xref: /openbmc/linux/drivers/net/ethernet/engleder/tsnep_main.c (revision b1c3d2beed8ef3699fab106340e33a79052df116)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (C) 2021 Gerhard Engleder <gerhard@engleder-embedded.com> */
3 
4 /* TSN endpoint Ethernet MAC driver
5  *
6  * The TSN endpoint Ethernet MAC is a FPGA based network device for real-time
7  * communication. It is designed for endpoints within TSN (Time Sensitive
8  * Networking) networks; e.g., for PLCs in the industrial automation case.
9  *
10  * It supports multiple TX/RX queue pairs. The first TX/RX queue pair is used
11  * by the driver.
12  *
13  * More information can be found here:
14  * - www.embedded-experts.at/tsn
15  * - www.engleder-embedded.com
16  */
17 
18 #include "tsnep.h"
19 #include "tsnep_hw.h"
20 
21 #include <linux/module.h>
22 #include <linux/of.h>
23 #include <linux/of_net.h>
24 #include <linux/of_mdio.h>
25 #include <linux/interrupt.h>
26 #include <linux/etherdevice.h>
27 #include <linux/phy.h>
28 #include <linux/iopoll.h>
29 
30 #define TSNEP_SKB_PAD (NET_SKB_PAD + NET_IP_ALIGN)
31 #define TSNEP_HEADROOM ALIGN(TSNEP_SKB_PAD, 4)
32 #define TSNEP_MAX_RX_BUF_SIZE (PAGE_SIZE - TSNEP_HEADROOM - \
33 			       SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
34 
35 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
36 #define DMA_ADDR_HIGH(dma_addr) ((u32)(((dma_addr) >> 32) & 0xFFFFFFFF))
37 #else
38 #define DMA_ADDR_HIGH(dma_addr) ((u32)(0))
39 #endif
40 #define DMA_ADDR_LOW(dma_addr) ((u32)((dma_addr) & 0xFFFFFFFF))
41 
42 #define TSNEP_COALESCE_USECS_DEFAULT 64
43 #define TSNEP_COALESCE_USECS_MAX     ((ECM_INT_DELAY_MASK >> ECM_INT_DELAY_SHIFT) * \
44 				      ECM_INT_DELAY_BASE_US + ECM_INT_DELAY_BASE_US - 1)
45 
46 static void tsnep_enable_irq(struct tsnep_adapter *adapter, u32 mask)
47 {
48 	iowrite32(mask, adapter->addr + ECM_INT_ENABLE);
49 }
50 
51 static void tsnep_disable_irq(struct tsnep_adapter *adapter, u32 mask)
52 {
53 	mask |= ECM_INT_DISABLE;
54 	iowrite32(mask, adapter->addr + ECM_INT_ENABLE);
55 }
56 
57 static irqreturn_t tsnep_irq(int irq, void *arg)
58 {
59 	struct tsnep_adapter *adapter = arg;
60 	u32 active = ioread32(adapter->addr + ECM_INT_ACTIVE);
61 
62 	/* acknowledge interrupt */
63 	if (active != 0)
64 		iowrite32(active, adapter->addr + ECM_INT_ACKNOWLEDGE);
65 
66 	/* handle link interrupt */
67 	if ((active & ECM_INT_LINK) != 0)
68 		phy_mac_interrupt(adapter->netdev->phydev);
69 
70 	/* handle TX/RX queue 0 interrupt */
71 	if ((active & adapter->queue[0].irq_mask) != 0) {
72 		tsnep_disable_irq(adapter, adapter->queue[0].irq_mask);
73 		napi_schedule(&adapter->queue[0].napi);
74 	}
75 
76 	return IRQ_HANDLED;
77 }
78 
79 static irqreturn_t tsnep_irq_txrx(int irq, void *arg)
80 {
81 	struct tsnep_queue *queue = arg;
82 
83 	/* handle TX/RX queue interrupt */
84 	tsnep_disable_irq(queue->adapter, queue->irq_mask);
85 	napi_schedule(&queue->napi);
86 
87 	return IRQ_HANDLED;
88 }
89 
90 int tsnep_set_irq_coalesce(struct tsnep_queue *queue, u32 usecs)
91 {
92 	if (usecs > TSNEP_COALESCE_USECS_MAX)
93 		return -ERANGE;
94 
95 	usecs /= ECM_INT_DELAY_BASE_US;
96 	usecs <<= ECM_INT_DELAY_SHIFT;
97 	usecs &= ECM_INT_DELAY_MASK;
98 
99 	queue->irq_delay &= ~ECM_INT_DELAY_MASK;
100 	queue->irq_delay |= usecs;
101 	iowrite8(queue->irq_delay, queue->irq_delay_addr);
102 
103 	return 0;
104 }
105 
106 u32 tsnep_get_irq_coalesce(struct tsnep_queue *queue)
107 {
108 	u32 usecs;
109 
110 	usecs = (queue->irq_delay & ECM_INT_DELAY_MASK);
111 	usecs >>= ECM_INT_DELAY_SHIFT;
112 	usecs *= ECM_INT_DELAY_BASE_US;
113 
114 	return usecs;
115 }
116 
117 static int tsnep_mdiobus_read(struct mii_bus *bus, int addr, int regnum)
118 {
119 	struct tsnep_adapter *adapter = bus->priv;
120 	u32 md;
121 	int retval;
122 
123 	if (regnum & MII_ADDR_C45)
124 		return -EOPNOTSUPP;
125 
126 	md = ECM_MD_READ;
127 	if (!adapter->suppress_preamble)
128 		md |= ECM_MD_PREAMBLE;
129 	md |= (regnum << ECM_MD_ADDR_SHIFT) & ECM_MD_ADDR_MASK;
130 	md |= (addr << ECM_MD_PHY_ADDR_SHIFT) & ECM_MD_PHY_ADDR_MASK;
131 	iowrite32(md, adapter->addr + ECM_MD_CONTROL);
132 	retval = readl_poll_timeout_atomic(adapter->addr + ECM_MD_STATUS, md,
133 					   !(md & ECM_MD_BUSY), 16, 1000);
134 	if (retval != 0)
135 		return retval;
136 
137 	return (md & ECM_MD_DATA_MASK) >> ECM_MD_DATA_SHIFT;
138 }
139 
140 static int tsnep_mdiobus_write(struct mii_bus *bus, int addr, int regnum,
141 			       u16 val)
142 {
143 	struct tsnep_adapter *adapter = bus->priv;
144 	u32 md;
145 	int retval;
146 
147 	if (regnum & MII_ADDR_C45)
148 		return -EOPNOTSUPP;
149 
150 	md = ECM_MD_WRITE;
151 	if (!adapter->suppress_preamble)
152 		md |= ECM_MD_PREAMBLE;
153 	md |= (regnum << ECM_MD_ADDR_SHIFT) & ECM_MD_ADDR_MASK;
154 	md |= (addr << ECM_MD_PHY_ADDR_SHIFT) & ECM_MD_PHY_ADDR_MASK;
155 	md |= ((u32)val << ECM_MD_DATA_SHIFT) & ECM_MD_DATA_MASK;
156 	iowrite32(md, adapter->addr + ECM_MD_CONTROL);
157 	retval = readl_poll_timeout_atomic(adapter->addr + ECM_MD_STATUS, md,
158 					   !(md & ECM_MD_BUSY), 16, 1000);
159 	if (retval != 0)
160 		return retval;
161 
162 	return 0;
163 }
164 
165 static void tsnep_set_link_mode(struct tsnep_adapter *adapter)
166 {
167 	u32 mode;
168 
169 	switch (adapter->phydev->speed) {
170 	case SPEED_100:
171 		mode = ECM_LINK_MODE_100;
172 		break;
173 	case SPEED_1000:
174 		mode = ECM_LINK_MODE_1000;
175 		break;
176 	default:
177 		mode = ECM_LINK_MODE_OFF;
178 		break;
179 	}
180 	iowrite32(mode, adapter->addr + ECM_STATUS);
181 }
182 
183 static void tsnep_phy_link_status_change(struct net_device *netdev)
184 {
185 	struct tsnep_adapter *adapter = netdev_priv(netdev);
186 	struct phy_device *phydev = netdev->phydev;
187 
188 	if (phydev->link)
189 		tsnep_set_link_mode(adapter);
190 
191 	phy_print_status(netdev->phydev);
192 }
193 
194 static int tsnep_phy_loopback(struct tsnep_adapter *adapter, bool enable)
195 {
196 	int retval;
197 
198 	retval = phy_loopback(adapter->phydev, enable);
199 
200 	/* PHY link state change is not signaled if loopback is enabled, it
201 	 * would delay a working loopback anyway, let's ensure that loopback
202 	 * is working immediately by setting link mode directly
203 	 */
204 	if (!retval && enable)
205 		tsnep_set_link_mode(adapter);
206 
207 	return retval;
208 }
209 
210 static int tsnep_phy_open(struct tsnep_adapter *adapter)
211 {
212 	struct phy_device *phydev;
213 	struct ethtool_eee ethtool_eee;
214 	int retval;
215 
216 	retval = phy_connect_direct(adapter->netdev, adapter->phydev,
217 				    tsnep_phy_link_status_change,
218 				    adapter->phy_mode);
219 	if (retval)
220 		return retval;
221 	phydev = adapter->netdev->phydev;
222 
223 	/* MAC supports only 100Mbps|1000Mbps full duplex
224 	 * SPE (Single Pair Ethernet) is also an option but not implemented yet
225 	 */
226 	phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_10baseT_Half_BIT);
227 	phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_10baseT_Full_BIT);
228 	phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_100baseT_Half_BIT);
229 	phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_1000baseT_Half_BIT);
230 
231 	/* disable EEE autoneg, EEE not supported by TSNEP */
232 	memset(&ethtool_eee, 0, sizeof(ethtool_eee));
233 	phy_ethtool_set_eee(adapter->phydev, &ethtool_eee);
234 
235 	adapter->phydev->irq = PHY_MAC_INTERRUPT;
236 	phy_start(adapter->phydev);
237 
238 	return 0;
239 }
240 
241 static void tsnep_phy_close(struct tsnep_adapter *adapter)
242 {
243 	phy_stop(adapter->netdev->phydev);
244 	phy_disconnect(adapter->netdev->phydev);
245 	adapter->netdev->phydev = NULL;
246 }
247 
248 static void tsnep_tx_ring_cleanup(struct tsnep_tx *tx)
249 {
250 	struct device *dmadev = tx->adapter->dmadev;
251 	int i;
252 
253 	memset(tx->entry, 0, sizeof(tx->entry));
254 
255 	for (i = 0; i < TSNEP_RING_PAGE_COUNT; i++) {
256 		if (tx->page[i]) {
257 			dma_free_coherent(dmadev, PAGE_SIZE, tx->page[i],
258 					  tx->page_dma[i]);
259 			tx->page[i] = NULL;
260 			tx->page_dma[i] = 0;
261 		}
262 	}
263 }
264 
265 static int tsnep_tx_ring_init(struct tsnep_tx *tx)
266 {
267 	struct device *dmadev = tx->adapter->dmadev;
268 	struct tsnep_tx_entry *entry;
269 	struct tsnep_tx_entry *next_entry;
270 	int i, j;
271 	int retval;
272 
273 	for (i = 0; i < TSNEP_RING_PAGE_COUNT; i++) {
274 		tx->page[i] =
275 			dma_alloc_coherent(dmadev, PAGE_SIZE, &tx->page_dma[i],
276 					   GFP_KERNEL);
277 		if (!tx->page[i]) {
278 			retval = -ENOMEM;
279 			goto alloc_failed;
280 		}
281 		for (j = 0; j < TSNEP_RING_ENTRIES_PER_PAGE; j++) {
282 			entry = &tx->entry[TSNEP_RING_ENTRIES_PER_PAGE * i + j];
283 			entry->desc_wb = (struct tsnep_tx_desc_wb *)
284 				(((u8 *)tx->page[i]) + TSNEP_DESC_SIZE * j);
285 			entry->desc = (struct tsnep_tx_desc *)
286 				(((u8 *)entry->desc_wb) + TSNEP_DESC_OFFSET);
287 			entry->desc_dma = tx->page_dma[i] + TSNEP_DESC_SIZE * j;
288 		}
289 	}
290 	for (i = 0; i < TSNEP_RING_SIZE; i++) {
291 		entry = &tx->entry[i];
292 		next_entry = &tx->entry[(i + 1) % TSNEP_RING_SIZE];
293 		entry->desc->next = __cpu_to_le64(next_entry->desc_dma);
294 	}
295 
296 	return 0;
297 
298 alloc_failed:
299 	tsnep_tx_ring_cleanup(tx);
300 	return retval;
301 }
302 
303 static void tsnep_tx_activate(struct tsnep_tx *tx, int index, int length,
304 			      bool last)
305 {
306 	struct tsnep_tx_entry *entry = &tx->entry[index];
307 
308 	entry->properties = 0;
309 	if (entry->skb) {
310 		entry->properties = length & TSNEP_DESC_LENGTH_MASK;
311 		entry->properties |= TSNEP_DESC_INTERRUPT_FLAG;
312 		if (skb_shinfo(entry->skb)->tx_flags & SKBTX_IN_PROGRESS)
313 			entry->properties |= TSNEP_DESC_EXTENDED_WRITEBACK_FLAG;
314 
315 		/* toggle user flag to prevent false acknowledge
316 		 *
317 		 * Only the first fragment is acknowledged. For all other
318 		 * fragments no acknowledge is done and the last written owner
319 		 * counter stays in the writeback descriptor. Therefore, it is
320 		 * possible that the last written owner counter is identical to
321 		 * the new incremented owner counter and a false acknowledge is
322 		 * detected before the real acknowledge has been done by
323 		 * hardware.
324 		 *
325 		 * The user flag is used to prevent this situation. The user
326 		 * flag is copied to the writeback descriptor by the hardware
327 		 * and is used as additional acknowledge data. By toggeling the
328 		 * user flag only for the first fragment (which is
329 		 * acknowledged), it is guaranteed that the last acknowledge
330 		 * done for this descriptor has used a different user flag and
331 		 * cannot be detected as false acknowledge.
332 		 */
333 		entry->owner_user_flag = !entry->owner_user_flag;
334 	}
335 	if (last)
336 		entry->properties |= TSNEP_TX_DESC_LAST_FRAGMENT_FLAG;
337 	if (index == tx->increment_owner_counter) {
338 		tx->owner_counter++;
339 		if (tx->owner_counter == 4)
340 			tx->owner_counter = 1;
341 		tx->increment_owner_counter--;
342 		if (tx->increment_owner_counter < 0)
343 			tx->increment_owner_counter = TSNEP_RING_SIZE - 1;
344 	}
345 	entry->properties |=
346 		(tx->owner_counter << TSNEP_DESC_OWNER_COUNTER_SHIFT) &
347 		TSNEP_DESC_OWNER_COUNTER_MASK;
348 	if (entry->owner_user_flag)
349 		entry->properties |= TSNEP_TX_DESC_OWNER_USER_FLAG;
350 	entry->desc->more_properties =
351 		__cpu_to_le32(entry->len & TSNEP_DESC_LENGTH_MASK);
352 
353 	/* descriptor properties shall be written last, because valid data is
354 	 * signaled there
355 	 */
356 	dma_wmb();
357 
358 	entry->desc->properties = __cpu_to_le32(entry->properties);
359 }
360 
361 static int tsnep_tx_desc_available(struct tsnep_tx *tx)
362 {
363 	if (tx->read <= tx->write)
364 		return TSNEP_RING_SIZE - tx->write + tx->read - 1;
365 	else
366 		return tx->read - tx->write - 1;
367 }
368 
369 static int tsnep_tx_map(struct sk_buff *skb, struct tsnep_tx *tx, int count)
370 {
371 	struct device *dmadev = tx->adapter->dmadev;
372 	struct tsnep_tx_entry *entry;
373 	unsigned int len;
374 	dma_addr_t dma;
375 	int map_len = 0;
376 	int i;
377 
378 	for (i = 0; i < count; i++) {
379 		entry = &tx->entry[(tx->write + i) % TSNEP_RING_SIZE];
380 
381 		if (i == 0) {
382 			len = skb_headlen(skb);
383 			dma = dma_map_single(dmadev, skb->data, len,
384 					     DMA_TO_DEVICE);
385 		} else {
386 			len = skb_frag_size(&skb_shinfo(skb)->frags[i - 1]);
387 			dma = skb_frag_dma_map(dmadev,
388 					       &skb_shinfo(skb)->frags[i - 1],
389 					       0, len, DMA_TO_DEVICE);
390 		}
391 		if (dma_mapping_error(dmadev, dma))
392 			return -ENOMEM;
393 
394 		entry->len = len;
395 		dma_unmap_addr_set(entry, dma, dma);
396 
397 		entry->desc->tx = __cpu_to_le64(dma);
398 
399 		map_len += len;
400 	}
401 
402 	return map_len;
403 }
404 
405 static int tsnep_tx_unmap(struct tsnep_tx *tx, int index, int count)
406 {
407 	struct device *dmadev = tx->adapter->dmadev;
408 	struct tsnep_tx_entry *entry;
409 	int map_len = 0;
410 	int i;
411 
412 	for (i = 0; i < count; i++) {
413 		entry = &tx->entry[(index + i) % TSNEP_RING_SIZE];
414 
415 		if (entry->len) {
416 			if (i == 0)
417 				dma_unmap_single(dmadev,
418 						 dma_unmap_addr(entry, dma),
419 						 dma_unmap_len(entry, len),
420 						 DMA_TO_DEVICE);
421 			else
422 				dma_unmap_page(dmadev,
423 					       dma_unmap_addr(entry, dma),
424 					       dma_unmap_len(entry, len),
425 					       DMA_TO_DEVICE);
426 			map_len += entry->len;
427 			entry->len = 0;
428 		}
429 	}
430 
431 	return map_len;
432 }
433 
434 static netdev_tx_t tsnep_xmit_frame_ring(struct sk_buff *skb,
435 					 struct tsnep_tx *tx)
436 {
437 	unsigned long flags;
438 	int count = 1;
439 	struct tsnep_tx_entry *entry;
440 	int length;
441 	int i;
442 	int retval;
443 
444 	if (skb_shinfo(skb)->nr_frags > 0)
445 		count += skb_shinfo(skb)->nr_frags;
446 
447 	spin_lock_irqsave(&tx->lock, flags);
448 
449 	if (tsnep_tx_desc_available(tx) < count) {
450 		/* ring full, shall not happen because queue is stopped if full
451 		 * below
452 		 */
453 		netif_stop_queue(tx->adapter->netdev);
454 
455 		spin_unlock_irqrestore(&tx->lock, flags);
456 
457 		return NETDEV_TX_BUSY;
458 	}
459 
460 	entry = &tx->entry[tx->write];
461 	entry->skb = skb;
462 
463 	retval = tsnep_tx_map(skb, tx, count);
464 	if (retval < 0) {
465 		tsnep_tx_unmap(tx, tx->write, count);
466 		dev_kfree_skb_any(entry->skb);
467 		entry->skb = NULL;
468 
469 		tx->dropped++;
470 
471 		spin_unlock_irqrestore(&tx->lock, flags);
472 
473 		netdev_err(tx->adapter->netdev, "TX DMA map failed\n");
474 
475 		return NETDEV_TX_OK;
476 	}
477 	length = retval;
478 
479 	if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)
480 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
481 
482 	for (i = 0; i < count; i++)
483 		tsnep_tx_activate(tx, (tx->write + i) % TSNEP_RING_SIZE, length,
484 				  i == (count - 1));
485 	tx->write = (tx->write + count) % TSNEP_RING_SIZE;
486 
487 	skb_tx_timestamp(skb);
488 
489 	/* descriptor properties shall be valid before hardware is notified */
490 	dma_wmb();
491 
492 	iowrite32(TSNEP_CONTROL_TX_ENABLE, tx->addr + TSNEP_CONTROL);
493 
494 	if (tsnep_tx_desc_available(tx) < (MAX_SKB_FRAGS + 1)) {
495 		/* ring can get full with next frame */
496 		netif_stop_queue(tx->adapter->netdev);
497 	}
498 
499 	spin_unlock_irqrestore(&tx->lock, flags);
500 
501 	return NETDEV_TX_OK;
502 }
503 
504 static bool tsnep_tx_poll(struct tsnep_tx *tx, int napi_budget)
505 {
506 	unsigned long flags;
507 	int budget = 128;
508 	struct tsnep_tx_entry *entry;
509 	int count;
510 	int length;
511 
512 	spin_lock_irqsave(&tx->lock, flags);
513 
514 	do {
515 		if (tx->read == tx->write)
516 			break;
517 
518 		entry = &tx->entry[tx->read];
519 		if ((__le32_to_cpu(entry->desc_wb->properties) &
520 		     TSNEP_TX_DESC_OWNER_MASK) !=
521 		    (entry->properties & TSNEP_TX_DESC_OWNER_MASK))
522 			break;
523 
524 		/* descriptor properties shall be read first, because valid data
525 		 * is signaled there
526 		 */
527 		dma_rmb();
528 
529 		count = 1;
530 		if (skb_shinfo(entry->skb)->nr_frags > 0)
531 			count += skb_shinfo(entry->skb)->nr_frags;
532 
533 		length = tsnep_tx_unmap(tx, tx->read, count);
534 
535 		if ((skb_shinfo(entry->skb)->tx_flags & SKBTX_IN_PROGRESS) &&
536 		    (__le32_to_cpu(entry->desc_wb->properties) &
537 		     TSNEP_DESC_EXTENDED_WRITEBACK_FLAG)) {
538 			struct skb_shared_hwtstamps hwtstamps;
539 			u64 timestamp;
540 
541 			if (skb_shinfo(entry->skb)->tx_flags &
542 			    SKBTX_HW_TSTAMP_USE_CYCLES)
543 				timestamp =
544 					__le64_to_cpu(entry->desc_wb->counter);
545 			else
546 				timestamp =
547 					__le64_to_cpu(entry->desc_wb->timestamp);
548 
549 			memset(&hwtstamps, 0, sizeof(hwtstamps));
550 			hwtstamps.hwtstamp = ns_to_ktime(timestamp);
551 
552 			skb_tstamp_tx(entry->skb, &hwtstamps);
553 		}
554 
555 		napi_consume_skb(entry->skb, budget);
556 		entry->skb = NULL;
557 
558 		tx->read = (tx->read + count) % TSNEP_RING_SIZE;
559 
560 		tx->packets++;
561 		tx->bytes += length + ETH_FCS_LEN;
562 
563 		budget--;
564 	} while (likely(budget));
565 
566 	if ((tsnep_tx_desc_available(tx) >= ((MAX_SKB_FRAGS + 1) * 2)) &&
567 	    netif_queue_stopped(tx->adapter->netdev)) {
568 		netif_wake_queue(tx->adapter->netdev);
569 	}
570 
571 	spin_unlock_irqrestore(&tx->lock, flags);
572 
573 	return (budget != 0);
574 }
575 
576 static bool tsnep_tx_pending(struct tsnep_tx *tx)
577 {
578 	unsigned long flags;
579 	struct tsnep_tx_entry *entry;
580 	bool pending = false;
581 
582 	spin_lock_irqsave(&tx->lock, flags);
583 
584 	if (tx->read != tx->write) {
585 		entry = &tx->entry[tx->read];
586 		if ((__le32_to_cpu(entry->desc_wb->properties) &
587 		     TSNEP_TX_DESC_OWNER_MASK) ==
588 		    (entry->properties & TSNEP_TX_DESC_OWNER_MASK))
589 			pending = true;
590 	}
591 
592 	spin_unlock_irqrestore(&tx->lock, flags);
593 
594 	return pending;
595 }
596 
597 static int tsnep_tx_open(struct tsnep_adapter *adapter, void __iomem *addr,
598 			 int queue_index, struct tsnep_tx *tx)
599 {
600 	dma_addr_t dma;
601 	int retval;
602 
603 	memset(tx, 0, sizeof(*tx));
604 	tx->adapter = adapter;
605 	tx->addr = addr;
606 	tx->queue_index = queue_index;
607 
608 	retval = tsnep_tx_ring_init(tx);
609 	if (retval)
610 		return retval;
611 
612 	dma = tx->entry[0].desc_dma | TSNEP_RESET_OWNER_COUNTER;
613 	iowrite32(DMA_ADDR_LOW(dma), tx->addr + TSNEP_TX_DESC_ADDR_LOW);
614 	iowrite32(DMA_ADDR_HIGH(dma), tx->addr + TSNEP_TX_DESC_ADDR_HIGH);
615 	tx->owner_counter = 1;
616 	tx->increment_owner_counter = TSNEP_RING_SIZE - 1;
617 
618 	spin_lock_init(&tx->lock);
619 
620 	return 0;
621 }
622 
623 static void tsnep_tx_close(struct tsnep_tx *tx)
624 {
625 	u32 val;
626 
627 	readx_poll_timeout(ioread32, tx->addr + TSNEP_CONTROL, val,
628 			   ((val & TSNEP_CONTROL_TX_ENABLE) == 0), 10000,
629 			   1000000);
630 
631 	tsnep_tx_ring_cleanup(tx);
632 }
633 
634 static void tsnep_rx_ring_cleanup(struct tsnep_rx *rx)
635 {
636 	struct device *dmadev = rx->adapter->dmadev;
637 	struct tsnep_rx_entry *entry;
638 	int i;
639 
640 	for (i = 0; i < TSNEP_RING_SIZE; i++) {
641 		entry = &rx->entry[i];
642 		if (entry->page)
643 			page_pool_put_full_page(rx->page_pool, entry->page,
644 						false);
645 		entry->page = NULL;
646 	}
647 
648 	if (rx->page_pool)
649 		page_pool_destroy(rx->page_pool);
650 
651 	memset(rx->entry, 0, sizeof(rx->entry));
652 
653 	for (i = 0; i < TSNEP_RING_PAGE_COUNT; i++) {
654 		if (rx->page[i]) {
655 			dma_free_coherent(dmadev, PAGE_SIZE, rx->page[i],
656 					  rx->page_dma[i]);
657 			rx->page[i] = NULL;
658 			rx->page_dma[i] = 0;
659 		}
660 	}
661 }
662 
663 static int tsnep_rx_ring_init(struct tsnep_rx *rx)
664 {
665 	struct device *dmadev = rx->adapter->dmadev;
666 	struct tsnep_rx_entry *entry;
667 	struct page_pool_params pp_params = { 0 };
668 	struct tsnep_rx_entry *next_entry;
669 	int i, j;
670 	int retval;
671 
672 	for (i = 0; i < TSNEP_RING_PAGE_COUNT; i++) {
673 		rx->page[i] =
674 			dma_alloc_coherent(dmadev, PAGE_SIZE, &rx->page_dma[i],
675 					   GFP_KERNEL);
676 		if (!rx->page[i]) {
677 			retval = -ENOMEM;
678 			goto failed;
679 		}
680 		for (j = 0; j < TSNEP_RING_ENTRIES_PER_PAGE; j++) {
681 			entry = &rx->entry[TSNEP_RING_ENTRIES_PER_PAGE * i + j];
682 			entry->desc_wb = (struct tsnep_rx_desc_wb *)
683 				(((u8 *)rx->page[i]) + TSNEP_DESC_SIZE * j);
684 			entry->desc = (struct tsnep_rx_desc *)
685 				(((u8 *)entry->desc_wb) + TSNEP_DESC_OFFSET);
686 			entry->desc_dma = rx->page_dma[i] + TSNEP_DESC_SIZE * j;
687 		}
688 	}
689 
690 	pp_params.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV;
691 	pp_params.order = 0;
692 	pp_params.pool_size = TSNEP_RING_SIZE;
693 	pp_params.nid = dev_to_node(dmadev);
694 	pp_params.dev = dmadev;
695 	pp_params.dma_dir = DMA_FROM_DEVICE;
696 	pp_params.max_len = TSNEP_MAX_RX_BUF_SIZE;
697 	pp_params.offset = TSNEP_SKB_PAD;
698 	rx->page_pool = page_pool_create(&pp_params);
699 	if (IS_ERR(rx->page_pool)) {
700 		retval = PTR_ERR(rx->page_pool);
701 		rx->page_pool = NULL;
702 		goto failed;
703 	}
704 
705 	for (i = 0; i < TSNEP_RING_SIZE; i++) {
706 		entry = &rx->entry[i];
707 		next_entry = &rx->entry[(i + 1) % TSNEP_RING_SIZE];
708 		entry->desc->next = __cpu_to_le64(next_entry->desc_dma);
709 	}
710 
711 	return 0;
712 
713 failed:
714 	tsnep_rx_ring_cleanup(rx);
715 	return retval;
716 }
717 
718 static int tsnep_rx_desc_available(struct tsnep_rx *rx)
719 {
720 	if (rx->read <= rx->write)
721 		return TSNEP_RING_SIZE - rx->write + rx->read - 1;
722 	else
723 		return rx->read - rx->write - 1;
724 }
725 
726 static void tsnep_rx_set_page(struct tsnep_rx *rx, struct tsnep_rx_entry *entry,
727 			      struct page *page)
728 {
729 	entry->page = page;
730 	entry->len = TSNEP_MAX_RX_BUF_SIZE;
731 	entry->dma = page_pool_get_dma_addr(entry->page);
732 	entry->desc->rx = __cpu_to_le64(entry->dma + TSNEP_SKB_PAD);
733 }
734 
735 static int tsnep_rx_alloc_buffer(struct tsnep_rx *rx, int index)
736 {
737 	struct tsnep_rx_entry *entry = &rx->entry[index];
738 	struct page *page;
739 
740 	page = page_pool_dev_alloc_pages(rx->page_pool);
741 	if (unlikely(!page))
742 		return -ENOMEM;
743 	tsnep_rx_set_page(rx, entry, page);
744 
745 	return 0;
746 }
747 
748 static void tsnep_rx_reuse_buffer(struct tsnep_rx *rx, int index)
749 {
750 	struct tsnep_rx_entry *entry = &rx->entry[index];
751 	struct tsnep_rx_entry *read = &rx->entry[rx->read];
752 
753 	tsnep_rx_set_page(rx, entry, read->page);
754 	read->page = NULL;
755 }
756 
757 static void tsnep_rx_activate(struct tsnep_rx *rx, int index)
758 {
759 	struct tsnep_rx_entry *entry = &rx->entry[index];
760 
761 	/* TSNEP_MAX_RX_BUF_SIZE is a multiple of 4 */
762 	entry->properties = entry->len & TSNEP_DESC_LENGTH_MASK;
763 	entry->properties |= TSNEP_DESC_INTERRUPT_FLAG;
764 	if (index == rx->increment_owner_counter) {
765 		rx->owner_counter++;
766 		if (rx->owner_counter == 4)
767 			rx->owner_counter = 1;
768 		rx->increment_owner_counter--;
769 		if (rx->increment_owner_counter < 0)
770 			rx->increment_owner_counter = TSNEP_RING_SIZE - 1;
771 	}
772 	entry->properties |=
773 		(rx->owner_counter << TSNEP_DESC_OWNER_COUNTER_SHIFT) &
774 		TSNEP_DESC_OWNER_COUNTER_MASK;
775 
776 	/* descriptor properties shall be written last, because valid data is
777 	 * signaled there
778 	 */
779 	dma_wmb();
780 
781 	entry->desc->properties = __cpu_to_le32(entry->properties);
782 }
783 
784 static int tsnep_rx_refill(struct tsnep_rx *rx, int count, bool reuse)
785 {
786 	int index;
787 	bool alloc_failed = false;
788 	bool enable = false;
789 	int i;
790 	int retval;
791 
792 	for (i = 0; i < count && !alloc_failed; i++) {
793 		index = (rx->write + i) % TSNEP_RING_SIZE;
794 
795 		retval = tsnep_rx_alloc_buffer(rx, index);
796 		if (unlikely(retval)) {
797 			rx->alloc_failed++;
798 			alloc_failed = true;
799 
800 			/* reuse only if no other allocation was successful */
801 			if (i == 0 && reuse)
802 				tsnep_rx_reuse_buffer(rx, index);
803 			else
804 				break;
805 		}
806 
807 		tsnep_rx_activate(rx, index);
808 
809 		enable = true;
810 	}
811 
812 	if (enable) {
813 		rx->write = (rx->write + i) % TSNEP_RING_SIZE;
814 
815 		/* descriptor properties shall be valid before hardware is
816 		 * notified
817 		 */
818 		dma_wmb();
819 
820 		iowrite32(TSNEP_CONTROL_RX_ENABLE, rx->addr + TSNEP_CONTROL);
821 	}
822 
823 	return i;
824 }
825 
826 static struct sk_buff *tsnep_build_skb(struct tsnep_rx *rx, struct page *page,
827 				       int length)
828 {
829 	struct sk_buff *skb;
830 
831 	skb = napi_build_skb(page_address(page), PAGE_SIZE);
832 	if (unlikely(!skb))
833 		return NULL;
834 
835 	/* update pointers within the skb to store the data */
836 	skb_reserve(skb, TSNEP_SKB_PAD + TSNEP_RX_INLINE_METADATA_SIZE);
837 	__skb_put(skb, length - TSNEP_RX_INLINE_METADATA_SIZE - ETH_FCS_LEN);
838 
839 	if (rx->adapter->hwtstamp_config.rx_filter == HWTSTAMP_FILTER_ALL) {
840 		struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
841 		struct tsnep_rx_inline *rx_inline =
842 			(struct tsnep_rx_inline *)(page_address(page) +
843 						   TSNEP_SKB_PAD);
844 
845 		skb_shinfo(skb)->tx_flags |=
846 			SKBTX_HW_TSTAMP_NETDEV;
847 		memset(hwtstamps, 0, sizeof(*hwtstamps));
848 		hwtstamps->netdev_data = rx_inline;
849 	}
850 
851 	skb_record_rx_queue(skb, rx->queue_index);
852 	skb->protocol = eth_type_trans(skb, rx->adapter->netdev);
853 
854 	return skb;
855 }
856 
857 static int tsnep_rx_poll(struct tsnep_rx *rx, struct napi_struct *napi,
858 			 int budget)
859 {
860 	struct device *dmadev = rx->adapter->dmadev;
861 	int desc_available;
862 	int done = 0;
863 	enum dma_data_direction dma_dir;
864 	struct tsnep_rx_entry *entry;
865 	struct sk_buff *skb;
866 	int length;
867 
868 	desc_available = tsnep_rx_desc_available(rx);
869 	dma_dir = page_pool_get_dma_dir(rx->page_pool);
870 
871 	while (likely(done < budget) && (rx->read != rx->write)) {
872 		entry = &rx->entry[rx->read];
873 		if ((__le32_to_cpu(entry->desc_wb->properties) &
874 		     TSNEP_DESC_OWNER_COUNTER_MASK) !=
875 		    (entry->properties & TSNEP_DESC_OWNER_COUNTER_MASK))
876 			break;
877 		done++;
878 
879 		if (desc_available >= TSNEP_RING_RX_REFILL) {
880 			bool reuse = desc_available >= TSNEP_RING_RX_REUSE;
881 
882 			desc_available -= tsnep_rx_refill(rx, desc_available,
883 							  reuse);
884 			if (!entry->page) {
885 				/* buffer has been reused for refill to prevent
886 				 * empty RX ring, thus buffer cannot be used for
887 				 * RX processing
888 				 */
889 				rx->read = (rx->read + 1) % TSNEP_RING_SIZE;
890 				desc_available++;
891 
892 				rx->dropped++;
893 
894 				continue;
895 			}
896 		}
897 
898 		/* descriptor properties shall be read first, because valid data
899 		 * is signaled there
900 		 */
901 		dma_rmb();
902 
903 		prefetch(page_address(entry->page) + TSNEP_SKB_PAD);
904 		length = __le32_to_cpu(entry->desc_wb->properties) &
905 			 TSNEP_DESC_LENGTH_MASK;
906 		dma_sync_single_range_for_cpu(dmadev, entry->dma, TSNEP_SKB_PAD,
907 					      length, dma_dir);
908 
909 		rx->read = (rx->read + 1) % TSNEP_RING_SIZE;
910 		desc_available++;
911 
912 		skb = tsnep_build_skb(rx, entry->page, length);
913 		if (skb) {
914 			page_pool_release_page(rx->page_pool, entry->page);
915 
916 			rx->packets++;
917 			rx->bytes += length - TSNEP_RX_INLINE_METADATA_SIZE;
918 			if (skb->pkt_type == PACKET_MULTICAST)
919 				rx->multicast++;
920 
921 			napi_gro_receive(napi, skb);
922 		} else {
923 			page_pool_recycle_direct(rx->page_pool, entry->page);
924 
925 			rx->dropped++;
926 		}
927 		entry->page = NULL;
928 	}
929 
930 	if (desc_available)
931 		tsnep_rx_refill(rx, desc_available, false);
932 
933 	return done;
934 }
935 
936 static bool tsnep_rx_pending(struct tsnep_rx *rx)
937 {
938 	struct tsnep_rx_entry *entry;
939 
940 	if (rx->read != rx->write) {
941 		entry = &rx->entry[rx->read];
942 		if ((__le32_to_cpu(entry->desc_wb->properties) &
943 		     TSNEP_DESC_OWNER_COUNTER_MASK) ==
944 		    (entry->properties & TSNEP_DESC_OWNER_COUNTER_MASK))
945 			return true;
946 	}
947 
948 	return false;
949 }
950 
951 static int tsnep_rx_open(struct tsnep_adapter *adapter, void __iomem *addr,
952 			 int queue_index, struct tsnep_rx *rx)
953 {
954 	dma_addr_t dma;
955 	int retval;
956 
957 	memset(rx, 0, sizeof(*rx));
958 	rx->adapter = adapter;
959 	rx->addr = addr;
960 	rx->queue_index = queue_index;
961 
962 	retval = tsnep_rx_ring_init(rx);
963 	if (retval)
964 		return retval;
965 
966 	dma = rx->entry[0].desc_dma | TSNEP_RESET_OWNER_COUNTER;
967 	iowrite32(DMA_ADDR_LOW(dma), rx->addr + TSNEP_RX_DESC_ADDR_LOW);
968 	iowrite32(DMA_ADDR_HIGH(dma), rx->addr + TSNEP_RX_DESC_ADDR_HIGH);
969 	rx->owner_counter = 1;
970 	rx->increment_owner_counter = TSNEP_RING_SIZE - 1;
971 
972 	tsnep_rx_refill(rx, tsnep_rx_desc_available(rx), false);
973 
974 	return 0;
975 }
976 
977 static void tsnep_rx_close(struct tsnep_rx *rx)
978 {
979 	u32 val;
980 
981 	iowrite32(TSNEP_CONTROL_RX_DISABLE, rx->addr + TSNEP_CONTROL);
982 	readx_poll_timeout(ioread32, rx->addr + TSNEP_CONTROL, val,
983 			   ((val & TSNEP_CONTROL_RX_ENABLE) == 0), 10000,
984 			   1000000);
985 
986 	tsnep_rx_ring_cleanup(rx);
987 }
988 
989 static bool tsnep_pending(struct tsnep_queue *queue)
990 {
991 	if (queue->tx && tsnep_tx_pending(queue->tx))
992 		return true;
993 
994 	if (queue->rx && tsnep_rx_pending(queue->rx))
995 		return true;
996 
997 	return false;
998 }
999 
1000 static int tsnep_poll(struct napi_struct *napi, int budget)
1001 {
1002 	struct tsnep_queue *queue = container_of(napi, struct tsnep_queue,
1003 						 napi);
1004 	bool complete = true;
1005 	int done = 0;
1006 
1007 	if (queue->tx)
1008 		complete = tsnep_tx_poll(queue->tx, budget);
1009 
1010 	if (queue->rx) {
1011 		done = tsnep_rx_poll(queue->rx, napi, budget);
1012 		if (done >= budget)
1013 			complete = false;
1014 	}
1015 
1016 	/* if all work not completed, return budget and keep polling */
1017 	if (!complete)
1018 		return budget;
1019 
1020 	if (likely(napi_complete_done(napi, done))) {
1021 		tsnep_enable_irq(queue->adapter, queue->irq_mask);
1022 
1023 		/* reschedule if work is already pending, prevent rotten packets
1024 		 * which are transmitted or received after polling but before
1025 		 * interrupt enable
1026 		 */
1027 		if (tsnep_pending(queue)) {
1028 			tsnep_disable_irq(queue->adapter, queue->irq_mask);
1029 			napi_schedule(napi);
1030 		}
1031 	}
1032 
1033 	return min(done, budget - 1);
1034 }
1035 
1036 static int tsnep_request_irq(struct tsnep_queue *queue, bool first)
1037 {
1038 	const char *name = netdev_name(queue->adapter->netdev);
1039 	irq_handler_t handler;
1040 	void *dev;
1041 	int retval;
1042 
1043 	if (first) {
1044 		sprintf(queue->name, "%s-mac", name);
1045 		handler = tsnep_irq;
1046 		dev = queue->adapter;
1047 	} else {
1048 		if (queue->tx && queue->rx)
1049 			sprintf(queue->name, "%s-txrx-%d", name,
1050 				queue->rx->queue_index);
1051 		else if (queue->tx)
1052 			sprintf(queue->name, "%s-tx-%d", name,
1053 				queue->tx->queue_index);
1054 		else
1055 			sprintf(queue->name, "%s-rx-%d", name,
1056 				queue->rx->queue_index);
1057 		handler = tsnep_irq_txrx;
1058 		dev = queue;
1059 	}
1060 
1061 	retval = request_irq(queue->irq, handler, 0, queue->name, dev);
1062 	if (retval) {
1063 		/* if name is empty, then interrupt won't be freed */
1064 		memset(queue->name, 0, sizeof(queue->name));
1065 	}
1066 
1067 	return retval;
1068 }
1069 
1070 static void tsnep_free_irq(struct tsnep_queue *queue, bool first)
1071 {
1072 	void *dev;
1073 
1074 	if (!strlen(queue->name))
1075 		return;
1076 
1077 	if (first)
1078 		dev = queue->adapter;
1079 	else
1080 		dev = queue;
1081 
1082 	free_irq(queue->irq, dev);
1083 	memset(queue->name, 0, sizeof(queue->name));
1084 }
1085 
1086 static int tsnep_netdev_open(struct net_device *netdev)
1087 {
1088 	struct tsnep_adapter *adapter = netdev_priv(netdev);
1089 	int i;
1090 	void __iomem *addr;
1091 	int tx_queue_index = 0;
1092 	int rx_queue_index = 0;
1093 	int retval;
1094 
1095 	for (i = 0; i < adapter->num_queues; i++) {
1096 		adapter->queue[i].adapter = adapter;
1097 		if (adapter->queue[i].tx) {
1098 			addr = adapter->addr + TSNEP_QUEUE(tx_queue_index);
1099 			retval = tsnep_tx_open(adapter, addr, tx_queue_index,
1100 					       adapter->queue[i].tx);
1101 			if (retval)
1102 				goto failed;
1103 			tx_queue_index++;
1104 		}
1105 		if (adapter->queue[i].rx) {
1106 			addr = adapter->addr + TSNEP_QUEUE(rx_queue_index);
1107 			retval = tsnep_rx_open(adapter, addr,
1108 					       rx_queue_index,
1109 					       adapter->queue[i].rx);
1110 			if (retval)
1111 				goto failed;
1112 			rx_queue_index++;
1113 		}
1114 
1115 		retval = tsnep_request_irq(&adapter->queue[i], i == 0);
1116 		if (retval) {
1117 			netif_err(adapter, drv, adapter->netdev,
1118 				  "can't get assigned irq %d.\n",
1119 				  adapter->queue[i].irq);
1120 			goto failed;
1121 		}
1122 	}
1123 
1124 	retval = netif_set_real_num_tx_queues(adapter->netdev,
1125 					      adapter->num_tx_queues);
1126 	if (retval)
1127 		goto failed;
1128 	retval = netif_set_real_num_rx_queues(adapter->netdev,
1129 					      adapter->num_rx_queues);
1130 	if (retval)
1131 		goto failed;
1132 
1133 	tsnep_enable_irq(adapter, ECM_INT_LINK);
1134 	retval = tsnep_phy_open(adapter);
1135 	if (retval)
1136 		goto phy_failed;
1137 
1138 	for (i = 0; i < adapter->num_queues; i++) {
1139 		netif_napi_add(adapter->netdev, &adapter->queue[i].napi,
1140 			       tsnep_poll);
1141 		napi_enable(&adapter->queue[i].napi);
1142 
1143 		tsnep_enable_irq(adapter, adapter->queue[i].irq_mask);
1144 	}
1145 
1146 	return 0;
1147 
1148 phy_failed:
1149 	tsnep_disable_irq(adapter, ECM_INT_LINK);
1150 	tsnep_phy_close(adapter);
1151 failed:
1152 	for (i = 0; i < adapter->num_queues; i++) {
1153 		tsnep_free_irq(&adapter->queue[i], i == 0);
1154 
1155 		if (adapter->queue[i].rx)
1156 			tsnep_rx_close(adapter->queue[i].rx);
1157 		if (adapter->queue[i].tx)
1158 			tsnep_tx_close(adapter->queue[i].tx);
1159 	}
1160 	return retval;
1161 }
1162 
1163 static int tsnep_netdev_close(struct net_device *netdev)
1164 {
1165 	struct tsnep_adapter *adapter = netdev_priv(netdev);
1166 	int i;
1167 
1168 	tsnep_disable_irq(adapter, ECM_INT_LINK);
1169 	tsnep_phy_close(adapter);
1170 
1171 	for (i = 0; i < adapter->num_queues; i++) {
1172 		tsnep_disable_irq(adapter, adapter->queue[i].irq_mask);
1173 
1174 		napi_disable(&adapter->queue[i].napi);
1175 		netif_napi_del(&adapter->queue[i].napi);
1176 
1177 		tsnep_free_irq(&adapter->queue[i], i == 0);
1178 
1179 		if (adapter->queue[i].rx)
1180 			tsnep_rx_close(adapter->queue[i].rx);
1181 		if (adapter->queue[i].tx)
1182 			tsnep_tx_close(adapter->queue[i].tx);
1183 	}
1184 
1185 	return 0;
1186 }
1187 
1188 static netdev_tx_t tsnep_netdev_xmit_frame(struct sk_buff *skb,
1189 					   struct net_device *netdev)
1190 {
1191 	struct tsnep_adapter *adapter = netdev_priv(netdev);
1192 	u16 queue_mapping = skb_get_queue_mapping(skb);
1193 
1194 	if (queue_mapping >= adapter->num_tx_queues)
1195 		queue_mapping = 0;
1196 
1197 	return tsnep_xmit_frame_ring(skb, &adapter->tx[queue_mapping]);
1198 }
1199 
1200 static int tsnep_netdev_ioctl(struct net_device *netdev, struct ifreq *ifr,
1201 			      int cmd)
1202 {
1203 	if (!netif_running(netdev))
1204 		return -EINVAL;
1205 	if (cmd == SIOCSHWTSTAMP || cmd == SIOCGHWTSTAMP)
1206 		return tsnep_ptp_ioctl(netdev, ifr, cmd);
1207 	return phy_mii_ioctl(netdev->phydev, ifr, cmd);
1208 }
1209 
1210 static void tsnep_netdev_set_multicast(struct net_device *netdev)
1211 {
1212 	struct tsnep_adapter *adapter = netdev_priv(netdev);
1213 
1214 	u16 rx_filter = 0;
1215 
1216 	/* configured MAC address and broadcasts are never filtered */
1217 	if (netdev->flags & IFF_PROMISC) {
1218 		rx_filter |= TSNEP_RX_FILTER_ACCEPT_ALL_MULTICASTS;
1219 		rx_filter |= TSNEP_RX_FILTER_ACCEPT_ALL_UNICASTS;
1220 	} else if (!netdev_mc_empty(netdev) || (netdev->flags & IFF_ALLMULTI)) {
1221 		rx_filter |= TSNEP_RX_FILTER_ACCEPT_ALL_MULTICASTS;
1222 	}
1223 	iowrite16(rx_filter, adapter->addr + TSNEP_RX_FILTER);
1224 }
1225 
1226 static void tsnep_netdev_get_stats64(struct net_device *netdev,
1227 				     struct rtnl_link_stats64 *stats)
1228 {
1229 	struct tsnep_adapter *adapter = netdev_priv(netdev);
1230 	u32 reg;
1231 	u32 val;
1232 	int i;
1233 
1234 	for (i = 0; i < adapter->num_tx_queues; i++) {
1235 		stats->tx_packets += adapter->tx[i].packets;
1236 		stats->tx_bytes += adapter->tx[i].bytes;
1237 		stats->tx_dropped += adapter->tx[i].dropped;
1238 	}
1239 	for (i = 0; i < adapter->num_rx_queues; i++) {
1240 		stats->rx_packets += adapter->rx[i].packets;
1241 		stats->rx_bytes += adapter->rx[i].bytes;
1242 		stats->rx_dropped += adapter->rx[i].dropped;
1243 		stats->multicast += adapter->rx[i].multicast;
1244 
1245 		reg = ioread32(adapter->addr + TSNEP_QUEUE(i) +
1246 			       TSNEP_RX_STATISTIC);
1247 		val = (reg & TSNEP_RX_STATISTIC_NO_DESC_MASK) >>
1248 		      TSNEP_RX_STATISTIC_NO_DESC_SHIFT;
1249 		stats->rx_dropped += val;
1250 		val = (reg & TSNEP_RX_STATISTIC_BUFFER_TOO_SMALL_MASK) >>
1251 		      TSNEP_RX_STATISTIC_BUFFER_TOO_SMALL_SHIFT;
1252 		stats->rx_dropped += val;
1253 		val = (reg & TSNEP_RX_STATISTIC_FIFO_OVERFLOW_MASK) >>
1254 		      TSNEP_RX_STATISTIC_FIFO_OVERFLOW_SHIFT;
1255 		stats->rx_errors += val;
1256 		stats->rx_fifo_errors += val;
1257 		val = (reg & TSNEP_RX_STATISTIC_INVALID_FRAME_MASK) >>
1258 		      TSNEP_RX_STATISTIC_INVALID_FRAME_SHIFT;
1259 		stats->rx_errors += val;
1260 		stats->rx_frame_errors += val;
1261 	}
1262 
1263 	reg = ioread32(adapter->addr + ECM_STAT);
1264 	val = (reg & ECM_STAT_RX_ERR_MASK) >> ECM_STAT_RX_ERR_SHIFT;
1265 	stats->rx_errors += val;
1266 	val = (reg & ECM_STAT_INV_FRM_MASK) >> ECM_STAT_INV_FRM_SHIFT;
1267 	stats->rx_errors += val;
1268 	stats->rx_crc_errors += val;
1269 	val = (reg & ECM_STAT_FWD_RX_ERR_MASK) >> ECM_STAT_FWD_RX_ERR_SHIFT;
1270 	stats->rx_errors += val;
1271 }
1272 
1273 static void tsnep_mac_set_address(struct tsnep_adapter *adapter, u8 *addr)
1274 {
1275 	iowrite32(*(u32 *)addr, adapter->addr + TSNEP_MAC_ADDRESS_LOW);
1276 	iowrite16(*(u16 *)(addr + sizeof(u32)),
1277 		  adapter->addr + TSNEP_MAC_ADDRESS_HIGH);
1278 
1279 	ether_addr_copy(adapter->mac_address, addr);
1280 	netif_info(adapter, drv, adapter->netdev, "MAC address set to %pM\n",
1281 		   addr);
1282 }
1283 
1284 static int tsnep_netdev_set_mac_address(struct net_device *netdev, void *addr)
1285 {
1286 	struct tsnep_adapter *adapter = netdev_priv(netdev);
1287 	struct sockaddr *sock_addr = addr;
1288 	int retval;
1289 
1290 	retval = eth_prepare_mac_addr_change(netdev, sock_addr);
1291 	if (retval)
1292 		return retval;
1293 	eth_hw_addr_set(netdev, sock_addr->sa_data);
1294 	tsnep_mac_set_address(adapter, sock_addr->sa_data);
1295 
1296 	return 0;
1297 }
1298 
1299 static int tsnep_netdev_set_features(struct net_device *netdev,
1300 				     netdev_features_t features)
1301 {
1302 	struct tsnep_adapter *adapter = netdev_priv(netdev);
1303 	netdev_features_t changed = netdev->features ^ features;
1304 	bool enable;
1305 	int retval = 0;
1306 
1307 	if (changed & NETIF_F_LOOPBACK) {
1308 		enable = !!(features & NETIF_F_LOOPBACK);
1309 		retval = tsnep_phy_loopback(adapter, enable);
1310 	}
1311 
1312 	return retval;
1313 }
1314 
1315 static ktime_t tsnep_netdev_get_tstamp(struct net_device *netdev,
1316 				       const struct skb_shared_hwtstamps *hwtstamps,
1317 				       bool cycles)
1318 {
1319 	struct tsnep_rx_inline *rx_inline = hwtstamps->netdev_data;
1320 	u64 timestamp;
1321 
1322 	if (cycles)
1323 		timestamp = __le64_to_cpu(rx_inline->counter);
1324 	else
1325 		timestamp = __le64_to_cpu(rx_inline->timestamp);
1326 
1327 	return ns_to_ktime(timestamp);
1328 }
1329 
1330 static const struct net_device_ops tsnep_netdev_ops = {
1331 	.ndo_open = tsnep_netdev_open,
1332 	.ndo_stop = tsnep_netdev_close,
1333 	.ndo_start_xmit = tsnep_netdev_xmit_frame,
1334 	.ndo_eth_ioctl = tsnep_netdev_ioctl,
1335 	.ndo_set_rx_mode = tsnep_netdev_set_multicast,
1336 	.ndo_get_stats64 = tsnep_netdev_get_stats64,
1337 	.ndo_set_mac_address = tsnep_netdev_set_mac_address,
1338 	.ndo_set_features = tsnep_netdev_set_features,
1339 	.ndo_get_tstamp = tsnep_netdev_get_tstamp,
1340 	.ndo_setup_tc = tsnep_tc_setup,
1341 };
1342 
1343 static int tsnep_mac_init(struct tsnep_adapter *adapter)
1344 {
1345 	int retval;
1346 
1347 	/* initialize RX filtering, at least configured MAC address and
1348 	 * broadcast are not filtered
1349 	 */
1350 	iowrite16(0, adapter->addr + TSNEP_RX_FILTER);
1351 
1352 	/* try to get MAC address in the following order:
1353 	 * - device tree
1354 	 * - valid MAC address already set
1355 	 * - MAC address register if valid
1356 	 * - random MAC address
1357 	 */
1358 	retval = of_get_mac_address(adapter->pdev->dev.of_node,
1359 				    adapter->mac_address);
1360 	if (retval == -EPROBE_DEFER)
1361 		return retval;
1362 	if (retval && !is_valid_ether_addr(adapter->mac_address)) {
1363 		*(u32 *)adapter->mac_address =
1364 			ioread32(adapter->addr + TSNEP_MAC_ADDRESS_LOW);
1365 		*(u16 *)(adapter->mac_address + sizeof(u32)) =
1366 			ioread16(adapter->addr + TSNEP_MAC_ADDRESS_HIGH);
1367 		if (!is_valid_ether_addr(adapter->mac_address))
1368 			eth_random_addr(adapter->mac_address);
1369 	}
1370 
1371 	tsnep_mac_set_address(adapter, adapter->mac_address);
1372 	eth_hw_addr_set(adapter->netdev, adapter->mac_address);
1373 
1374 	return 0;
1375 }
1376 
1377 static int tsnep_mdio_init(struct tsnep_adapter *adapter)
1378 {
1379 	struct device_node *np = adapter->pdev->dev.of_node;
1380 	int retval;
1381 
1382 	if (np) {
1383 		np = of_get_child_by_name(np, "mdio");
1384 		if (!np)
1385 			return 0;
1386 
1387 		adapter->suppress_preamble =
1388 			of_property_read_bool(np, "suppress-preamble");
1389 	}
1390 
1391 	adapter->mdiobus = devm_mdiobus_alloc(&adapter->pdev->dev);
1392 	if (!adapter->mdiobus) {
1393 		retval = -ENOMEM;
1394 
1395 		goto out;
1396 	}
1397 
1398 	adapter->mdiobus->priv = (void *)adapter;
1399 	adapter->mdiobus->parent = &adapter->pdev->dev;
1400 	adapter->mdiobus->read = tsnep_mdiobus_read;
1401 	adapter->mdiobus->write = tsnep_mdiobus_write;
1402 	adapter->mdiobus->name = TSNEP "-mdiobus";
1403 	snprintf(adapter->mdiobus->id, MII_BUS_ID_SIZE, "%s",
1404 		 adapter->pdev->name);
1405 
1406 	/* do not scan broadcast address */
1407 	adapter->mdiobus->phy_mask = 0x0000001;
1408 
1409 	retval = of_mdiobus_register(adapter->mdiobus, np);
1410 
1411 out:
1412 	of_node_put(np);
1413 
1414 	return retval;
1415 }
1416 
1417 static int tsnep_phy_init(struct tsnep_adapter *adapter)
1418 {
1419 	struct device_node *phy_node;
1420 	int retval;
1421 
1422 	retval = of_get_phy_mode(adapter->pdev->dev.of_node,
1423 				 &adapter->phy_mode);
1424 	if (retval)
1425 		adapter->phy_mode = PHY_INTERFACE_MODE_GMII;
1426 
1427 	phy_node = of_parse_phandle(adapter->pdev->dev.of_node, "phy-handle",
1428 				    0);
1429 	adapter->phydev = of_phy_find_device(phy_node);
1430 	of_node_put(phy_node);
1431 	if (!adapter->phydev && adapter->mdiobus)
1432 		adapter->phydev = phy_find_first(adapter->mdiobus);
1433 	if (!adapter->phydev)
1434 		return -EIO;
1435 
1436 	return 0;
1437 }
1438 
1439 static int tsnep_queue_init(struct tsnep_adapter *adapter, int queue_count)
1440 {
1441 	u32 irq_mask = ECM_INT_TX_0 | ECM_INT_RX_0;
1442 	char name[8];
1443 	int i;
1444 	int retval;
1445 
1446 	/* one TX/RX queue pair for netdev is mandatory */
1447 	if (platform_irq_count(adapter->pdev) == 1)
1448 		retval = platform_get_irq(adapter->pdev, 0);
1449 	else
1450 		retval = platform_get_irq_byname(adapter->pdev, "mac");
1451 	if (retval < 0)
1452 		return retval;
1453 	adapter->num_tx_queues = 1;
1454 	adapter->num_rx_queues = 1;
1455 	adapter->num_queues = 1;
1456 	adapter->queue[0].irq = retval;
1457 	adapter->queue[0].tx = &adapter->tx[0];
1458 	adapter->queue[0].rx = &adapter->rx[0];
1459 	adapter->queue[0].irq_mask = irq_mask;
1460 	adapter->queue[0].irq_delay_addr = adapter->addr + ECM_INT_DELAY;
1461 	retval = tsnep_set_irq_coalesce(&adapter->queue[0],
1462 					TSNEP_COALESCE_USECS_DEFAULT);
1463 	if (retval < 0)
1464 		return retval;
1465 
1466 	adapter->netdev->irq = adapter->queue[0].irq;
1467 
1468 	/* add additional TX/RX queue pairs only if dedicated interrupt is
1469 	 * available
1470 	 */
1471 	for (i = 1; i < queue_count; i++) {
1472 		sprintf(name, "txrx-%d", i);
1473 		retval = platform_get_irq_byname_optional(adapter->pdev, name);
1474 		if (retval < 0)
1475 			break;
1476 
1477 		adapter->num_tx_queues++;
1478 		adapter->num_rx_queues++;
1479 		adapter->num_queues++;
1480 		adapter->queue[i].irq = retval;
1481 		adapter->queue[i].tx = &adapter->tx[i];
1482 		adapter->queue[i].rx = &adapter->rx[i];
1483 		adapter->queue[i].irq_mask =
1484 			irq_mask << (ECM_INT_TXRX_SHIFT * i);
1485 		adapter->queue[i].irq_delay_addr =
1486 			adapter->addr + ECM_INT_DELAY + ECM_INT_DELAY_OFFSET * i;
1487 		retval = tsnep_set_irq_coalesce(&adapter->queue[i],
1488 						TSNEP_COALESCE_USECS_DEFAULT);
1489 		if (retval < 0)
1490 			return retval;
1491 	}
1492 
1493 	return 0;
1494 }
1495 
1496 static int tsnep_probe(struct platform_device *pdev)
1497 {
1498 	struct tsnep_adapter *adapter;
1499 	struct net_device *netdev;
1500 	struct resource *io;
1501 	u32 type;
1502 	int revision;
1503 	int version;
1504 	int queue_count;
1505 	int retval;
1506 
1507 	netdev = devm_alloc_etherdev_mqs(&pdev->dev,
1508 					 sizeof(struct tsnep_adapter),
1509 					 TSNEP_MAX_QUEUES, TSNEP_MAX_QUEUES);
1510 	if (!netdev)
1511 		return -ENODEV;
1512 	SET_NETDEV_DEV(netdev, &pdev->dev);
1513 	adapter = netdev_priv(netdev);
1514 	platform_set_drvdata(pdev, adapter);
1515 	adapter->pdev = pdev;
1516 	adapter->dmadev = &pdev->dev;
1517 	adapter->netdev = netdev;
1518 	adapter->msg_enable = NETIF_MSG_DRV | NETIF_MSG_PROBE |
1519 			      NETIF_MSG_LINK | NETIF_MSG_IFUP |
1520 			      NETIF_MSG_IFDOWN | NETIF_MSG_TX_QUEUED;
1521 
1522 	netdev->min_mtu = ETH_MIN_MTU;
1523 	netdev->max_mtu = TSNEP_MAX_FRAME_SIZE;
1524 
1525 	mutex_init(&adapter->gate_control_lock);
1526 	mutex_init(&adapter->rxnfc_lock);
1527 	INIT_LIST_HEAD(&adapter->rxnfc_rules);
1528 
1529 	io = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1530 	adapter->addr = devm_ioremap_resource(&pdev->dev, io);
1531 	if (IS_ERR(adapter->addr))
1532 		return PTR_ERR(adapter->addr);
1533 	netdev->mem_start = io->start;
1534 	netdev->mem_end = io->end;
1535 
1536 	type = ioread32(adapter->addr + ECM_TYPE);
1537 	revision = (type & ECM_REVISION_MASK) >> ECM_REVISION_SHIFT;
1538 	version = (type & ECM_VERSION_MASK) >> ECM_VERSION_SHIFT;
1539 	queue_count = (type & ECM_QUEUE_COUNT_MASK) >> ECM_QUEUE_COUNT_SHIFT;
1540 	adapter->gate_control = type & ECM_GATE_CONTROL;
1541 	adapter->rxnfc_max = TSNEP_RX_ASSIGN_ETHER_TYPE_COUNT;
1542 
1543 	tsnep_disable_irq(adapter, ECM_INT_ALL);
1544 
1545 	retval = tsnep_queue_init(adapter, queue_count);
1546 	if (retval)
1547 		return retval;
1548 
1549 	retval = dma_set_mask_and_coherent(&adapter->pdev->dev,
1550 					   DMA_BIT_MASK(64));
1551 	if (retval) {
1552 		dev_err(&adapter->pdev->dev, "no usable DMA configuration.\n");
1553 		return retval;
1554 	}
1555 
1556 	retval = tsnep_mac_init(adapter);
1557 	if (retval)
1558 		return retval;
1559 
1560 	retval = tsnep_mdio_init(adapter);
1561 	if (retval)
1562 		goto mdio_init_failed;
1563 
1564 	retval = tsnep_phy_init(adapter);
1565 	if (retval)
1566 		goto phy_init_failed;
1567 
1568 	retval = tsnep_ptp_init(adapter);
1569 	if (retval)
1570 		goto ptp_init_failed;
1571 
1572 	retval = tsnep_tc_init(adapter);
1573 	if (retval)
1574 		goto tc_init_failed;
1575 
1576 	retval = tsnep_rxnfc_init(adapter);
1577 	if (retval)
1578 		goto rxnfc_init_failed;
1579 
1580 	netdev->netdev_ops = &tsnep_netdev_ops;
1581 	netdev->ethtool_ops = &tsnep_ethtool_ops;
1582 	netdev->features = NETIF_F_SG;
1583 	netdev->hw_features = netdev->features | NETIF_F_LOOPBACK;
1584 
1585 	/* carrier off reporting is important to ethtool even BEFORE open */
1586 	netif_carrier_off(netdev);
1587 
1588 	retval = register_netdev(netdev);
1589 	if (retval)
1590 		goto register_failed;
1591 
1592 	dev_info(&adapter->pdev->dev, "device version %d.%02d\n", version,
1593 		 revision);
1594 	if (adapter->gate_control)
1595 		dev_info(&adapter->pdev->dev, "gate control detected\n");
1596 
1597 	return 0;
1598 
1599 register_failed:
1600 	tsnep_rxnfc_cleanup(adapter);
1601 rxnfc_init_failed:
1602 	tsnep_tc_cleanup(adapter);
1603 tc_init_failed:
1604 	tsnep_ptp_cleanup(adapter);
1605 ptp_init_failed:
1606 phy_init_failed:
1607 	if (adapter->mdiobus)
1608 		mdiobus_unregister(adapter->mdiobus);
1609 mdio_init_failed:
1610 	return retval;
1611 }
1612 
1613 static int tsnep_remove(struct platform_device *pdev)
1614 {
1615 	struct tsnep_adapter *adapter = platform_get_drvdata(pdev);
1616 
1617 	unregister_netdev(adapter->netdev);
1618 
1619 	tsnep_rxnfc_cleanup(adapter);
1620 
1621 	tsnep_tc_cleanup(adapter);
1622 
1623 	tsnep_ptp_cleanup(adapter);
1624 
1625 	if (adapter->mdiobus)
1626 		mdiobus_unregister(adapter->mdiobus);
1627 
1628 	tsnep_disable_irq(adapter, ECM_INT_ALL);
1629 
1630 	return 0;
1631 }
1632 
1633 static const struct of_device_id tsnep_of_match[] = {
1634 	{ .compatible = "engleder,tsnep", },
1635 { },
1636 };
1637 MODULE_DEVICE_TABLE(of, tsnep_of_match);
1638 
1639 static struct platform_driver tsnep_driver = {
1640 	.driver = {
1641 		.name = TSNEP,
1642 		.of_match_table = tsnep_of_match,
1643 	},
1644 	.probe = tsnep_probe,
1645 	.remove = tsnep_remove,
1646 };
1647 module_platform_driver(tsnep_driver);
1648 
1649 MODULE_AUTHOR("Gerhard Engleder <gerhard@engleder-embedded.com>");
1650 MODULE_DESCRIPTION("TSN endpoint Ethernet MAC driver");
1651 MODULE_LICENSE("GPL");
1652