xref: /openbmc/linux/drivers/net/ethernet/engleder/tsnep_main.c (revision 9df839a711aee437390b16ee39cf0b5c1620be6a)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (C) 2021 Gerhard Engleder <gerhard@engleder-embedded.com> */
3 
4 /* TSN endpoint Ethernet MAC driver
5  *
6  * The TSN endpoint Ethernet MAC is a FPGA based network device for real-time
7  * communication. It is designed for endpoints within TSN (Time Sensitive
8  * Networking) networks; e.g., for PLCs in the industrial automation case.
9  *
10  * It supports multiple TX/RX queue pairs. The first TX/RX queue pair is used
11  * by the driver.
12  *
13  * More information can be found here:
14  * - www.embedded-experts.at/tsn
15  * - www.engleder-embedded.com
16  */
17 
18 #include "tsnep.h"
19 #include "tsnep_hw.h"
20 
21 #include <linux/module.h>
22 #include <linux/of.h>
23 #include <linux/of_net.h>
24 #include <linux/of_mdio.h>
25 #include <linux/interrupt.h>
26 #include <linux/etherdevice.h>
27 #include <linux/phy.h>
28 #include <linux/iopoll.h>
29 #include <linux/bpf.h>
30 #include <linux/bpf_trace.h>
31 
32 #define TSNEP_RX_OFFSET (max(NET_SKB_PAD, XDP_PACKET_HEADROOM) + NET_IP_ALIGN)
33 #define TSNEP_HEADROOM ALIGN(TSNEP_RX_OFFSET, 4)
34 #define TSNEP_MAX_RX_BUF_SIZE (PAGE_SIZE - TSNEP_HEADROOM - \
35 			       SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
36 
37 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
38 #define DMA_ADDR_HIGH(dma_addr) ((u32)(((dma_addr) >> 32) & 0xFFFFFFFF))
39 #else
40 #define DMA_ADDR_HIGH(dma_addr) ((u32)(0))
41 #endif
42 #define DMA_ADDR_LOW(dma_addr) ((u32)((dma_addr) & 0xFFFFFFFF))
43 
44 #define TSNEP_COALESCE_USECS_DEFAULT 64
45 #define TSNEP_COALESCE_USECS_MAX     ((ECM_INT_DELAY_MASK >> ECM_INT_DELAY_SHIFT) * \
46 				      ECM_INT_DELAY_BASE_US + ECM_INT_DELAY_BASE_US - 1)
47 
48 #define TSNEP_TX_TYPE_SKB	BIT(0)
49 #define TSNEP_TX_TYPE_SKB_FRAG	BIT(1)
50 #define TSNEP_TX_TYPE_XDP_TX	BIT(2)
51 #define TSNEP_TX_TYPE_XDP_NDO	BIT(3)
52 
53 #define TSNEP_XDP_TX		BIT(0)
54 #define TSNEP_XDP_REDIRECT	BIT(1)
55 
56 static void tsnep_enable_irq(struct tsnep_adapter *adapter, u32 mask)
57 {
58 	iowrite32(mask, adapter->addr + ECM_INT_ENABLE);
59 }
60 
61 static void tsnep_disable_irq(struct tsnep_adapter *adapter, u32 mask)
62 {
63 	mask |= ECM_INT_DISABLE;
64 	iowrite32(mask, adapter->addr + ECM_INT_ENABLE);
65 }
66 
67 static irqreturn_t tsnep_irq(int irq, void *arg)
68 {
69 	struct tsnep_adapter *adapter = arg;
70 	u32 active = ioread32(adapter->addr + ECM_INT_ACTIVE);
71 
72 	/* acknowledge interrupt */
73 	if (active != 0)
74 		iowrite32(active, adapter->addr + ECM_INT_ACKNOWLEDGE);
75 
76 	/* handle link interrupt */
77 	if ((active & ECM_INT_LINK) != 0)
78 		phy_mac_interrupt(adapter->netdev->phydev);
79 
80 	/* handle TX/RX queue 0 interrupt */
81 	if ((active & adapter->queue[0].irq_mask) != 0) {
82 		tsnep_disable_irq(adapter, adapter->queue[0].irq_mask);
83 		napi_schedule(&adapter->queue[0].napi);
84 	}
85 
86 	return IRQ_HANDLED;
87 }
88 
89 static irqreturn_t tsnep_irq_txrx(int irq, void *arg)
90 {
91 	struct tsnep_queue *queue = arg;
92 
93 	/* handle TX/RX queue interrupt */
94 	tsnep_disable_irq(queue->adapter, queue->irq_mask);
95 	napi_schedule(&queue->napi);
96 
97 	return IRQ_HANDLED;
98 }
99 
100 int tsnep_set_irq_coalesce(struct tsnep_queue *queue, u32 usecs)
101 {
102 	if (usecs > TSNEP_COALESCE_USECS_MAX)
103 		return -ERANGE;
104 
105 	usecs /= ECM_INT_DELAY_BASE_US;
106 	usecs <<= ECM_INT_DELAY_SHIFT;
107 	usecs &= ECM_INT_DELAY_MASK;
108 
109 	queue->irq_delay &= ~ECM_INT_DELAY_MASK;
110 	queue->irq_delay |= usecs;
111 	iowrite8(queue->irq_delay, queue->irq_delay_addr);
112 
113 	return 0;
114 }
115 
116 u32 tsnep_get_irq_coalesce(struct tsnep_queue *queue)
117 {
118 	u32 usecs;
119 
120 	usecs = (queue->irq_delay & ECM_INT_DELAY_MASK);
121 	usecs >>= ECM_INT_DELAY_SHIFT;
122 	usecs *= ECM_INT_DELAY_BASE_US;
123 
124 	return usecs;
125 }
126 
127 static int tsnep_mdiobus_read(struct mii_bus *bus, int addr, int regnum)
128 {
129 	struct tsnep_adapter *adapter = bus->priv;
130 	u32 md;
131 	int retval;
132 
133 	md = ECM_MD_READ;
134 	if (!adapter->suppress_preamble)
135 		md |= ECM_MD_PREAMBLE;
136 	md |= (regnum << ECM_MD_ADDR_SHIFT) & ECM_MD_ADDR_MASK;
137 	md |= (addr << ECM_MD_PHY_ADDR_SHIFT) & ECM_MD_PHY_ADDR_MASK;
138 	iowrite32(md, adapter->addr + ECM_MD_CONTROL);
139 	retval = readl_poll_timeout_atomic(adapter->addr + ECM_MD_STATUS, md,
140 					   !(md & ECM_MD_BUSY), 16, 1000);
141 	if (retval != 0)
142 		return retval;
143 
144 	return (md & ECM_MD_DATA_MASK) >> ECM_MD_DATA_SHIFT;
145 }
146 
147 static int tsnep_mdiobus_write(struct mii_bus *bus, int addr, int regnum,
148 			       u16 val)
149 {
150 	struct tsnep_adapter *adapter = bus->priv;
151 	u32 md;
152 	int retval;
153 
154 	md = ECM_MD_WRITE;
155 	if (!adapter->suppress_preamble)
156 		md |= ECM_MD_PREAMBLE;
157 	md |= (regnum << ECM_MD_ADDR_SHIFT) & ECM_MD_ADDR_MASK;
158 	md |= (addr << ECM_MD_PHY_ADDR_SHIFT) & ECM_MD_PHY_ADDR_MASK;
159 	md |= ((u32)val << ECM_MD_DATA_SHIFT) & ECM_MD_DATA_MASK;
160 	iowrite32(md, adapter->addr + ECM_MD_CONTROL);
161 	retval = readl_poll_timeout_atomic(adapter->addr + ECM_MD_STATUS, md,
162 					   !(md & ECM_MD_BUSY), 16, 1000);
163 	if (retval != 0)
164 		return retval;
165 
166 	return 0;
167 }
168 
169 static void tsnep_set_link_mode(struct tsnep_adapter *adapter)
170 {
171 	u32 mode;
172 
173 	switch (adapter->phydev->speed) {
174 	case SPEED_100:
175 		mode = ECM_LINK_MODE_100;
176 		break;
177 	case SPEED_1000:
178 		mode = ECM_LINK_MODE_1000;
179 		break;
180 	default:
181 		mode = ECM_LINK_MODE_OFF;
182 		break;
183 	}
184 	iowrite32(mode, adapter->addr + ECM_STATUS);
185 }
186 
187 static void tsnep_phy_link_status_change(struct net_device *netdev)
188 {
189 	struct tsnep_adapter *adapter = netdev_priv(netdev);
190 	struct phy_device *phydev = netdev->phydev;
191 
192 	if (phydev->link)
193 		tsnep_set_link_mode(adapter);
194 
195 	phy_print_status(netdev->phydev);
196 }
197 
198 static int tsnep_phy_loopback(struct tsnep_adapter *adapter, bool enable)
199 {
200 	int retval;
201 
202 	retval = phy_loopback(adapter->phydev, enable);
203 
204 	/* PHY link state change is not signaled if loopback is enabled, it
205 	 * would delay a working loopback anyway, let's ensure that loopback
206 	 * is working immediately by setting link mode directly
207 	 */
208 	if (!retval && enable)
209 		tsnep_set_link_mode(adapter);
210 
211 	return retval;
212 }
213 
214 static int tsnep_phy_open(struct tsnep_adapter *adapter)
215 {
216 	struct phy_device *phydev;
217 	struct ethtool_eee ethtool_eee;
218 	int retval;
219 
220 	retval = phy_connect_direct(adapter->netdev, adapter->phydev,
221 				    tsnep_phy_link_status_change,
222 				    adapter->phy_mode);
223 	if (retval)
224 		return retval;
225 	phydev = adapter->netdev->phydev;
226 
227 	/* MAC supports only 100Mbps|1000Mbps full duplex
228 	 * SPE (Single Pair Ethernet) is also an option but not implemented yet
229 	 */
230 	phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_10baseT_Half_BIT);
231 	phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_10baseT_Full_BIT);
232 	phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_100baseT_Half_BIT);
233 	phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_1000baseT_Half_BIT);
234 
235 	/* disable EEE autoneg, EEE not supported by TSNEP */
236 	memset(&ethtool_eee, 0, sizeof(ethtool_eee));
237 	phy_ethtool_set_eee(adapter->phydev, &ethtool_eee);
238 
239 	adapter->phydev->irq = PHY_MAC_INTERRUPT;
240 	phy_start(adapter->phydev);
241 
242 	return 0;
243 }
244 
245 static void tsnep_phy_close(struct tsnep_adapter *adapter)
246 {
247 	phy_stop(adapter->netdev->phydev);
248 	phy_disconnect(adapter->netdev->phydev);
249 }
250 
251 static void tsnep_tx_ring_cleanup(struct tsnep_tx *tx)
252 {
253 	struct device *dmadev = tx->adapter->dmadev;
254 	int i;
255 
256 	memset(tx->entry, 0, sizeof(tx->entry));
257 
258 	for (i = 0; i < TSNEP_RING_PAGE_COUNT; i++) {
259 		if (tx->page[i]) {
260 			dma_free_coherent(dmadev, PAGE_SIZE, tx->page[i],
261 					  tx->page_dma[i]);
262 			tx->page[i] = NULL;
263 			tx->page_dma[i] = 0;
264 		}
265 	}
266 }
267 
268 static int tsnep_tx_ring_init(struct tsnep_tx *tx)
269 {
270 	struct device *dmadev = tx->adapter->dmadev;
271 	struct tsnep_tx_entry *entry;
272 	struct tsnep_tx_entry *next_entry;
273 	int i, j;
274 	int retval;
275 
276 	for (i = 0; i < TSNEP_RING_PAGE_COUNT; i++) {
277 		tx->page[i] =
278 			dma_alloc_coherent(dmadev, PAGE_SIZE, &tx->page_dma[i],
279 					   GFP_KERNEL);
280 		if (!tx->page[i]) {
281 			retval = -ENOMEM;
282 			goto alloc_failed;
283 		}
284 		for (j = 0; j < TSNEP_RING_ENTRIES_PER_PAGE; j++) {
285 			entry = &tx->entry[TSNEP_RING_ENTRIES_PER_PAGE * i + j];
286 			entry->desc_wb = (struct tsnep_tx_desc_wb *)
287 				(((u8 *)tx->page[i]) + TSNEP_DESC_SIZE * j);
288 			entry->desc = (struct tsnep_tx_desc *)
289 				(((u8 *)entry->desc_wb) + TSNEP_DESC_OFFSET);
290 			entry->desc_dma = tx->page_dma[i] + TSNEP_DESC_SIZE * j;
291 		}
292 	}
293 	for (i = 0; i < TSNEP_RING_SIZE; i++) {
294 		entry = &tx->entry[i];
295 		next_entry = &tx->entry[(i + 1) % TSNEP_RING_SIZE];
296 		entry->desc->next = __cpu_to_le64(next_entry->desc_dma);
297 	}
298 
299 	return 0;
300 
301 alloc_failed:
302 	tsnep_tx_ring_cleanup(tx);
303 	return retval;
304 }
305 
306 static void tsnep_tx_activate(struct tsnep_tx *tx, int index, int length,
307 			      bool last)
308 {
309 	struct tsnep_tx_entry *entry = &tx->entry[index];
310 
311 	entry->properties = 0;
312 	/* xdpf is union with skb */
313 	if (entry->skb) {
314 		entry->properties = length & TSNEP_DESC_LENGTH_MASK;
315 		entry->properties |= TSNEP_DESC_INTERRUPT_FLAG;
316 		if ((entry->type & TSNEP_TX_TYPE_SKB) &&
317 		    (skb_shinfo(entry->skb)->tx_flags & SKBTX_IN_PROGRESS))
318 			entry->properties |= TSNEP_DESC_EXTENDED_WRITEBACK_FLAG;
319 
320 		/* toggle user flag to prevent false acknowledge
321 		 *
322 		 * Only the first fragment is acknowledged. For all other
323 		 * fragments no acknowledge is done and the last written owner
324 		 * counter stays in the writeback descriptor. Therefore, it is
325 		 * possible that the last written owner counter is identical to
326 		 * the new incremented owner counter and a false acknowledge is
327 		 * detected before the real acknowledge has been done by
328 		 * hardware.
329 		 *
330 		 * The user flag is used to prevent this situation. The user
331 		 * flag is copied to the writeback descriptor by the hardware
332 		 * and is used as additional acknowledge data. By toggeling the
333 		 * user flag only for the first fragment (which is
334 		 * acknowledged), it is guaranteed that the last acknowledge
335 		 * done for this descriptor has used a different user flag and
336 		 * cannot be detected as false acknowledge.
337 		 */
338 		entry->owner_user_flag = !entry->owner_user_flag;
339 	}
340 	if (last)
341 		entry->properties |= TSNEP_TX_DESC_LAST_FRAGMENT_FLAG;
342 	if (index == tx->increment_owner_counter) {
343 		tx->owner_counter++;
344 		if (tx->owner_counter == 4)
345 			tx->owner_counter = 1;
346 		tx->increment_owner_counter--;
347 		if (tx->increment_owner_counter < 0)
348 			tx->increment_owner_counter = TSNEP_RING_SIZE - 1;
349 	}
350 	entry->properties |=
351 		(tx->owner_counter << TSNEP_DESC_OWNER_COUNTER_SHIFT) &
352 		TSNEP_DESC_OWNER_COUNTER_MASK;
353 	if (entry->owner_user_flag)
354 		entry->properties |= TSNEP_TX_DESC_OWNER_USER_FLAG;
355 	entry->desc->more_properties =
356 		__cpu_to_le32(entry->len & TSNEP_DESC_LENGTH_MASK);
357 
358 	/* descriptor properties shall be written last, because valid data is
359 	 * signaled there
360 	 */
361 	dma_wmb();
362 
363 	entry->desc->properties = __cpu_to_le32(entry->properties);
364 }
365 
366 static int tsnep_tx_desc_available(struct tsnep_tx *tx)
367 {
368 	if (tx->read <= tx->write)
369 		return TSNEP_RING_SIZE - tx->write + tx->read - 1;
370 	else
371 		return tx->read - tx->write - 1;
372 }
373 
374 static int tsnep_tx_map(struct sk_buff *skb, struct tsnep_tx *tx, int count)
375 {
376 	struct device *dmadev = tx->adapter->dmadev;
377 	struct tsnep_tx_entry *entry;
378 	unsigned int len;
379 	dma_addr_t dma;
380 	int map_len = 0;
381 	int i;
382 
383 	for (i = 0; i < count; i++) {
384 		entry = &tx->entry[(tx->write + i) % TSNEP_RING_SIZE];
385 
386 		if (!i) {
387 			len = skb_headlen(skb);
388 			dma = dma_map_single(dmadev, skb->data, len,
389 					     DMA_TO_DEVICE);
390 
391 			entry->type = TSNEP_TX_TYPE_SKB;
392 		} else {
393 			len = skb_frag_size(&skb_shinfo(skb)->frags[i - 1]);
394 			dma = skb_frag_dma_map(dmadev,
395 					       &skb_shinfo(skb)->frags[i - 1],
396 					       0, len, DMA_TO_DEVICE);
397 
398 			entry->type = TSNEP_TX_TYPE_SKB_FRAG;
399 		}
400 		if (dma_mapping_error(dmadev, dma))
401 			return -ENOMEM;
402 
403 		entry->len = len;
404 		dma_unmap_addr_set(entry, dma, dma);
405 
406 		entry->desc->tx = __cpu_to_le64(dma);
407 
408 		map_len += len;
409 	}
410 
411 	return map_len;
412 }
413 
414 static int tsnep_tx_unmap(struct tsnep_tx *tx, int index, int count)
415 {
416 	struct device *dmadev = tx->adapter->dmadev;
417 	struct tsnep_tx_entry *entry;
418 	int map_len = 0;
419 	int i;
420 
421 	for (i = 0; i < count; i++) {
422 		entry = &tx->entry[(index + i) % TSNEP_RING_SIZE];
423 
424 		if (entry->len) {
425 			if (entry->type & TSNEP_TX_TYPE_SKB)
426 				dma_unmap_single(dmadev,
427 						 dma_unmap_addr(entry, dma),
428 						 dma_unmap_len(entry, len),
429 						 DMA_TO_DEVICE);
430 			else if (entry->type &
431 				 (TSNEP_TX_TYPE_SKB_FRAG | TSNEP_TX_TYPE_XDP_NDO))
432 				dma_unmap_page(dmadev,
433 					       dma_unmap_addr(entry, dma),
434 					       dma_unmap_len(entry, len),
435 					       DMA_TO_DEVICE);
436 			map_len += entry->len;
437 			entry->len = 0;
438 		}
439 	}
440 
441 	return map_len;
442 }
443 
444 static netdev_tx_t tsnep_xmit_frame_ring(struct sk_buff *skb,
445 					 struct tsnep_tx *tx)
446 {
447 	int count = 1;
448 	struct tsnep_tx_entry *entry;
449 	int length;
450 	int i;
451 	int retval;
452 
453 	if (skb_shinfo(skb)->nr_frags > 0)
454 		count += skb_shinfo(skb)->nr_frags;
455 
456 	if (tsnep_tx_desc_available(tx) < count) {
457 		/* ring full, shall not happen because queue is stopped if full
458 		 * below
459 		 */
460 		netif_stop_subqueue(tx->adapter->netdev, tx->queue_index);
461 
462 		return NETDEV_TX_BUSY;
463 	}
464 
465 	entry = &tx->entry[tx->write];
466 	entry->skb = skb;
467 
468 	retval = tsnep_tx_map(skb, tx, count);
469 	if (retval < 0) {
470 		tsnep_tx_unmap(tx, tx->write, count);
471 		dev_kfree_skb_any(entry->skb);
472 		entry->skb = NULL;
473 
474 		tx->dropped++;
475 
476 		return NETDEV_TX_OK;
477 	}
478 	length = retval;
479 
480 	if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)
481 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
482 
483 	for (i = 0; i < count; i++)
484 		tsnep_tx_activate(tx, (tx->write + i) % TSNEP_RING_SIZE, length,
485 				  i == count - 1);
486 	tx->write = (tx->write + count) % TSNEP_RING_SIZE;
487 
488 	skb_tx_timestamp(skb);
489 
490 	/* descriptor properties shall be valid before hardware is notified */
491 	dma_wmb();
492 
493 	iowrite32(TSNEP_CONTROL_TX_ENABLE, tx->addr + TSNEP_CONTROL);
494 
495 	if (tsnep_tx_desc_available(tx) < (MAX_SKB_FRAGS + 1)) {
496 		/* ring can get full with next frame */
497 		netif_stop_subqueue(tx->adapter->netdev, tx->queue_index);
498 	}
499 
500 	return NETDEV_TX_OK;
501 }
502 
503 static int tsnep_xdp_tx_map(struct xdp_frame *xdpf, struct tsnep_tx *tx,
504 			    struct skb_shared_info *shinfo, int count, u32 type)
505 {
506 	struct device *dmadev = tx->adapter->dmadev;
507 	struct tsnep_tx_entry *entry;
508 	struct page *page;
509 	skb_frag_t *frag;
510 	unsigned int len;
511 	int map_len = 0;
512 	dma_addr_t dma;
513 	void *data;
514 	int i;
515 
516 	frag = NULL;
517 	len = xdpf->len;
518 	for (i = 0; i < count; i++) {
519 		entry = &tx->entry[(tx->write + i) % TSNEP_RING_SIZE];
520 		if (type & TSNEP_TX_TYPE_XDP_NDO) {
521 			data = unlikely(frag) ? skb_frag_address(frag) :
522 						xdpf->data;
523 			dma = dma_map_single(dmadev, data, len, DMA_TO_DEVICE);
524 			if (dma_mapping_error(dmadev, dma))
525 				return -ENOMEM;
526 
527 			entry->type = TSNEP_TX_TYPE_XDP_NDO;
528 		} else {
529 			page = unlikely(frag) ? skb_frag_page(frag) :
530 						virt_to_page(xdpf->data);
531 			dma = page_pool_get_dma_addr(page);
532 			if (unlikely(frag))
533 				dma += skb_frag_off(frag);
534 			else
535 				dma += sizeof(*xdpf) + xdpf->headroom;
536 			dma_sync_single_for_device(dmadev, dma, len,
537 						   DMA_BIDIRECTIONAL);
538 
539 			entry->type = TSNEP_TX_TYPE_XDP_TX;
540 		}
541 
542 		entry->len = len;
543 		dma_unmap_addr_set(entry, dma, dma);
544 
545 		entry->desc->tx = __cpu_to_le64(dma);
546 
547 		map_len += len;
548 
549 		if (i + 1 < count) {
550 			frag = &shinfo->frags[i];
551 			len = skb_frag_size(frag);
552 		}
553 	}
554 
555 	return map_len;
556 }
557 
558 /* This function requires __netif_tx_lock is held by the caller. */
559 static bool tsnep_xdp_xmit_frame_ring(struct xdp_frame *xdpf,
560 				      struct tsnep_tx *tx, u32 type)
561 {
562 	struct skb_shared_info *shinfo = xdp_get_shared_info_from_frame(xdpf);
563 	struct tsnep_tx_entry *entry;
564 	int count, length, retval, i;
565 
566 	count = 1;
567 	if (unlikely(xdp_frame_has_frags(xdpf)))
568 		count += shinfo->nr_frags;
569 
570 	/* ensure that TX ring is not filled up by XDP, always MAX_SKB_FRAGS
571 	 * will be available for normal TX path and queue is stopped there if
572 	 * necessary
573 	 */
574 	if (tsnep_tx_desc_available(tx) < (MAX_SKB_FRAGS + 1 + count))
575 		return false;
576 
577 	entry = &tx->entry[tx->write];
578 	entry->xdpf = xdpf;
579 
580 	retval = tsnep_xdp_tx_map(xdpf, tx, shinfo, count, type);
581 	if (retval < 0) {
582 		tsnep_tx_unmap(tx, tx->write, count);
583 		entry->xdpf = NULL;
584 
585 		tx->dropped++;
586 
587 		return false;
588 	}
589 	length = retval;
590 
591 	for (i = 0; i < count; i++)
592 		tsnep_tx_activate(tx, (tx->write + i) % TSNEP_RING_SIZE, length,
593 				  i == count - 1);
594 	tx->write = (tx->write + count) % TSNEP_RING_SIZE;
595 
596 	/* descriptor properties shall be valid before hardware is notified */
597 	dma_wmb();
598 
599 	return true;
600 }
601 
602 static void tsnep_xdp_xmit_flush(struct tsnep_tx *tx)
603 {
604 	iowrite32(TSNEP_CONTROL_TX_ENABLE, tx->addr + TSNEP_CONTROL);
605 }
606 
607 static bool tsnep_xdp_xmit_back(struct tsnep_adapter *adapter,
608 				struct xdp_buff *xdp,
609 				struct netdev_queue *tx_nq, struct tsnep_tx *tx)
610 {
611 	struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
612 	bool xmit;
613 
614 	if (unlikely(!xdpf))
615 		return false;
616 
617 	__netif_tx_lock(tx_nq, smp_processor_id());
618 
619 	xmit = tsnep_xdp_xmit_frame_ring(xdpf, tx, TSNEP_TX_TYPE_XDP_TX);
620 
621 	/* Avoid transmit queue timeout since we share it with the slow path */
622 	if (xmit)
623 		txq_trans_cond_update(tx_nq);
624 
625 	__netif_tx_unlock(tx_nq);
626 
627 	return xmit;
628 }
629 
630 static bool tsnep_tx_poll(struct tsnep_tx *tx, int napi_budget)
631 {
632 	struct tsnep_tx_entry *entry;
633 	struct netdev_queue *nq;
634 	int budget = 128;
635 	int length;
636 	int count;
637 
638 	nq = netdev_get_tx_queue(tx->adapter->netdev, tx->queue_index);
639 	__netif_tx_lock(nq, smp_processor_id());
640 
641 	do {
642 		if (tx->read == tx->write)
643 			break;
644 
645 		entry = &tx->entry[tx->read];
646 		if ((__le32_to_cpu(entry->desc_wb->properties) &
647 		     TSNEP_TX_DESC_OWNER_MASK) !=
648 		    (entry->properties & TSNEP_TX_DESC_OWNER_MASK))
649 			break;
650 
651 		/* descriptor properties shall be read first, because valid data
652 		 * is signaled there
653 		 */
654 		dma_rmb();
655 
656 		count = 1;
657 		if ((entry->type & TSNEP_TX_TYPE_SKB) &&
658 		    skb_shinfo(entry->skb)->nr_frags > 0)
659 			count += skb_shinfo(entry->skb)->nr_frags;
660 		else if (!(entry->type & TSNEP_TX_TYPE_SKB) &&
661 			 xdp_frame_has_frags(entry->xdpf))
662 			count += xdp_get_shared_info_from_frame(entry->xdpf)->nr_frags;
663 
664 		length = tsnep_tx_unmap(tx, tx->read, count);
665 
666 		if ((entry->type & TSNEP_TX_TYPE_SKB) &&
667 		    (skb_shinfo(entry->skb)->tx_flags & SKBTX_IN_PROGRESS) &&
668 		    (__le32_to_cpu(entry->desc_wb->properties) &
669 		     TSNEP_DESC_EXTENDED_WRITEBACK_FLAG)) {
670 			struct skb_shared_hwtstamps hwtstamps;
671 			u64 timestamp;
672 
673 			if (skb_shinfo(entry->skb)->tx_flags &
674 			    SKBTX_HW_TSTAMP_USE_CYCLES)
675 				timestamp =
676 					__le64_to_cpu(entry->desc_wb->counter);
677 			else
678 				timestamp =
679 					__le64_to_cpu(entry->desc_wb->timestamp);
680 
681 			memset(&hwtstamps, 0, sizeof(hwtstamps));
682 			hwtstamps.hwtstamp = ns_to_ktime(timestamp);
683 
684 			skb_tstamp_tx(entry->skb, &hwtstamps);
685 		}
686 
687 		if (entry->type & TSNEP_TX_TYPE_SKB)
688 			napi_consume_skb(entry->skb, napi_budget);
689 		else
690 			xdp_return_frame_rx_napi(entry->xdpf);
691 		/* xdpf is union with skb */
692 		entry->skb = NULL;
693 
694 		tx->read = (tx->read + count) % TSNEP_RING_SIZE;
695 
696 		tx->packets++;
697 		tx->bytes += length + ETH_FCS_LEN;
698 
699 		budget--;
700 	} while (likely(budget));
701 
702 	if ((tsnep_tx_desc_available(tx) >= ((MAX_SKB_FRAGS + 1) * 2)) &&
703 	    netif_tx_queue_stopped(nq)) {
704 		netif_tx_wake_queue(nq);
705 	}
706 
707 	__netif_tx_unlock(nq);
708 
709 	return budget != 0;
710 }
711 
712 static bool tsnep_tx_pending(struct tsnep_tx *tx)
713 {
714 	struct tsnep_tx_entry *entry;
715 	struct netdev_queue *nq;
716 	bool pending = false;
717 
718 	nq = netdev_get_tx_queue(tx->adapter->netdev, tx->queue_index);
719 	__netif_tx_lock(nq, smp_processor_id());
720 
721 	if (tx->read != tx->write) {
722 		entry = &tx->entry[tx->read];
723 		if ((__le32_to_cpu(entry->desc_wb->properties) &
724 		     TSNEP_TX_DESC_OWNER_MASK) ==
725 		    (entry->properties & TSNEP_TX_DESC_OWNER_MASK))
726 			pending = true;
727 	}
728 
729 	__netif_tx_unlock(nq);
730 
731 	return pending;
732 }
733 
734 static int tsnep_tx_open(struct tsnep_adapter *adapter, void __iomem *addr,
735 			 int queue_index, struct tsnep_tx *tx)
736 {
737 	dma_addr_t dma;
738 	int retval;
739 
740 	memset(tx, 0, sizeof(*tx));
741 	tx->adapter = adapter;
742 	tx->addr = addr;
743 	tx->queue_index = queue_index;
744 
745 	retval = tsnep_tx_ring_init(tx);
746 	if (retval)
747 		return retval;
748 
749 	dma = tx->entry[0].desc_dma | TSNEP_RESET_OWNER_COUNTER;
750 	iowrite32(DMA_ADDR_LOW(dma), tx->addr + TSNEP_TX_DESC_ADDR_LOW);
751 	iowrite32(DMA_ADDR_HIGH(dma), tx->addr + TSNEP_TX_DESC_ADDR_HIGH);
752 	tx->owner_counter = 1;
753 	tx->increment_owner_counter = TSNEP_RING_SIZE - 1;
754 
755 	return 0;
756 }
757 
758 static void tsnep_tx_close(struct tsnep_tx *tx)
759 {
760 	u32 val;
761 
762 	readx_poll_timeout(ioread32, tx->addr + TSNEP_CONTROL, val,
763 			   ((val & TSNEP_CONTROL_TX_ENABLE) == 0), 10000,
764 			   1000000);
765 
766 	tsnep_tx_ring_cleanup(tx);
767 }
768 
769 static void tsnep_rx_ring_cleanup(struct tsnep_rx *rx)
770 {
771 	struct device *dmadev = rx->adapter->dmadev;
772 	struct tsnep_rx_entry *entry;
773 	int i;
774 
775 	for (i = 0; i < TSNEP_RING_SIZE; i++) {
776 		entry = &rx->entry[i];
777 		if (entry->page)
778 			page_pool_put_full_page(rx->page_pool, entry->page,
779 						false);
780 		entry->page = NULL;
781 	}
782 
783 	if (rx->page_pool)
784 		page_pool_destroy(rx->page_pool);
785 
786 	memset(rx->entry, 0, sizeof(rx->entry));
787 
788 	for (i = 0; i < TSNEP_RING_PAGE_COUNT; i++) {
789 		if (rx->page[i]) {
790 			dma_free_coherent(dmadev, PAGE_SIZE, rx->page[i],
791 					  rx->page_dma[i]);
792 			rx->page[i] = NULL;
793 			rx->page_dma[i] = 0;
794 		}
795 	}
796 }
797 
798 static int tsnep_rx_ring_init(struct tsnep_rx *rx)
799 {
800 	struct device *dmadev = rx->adapter->dmadev;
801 	struct tsnep_rx_entry *entry;
802 	struct page_pool_params pp_params = { 0 };
803 	struct tsnep_rx_entry *next_entry;
804 	int i, j;
805 	int retval;
806 
807 	for (i = 0; i < TSNEP_RING_PAGE_COUNT; i++) {
808 		rx->page[i] =
809 			dma_alloc_coherent(dmadev, PAGE_SIZE, &rx->page_dma[i],
810 					   GFP_KERNEL);
811 		if (!rx->page[i]) {
812 			retval = -ENOMEM;
813 			goto failed;
814 		}
815 		for (j = 0; j < TSNEP_RING_ENTRIES_PER_PAGE; j++) {
816 			entry = &rx->entry[TSNEP_RING_ENTRIES_PER_PAGE * i + j];
817 			entry->desc_wb = (struct tsnep_rx_desc_wb *)
818 				(((u8 *)rx->page[i]) + TSNEP_DESC_SIZE * j);
819 			entry->desc = (struct tsnep_rx_desc *)
820 				(((u8 *)entry->desc_wb) + TSNEP_DESC_OFFSET);
821 			entry->desc_dma = rx->page_dma[i] + TSNEP_DESC_SIZE * j;
822 		}
823 	}
824 
825 	pp_params.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV;
826 	pp_params.order = 0;
827 	pp_params.pool_size = TSNEP_RING_SIZE;
828 	pp_params.nid = dev_to_node(dmadev);
829 	pp_params.dev = dmadev;
830 	pp_params.dma_dir = DMA_BIDIRECTIONAL;
831 	pp_params.max_len = TSNEP_MAX_RX_BUF_SIZE;
832 	pp_params.offset = TSNEP_RX_OFFSET;
833 	rx->page_pool = page_pool_create(&pp_params);
834 	if (IS_ERR(rx->page_pool)) {
835 		retval = PTR_ERR(rx->page_pool);
836 		rx->page_pool = NULL;
837 		goto failed;
838 	}
839 
840 	for (i = 0; i < TSNEP_RING_SIZE; i++) {
841 		entry = &rx->entry[i];
842 		next_entry = &rx->entry[(i + 1) % TSNEP_RING_SIZE];
843 		entry->desc->next = __cpu_to_le64(next_entry->desc_dma);
844 	}
845 
846 	return 0;
847 
848 failed:
849 	tsnep_rx_ring_cleanup(rx);
850 	return retval;
851 }
852 
853 static int tsnep_rx_desc_available(struct tsnep_rx *rx)
854 {
855 	if (rx->read <= rx->write)
856 		return TSNEP_RING_SIZE - rx->write + rx->read - 1;
857 	else
858 		return rx->read - rx->write - 1;
859 }
860 
861 static void tsnep_rx_set_page(struct tsnep_rx *rx, struct tsnep_rx_entry *entry,
862 			      struct page *page)
863 {
864 	entry->page = page;
865 	entry->len = TSNEP_MAX_RX_BUF_SIZE;
866 	entry->dma = page_pool_get_dma_addr(entry->page);
867 	entry->desc->rx = __cpu_to_le64(entry->dma + TSNEP_RX_OFFSET);
868 }
869 
870 static int tsnep_rx_alloc_buffer(struct tsnep_rx *rx, int index)
871 {
872 	struct tsnep_rx_entry *entry = &rx->entry[index];
873 	struct page *page;
874 
875 	page = page_pool_dev_alloc_pages(rx->page_pool);
876 	if (unlikely(!page))
877 		return -ENOMEM;
878 	tsnep_rx_set_page(rx, entry, page);
879 
880 	return 0;
881 }
882 
883 static void tsnep_rx_reuse_buffer(struct tsnep_rx *rx, int index)
884 {
885 	struct tsnep_rx_entry *entry = &rx->entry[index];
886 	struct tsnep_rx_entry *read = &rx->entry[rx->read];
887 
888 	tsnep_rx_set_page(rx, entry, read->page);
889 	read->page = NULL;
890 }
891 
892 static void tsnep_rx_activate(struct tsnep_rx *rx, int index)
893 {
894 	struct tsnep_rx_entry *entry = &rx->entry[index];
895 
896 	/* TSNEP_MAX_RX_BUF_SIZE is a multiple of 4 */
897 	entry->properties = entry->len & TSNEP_DESC_LENGTH_MASK;
898 	entry->properties |= TSNEP_DESC_INTERRUPT_FLAG;
899 	if (index == rx->increment_owner_counter) {
900 		rx->owner_counter++;
901 		if (rx->owner_counter == 4)
902 			rx->owner_counter = 1;
903 		rx->increment_owner_counter--;
904 		if (rx->increment_owner_counter < 0)
905 			rx->increment_owner_counter = TSNEP_RING_SIZE - 1;
906 	}
907 	entry->properties |=
908 		(rx->owner_counter << TSNEP_DESC_OWNER_COUNTER_SHIFT) &
909 		TSNEP_DESC_OWNER_COUNTER_MASK;
910 
911 	/* descriptor properties shall be written last, because valid data is
912 	 * signaled there
913 	 */
914 	dma_wmb();
915 
916 	entry->desc->properties = __cpu_to_le32(entry->properties);
917 }
918 
919 static int tsnep_rx_refill(struct tsnep_rx *rx, int count, bool reuse)
920 {
921 	int index;
922 	bool alloc_failed = false;
923 	bool enable = false;
924 	int i;
925 	int retval;
926 
927 	for (i = 0; i < count && !alloc_failed; i++) {
928 		index = (rx->write + i) % TSNEP_RING_SIZE;
929 
930 		retval = tsnep_rx_alloc_buffer(rx, index);
931 		if (unlikely(retval)) {
932 			rx->alloc_failed++;
933 			alloc_failed = true;
934 
935 			/* reuse only if no other allocation was successful */
936 			if (i == 0 && reuse)
937 				tsnep_rx_reuse_buffer(rx, index);
938 			else
939 				break;
940 		}
941 
942 		tsnep_rx_activate(rx, index);
943 
944 		enable = true;
945 	}
946 
947 	if (enable) {
948 		rx->write = (rx->write + i) % TSNEP_RING_SIZE;
949 
950 		/* descriptor properties shall be valid before hardware is
951 		 * notified
952 		 */
953 		dma_wmb();
954 
955 		iowrite32(TSNEP_CONTROL_RX_ENABLE, rx->addr + TSNEP_CONTROL);
956 	}
957 
958 	return i;
959 }
960 
961 static bool tsnep_xdp_run_prog(struct tsnep_rx *rx, struct bpf_prog *prog,
962 			       struct xdp_buff *xdp, int *status,
963 			       struct netdev_queue *tx_nq, struct tsnep_tx *tx)
964 {
965 	unsigned int length;
966 	unsigned int sync;
967 	u32 act;
968 
969 	length = xdp->data_end - xdp->data_hard_start - XDP_PACKET_HEADROOM;
970 
971 	act = bpf_prog_run_xdp(prog, xdp);
972 
973 	/* Due xdp_adjust_tail: DMA sync for_device cover max len CPU touch */
974 	sync = xdp->data_end - xdp->data_hard_start - XDP_PACKET_HEADROOM;
975 	sync = max(sync, length);
976 
977 	switch (act) {
978 	case XDP_PASS:
979 		return false;
980 	case XDP_TX:
981 		if (!tsnep_xdp_xmit_back(rx->adapter, xdp, tx_nq, tx))
982 			goto out_failure;
983 		*status |= TSNEP_XDP_TX;
984 		return true;
985 	case XDP_REDIRECT:
986 		if (xdp_do_redirect(rx->adapter->netdev, xdp, prog) < 0)
987 			goto out_failure;
988 		*status |= TSNEP_XDP_REDIRECT;
989 		return true;
990 	default:
991 		bpf_warn_invalid_xdp_action(rx->adapter->netdev, prog, act);
992 		fallthrough;
993 	case XDP_ABORTED:
994 out_failure:
995 		trace_xdp_exception(rx->adapter->netdev, prog, act);
996 		fallthrough;
997 	case XDP_DROP:
998 		page_pool_put_page(rx->page_pool, virt_to_head_page(xdp->data),
999 				   sync, true);
1000 		return true;
1001 	}
1002 }
1003 
1004 static void tsnep_finalize_xdp(struct tsnep_adapter *adapter, int status,
1005 			       struct netdev_queue *tx_nq, struct tsnep_tx *tx)
1006 {
1007 	if (status & TSNEP_XDP_TX) {
1008 		__netif_tx_lock(tx_nq, smp_processor_id());
1009 		tsnep_xdp_xmit_flush(tx);
1010 		__netif_tx_unlock(tx_nq);
1011 	}
1012 
1013 	if (status & TSNEP_XDP_REDIRECT)
1014 		xdp_do_flush();
1015 }
1016 
1017 static struct sk_buff *tsnep_build_skb(struct tsnep_rx *rx, struct page *page,
1018 				       int length)
1019 {
1020 	struct sk_buff *skb;
1021 
1022 	skb = napi_build_skb(page_address(page), PAGE_SIZE);
1023 	if (unlikely(!skb))
1024 		return NULL;
1025 
1026 	/* update pointers within the skb to store the data */
1027 	skb_reserve(skb, TSNEP_RX_OFFSET + TSNEP_RX_INLINE_METADATA_SIZE);
1028 	__skb_put(skb, length - ETH_FCS_LEN);
1029 
1030 	if (rx->adapter->hwtstamp_config.rx_filter == HWTSTAMP_FILTER_ALL) {
1031 		struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
1032 		struct tsnep_rx_inline *rx_inline =
1033 			(struct tsnep_rx_inline *)(page_address(page) +
1034 						   TSNEP_RX_OFFSET);
1035 
1036 		skb_shinfo(skb)->tx_flags |=
1037 			SKBTX_HW_TSTAMP_NETDEV;
1038 		memset(hwtstamps, 0, sizeof(*hwtstamps));
1039 		hwtstamps->netdev_data = rx_inline;
1040 	}
1041 
1042 	skb_record_rx_queue(skb, rx->queue_index);
1043 	skb->protocol = eth_type_trans(skb, rx->adapter->netdev);
1044 
1045 	return skb;
1046 }
1047 
1048 static int tsnep_rx_poll(struct tsnep_rx *rx, struct napi_struct *napi,
1049 			 int budget)
1050 {
1051 	struct device *dmadev = rx->adapter->dmadev;
1052 	enum dma_data_direction dma_dir;
1053 	struct tsnep_rx_entry *entry;
1054 	struct netdev_queue *tx_nq;
1055 	struct bpf_prog *prog;
1056 	struct xdp_buff xdp;
1057 	struct sk_buff *skb;
1058 	struct tsnep_tx *tx;
1059 	int desc_available;
1060 	int xdp_status = 0;
1061 	int done = 0;
1062 	int length;
1063 
1064 	desc_available = tsnep_rx_desc_available(rx);
1065 	dma_dir = page_pool_get_dma_dir(rx->page_pool);
1066 	prog = READ_ONCE(rx->adapter->xdp_prog);
1067 	if (prog) {
1068 		tx_nq = netdev_get_tx_queue(rx->adapter->netdev,
1069 					    rx->tx_queue_index);
1070 		tx = &rx->adapter->tx[rx->tx_queue_index];
1071 
1072 		xdp_init_buff(&xdp, PAGE_SIZE, &rx->xdp_rxq);
1073 	}
1074 
1075 	while (likely(done < budget) && (rx->read != rx->write)) {
1076 		entry = &rx->entry[rx->read];
1077 		if ((__le32_to_cpu(entry->desc_wb->properties) &
1078 		     TSNEP_DESC_OWNER_COUNTER_MASK) !=
1079 		    (entry->properties & TSNEP_DESC_OWNER_COUNTER_MASK))
1080 			break;
1081 		done++;
1082 
1083 		if (desc_available >= TSNEP_RING_RX_REFILL) {
1084 			bool reuse = desc_available >= TSNEP_RING_RX_REUSE;
1085 
1086 			desc_available -= tsnep_rx_refill(rx, desc_available,
1087 							  reuse);
1088 			if (!entry->page) {
1089 				/* buffer has been reused for refill to prevent
1090 				 * empty RX ring, thus buffer cannot be used for
1091 				 * RX processing
1092 				 */
1093 				rx->read = (rx->read + 1) % TSNEP_RING_SIZE;
1094 				desc_available++;
1095 
1096 				rx->dropped++;
1097 
1098 				continue;
1099 			}
1100 		}
1101 
1102 		/* descriptor properties shall be read first, because valid data
1103 		 * is signaled there
1104 		 */
1105 		dma_rmb();
1106 
1107 		prefetch(page_address(entry->page) + TSNEP_RX_OFFSET);
1108 		length = __le32_to_cpu(entry->desc_wb->properties) &
1109 			 TSNEP_DESC_LENGTH_MASK;
1110 		dma_sync_single_range_for_cpu(dmadev, entry->dma,
1111 					      TSNEP_RX_OFFSET, length, dma_dir);
1112 
1113 		/* RX metadata with timestamps is in front of actual data,
1114 		 * subtract metadata size to get length of actual data and
1115 		 * consider metadata size as offset of actual data during RX
1116 		 * processing
1117 		 */
1118 		length -= TSNEP_RX_INLINE_METADATA_SIZE;
1119 
1120 		rx->read = (rx->read + 1) % TSNEP_RING_SIZE;
1121 		desc_available++;
1122 
1123 		if (prog) {
1124 			bool consume;
1125 
1126 			xdp_prepare_buff(&xdp, page_address(entry->page),
1127 					 XDP_PACKET_HEADROOM + TSNEP_RX_INLINE_METADATA_SIZE,
1128 					 length, false);
1129 
1130 			consume = tsnep_xdp_run_prog(rx, prog, &xdp,
1131 						     &xdp_status, tx_nq, tx);
1132 			if (consume) {
1133 				rx->packets++;
1134 				rx->bytes += length;
1135 
1136 				entry->page = NULL;
1137 
1138 				continue;
1139 			}
1140 		}
1141 
1142 		skb = tsnep_build_skb(rx, entry->page, length);
1143 		if (skb) {
1144 			page_pool_release_page(rx->page_pool, entry->page);
1145 
1146 			rx->packets++;
1147 			rx->bytes += length;
1148 			if (skb->pkt_type == PACKET_MULTICAST)
1149 				rx->multicast++;
1150 
1151 			napi_gro_receive(napi, skb);
1152 		} else {
1153 			page_pool_recycle_direct(rx->page_pool, entry->page);
1154 
1155 			rx->dropped++;
1156 		}
1157 		entry->page = NULL;
1158 	}
1159 
1160 	if (xdp_status)
1161 		tsnep_finalize_xdp(rx->adapter, xdp_status, tx_nq, tx);
1162 
1163 	if (desc_available)
1164 		tsnep_rx_refill(rx, desc_available, false);
1165 
1166 	return done;
1167 }
1168 
1169 static bool tsnep_rx_pending(struct tsnep_rx *rx)
1170 {
1171 	struct tsnep_rx_entry *entry;
1172 
1173 	if (rx->read != rx->write) {
1174 		entry = &rx->entry[rx->read];
1175 		if ((__le32_to_cpu(entry->desc_wb->properties) &
1176 		     TSNEP_DESC_OWNER_COUNTER_MASK) ==
1177 		    (entry->properties & TSNEP_DESC_OWNER_COUNTER_MASK))
1178 			return true;
1179 	}
1180 
1181 	return false;
1182 }
1183 
1184 static int tsnep_rx_open(struct tsnep_adapter *adapter, void __iomem *addr,
1185 			 int queue_index, struct tsnep_rx *rx)
1186 {
1187 	dma_addr_t dma;
1188 	int retval;
1189 
1190 	memset(rx, 0, sizeof(*rx));
1191 	rx->adapter = adapter;
1192 	rx->addr = addr;
1193 	rx->queue_index = queue_index;
1194 
1195 	retval = tsnep_rx_ring_init(rx);
1196 	if (retval)
1197 		return retval;
1198 
1199 	dma = rx->entry[0].desc_dma | TSNEP_RESET_OWNER_COUNTER;
1200 	iowrite32(DMA_ADDR_LOW(dma), rx->addr + TSNEP_RX_DESC_ADDR_LOW);
1201 	iowrite32(DMA_ADDR_HIGH(dma), rx->addr + TSNEP_RX_DESC_ADDR_HIGH);
1202 	rx->owner_counter = 1;
1203 	rx->increment_owner_counter = TSNEP_RING_SIZE - 1;
1204 
1205 	tsnep_rx_refill(rx, tsnep_rx_desc_available(rx), false);
1206 
1207 	return 0;
1208 }
1209 
1210 static void tsnep_rx_close(struct tsnep_rx *rx)
1211 {
1212 	u32 val;
1213 
1214 	iowrite32(TSNEP_CONTROL_RX_DISABLE, rx->addr + TSNEP_CONTROL);
1215 	readx_poll_timeout(ioread32, rx->addr + TSNEP_CONTROL, val,
1216 			   ((val & TSNEP_CONTROL_RX_ENABLE) == 0), 10000,
1217 			   1000000);
1218 
1219 	tsnep_rx_ring_cleanup(rx);
1220 }
1221 
1222 static bool tsnep_pending(struct tsnep_queue *queue)
1223 {
1224 	if (queue->tx && tsnep_tx_pending(queue->tx))
1225 		return true;
1226 
1227 	if (queue->rx && tsnep_rx_pending(queue->rx))
1228 		return true;
1229 
1230 	return false;
1231 }
1232 
1233 static int tsnep_poll(struct napi_struct *napi, int budget)
1234 {
1235 	struct tsnep_queue *queue = container_of(napi, struct tsnep_queue,
1236 						 napi);
1237 	bool complete = true;
1238 	int done = 0;
1239 
1240 	if (queue->tx)
1241 		complete = tsnep_tx_poll(queue->tx, budget);
1242 
1243 	if (queue->rx) {
1244 		done = tsnep_rx_poll(queue->rx, napi, budget);
1245 		if (done >= budget)
1246 			complete = false;
1247 	}
1248 
1249 	/* if all work not completed, return budget and keep polling */
1250 	if (!complete)
1251 		return budget;
1252 
1253 	if (likely(napi_complete_done(napi, done))) {
1254 		tsnep_enable_irq(queue->adapter, queue->irq_mask);
1255 
1256 		/* reschedule if work is already pending, prevent rotten packets
1257 		 * which are transmitted or received after polling but before
1258 		 * interrupt enable
1259 		 */
1260 		if (tsnep_pending(queue)) {
1261 			tsnep_disable_irq(queue->adapter, queue->irq_mask);
1262 			napi_schedule(napi);
1263 		}
1264 	}
1265 
1266 	return min(done, budget - 1);
1267 }
1268 
1269 static int tsnep_request_irq(struct tsnep_queue *queue, bool first)
1270 {
1271 	const char *name = netdev_name(queue->adapter->netdev);
1272 	irq_handler_t handler;
1273 	void *dev;
1274 	int retval;
1275 
1276 	if (first) {
1277 		sprintf(queue->name, "%s-mac", name);
1278 		handler = tsnep_irq;
1279 		dev = queue->adapter;
1280 	} else {
1281 		if (queue->tx && queue->rx)
1282 			sprintf(queue->name, "%s-txrx-%d", name,
1283 				queue->rx->queue_index);
1284 		else if (queue->tx)
1285 			sprintf(queue->name, "%s-tx-%d", name,
1286 				queue->tx->queue_index);
1287 		else
1288 			sprintf(queue->name, "%s-rx-%d", name,
1289 				queue->rx->queue_index);
1290 		handler = tsnep_irq_txrx;
1291 		dev = queue;
1292 	}
1293 
1294 	retval = request_irq(queue->irq, handler, 0, queue->name, dev);
1295 	if (retval) {
1296 		/* if name is empty, then interrupt won't be freed */
1297 		memset(queue->name, 0, sizeof(queue->name));
1298 	}
1299 
1300 	return retval;
1301 }
1302 
1303 static void tsnep_free_irq(struct tsnep_queue *queue, bool first)
1304 {
1305 	void *dev;
1306 
1307 	if (!strlen(queue->name))
1308 		return;
1309 
1310 	if (first)
1311 		dev = queue->adapter;
1312 	else
1313 		dev = queue;
1314 
1315 	free_irq(queue->irq, dev);
1316 	memset(queue->name, 0, sizeof(queue->name));
1317 }
1318 
1319 static void tsnep_queue_close(struct tsnep_queue *queue, bool first)
1320 {
1321 	struct tsnep_rx *rx = queue->rx;
1322 
1323 	tsnep_free_irq(queue, first);
1324 
1325 	if (rx && xdp_rxq_info_is_reg(&rx->xdp_rxq))
1326 		xdp_rxq_info_unreg(&rx->xdp_rxq);
1327 
1328 	netif_napi_del(&queue->napi);
1329 }
1330 
1331 static int tsnep_queue_open(struct tsnep_adapter *adapter,
1332 			    struct tsnep_queue *queue, bool first)
1333 {
1334 	struct tsnep_rx *rx = queue->rx;
1335 	struct tsnep_tx *tx = queue->tx;
1336 	int retval;
1337 
1338 	queue->adapter = adapter;
1339 
1340 	netif_napi_add(adapter->netdev, &queue->napi, tsnep_poll);
1341 
1342 	if (rx) {
1343 		/* choose TX queue for XDP_TX */
1344 		if (tx)
1345 			rx->tx_queue_index = tx->queue_index;
1346 		else if (rx->queue_index < adapter->num_tx_queues)
1347 			rx->tx_queue_index = rx->queue_index;
1348 		else
1349 			rx->tx_queue_index = 0;
1350 
1351 		retval = xdp_rxq_info_reg(&rx->xdp_rxq, adapter->netdev,
1352 					  rx->queue_index, queue->napi.napi_id);
1353 		if (retval)
1354 			goto failed;
1355 		retval = xdp_rxq_info_reg_mem_model(&rx->xdp_rxq,
1356 						    MEM_TYPE_PAGE_POOL,
1357 						    rx->page_pool);
1358 		if (retval)
1359 			goto failed;
1360 	}
1361 
1362 	retval = tsnep_request_irq(queue, first);
1363 	if (retval) {
1364 		netif_err(adapter, drv, adapter->netdev,
1365 			  "can't get assigned irq %d.\n", queue->irq);
1366 		goto failed;
1367 	}
1368 
1369 	return 0;
1370 
1371 failed:
1372 	tsnep_queue_close(queue, first);
1373 
1374 	return retval;
1375 }
1376 
1377 static int tsnep_netdev_open(struct net_device *netdev)
1378 {
1379 	struct tsnep_adapter *adapter = netdev_priv(netdev);
1380 	int tx_queue_index = 0;
1381 	int rx_queue_index = 0;
1382 	void __iomem *addr;
1383 	int i, retval;
1384 
1385 	for (i = 0; i < adapter->num_queues; i++) {
1386 		if (adapter->queue[i].tx) {
1387 			addr = adapter->addr + TSNEP_QUEUE(tx_queue_index);
1388 			retval = tsnep_tx_open(adapter, addr, tx_queue_index,
1389 					       adapter->queue[i].tx);
1390 			if (retval)
1391 				goto failed;
1392 			tx_queue_index++;
1393 		}
1394 		if (adapter->queue[i].rx) {
1395 			addr = adapter->addr + TSNEP_QUEUE(rx_queue_index);
1396 			retval = tsnep_rx_open(adapter, addr, rx_queue_index,
1397 					       adapter->queue[i].rx);
1398 			if (retval)
1399 				goto failed;
1400 			rx_queue_index++;
1401 		}
1402 
1403 		retval = tsnep_queue_open(adapter, &adapter->queue[i], i == 0);
1404 		if (retval)
1405 			goto failed;
1406 	}
1407 
1408 	retval = netif_set_real_num_tx_queues(adapter->netdev,
1409 					      adapter->num_tx_queues);
1410 	if (retval)
1411 		goto failed;
1412 	retval = netif_set_real_num_rx_queues(adapter->netdev,
1413 					      adapter->num_rx_queues);
1414 	if (retval)
1415 		goto failed;
1416 
1417 	tsnep_enable_irq(adapter, ECM_INT_LINK);
1418 	retval = tsnep_phy_open(adapter);
1419 	if (retval)
1420 		goto phy_failed;
1421 
1422 	for (i = 0; i < adapter->num_queues; i++) {
1423 		napi_enable(&adapter->queue[i].napi);
1424 
1425 		tsnep_enable_irq(adapter, adapter->queue[i].irq_mask);
1426 	}
1427 
1428 	return 0;
1429 
1430 phy_failed:
1431 	tsnep_disable_irq(adapter, ECM_INT_LINK);
1432 failed:
1433 	for (i = 0; i < adapter->num_queues; i++) {
1434 		tsnep_queue_close(&adapter->queue[i], i == 0);
1435 
1436 		if (adapter->queue[i].rx)
1437 			tsnep_rx_close(adapter->queue[i].rx);
1438 		if (adapter->queue[i].tx)
1439 			tsnep_tx_close(adapter->queue[i].tx);
1440 	}
1441 	return retval;
1442 }
1443 
1444 static int tsnep_netdev_close(struct net_device *netdev)
1445 {
1446 	struct tsnep_adapter *adapter = netdev_priv(netdev);
1447 	int i;
1448 
1449 	tsnep_disable_irq(adapter, ECM_INT_LINK);
1450 	tsnep_phy_close(adapter);
1451 
1452 	for (i = 0; i < adapter->num_queues; i++) {
1453 		tsnep_disable_irq(adapter, adapter->queue[i].irq_mask);
1454 
1455 		napi_disable(&adapter->queue[i].napi);
1456 
1457 		tsnep_queue_close(&adapter->queue[i], i == 0);
1458 
1459 		if (adapter->queue[i].rx)
1460 			tsnep_rx_close(adapter->queue[i].rx);
1461 		if (adapter->queue[i].tx)
1462 			tsnep_tx_close(adapter->queue[i].tx);
1463 	}
1464 
1465 	return 0;
1466 }
1467 
1468 static netdev_tx_t tsnep_netdev_xmit_frame(struct sk_buff *skb,
1469 					   struct net_device *netdev)
1470 {
1471 	struct tsnep_adapter *adapter = netdev_priv(netdev);
1472 	u16 queue_mapping = skb_get_queue_mapping(skb);
1473 
1474 	if (queue_mapping >= adapter->num_tx_queues)
1475 		queue_mapping = 0;
1476 
1477 	return tsnep_xmit_frame_ring(skb, &adapter->tx[queue_mapping]);
1478 }
1479 
1480 static int tsnep_netdev_ioctl(struct net_device *netdev, struct ifreq *ifr,
1481 			      int cmd)
1482 {
1483 	if (!netif_running(netdev))
1484 		return -EINVAL;
1485 	if (cmd == SIOCSHWTSTAMP || cmd == SIOCGHWTSTAMP)
1486 		return tsnep_ptp_ioctl(netdev, ifr, cmd);
1487 	return phy_mii_ioctl(netdev->phydev, ifr, cmd);
1488 }
1489 
1490 static void tsnep_netdev_set_multicast(struct net_device *netdev)
1491 {
1492 	struct tsnep_adapter *adapter = netdev_priv(netdev);
1493 
1494 	u16 rx_filter = 0;
1495 
1496 	/* configured MAC address and broadcasts are never filtered */
1497 	if (netdev->flags & IFF_PROMISC) {
1498 		rx_filter |= TSNEP_RX_FILTER_ACCEPT_ALL_MULTICASTS;
1499 		rx_filter |= TSNEP_RX_FILTER_ACCEPT_ALL_UNICASTS;
1500 	} else if (!netdev_mc_empty(netdev) || (netdev->flags & IFF_ALLMULTI)) {
1501 		rx_filter |= TSNEP_RX_FILTER_ACCEPT_ALL_MULTICASTS;
1502 	}
1503 	iowrite16(rx_filter, adapter->addr + TSNEP_RX_FILTER);
1504 }
1505 
1506 static void tsnep_netdev_get_stats64(struct net_device *netdev,
1507 				     struct rtnl_link_stats64 *stats)
1508 {
1509 	struct tsnep_adapter *adapter = netdev_priv(netdev);
1510 	u32 reg;
1511 	u32 val;
1512 	int i;
1513 
1514 	for (i = 0; i < adapter->num_tx_queues; i++) {
1515 		stats->tx_packets += adapter->tx[i].packets;
1516 		stats->tx_bytes += adapter->tx[i].bytes;
1517 		stats->tx_dropped += adapter->tx[i].dropped;
1518 	}
1519 	for (i = 0; i < adapter->num_rx_queues; i++) {
1520 		stats->rx_packets += adapter->rx[i].packets;
1521 		stats->rx_bytes += adapter->rx[i].bytes;
1522 		stats->rx_dropped += adapter->rx[i].dropped;
1523 		stats->multicast += adapter->rx[i].multicast;
1524 
1525 		reg = ioread32(adapter->addr + TSNEP_QUEUE(i) +
1526 			       TSNEP_RX_STATISTIC);
1527 		val = (reg & TSNEP_RX_STATISTIC_NO_DESC_MASK) >>
1528 		      TSNEP_RX_STATISTIC_NO_DESC_SHIFT;
1529 		stats->rx_dropped += val;
1530 		val = (reg & TSNEP_RX_STATISTIC_BUFFER_TOO_SMALL_MASK) >>
1531 		      TSNEP_RX_STATISTIC_BUFFER_TOO_SMALL_SHIFT;
1532 		stats->rx_dropped += val;
1533 		val = (reg & TSNEP_RX_STATISTIC_FIFO_OVERFLOW_MASK) >>
1534 		      TSNEP_RX_STATISTIC_FIFO_OVERFLOW_SHIFT;
1535 		stats->rx_errors += val;
1536 		stats->rx_fifo_errors += val;
1537 		val = (reg & TSNEP_RX_STATISTIC_INVALID_FRAME_MASK) >>
1538 		      TSNEP_RX_STATISTIC_INVALID_FRAME_SHIFT;
1539 		stats->rx_errors += val;
1540 		stats->rx_frame_errors += val;
1541 	}
1542 
1543 	reg = ioread32(adapter->addr + ECM_STAT);
1544 	val = (reg & ECM_STAT_RX_ERR_MASK) >> ECM_STAT_RX_ERR_SHIFT;
1545 	stats->rx_errors += val;
1546 	val = (reg & ECM_STAT_INV_FRM_MASK) >> ECM_STAT_INV_FRM_SHIFT;
1547 	stats->rx_errors += val;
1548 	stats->rx_crc_errors += val;
1549 	val = (reg & ECM_STAT_FWD_RX_ERR_MASK) >> ECM_STAT_FWD_RX_ERR_SHIFT;
1550 	stats->rx_errors += val;
1551 }
1552 
1553 static void tsnep_mac_set_address(struct tsnep_adapter *adapter, u8 *addr)
1554 {
1555 	iowrite32(*(u32 *)addr, adapter->addr + TSNEP_MAC_ADDRESS_LOW);
1556 	iowrite16(*(u16 *)(addr + sizeof(u32)),
1557 		  adapter->addr + TSNEP_MAC_ADDRESS_HIGH);
1558 
1559 	ether_addr_copy(adapter->mac_address, addr);
1560 	netif_info(adapter, drv, adapter->netdev, "MAC address set to %pM\n",
1561 		   addr);
1562 }
1563 
1564 static int tsnep_netdev_set_mac_address(struct net_device *netdev, void *addr)
1565 {
1566 	struct tsnep_adapter *adapter = netdev_priv(netdev);
1567 	struct sockaddr *sock_addr = addr;
1568 	int retval;
1569 
1570 	retval = eth_prepare_mac_addr_change(netdev, sock_addr);
1571 	if (retval)
1572 		return retval;
1573 	eth_hw_addr_set(netdev, sock_addr->sa_data);
1574 	tsnep_mac_set_address(adapter, sock_addr->sa_data);
1575 
1576 	return 0;
1577 }
1578 
1579 static int tsnep_netdev_set_features(struct net_device *netdev,
1580 				     netdev_features_t features)
1581 {
1582 	struct tsnep_adapter *adapter = netdev_priv(netdev);
1583 	netdev_features_t changed = netdev->features ^ features;
1584 	bool enable;
1585 	int retval = 0;
1586 
1587 	if (changed & NETIF_F_LOOPBACK) {
1588 		enable = !!(features & NETIF_F_LOOPBACK);
1589 		retval = tsnep_phy_loopback(adapter, enable);
1590 	}
1591 
1592 	return retval;
1593 }
1594 
1595 static ktime_t tsnep_netdev_get_tstamp(struct net_device *netdev,
1596 				       const struct skb_shared_hwtstamps *hwtstamps,
1597 				       bool cycles)
1598 {
1599 	struct tsnep_rx_inline *rx_inline = hwtstamps->netdev_data;
1600 	u64 timestamp;
1601 
1602 	if (cycles)
1603 		timestamp = __le64_to_cpu(rx_inline->counter);
1604 	else
1605 		timestamp = __le64_to_cpu(rx_inline->timestamp);
1606 
1607 	return ns_to_ktime(timestamp);
1608 }
1609 
1610 static int tsnep_netdev_bpf(struct net_device *dev, struct netdev_bpf *bpf)
1611 {
1612 	struct tsnep_adapter *adapter = netdev_priv(dev);
1613 
1614 	switch (bpf->command) {
1615 	case XDP_SETUP_PROG:
1616 		return tsnep_xdp_setup_prog(adapter, bpf->prog, bpf->extack);
1617 	default:
1618 		return -EOPNOTSUPP;
1619 	}
1620 }
1621 
1622 static struct tsnep_tx *tsnep_xdp_get_tx(struct tsnep_adapter *adapter, u32 cpu)
1623 {
1624 	if (cpu >= TSNEP_MAX_QUEUES)
1625 		cpu &= TSNEP_MAX_QUEUES - 1;
1626 
1627 	while (cpu >= adapter->num_tx_queues)
1628 		cpu -= adapter->num_tx_queues;
1629 
1630 	return &adapter->tx[cpu];
1631 }
1632 
1633 static int tsnep_netdev_xdp_xmit(struct net_device *dev, int n,
1634 				 struct xdp_frame **xdp, u32 flags)
1635 {
1636 	struct tsnep_adapter *adapter = netdev_priv(dev);
1637 	u32 cpu = smp_processor_id();
1638 	struct netdev_queue *nq;
1639 	struct tsnep_tx *tx;
1640 	int nxmit;
1641 	bool xmit;
1642 
1643 	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
1644 		return -EINVAL;
1645 
1646 	tx = tsnep_xdp_get_tx(adapter, cpu);
1647 	nq = netdev_get_tx_queue(adapter->netdev, tx->queue_index);
1648 
1649 	__netif_tx_lock(nq, cpu);
1650 
1651 	for (nxmit = 0; nxmit < n; nxmit++) {
1652 		xmit = tsnep_xdp_xmit_frame_ring(xdp[nxmit], tx,
1653 						 TSNEP_TX_TYPE_XDP_NDO);
1654 		if (!xmit)
1655 			break;
1656 
1657 		/* avoid transmit queue timeout since we share it with the slow
1658 		 * path
1659 		 */
1660 		txq_trans_cond_update(nq);
1661 	}
1662 
1663 	if (flags & XDP_XMIT_FLUSH)
1664 		tsnep_xdp_xmit_flush(tx);
1665 
1666 	__netif_tx_unlock(nq);
1667 
1668 	return nxmit;
1669 }
1670 
1671 static const struct net_device_ops tsnep_netdev_ops = {
1672 	.ndo_open = tsnep_netdev_open,
1673 	.ndo_stop = tsnep_netdev_close,
1674 	.ndo_start_xmit = tsnep_netdev_xmit_frame,
1675 	.ndo_eth_ioctl = tsnep_netdev_ioctl,
1676 	.ndo_set_rx_mode = tsnep_netdev_set_multicast,
1677 	.ndo_get_stats64 = tsnep_netdev_get_stats64,
1678 	.ndo_set_mac_address = tsnep_netdev_set_mac_address,
1679 	.ndo_set_features = tsnep_netdev_set_features,
1680 	.ndo_get_tstamp = tsnep_netdev_get_tstamp,
1681 	.ndo_setup_tc = tsnep_tc_setup,
1682 	.ndo_bpf = tsnep_netdev_bpf,
1683 	.ndo_xdp_xmit = tsnep_netdev_xdp_xmit,
1684 };
1685 
1686 static int tsnep_mac_init(struct tsnep_adapter *adapter)
1687 {
1688 	int retval;
1689 
1690 	/* initialize RX filtering, at least configured MAC address and
1691 	 * broadcast are not filtered
1692 	 */
1693 	iowrite16(0, adapter->addr + TSNEP_RX_FILTER);
1694 
1695 	/* try to get MAC address in the following order:
1696 	 * - device tree
1697 	 * - valid MAC address already set
1698 	 * - MAC address register if valid
1699 	 * - random MAC address
1700 	 */
1701 	retval = of_get_mac_address(adapter->pdev->dev.of_node,
1702 				    adapter->mac_address);
1703 	if (retval == -EPROBE_DEFER)
1704 		return retval;
1705 	if (retval && !is_valid_ether_addr(adapter->mac_address)) {
1706 		*(u32 *)adapter->mac_address =
1707 			ioread32(adapter->addr + TSNEP_MAC_ADDRESS_LOW);
1708 		*(u16 *)(adapter->mac_address + sizeof(u32)) =
1709 			ioread16(adapter->addr + TSNEP_MAC_ADDRESS_HIGH);
1710 		if (!is_valid_ether_addr(adapter->mac_address))
1711 			eth_random_addr(adapter->mac_address);
1712 	}
1713 
1714 	tsnep_mac_set_address(adapter, adapter->mac_address);
1715 	eth_hw_addr_set(adapter->netdev, adapter->mac_address);
1716 
1717 	return 0;
1718 }
1719 
1720 static int tsnep_mdio_init(struct tsnep_adapter *adapter)
1721 {
1722 	struct device_node *np = adapter->pdev->dev.of_node;
1723 	int retval;
1724 
1725 	if (np) {
1726 		np = of_get_child_by_name(np, "mdio");
1727 		if (!np)
1728 			return 0;
1729 
1730 		adapter->suppress_preamble =
1731 			of_property_read_bool(np, "suppress-preamble");
1732 	}
1733 
1734 	adapter->mdiobus = devm_mdiobus_alloc(&adapter->pdev->dev);
1735 	if (!adapter->mdiobus) {
1736 		retval = -ENOMEM;
1737 
1738 		goto out;
1739 	}
1740 
1741 	adapter->mdiobus->priv = (void *)adapter;
1742 	adapter->mdiobus->parent = &adapter->pdev->dev;
1743 	adapter->mdiobus->read = tsnep_mdiobus_read;
1744 	adapter->mdiobus->write = tsnep_mdiobus_write;
1745 	adapter->mdiobus->name = TSNEP "-mdiobus";
1746 	snprintf(adapter->mdiobus->id, MII_BUS_ID_SIZE, "%s",
1747 		 adapter->pdev->name);
1748 
1749 	/* do not scan broadcast address */
1750 	adapter->mdiobus->phy_mask = 0x0000001;
1751 
1752 	retval = of_mdiobus_register(adapter->mdiobus, np);
1753 
1754 out:
1755 	of_node_put(np);
1756 
1757 	return retval;
1758 }
1759 
1760 static int tsnep_phy_init(struct tsnep_adapter *adapter)
1761 {
1762 	struct device_node *phy_node;
1763 	int retval;
1764 
1765 	retval = of_get_phy_mode(adapter->pdev->dev.of_node,
1766 				 &adapter->phy_mode);
1767 	if (retval)
1768 		adapter->phy_mode = PHY_INTERFACE_MODE_GMII;
1769 
1770 	phy_node = of_parse_phandle(adapter->pdev->dev.of_node, "phy-handle",
1771 				    0);
1772 	adapter->phydev = of_phy_find_device(phy_node);
1773 	of_node_put(phy_node);
1774 	if (!adapter->phydev && adapter->mdiobus)
1775 		adapter->phydev = phy_find_first(adapter->mdiobus);
1776 	if (!adapter->phydev)
1777 		return -EIO;
1778 
1779 	return 0;
1780 }
1781 
1782 static int tsnep_queue_init(struct tsnep_adapter *adapter, int queue_count)
1783 {
1784 	u32 irq_mask = ECM_INT_TX_0 | ECM_INT_RX_0;
1785 	char name[8];
1786 	int i;
1787 	int retval;
1788 
1789 	/* one TX/RX queue pair for netdev is mandatory */
1790 	if (platform_irq_count(adapter->pdev) == 1)
1791 		retval = platform_get_irq(adapter->pdev, 0);
1792 	else
1793 		retval = platform_get_irq_byname(adapter->pdev, "mac");
1794 	if (retval < 0)
1795 		return retval;
1796 	adapter->num_tx_queues = 1;
1797 	adapter->num_rx_queues = 1;
1798 	adapter->num_queues = 1;
1799 	adapter->queue[0].irq = retval;
1800 	adapter->queue[0].tx = &adapter->tx[0];
1801 	adapter->queue[0].rx = &adapter->rx[0];
1802 	adapter->queue[0].irq_mask = irq_mask;
1803 	adapter->queue[0].irq_delay_addr = adapter->addr + ECM_INT_DELAY;
1804 	retval = tsnep_set_irq_coalesce(&adapter->queue[0],
1805 					TSNEP_COALESCE_USECS_DEFAULT);
1806 	if (retval < 0)
1807 		return retval;
1808 
1809 	adapter->netdev->irq = adapter->queue[0].irq;
1810 
1811 	/* add additional TX/RX queue pairs only if dedicated interrupt is
1812 	 * available
1813 	 */
1814 	for (i = 1; i < queue_count; i++) {
1815 		sprintf(name, "txrx-%d", i);
1816 		retval = platform_get_irq_byname_optional(adapter->pdev, name);
1817 		if (retval < 0)
1818 			break;
1819 
1820 		adapter->num_tx_queues++;
1821 		adapter->num_rx_queues++;
1822 		adapter->num_queues++;
1823 		adapter->queue[i].irq = retval;
1824 		adapter->queue[i].tx = &adapter->tx[i];
1825 		adapter->queue[i].rx = &adapter->rx[i];
1826 		adapter->queue[i].irq_mask =
1827 			irq_mask << (ECM_INT_TXRX_SHIFT * i);
1828 		adapter->queue[i].irq_delay_addr =
1829 			adapter->addr + ECM_INT_DELAY + ECM_INT_DELAY_OFFSET * i;
1830 		retval = tsnep_set_irq_coalesce(&adapter->queue[i],
1831 						TSNEP_COALESCE_USECS_DEFAULT);
1832 		if (retval < 0)
1833 			return retval;
1834 	}
1835 
1836 	return 0;
1837 }
1838 
1839 static int tsnep_probe(struct platform_device *pdev)
1840 {
1841 	struct tsnep_adapter *adapter;
1842 	struct net_device *netdev;
1843 	struct resource *io;
1844 	u32 type;
1845 	int revision;
1846 	int version;
1847 	int queue_count;
1848 	int retval;
1849 
1850 	netdev = devm_alloc_etherdev_mqs(&pdev->dev,
1851 					 sizeof(struct tsnep_adapter),
1852 					 TSNEP_MAX_QUEUES, TSNEP_MAX_QUEUES);
1853 	if (!netdev)
1854 		return -ENODEV;
1855 	SET_NETDEV_DEV(netdev, &pdev->dev);
1856 	adapter = netdev_priv(netdev);
1857 	platform_set_drvdata(pdev, adapter);
1858 	adapter->pdev = pdev;
1859 	adapter->dmadev = &pdev->dev;
1860 	adapter->netdev = netdev;
1861 	adapter->msg_enable = NETIF_MSG_DRV | NETIF_MSG_PROBE |
1862 			      NETIF_MSG_LINK | NETIF_MSG_IFUP |
1863 			      NETIF_MSG_IFDOWN | NETIF_MSG_TX_QUEUED;
1864 
1865 	netdev->min_mtu = ETH_MIN_MTU;
1866 	netdev->max_mtu = TSNEP_MAX_FRAME_SIZE;
1867 
1868 	mutex_init(&adapter->gate_control_lock);
1869 	mutex_init(&adapter->rxnfc_lock);
1870 	INIT_LIST_HEAD(&adapter->rxnfc_rules);
1871 
1872 	io = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1873 	adapter->addr = devm_ioremap_resource(&pdev->dev, io);
1874 	if (IS_ERR(adapter->addr))
1875 		return PTR_ERR(adapter->addr);
1876 	netdev->mem_start = io->start;
1877 	netdev->mem_end = io->end;
1878 
1879 	type = ioread32(adapter->addr + ECM_TYPE);
1880 	revision = (type & ECM_REVISION_MASK) >> ECM_REVISION_SHIFT;
1881 	version = (type & ECM_VERSION_MASK) >> ECM_VERSION_SHIFT;
1882 	queue_count = (type & ECM_QUEUE_COUNT_MASK) >> ECM_QUEUE_COUNT_SHIFT;
1883 	adapter->gate_control = type & ECM_GATE_CONTROL;
1884 	adapter->rxnfc_max = TSNEP_RX_ASSIGN_ETHER_TYPE_COUNT;
1885 
1886 	tsnep_disable_irq(adapter, ECM_INT_ALL);
1887 
1888 	retval = tsnep_queue_init(adapter, queue_count);
1889 	if (retval)
1890 		return retval;
1891 
1892 	retval = dma_set_mask_and_coherent(&adapter->pdev->dev,
1893 					   DMA_BIT_MASK(64));
1894 	if (retval) {
1895 		dev_err(&adapter->pdev->dev, "no usable DMA configuration.\n");
1896 		return retval;
1897 	}
1898 
1899 	retval = tsnep_mac_init(adapter);
1900 	if (retval)
1901 		return retval;
1902 
1903 	retval = tsnep_mdio_init(adapter);
1904 	if (retval)
1905 		goto mdio_init_failed;
1906 
1907 	retval = tsnep_phy_init(adapter);
1908 	if (retval)
1909 		goto phy_init_failed;
1910 
1911 	retval = tsnep_ptp_init(adapter);
1912 	if (retval)
1913 		goto ptp_init_failed;
1914 
1915 	retval = tsnep_tc_init(adapter);
1916 	if (retval)
1917 		goto tc_init_failed;
1918 
1919 	retval = tsnep_rxnfc_init(adapter);
1920 	if (retval)
1921 		goto rxnfc_init_failed;
1922 
1923 	netdev->netdev_ops = &tsnep_netdev_ops;
1924 	netdev->ethtool_ops = &tsnep_ethtool_ops;
1925 	netdev->features = NETIF_F_SG;
1926 	netdev->hw_features = netdev->features | NETIF_F_LOOPBACK;
1927 
1928 	netdev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT |
1929 			       NETDEV_XDP_ACT_NDO_XMIT |
1930 			       NETDEV_XDP_ACT_NDO_XMIT_SG;
1931 
1932 	/* carrier off reporting is important to ethtool even BEFORE open */
1933 	netif_carrier_off(netdev);
1934 
1935 	retval = register_netdev(netdev);
1936 	if (retval)
1937 		goto register_failed;
1938 
1939 	dev_info(&adapter->pdev->dev, "device version %d.%02d\n", version,
1940 		 revision);
1941 	if (adapter->gate_control)
1942 		dev_info(&adapter->pdev->dev, "gate control detected\n");
1943 
1944 	return 0;
1945 
1946 register_failed:
1947 	tsnep_rxnfc_cleanup(adapter);
1948 rxnfc_init_failed:
1949 	tsnep_tc_cleanup(adapter);
1950 tc_init_failed:
1951 	tsnep_ptp_cleanup(adapter);
1952 ptp_init_failed:
1953 phy_init_failed:
1954 	if (adapter->mdiobus)
1955 		mdiobus_unregister(adapter->mdiobus);
1956 mdio_init_failed:
1957 	return retval;
1958 }
1959 
1960 static int tsnep_remove(struct platform_device *pdev)
1961 {
1962 	struct tsnep_adapter *adapter = platform_get_drvdata(pdev);
1963 
1964 	unregister_netdev(adapter->netdev);
1965 
1966 	tsnep_rxnfc_cleanup(adapter);
1967 
1968 	tsnep_tc_cleanup(adapter);
1969 
1970 	tsnep_ptp_cleanup(adapter);
1971 
1972 	if (adapter->mdiobus)
1973 		mdiobus_unregister(adapter->mdiobus);
1974 
1975 	tsnep_disable_irq(adapter, ECM_INT_ALL);
1976 
1977 	return 0;
1978 }
1979 
1980 static const struct of_device_id tsnep_of_match[] = {
1981 	{ .compatible = "engleder,tsnep", },
1982 { },
1983 };
1984 MODULE_DEVICE_TABLE(of, tsnep_of_match);
1985 
1986 static struct platform_driver tsnep_driver = {
1987 	.driver = {
1988 		.name = TSNEP,
1989 		.of_match_table = tsnep_of_match,
1990 	},
1991 	.probe = tsnep_probe,
1992 	.remove = tsnep_remove,
1993 };
1994 module_platform_driver(tsnep_driver);
1995 
1996 MODULE_AUTHOR("Gerhard Engleder <gerhard@engleder-embedded.com>");
1997 MODULE_DESCRIPTION("TSN endpoint Ethernet MAC driver");
1998 MODULE_LICENSE("GPL");
1999