx->page_pool);
837 		rx->page_pool = NULL;
838 		goto failed;
839 	}
840 
841 	for (i = 0; i < TSNEP_RING_SIZE; i++) {
842 		entry = &rx->entry[i];
843 		next_entry = &rx->entry[(i + 1) % TSNEP_RING_SIZE];
844 		entry->desc->next = __cpu_to_le64(next_entry->desc_dma);
845 	}
846 
847 	return 0;
848 
849 failed:
850 	tsnep_rx_ring_cleanup(rx);
851 	return retval;
852 }
853 
854 static int tsnep_rx_desc_available(struct tsnep_rx *rx)
855 {
856 	if (rx->read <= rx->write)
857 		return TSNEP_RING_SIZE - rx->write + rx->read - 1;
858 	else
859 		return rx->read - rx->write - 1;
860 }
861 
862 static void tsnep_rx_set_page(struct tsnep_rx *rx, struct tsnep_rx_entry *entry,
863 			      struct page *page)
864 {
865 	entry->page = page;
866 	entry->len = TSNEP_MAX_RX_BUF_SIZE;
867 	entry->dma = page_pool_get_dma_addr(entry->page);
868 	entry->desc->rx = __cpu_to_le64(entry->dma + TSNEP_RX_OFFSET);
869 }
870 
871 static int tsnep_rx_alloc_buffer(struct tsnep_rx *rx, int index)
872 {
873 	struct tsnep_rx_entry *entry = &rx->entry[index];
874 	struct page *page;
875 
876 	page = page_pool_dev_alloc_pages(rx->page_pool);
877 	if (unlikely(!page))
878 		return -ENOMEM;
879 	tsnep_rx_set_page(rx, entry, page);
880 
881 	return 0;
882 }
883 
884 static void tsnep_rx_reuse_buffer(struct tsnep_rx *rx, int index)
885 {
886 	struct tsnep_rx_entry *entry = &rx->entry[index];
887 	struct tsnep_rx_entry *read = &rx->entry[rx->read];
888 
889 	tsnep_rx_set_page(rx, entry, read->page);
890 	read->page = NULL;
891 }
892 
893 static void tsnep_rx_activate(struct tsnep_rx *rx, int index)
894 {
895 	struct tsnep_rx_entry *entry = &rx->entry[index];
896 
897 	/* TSNEP_MAX_RX_BUF_SIZE is a multiple of 4 */
898 	entry->properties = entry->len & TSNEP_DESC_LENGTH_MASK;
899 	entry->properties |= TSNEP_DESC_INTERRUPT_FLAG;
900 	if (index == rx->increment_owner_counter) {
901 		rx->owner_counter++;
902 		if (rx->owner_counter == 4)
903 			rx->owner_counter = 1;
904 		rx->increment_owner_counter--;
905 		if (rx->increment_owner_counter < 0)
906 			rx->increment_owner_counter = TSNEP_RING_SIZE - 1;
907 	}
908 	entry->properties |=
909 		(rx->owner_counter << TSNEP_DESC_OWNER_COUNTER_SHIFT) &
910 		TSNEP_DESC_OWNER_COUNTER_MASK;
911 
912 	/* descriptor properties shall be written last, because valid data is
913 	 * signaled there
914 	 */
915 	dma_wmb();
916 
917 	entry->desc->properties = __cpu_to_le32(entry->properties);
918 }
919 
920 static int tsnep_rx_refill(struct tsnep_rx *rx, int count, bool reuse)
921 {
922 	int index;
923 	bool alloc_failed = false;
924 	bool enable = false;
925 	int i;
926 	int retval;
927 
928 	for (i = 0; i < count && !alloc_failed; i++) {
929 		index = (rx->write + i) % TSNEP_RING_SIZE;
930 
931 		retval = tsnep_rx_alloc_buffer(rx, index);
932 		if (unlikely(retval)) {
933 			rx->alloc_failed++;
934 			alloc_failed = true;
935 
936 			/* reuse only if no other allocation was successful */
937 			if (i == 0 && reuse)
938 				tsnep_rx_reuse_buffer(rx, index);
939 			else
940 				break;
941 		}
942 
943 		tsnep_rx_activate(rx, index);
944 
945 		enable = true;
946 	}
947 
948 	if (enable) {
949 		rx->write = (rx->write + i) % TSNEP_RING_SIZE;
950 
951 		/* descriptor properties shall be valid before hardware is
952 		 * notified
953 		 */
954 		dma_wmb();
955 
956 		iowrite32(TSNEP_CONTROL_RX_ENABLE, rx->addr + TSNEP_CONTROL);
957 	}
958 
959 	return i;
960 }
961 
962 static bool tsnep_xdp_run_prog(struct tsnep_rx *rx, struct bpf_prog *prog,
963 			       struct xdp_buff *xdp, int *status,
964 			       struct netdev_queue *tx_nq, struct tsnep_tx *tx)
965 {
966 	unsigned int length;
967 	unsigned int sync;
968 	u32 act;
969 
970 	length = xdp->data_end - xdp->data_hard_start - XDP_PACKET_HEADROOM;
971 
972 	act = bpf_prog_run_xdp(prog, xdp);
973 
974 	/* Due xdp_adjust_tail: DMA sync for_device cover max len CPU touch */
975 	sync = xdp->data_end - xdp->data_hard_start - XDP_PACKET_HEADROOM;
976 	sync = max(sync, length);
977 
978 	switch (act) {
979 	case XDP_PASS:
980 		return false;
981 	case XDP_TX:
982 		if (!tsnep_xdp_xmit_back(rx->adapter, xdp, tx_nq, tx))
983 			goto out_failure;
984 		*status |= TSNEP_XDP_TX;
985 		return true;
986 	case XDP_REDIRECT:
987 		if (xdp_do_redirect(rx->adapter->netdev, xdp, prog) < 0)
988 			goto out_failure;
989 		*status |= TSNEP_XDP_REDIRECT;
990 		return true;
991 	default:
992 		bpf_warn_invalid_xdp_action(rx->adapter->netdev, prog, act);
993 		fallthrough;
994 	case XDP_ABORTED:
995 out_failure:
996 		trace_xdp_exception(rx->adapter->netdev, prog, act);
997 		fallthrough;
998 	case XDP_DROP:
999 		page_pool_put_page(rx->page_pool, virt_to_head_page(xdp->data),
1000 				   sync, true);
1001 		return true;
1002 	}
1003 }
1004 
1005 static void tsnep_finalize_xdp(struct tsnep_adapter *adapter, int status,
1006 			       struct netdev_queue *tx_nq, struct tsnep_tx *tx)
1007 {
1008 	if (status & TSNEP_XDP_TX) {
1009 		__netif_tx_lock(tx_nq, smp_processor_id());
1010 		tsnep_xdp_xmit_flush(tx);
1011 		__netif_tx_unlock(tx_nq);
1012 	}
1013 
1014 	if (status & TSNEP_XDP_REDIRECT)
1015 		xdp_do_flush();
1016 }
1017 
1018 static struct sk_buff *tsnep_build_skb(struct tsnep_rx *rx, struct page *page,
1019 				       int length)
1020 {
1021 	struct sk_buff *skb;
1022 
1023 	skb = napi_build_skb(page_address(page), PAGE_SIZE);
1024 	if (unlikely(!skb))
1025 		return NULL;
1026 
1027 	/* update pointers within the skb to store the data */
1028 	skb_reserve(skb, TSNEP_RX_OFFSET + TSNEP_RX_INLINE_METADATA_SIZE);
1029 	__skb_put(skb, length - ETH_FCS_LEN);
1030 
1031 	if (rx->adapter->hwtstamp_config.rx_filter == HWTSTAMP_FILTER_ALL) {
1032 		struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
1033 		struct tsnep_rx_inline *rx_inline =
1034 			(struct tsnep_rx_inline *)(page_address(page) +
1035 						   TSNEP_RX_OFFSET);
1036 
1037 		skb_shinfo(skb)->tx_flags |=
1038 			SKBTX_HW_TSTAMP_NETDEV;
1039 		memset(hwtstamps, 0, sizeof(*hwtstamps));
1040 		hwtstamps->netdev_data = rx_inline;
1041 	}
1042 
1043 	skb_record_rx_queue(skb, rx->queue_index);
1044 	skb->protocol = eth_type_trans(skb, rx->adapter->netdev);
1045 
1046 	return skb;
1047 }
1048 
1049 static int tsnep_rx_poll(struct tsnep_rx *rx, struct napi_struct *napi,
1050 			 int budget)
1051 {
1052 	struct device *dmadev = rx->adapter->dmadev;
1053 	enum dma_data_direction dma_dir;
1054 	struct tsnep_rx_entry *entry;
1055 	struct netdev_queue *tx_nq;
1056 	struct bpf_prog *prog;
1057 	struct xdp_buff xdp;
1058 	struct sk_buff *skb;
1059 	struct tsnep_tx *tx;
1060 	int desc_available;
1061 	int xdp_status = 0;
1062 	int done = 0;
1063 	int length;
1064 
1065 	desc_available = tsnep_rx_desc_available(rx);
1066 	dma_dir = page_pool_get_dma_dir(rx->page_pool);
1067 	prog = READ_ONCE(rx->adapter->xdp_prog);
1068 	if (prog) {
1069 		tx_nq = netdev_get_tx_queue(rx->adapter->netdev,
1070 					    rx->tx_queue_index);
1071 		tx = &rx->adapter->tx[rx->tx_queue_index];
1072 
1073 		xdp_init_buff(&xdp, PAGE_SIZE, &rx->xdp_rxq);
1074 	}
1075 
1076 	while (likely(done < budget) && (rx->read != rx->write)) {
1077 		entry = &rx->entry[rx->read];
1078 		if ((__le32_to_cpu(entry->desc_wb->properties) &
1079 		     TSNEP_DESC_OWNER_COUNTER_MASK) !=
1080 		    (entry->properties & TSNEP_DESC_OWNER_COUNTER_MASK))
1081 			break;
1082 		done++;
1083 
1084 		if (desc_available >= TSNEP_RING_RX_REFILL) {
1085 			bool reuse = desc_available >= TSNEP_RING_RX_REUSE;
1086 
1087 			desc_available -= tsnep_rx_refill(rx, desc_available,
1088 							  reuse);
1089 			if (!entry->page) {
1090 				/* buffer has been reused for refill to prevent
1091 				 * empty RX ring, thus buffer cannot be used for
1092 				 * RX processing
1093 				 */
1094 				rx->read = (rx->read + 1) % TSNEP_RING_SIZE;
1095 				desc_available++;
1096 
1097 				rx->dropped++;
1098 
1099 				continue;
1100 			}
1101 		}
1102 
1103 		/* descriptor properties shall be read first, because valid data
1104 		 * is signaled there
1105 		 */
1106 		dma_rmb();
1107 
1108 		prefetch(page_address(entry->page) + TSNEP_RX_OFFSET);
1109 		length = __le32_to_cpu(entry->desc_wb->properties) &
1110 			 TSNEP_DESC_LENGTH_MASK;
1111 		dma_sync_single_range_for_cpu(dmadev, entry->dma,
1112 					      TSNEP_RX_OFFSET, length, dma_dir);
1113 
1114 		/* RX metadata with timestamps is in front of actual data,
1115 		 * subtract metadata size to get length of actual data and
1116 		 * consider metadata size as offset of actual data during RX
1117 		 * processing
1118 		 */
1119 		length -= TSNEP_RX_INLINE_METADATA_SIZE;
1120 
1121 		rx->read = (rx->read + 1) % TSNEP_RING_SIZE;
1122 		desc_available++;
1123 
1124 		if (prog) {
1125 			bool consume;
1126 
1127 			xdp_prepare_buff(&xdp, page_address(entry->page),
1128 					 XDP_PACKET_HEADROOM + TSNEP_RX_INLINE_METADATA_SIZE,
1129 					 length, false);
1130 
1131 			consume = tsnep_xdp_run_prog(rx, prog, &xdp,
1132 						     &xdp_status, tx_nq, tx);
1133 			if (consume) {
1134 				rx->packets++;
1135 				rx->bytes += length;
1136 
1137 				entry->page = NULL;
1138 
1139 				continue;
1140 			}
1141 		}
1142 
1143 		skb = tsnep_build_skb(rx, entry->page, length);
1144 		if (skb) {
1145 			page_pool_release_page(rx->page_pool, entry->page);
1146 
1147 			rx->packets++;
1148 			rx->bytes += length;
1149 			if (skb->pkt_type == PACKET_MULTICAST)
1150 				rx->multicast++;
1151 
1152 			napi_gro_receive(napi, skb);
1153 		} else {
1154 			page_pool_recycle_direct(rx->page_pool, entry->page);
1155 
1156 			rx->dropped++;
1157 		}
1158 		entry->page = NULL;
1159 	}
1160 
1161 	if (xdp_status)
1162 		tsnep_finalize_xdp(rx->adapter, xdp_status, tx_nq, tx);
1163 
1164 	if (desc_available)
1165 		tsnep_rx_refill(rx, desc_available, false);
1166 
1167 	return done;
1168 }
1169 
1170 static bool tsnep_rx_pending(struct tsnep_rx *rx)
1171 {
1172 	struct tsnep_rx_entry *entry;
1173 
1174 	if (rx->read != rx->write) {
1175 		entry = &rx->entry[rx->read];
1176 		if ((__le32_to_cpu(entry->desc_wb->properties) &
1177 		     TSNEP_DESC_OWNER_COUNTER_MASK) ==
1178 		    (entry->properties & TSNEP_DESC_OWNER_COUNTER_MASK))
1179 			return true;
1180 	}
1181 
1182 	return false;
1183 }
1184 
1185 static int tsnep_rx_open(struct tsnep_adapter *adapter, void __iomem *addr,
1186 			 int queue_index, struct tsnep_rx *rx)
1187 {
1188 	dma_addr_t dma;
1189 	int retval;
1190 
1191 	memset(rx, 0, sizeof(*rx));
1192 	rx->adapter = adapter;
1193 	rx->addr = addr;
1194 	rx->queue_index = queue_index;
1195 
1196 	retval = tsnep_rx_ring_init(rx);
1197 	if (retval)
1198 		return retval;
1199 
1200 	dma = rx->entry[0].desc_dma | TSNEP_RESET_OWNER_COUNTER;
1201 	iowrite32(DMA_ADDR_LOW(dma), rx->addr + TSNEP_RX_DESC_ADDR_LOW);
1202 	iowrite32(DMA_ADDR_HIGH(dma), rx->addr + TSNEP_RX_DESC_ADDR_HIGH);
1203 	rx->owner_counter = 1;
1204 	rx->increment_owner_counter = TSNEP_RING_SIZE - 1;
1205 
1206 	tsnep_rx_refill(rx, tsnep_rx_desc_available(rx), false);
1207 
1208 	return 0;
1209 }
1210 
1211 static void tsnep_rx_close(struct tsnep_rx *rx)
1212 {
1213 	u32 val;
1214 
1215 	iowrite32(TSNEP_CONTROL_RX_DISABLE, rx->addr + TSNEP_CONTROL);
1216 	readx_poll_timeout(ioread32, rx->addr + TSNEP_CONTROL, val,
1217 			   ((val & TSNEP_CONTROL_RX_ENABLE) == 0), 10000,
1218 			   1000000);
1219 
1220 	tsnep_rx_ring_cleanup(rx);
1221 }
1222 
1223 static bool tsnep_pending(struct tsnep_queue *queue)
1224 {
1225 	if (queue->tx && tsnep_tx_pending(queue->tx))
1226 		return true;
1227 
1228 	if (queue->rx && tsnep_rx_pending(queue->rx))
1229 		return true;
1230 
1231 	return false;
1232 }
1233 
1234 static int tsnep_poll(struct napi_struct *napi, int budget)
1235 {
1236 	struct tsnep_queue *queue = container_of(napi, struct tsnep_queue,
1237 						 napi);
1238 	bool complete = true;
1239 	int done = 0;
1240 
1241 	if (queue->tx)
1242 		complete = tsnep_tx_poll(queue->tx, budget);
1243 
1244 	if (queue->rx) {
1245 		done = tsnep_rx_poll(queue->rx, napi, budget);
1246 		if (done >= budget)
1247 			complete = false;
1248 	}
1249 
1250 	/* if all work not completed, return budget and keep polling */
1251 	if (!complete)
1252 		return budget;
1253 
1254 	if (likely(napi_complete_done(napi, done))) {
1255 		tsnep_enable_irq(queue->adapter, queue->irq_mask);
1256 
1257 		/* reschedule if work is already pending, prevent rotten packets
1258 		 * which are transmitted or received after polling but before
1259 		 * interrupt enable
1260 		 */
1261 		if (tsnep_pending(queue)) {
1262 			tsnep_disable_irq(queue->adapter, queue->irq_mask);
1263 			napi_schedule(napi);
1264 		}
1265 	}
1266 
1267 	return min(done, budget - 1);
1268 }
1269 
1270 static int tsnep_request_irq(struct tsnep_queue *queue, bool first)
1271 {
1272 	const char *name = netdev_name(queue->adapter->netdev);
1273 	irq_handler_t handler;
1274 	void *dev;
1275 	int retval;
1276 
1277 	if (first) {
1278 		sprintf(queue->name, "%s-mac", name);
1279 		handler = tsnep_irq;
1280 		dev = queue->adapter;
1281 	} else {
1282 		if (queue->tx && queue->rx)
1283 			sprintf(queue->name, "%s-txrx-%d", name,
1284 				queue->rx->queue_index);
1285 		else if (queue->tx)
1286 			sprintf(queue->name, "%s-tx-%d", name,
1287 				queue->tx->queue_index);
1288 		else
1289 			sprintf(queue->name, "%s-rx-%d", name,
1290 				queue->rx->queue_index);
1291 		handler = tsnep_irq_txrx;
1292 		dev = queue;
1293 	}
1294 
1295 	retval = request_irq(queue->irq, handler, 0, queue->name, dev);
1296 	if (retval) {
1297 		/* if name is empty, then interrupt won't be freed */
1298 		memset(queue->name, 0, sizeof(queue->name));
1299 	}
1300 
1301 	return retval;
1302 }
1303 
1304 static void tsnep_free_irq(struct tsnep_queue *queue, bool first)
1305 {
1306 	void *dev;
1307 
1308 	if (!strlen(queue->name))
1309 		return;
1310 
1311 	if (first)
1312 		dev = queue->adapter;
1313 	else
1314 		dev = queue;
1315 
1316 	free_irq(queue->irq, dev);
1317 	memset(queue->name, 0, sizeof(queue->name));
1318 }
1319 
1320 static void tsnep_queue_close(struct tsnep_queue *queue, bool first)
1321 {
1322 	struct tsnep_rx *rx = queue->rx;
1323 
1324 	tsnep_free_irq(queue, first);
1325 
1326 	if (rx && xdp_rxq_info_is_reg(&rx->xdp_rxq))
1327 		xdp_rxq_info_unreg(&rx->xdp_rxq);
1328 
1329 	netif_napi_del(&queue->napi);
1330 }
1331 
1332 static int tsnep_queue_open(struct tsnep_adapter *adapter,
1333 			    struct tsnep_queue *queue, bool first)
1334 {
1335 	struct tsnep_rx *rx = queue->rx;
1336 	struct tsnep_tx *tx = queue->tx;
1337 	int retval;
1338 
1339 	queue->adapter = adapter;
1340 
1341 	netif_napi_add(adapter->netdev, &queue->napi, tsnep_poll);
1342 
1343 	if (rx) {
1344 		/* choose TX queue for XDP_TX */
1345 		if (tx)
1346 			rx->tx_queue_index = tx->queue_index;
1347 		else if (rx->queue_index < adapter->num_tx_queues)
1348 			rx->tx_queue_index = rx->queue_index;
1349 		else
1350 			rx->tx_queue_index = 0;
1351 
1352 		retval = xdp_rxq_info_reg(&rx->xdp_rxq, adapter->netdev,
1353 					  rx->queue_index, queue->napi.napi_id);
1354 		if (retval)
1355 			goto failed;
1356 		retval = xdp_rxq_info_reg_mem_model(&rx->xdp_rxq,
1357 						    MEM_TYPE_PAGE_POOL,
1358 						    rx->page_pool);
1359 		if (retval)
1360 			goto failed;
1361 	}
1362 
1363 	retval = tsnep_request_irq(queue, first);
1364 	if (retval) {
1365 		netif_err(adapter, drv, adapter->netdev,
1366 			  "can't get assigned irq %d.\n", queue->irq);
1367 		goto failed;
1368 	}
1369 
1370 	return 0;
1371 
1372 failed:
1373 	tsnep_queue_close(queue, first);
1374 
1375 	return retval;
1376 }
1377 
1378 static int tsnep_netdev_open(struct net_device *netdev)
1379 {
1380 	struct tsnep_adapter *adapter = netdev_priv(netdev);
1381 	int tx_queue_index = 0;
1382 	int rx_queue_index = 0;
1383 	void __iomem *addr;
1384 	int i, retval;
1385 
1386 	for (i = 0; i < adapter->num_queues; i++) {
1387 		if (adapter->queue[i].tx) {
1388 			addr = adapter->addr + TSNEP_QUEUE(tx_queue_index);
1389 			retval = tsnep_tx_open(adapter, addr, tx_queue_index,
1390 					       adapter->queue[i].tx);
1391 			if (retval)
1392 				goto failed;
1393 			tx_queue_index++;
1394 		}
1395 		if (adapter->queue[i].rx) {
1396 			addr = adapter->addr + TSNEP_QUEUE(rx_queue_index);
1397 			retval = tsnep_rx_open(adapter, addr, rx_queue_index,
1398 					       adapter->queue[i].rx);
1399 			if (retval)
1400 				goto failed;
1401 			rx_queue_index++;
1402 		}
1403 
1404 		retval = tsnep_queue_open(adapter, &adapter->queue[i], i == 0);
1405 		if (retval)
1406 			goto failed;
1407 	}
1408 
1409 	retval = netif_set_real_num_tx_queues(adapter->netdev,
1410 					      adapter->num_tx_queues);
1411 	if (retval)
1412 		goto failed;
1413 	retval = netif_set_real_num_rx_queues(adapter->netdev,
1414 					      adapter->num_rx_queues);
1415 	if (retval)
1416 		goto failed;
1417 
1418 	tsnep_enable_irq(adapter, ECM_INT_LINK);
1419 	retval = tsnep_phy_open(adapter);
1420 	if (retval)
1421 		goto phy_failed;
1422 
1423 	for (i = 0; i < adapter->num_queues; i++) {
1424 		napi_enable(&adapter->queue[i].napi);
1425 
1426 		tsnep_enable_irq(adapter, adapter->queue[i].irq_mask);
1427 	}
1428 
1429 	return 0;
1430 
1431 phy_failed:
1432 	tsnep_disable_irq(adapter, ECM_INT_LINK);
1433 failed:
1434 	for (i = 0; i < adapter->num_queues; i++) {
1435 		tsnep_queue_close(&adapter->queue[i], i == 0);
1436 
1437 		if (adapter->queue[i].rx)
1438 			tsnep_rx_close(adapter->queue[i].rx);
1439 		if (adapter->queue[i].tx)
1440 			tsnep_tx_close(adapter->queue[i].tx);
1441 	}
1442 	return retval;
1443 }
1444 
1445 static int tsnep_netdev_close(struct net_device *netdev)
1446 {
1447 	struct tsnep_adapter *adapter = netdev_priv(netdev);
1448 	int i;
1449 
1450 	tsnep_disable_irq(adapter, ECM_INT_LINK);
1451 	tsnep_phy_close(adapter);
1452 
1453 	for (i = 0; i < adapter->num_queues; i++) {
1454 		tsnep_disable_irq(adapter, adapter->queue[i].irq_mask);
1455 
1456 		napi_disable(&adapter->queue[i].napi);
1457 
1458 		tsnep_queue_close(&adapter->queue[i], i == 0);
1459 
1460 		if (adapter->queue[i].rx)
1461 			tsnep_rx_close(adapter->queue[i].rx);
1462 		if (adapter->queue[i].tx)
1463 			tsnep_tx_close(adapter->queue[i].tx);
1464 	}
1465 
1466 	return 0;
1467 }
1468 
1469 static netdev_tx_t tsnep_netdev_xmit_frame(struct sk_buff *skb,
1470 					   struct net_device *netdev)
1471 {
1472 	struct tsnep_adapter *adapter = netdev_priv(netdev);
1473 	u16 queue_mapping = skb_get_queue_mapping(skb);
1474 
1475 	if (queue_mapping >= adapter->num_tx_queues)
1476 		queue_mapping = 0;
1477 
1478 	return tsnep_xmit_frame_ring(skb, &adapter->tx[queue_mapping]);
1479 }
1480 
1481 static int tsnep_netdev_ioctl(struct net_device *netdev, struct ifreq *ifr,
1482 			      int cmd)
1483 {
1484 	if (!netif_running(netdev))
1485 		return -EINVAL;
1486 	if (cmd == SIOCSHWTSTAMP || cmd == SIOCGHWTSTAMP)
1487 		return tsnep_ptp_ioctl(netdev, ifr, cmd);
1488 	return phy_mii_ioctl(netdev->phydev, ifr, cmd);
1489 }
1490 
1491 static void tsnep_netdev_set_multicast(struct net_device *netdev)
1492 {
1493 	struct tsnep_adapter *adapter = netdev_priv(netdev);
1494 
1495 	u16 rx_filter = 0;
1496 
1497 	/* configured MAC address and broadcasts are never filtered */
1498 	if (netdev->flags & IFF_PROMISC) {
1499 		rx_filter |= TSNEP_RX_FILTER_ACCEPT_ALL_MULTICASTS;
1500 		rx_filter |= TSNEP_RX_FILTER_ACCEPT_ALL_UNICASTS;
1501 	} else if (!netdev_mc_empty(netdev) || (netdev->flags & IFF_ALLMULTI)) {
1502 		rx_filter |= TSNEP_RX_FILTER_ACCEPT_ALL_MULTICASTS;
1503 	}
1504 	iowrite16(rx_filter, adapter->addr + TSNEP_RX_FILTER);
1505 }
1506 
1507 static void tsnep_netdev_get_stats64(struct net_device *netdev,
1508 				     struct rtnl_link_stats64 *stats)
1509 {
1510 	struct tsnep_adapter *adapter = netdev_priv(netdev);
1511 	u32 reg;
1512 	u32 val;
1513 	int i;
1514 
1515 	for (i = 0; i < adapter->num_tx_queues; i++) {
1516 		stats->tx_packets += adapter->tx[i].packets;
1517 		stats->tx_bytes += adapter->tx[i].bytes;
1518 		stats->tx_dropped += adapter->tx[i].dropped;
1519 	}
1520 	for (i = 0; i < adapter->num_rx_queues; i++) {
1521 		stats->rx_packets += adapter->rx[i].packets;
1522 		stats->rx_bytes += adapter->rx[i].bytes;
1523 		stats->rx_dropped += adapter->rx[i].dropped;
1524 		stats->multicast += adapter->rx[i].multicast;
1525 
1526 		reg = ioread32(adapter->addr + TSNEP_QUEUE(i) +
1527 			       TSNEP_RX_STATISTIC);
1528 		val = (reg & TSNEP_RX_STATISTIC_NO_DESC_MASK) >>
1529 		      TSNEP_RX_STATISTIC_NO_DESC_SHIFT;
1530 		stats->rx_dropped += val;
1531 		val = (reg & TSNEP_RX_STATISTIC_BUFFER_TOO_SMALL_MASK) >>
1532 		      TSNEP_RX_STATISTIC_BUFFER_TOO_SMALL_SHIFT;
1533 		stats->rx_dropped += val;
1534 		val = (reg & TSNEP_RX_STATISTIC_FIFO_OVERFLOW_MASK) >>
1535 		      TSNEP_RX_STATISTIC_FIFO_OVERFLOW_SHIFT;
1536 		stats->rx_errors += val;
1537 		stats->rx_fifo_errors += val;
1538 		val = (reg & TSNEP_RX_STATISTIC_INVALID_FRAME_MASK) >>
1539 		      TSNEP_RX_STATISTIC_INVALID_FRAME_SHIFT;
1540 		stats->rx_errors += val;
1541 		stats->rx_frame_errors += val;
1542 	}
1543 
1544 	reg = ioread32(adapter->addr + ECM_STAT);
1545 	val = (reg & ECM_STAT_RX_ERR_MASK) >> ECM_STAT_RX_ERR_SHIFT;
1546 	stats->rx_errors += val;
1547 	val = (reg & ECM_STAT_INV_FRM_MASK) >> ECM_STAT_INV_FRM_SHIFT;
1548 	stats->rx_errors += val;
1549 	stats->rx_crc_errors += val;
1550 	val = (reg & ECM_STAT_FWD_RX_ERR_MASK) >> ECM_STAT_FWD_RX_ERR_SHIFT;
1551 	stats->rx_errors += val;
1552 }
1553 
1554 static void tsnep_mac_set_address(struct tsnep_adapter *adapter, u8 *addr)
1555 {
1556 	iowrite32(*(u32 *)addr, adapter->addr + TSNEP_MAC_ADDRESS_LOW);
1557 	iowrite16(*(u16 *)(addr + sizeof(u32)),
1558 		  adapter->addr + TSNEP_MAC_ADDRESS_HIGH);
1559 
1560 	ether_addr_copy(adapter->mac_address, addr);
1561 	netif_info(adapter, drv, adapter->netdev, "MAC address set to %pM\n",
1562 		   addr);
1563 }
1564 
1565 static int tsnep_netdev_set_mac_address(struct net_device *netdev, void *addr)
1566 {
1567 	struct tsnep_adapter *adapter = netdev_priv(netdev);
1568 	struct sockaddr *sock_addr = addr;
1569 	int retval;
1570 
1571 	retval = eth_prepare_mac_addr_change(netdev, sock_addr);
1572 	if (retval)
1573 		return retval;
1574 	eth_hw_addr_set(netdev, sock_addr->sa_data);
1575 	tsnep_mac_set_address(adapter, sock_addr->sa_data);
1576 
1577 	return 0;
1578 }
1579 
1580 static int tsnep_netdev_set_features(struct net_device *netdev,
1581 				     netdev_features_t features)
1582 {
1583 	struct tsnep_adapter *adapter = netdev_priv(netdev);
1584 	netdev_features_t changed = netdev->features ^ features;
1585 	bool enable;
1586 	int retval = 0;
1587 
1588 	if (changed & NETIF_F_LOOPBACK) {
1589 		enable = !!(features & NETIF_F_LOOPBACK);
1590 		retval = tsnep_phy_loopback(adapter, enable);
1591 	}
1592 
1593 	return retval;
1594 }
1595 
1596 static ktime_t tsnep_netdev_get_tstamp(struct net_device *netdev,
1597 				       const struct skb_shared_hwtstamps *hwtstamps,
1598 				       bool cycles)
1599 {
1600 	struct tsnep_rx_inline *rx_inline = hwtstamps->netdev_data;
1601 	u64 timestamp;
1602 
1603 	if (cycles)
1604 		timestamp = __le64_to_cpu(rx_inline->counter);
1605 	else
1606 		timestamp = __le64_to_cpu(rx_inline->timestamp);
1607 
1608 	return ns_to_ktime(timestamp);
1609 }
1610 
1611 static int tsnep_netdev_bpf(struct net_device *dev, struct netdev_bpf *bpf)
1612 {
1613 	struct tsnep_adapter *adapter = netdev_priv(dev);
1614 
1615 	switch (bpf->command) {
1616 	case XDP_SETUP_PROG:
1617 		return tsnep_xdp_setup_prog(adapter, bpf->prog, bpf->extack);
1618 	default:
1619 		return -EOPNOTSUPP;
1620 	}
1621 }
1622 
1623 static struct tsnep_tx *tsnep_xdp_get_tx(struct tsnep_adapter *adapter, u32 cpu)
1624 {
1625 	if (cpu >= TSNEP_MAX_QUEUES)
1626 		cpu &= TSNEP_MAX_QUEUES - 1;
1627 
1628 	while (cpu >= adapter->num_tx_queues)
1629 		cpu -= adapter->num_tx_queues;
1630 
1631 	return &adapter->tx[cpu];
1632 }
1633 
1634 static int tsnep_netdev_xdp_xmit(struct net_device *dev, int n,
1635 				 struct xdp_frame **xdp, u32 flags)
1636 {
1637 	struct tsnep_adapter *adapter = netdev_priv(dev);
1638 	u32 cpu = smp_processor_id();
1639 	struct netdev_queue *nq;
1640 	struct tsnep_tx *tx;
1641 	int nxmit;
1642 	bool xmit;
1643 
1644 	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
1645 		return -EINVAL;
1646 
1647 	tx = tsnep_xdp_get_tx(adapter, cpu);
1648 	nq = netdev_get_tx_queue(adapter->netdev, tx->queue_index);
1649 
1650 	__netif_tx_lock(nq, cpu);
1651 
1652 	for (nxmit = 0; nxmit < n; nxmit++) {
1653 		xmit = tsnep_xdp_xmit_frame_ring(xdp[nxmit], tx,
1654 						 TSNEP_TX_TYPE_XDP_NDO);
1655 		if (!xmit)
1656 			break;
1657 
1658 		/* avoid transmit queue timeout since we share it with the slow
1659 		 * path
1660 		 */
1661 		txq_trans_cond_update(nq);
1662 	}
1663 
1664 	if (flags & XDP_XMIT_FLUSH)
1665 		tsnep_xdp_xmit_flush(tx);
1666 
1667 	__netif_tx_unlock(nq);
1668 
1669 	return nxmit;
1670 }
1671 
1672 static const struct net_device_ops tsnep_netdev_ops = {
1673 	.ndo_open = tsnep_netdev_open,
1674 	.ndo_stop = tsnep_netdev_close,
1675 	.ndo_start_xmit = tsnep_netdev_xmit_frame,
1676 	.ndo_eth_ioctl = tsnep_netdev_ioctl,
1677 	.ndo_set_rx_mode = tsnep_netdev_set_multicast,
1678 	.ndo_get_stats64 = tsnep_netdev_get_stats64,
1679 	.ndo_set_mac_address = tsnep_netdev_set_mac_address,
1680 	.ndo_set_features = tsnep_netdev_set_features,
1681 	.ndo_get_tstamp = tsnep_netdev_get_tstamp,
1682 	.ndo_setup_tc = tsnep_tc_setup,
1683 	.ndo_bpf = tsnep_netdev_bpf,
1684 	.ndo_xdp_xmit = tsnep_netdev_xdp_xmit,
1685 };
1686 
1687 static int tsnep_mac_init(struct tsnep_adapter *adapter)
1688 {
1689 	int retval;
1690 
1691 	/* initialize RX filtering, at least configured MAC address and
1692 	 * broadcast are not filtered
1693 	 */
1694 	iowrite16(0, adapter->addr + TSNEP_RX_FILTER);
1695 
1696 	/* try to get MAC address in the following order:
1697 	 * - device tree
1698 	 * - valid MAC address already set
1699 	 * - MAC address register if valid
1700 	 * - random MAC address
1701 	 */
1702 	retval = of_get_mac_address(adapter->pdev->dev.of_node,
1703 				    adapter->mac_address);
1704 	if (retval == -EPROBE_DEFER)
1705 		return retval;
1706 	if (retval && !is_valid_ether_addr(adapter->mac_address)) {
1707 		*(u32 *)adapter->mac_address =
1708 			ioread32(adapter->addr + TSNEP_MAC_ADDRESS_LOW);
1709 		*(u16 *)(adapter->mac_address + sizeof(u32)) =
1710 			ioread16(adapter->addr + TSNEP_MAC_ADDRESS_HIGH);
1711 		if (!is_valid_ether_addr(adapter->mac_address))
1712 			eth_random_addr(adapter->mac_address);
1713 	}
1714 
1715 	tsnep_mac_set_address(adapter, adapter->mac_address);
1716 	eth_hw_addr_set(adapter->netdev, adapter->mac_address);
1717 
1718 	return 0;
1719 }
1720 
1721 static int tsnep_mdio_init(struct tsnep_adapter *adapter)
1722 {
1723 	struct device_node *np = adapter->pdev->dev.of_node;
1724 	int retval;
1725 
1726 	if (np) {
1727 		np = of_get_child_by_name(np, "mdio");
1728 		if (!np)
1729 			return 0;
1730 
1731 		adapter->suppress_preamble =
1732 			of_property_read_bool(np, "suppress-preamble");
1733 	}
1734 
1735 	adapter->mdiobus = devm_mdiobus_alloc(&adapter->pdev->dev);
1736 	if (!adapter->mdiobus) {
1737 		retval = -ENOMEM;
1738 
1739 		goto out;
1740 	}
1741 
1742 	adapter->mdiobus->priv = (void *)adapter;
1743 	adapter->mdiobus->parent = &adapter->pdev->dev;
1744 	adapter->mdiobus->read = tsnep_mdiobus_read;
1745 	adapter->mdiobus->write = tsnep_mdiobus_write;
1746 	adapter->mdiobus->name = TSNEP "-mdiobus";
1747 	snprintf(adapter->mdiobus->id, MII_BUS_ID_SIZE, "%s",
1748 		 adapter->pdev->name);
1749 
1750 	/* do not scan broadcast address */
1751 	adapter->mdiobus->phy_mask = 0x0000001;
1752 
1753 	retval = of_mdiobus_register(adapter->mdiobus, np);
1754 
1755 out:
1756 	of_node_put(np);
1757 
1758 	return retval;
1759 }
1760 
1761 static int tsnep_phy_init(struct tsnep_adapter *adapter)
1762 {
1763 	struct device_node *phy_node;
1764 	int retval;
1765 
1766 	retval = of_get_phy_mode(adapter->pdev->dev.of_node,
1767 				 &adapter->phy_mode);
1768 	if (retval)
1769 		adapter->phy_mode = PHY_INTERFACE_MODE_GMII;
1770 
1771 	phy_node = of_parse_phandle(adapter->pdev->dev.of_node, "phy-handle",
1772 				    0);
1773 	adapter->phydev = of_phy_find_device(phy_node);
1774 	of_node_put(phy_node);
1775 	if (!adapter->phydev && adapter->mdiobus)
1776 		adapter->phydev = phy_find_first(adapter->mdiobus);
1777 	if (!adapter->phydev)
1778 		return -EIO;
1779 
1780 	return 0;
1781 }
1782 
1783 static int tsnep_queue_init(struct tsnep_adapter *adapter, int queue_count)
1784 {
1785 	u32 irq_mask = ECM_INT_TX_0 | ECM_INT_RX_0;
1786 	char name[8];
1787 	int i;
1788 	int retval;
1789 
1790 	/* one TX/RX queue pair for netdev is mandatory */
1791 	if (platform_irq_count(adapter->pdev) == 1)
1792 		retval = platform_get_irq(adapter->pdev, 0);
1793 	else
1794 		retval = platform_get_irq_byname(adapter->pdev, "mac");
1795 	if (retval < 0)
1796 		return retval;
1797 	adapter->num_tx_queues = 1;
1798 	adapter->num_rx_queues = 1;
1799 	adapter->num_queues = 1;
1800 	adapter->queue[0].irq = retval;
1801 	adapter->queue[0].tx = &adapter->tx[0];
1802 	adapter->queue[0].rx = &adapter->rx[0];
1803 	adapter->queue[0].irq_mask = irq_mask;
1804 	adapter->queue[0].irq_delay_addr = adapter->addr + ECM_INT_DELAY;
1805 	retval = tsnep_set_irq_coalesce(&adapter->queue[0],
1806 					TSNEP_COALESCE_USECS_DEFAULT);
1807 	if (retval < 0)
1808 		return retval;
1809 
1810 	adapter->netdev->irq = adapter->queue[0].irq;
1811 
1812 	/* add additional TX/RX queue pairs only if dedicated interrupt is
1813 	 * available
1814 	 */
1815 	for (i = 1; i < queue_count; i++) {
1816 		sprintf(name, "txrx-%d", i);
1817 		retval = platform_get_irq_byname_optional(adapter->pdev, name);
1818 		if (retval < 0)
1819 			break;
1820 
1821 		adapter->num_tx_queues++;
1822 		adapter->num_rx_queues++;
1823 		adapter->num_queues++;
1824 		adapter->queue[i].irq = retval;
1825 		adapter->queue[i].tx = &adapter->tx[i];
1826 		adapter->queue[i].rx = &adapter->rx[i];
1827 		adapter->queue[i].irq_mask =
1828 			irq_mask << (ECM_INT_TXRX_SHIFT * i);
1829 		adapter->queue[i].irq_delay_addr =
1830 			adapter->addr + ECM_INT_DELAY + ECM_INT_DELAY_OFFSET * i;
1831 		retval = tsnep_set_irq_coalesce(&adapter->queue[i],
1832 						TSNEP_COALESCE_USECS_DEFAULT);
1833 		if (retval < 0)
1834 			return retval;
1835 	}
1836 
1837 	return 0;
1838 }
1839 
1840 static int tsnep_probe(struct platform_device *pdev)
1841 {
1842 	struct tsnep_adapter *adapter;
1843 	struct net_device *netdev;
1844 	struct resource *io;
1845 	u32 type;
1846 	int revision;
1847 	int version;
1848 	int queue_count;
1849 	int retval;
1850 
1851 	netdev = devm_alloc_etherdev_mqs(&pdev->dev,
1852 					 sizeof(struct tsnep_adapter),
1853 					 TSNEP_MAX_QUEUES, TSNEP_MAX_QUEUES);
1854 	if (!netdev)
1855 		return -ENODEV;
1856 	SET_NETDEV_DEV(netdev, &pdev->dev);
1857 	adapter = netdev_priv(netdev);
1858 	platform_set_drvdata(pdev, adapter);
1859 	adapter->pdev = pdev;
1860 	adapter->dmadev = &pdev->dev;
1861 	adapter->netdev = netdev;
1862 	adapter->msg_enable = NETIF_MSG_DRV | NETIF_MSG_PROBE |
1863 			      NETIF_MSG_LINK | NETIF_MSG_IFUP |
1864 			      NETIF_MSG_IFDOWN | NETIF_MSG_TX_QUEUED;
1865 
1866 	netdev->min_mtu = ETH_MIN_MTU;
1867 	netdev->max_mtu = TSNEP_MAX_FRAME_SIZE;
1868 
1869 	mutex_init(&adapter->gate_control_lock);
1870 	mutex_init(&adapter->rxnfc_lock);
1871 	INIT_LIST_HEAD(&adapter->rxnfc_rules);
1872 
1873 	io = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1874 	adapter->addr = devm_ioremap_resource(&pdev->dev, io);
1875 	if (IS_ERR(adapter->addr))
1876 		return PTR_ERR(adapter->addr);
1877 	netdev->mem_start = io->start;
1878 	netdev->mem_end = io->end;
1879 
1880 	type = ioread32(adapter->addr + ECM_TYPE);
1881 	revision = (type & ECM_REVISION_MASK) >> ECM_REVISION_SHIFT;
1882 	version = (type & ECM_VERSION_MASK) >> ECM_VERSION_SHIFT;
1883 	queue_count = (type & ECM_QUEUE_COUNT_MASK) >> ECM_QUEUE_COUNT_SHIFT;
1884 	adapter->gate_control = type & ECM_GATE_CONTROL;
1885 	adapter->rxnfc_max = TSNEP_RX_ASSIGN_ETHER_TYPE_COUNT;
1886 
1887 	tsnep_disable_irq(adapter, ECM_INT_ALL);
1888 
1889 	retval = tsnep_queue_init(adapter, queue_count);
1890 	if (retval)
1891 		return retval;
1892 
1893 	retval = dma_set_mask_and_coherent(&adapter->pdev->dev,
1894 					   DMA_BIT_MASK(64));
1895 	if (retval) {
1896 		dev_err(&adapter->pdev->dev, "no usable DMA configuration.\n");
1897 		return retval;
1898 	}
1899 
1900 	retval = tsnep_mac_init(adapter);
1901 	if (retval)
1902 		return retval;
1903 
1904 	retval = tsnep_mdio_init(adapter);
1905 	if (retval)
1906 		goto mdio_init_failed;
1907 
1908 	retval = tsnep_phy_init(adapter);
1909 	if (retval)
1910 		goto phy_init_failed;
1911 
1912 	retval = tsnep_ptp_init(adapter);
1913 	if (retval)
1914 		goto ptp_init_failed;
1915 
1916 	retval = tsnep_tc_init(adapter);
1917 	if (retval)
1918 		goto tc_init_failed;
1919 
1920 	retval = tsnep_rxnfc_init(adapter);
1921 	if (retval)
1922 		goto rxnfc_init_failed;
1923 
1924 	netdev->netdev_ops = &tsnep_netdev_ops;
1925 	netdev->ethtool_ops = &tsnep_ethtool_ops;
1926 	netdev->features = NETIF_F_SG;
1927 	netdev->hw_features = netdev->features | NETIF_F_LOOPBACK;
1928 
1929 	netdev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT |
1930 			       NETDEV_XDP_ACT_NDO_XMIT |
1931 			       NETDEV_XDP_ACT_NDO_XMIT_SG;
1932 
1933 	/* carrier off reporting is important to ethtool even BEFORE open */
1934 	netif_carrier_off(netdev);
1935 
1936 	retval = register_netdev(netdev);
1937 	if (retval)
1938 		goto register_failed;
1939 
1940 	dev_info(&adapter->pdev->dev, "device version %d.%02d\n", version,
1941 		 revision);
1942 	if (adapter->gate_control)
1943 		dev_info(&adapter->pdev->dev, "gate control detected\n");
1944 
1945 	return 0;
1946 
1947 register_failed:
1948 	tsnep_rxnfc_cleanup(adapter);
1949 rxnfc_init_failed:
1950 	tsnep_tc_cleanup(adapter);
1951 tc_init_failed:
1952 	tsnep_ptp_cleanup(adapter);
1953 ptp_init_failed:
1954 phy_init_failed:
1955 	if (adapter->mdiobus)
1956 		mdiobus_unregister(adapter->mdiobus);
1957 mdio_init_failed:
1958 	return retval;
1959 }
1960 
1961 static int tsnep_remove(struct platform_device *pdev)
1962 {
1963 	struct tsnep_adapter *adapter = platform_get_drvdata(pdev);
1964 
1965 	unregister_netdev(adapter->netdev);
1966 
1967 	tsnep_rxnfc_cleanup(adapter);
1968 
1969 	tsnep_tc_cleanup(adapter);
1970 
1971 	tsnep_ptp_cleanup(adapter);
1972 
1973 	if (adapter->mdiobus)
1974 		mdiobus_unregister(adapter->mdiobus);
1975 
1976 	tsnep_disable_irq(adapter, ECM_INT_ALL);
1977 
1978 	return 0;
1979 }
1980 
1981 static const struct of_device_id tsnep_of_match[] = {
1982 	{ .compatible = "engleder,tsnep", },
1983 { },
1984 };
1985 MODULE_DEVICE_TABLE(of, tsnep_of_match);
1986 
1987 static struct platform_driver tsnep_driver = {
1988 	.driver = {
1989 		.name = TSNEP,
1990 		.of_match_table = tsnep_of_match,
1991 	},
1992 	.probe = tsnep_probe,
1993 	.remove = tsnep_remove,
1994 };
1995 module_platform_driver(tsnep_driver);
1996 
1997 MODULE_AUTHOR("Gerhard Engleder <gerhard@engleder-embedded.com>");
1998 MODULE_DESCRIPTION("TSN endpoint Ethernet MAC driver");
1999 MODULE_LICENSE("GPL");
2000