1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (C) 2021 Gerhard Engleder <gerhard@engleder-embedded.com> */
3 
4 /* TSN endpoint Ethernet MAC driver
5  *
6  * The TSN endpoint Ethernet MAC is a FPGA based network device for real-time
7  * communication. It is designed for endpoints within TSN (Time Sensitive
8  * Networking) networks; e.g., for PLCs in the industrial automation case.
9  *
10  * It supports multiple TX/RX queue pairs. The first TX/RX queue pair is used
11  * by the driver.
12  *
13  * More information can be found here:
14  * - www.embedded-experts.at/tsn
15  * - www.engleder-embedded.com
16  */
17 
18 #include "tsnep.h"
19 #include "tsnep_hw.h"
20 
21 #include <linux/module.h>
22 #include <linux/of.h>
23 #include <linux/of_net.h>
24 #include <linux/of_mdio.h>
25 #include <linux/interrupt.h>
26 #include <linux/etherdevice.h>
27 #include <linux/phy.h>
28 #include <linux/iopoll.h>
29 #include <linux/bpf.h>
30 #include <linux/bpf_trace.h>
31 #include <net/page_pool/helpers.h>
32 #include <net/xdp_sock_drv.h>
33 
34 #define TSNEP_RX_OFFSET (max(NET_SKB_PAD, XDP_PACKET_HEADROOM) + NET_IP_ALIGN)
35 #define TSNEP_HEADROOM ALIGN(TSNEP_RX_OFFSET, 4)
36 #define TSNEP_MAX_RX_BUF_SIZE (PAGE_SIZE - TSNEP_HEADROOM - \
37 			       SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
38 /* XSK buffer shall store at least Q-in-Q frame */
39 #define TSNEP_XSK_RX_BUF_SIZE (ALIGN(TSNEP_RX_INLINE_METADATA_SIZE + \
40 				     ETH_FRAME_LEN + ETH_FCS_LEN + \
41 				     VLAN_HLEN * 2, 4))
42 
43 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
44 #define DMA_ADDR_HIGH(dma_addr) ((u32)(((dma_addr) >> 32) & 0xFFFFFFFF))
45 #else
46 #define DMA_ADDR_HIGH(dma_addr) ((u32)(0))
47 #endif
48 #define DMA_ADDR_LOW(dma_addr) ((u32)((dma_addr) & 0xFFFFFFFF))
49 
50 #define TSNEP_COALESCE_USECS_DEFAULT 64
51 #define TSNEP_COALESCE_USECS_MAX     ((ECM_INT_DELAY_MASK >> ECM_INT_DELAY_SHIFT) * \
52 				      ECM_INT_DELAY_BASE_US + ECM_INT_DELAY_BASE_US - 1)
53 
54 #define TSNEP_TX_TYPE_SKB	BIT(0)
55 #define TSNEP_TX_TYPE_SKB_FRAG	BIT(1)
56 #define TSNEP_TX_TYPE_XDP_TX	BIT(2)
57 #define TSNEP_TX_TYPE_XDP_NDO	BIT(3)
58 #define TSNEP_TX_TYPE_XDP	(TSNEP_TX_TYPE_XDP_TX | TSNEP_TX_TYPE_XDP_NDO)
59 #define TSNEP_TX_TYPE_XSK	BIT(4)
60 
61 #define TSNEP_XDP_TX		BIT(0)
62 #define TSNEP_XDP_REDIRECT	BIT(1)
63 
64 static void tsnep_enable_irq(struct tsnep_adapter *adapter, u32 mask)
65 {
66 	iowrite32(mask, adapter->addr + ECM_INT_ENABLE);
67 }
68 
69 static void tsnep_disable_irq(struct tsnep_adapter *adapter, u32 mask)
70 {
71 	mask |= ECM_INT_DISABLE;
72 	iowrite32(mask, adapter->addr + ECM_INT_ENABLE);
73 }
74 
75 static irqreturn_t tsnep_irq(int irq, void *arg)
76 {
77 	struct tsnep_adapter *adapter = arg;
78 	u32 active = ioread32(adapter->addr + ECM_INT_ACTIVE);
79 
80 	/* acknowledge interrupt */
81 	if (active != 0)
82 		iowrite32(active, adapter->addr + ECM_INT_ACKNOWLEDGE);
83 
84 	/* handle link interrupt */
85 	if ((active & ECM_INT_LINK) != 0)
86 		phy_mac_interrupt(adapter->netdev->phydev);
87 
88 	/* handle TX/RX queue 0 interrupt */
89 	if ((active & adapter->queue[0].irq_mask) != 0) {
90 		if (napi_schedule_prep(&adapter->queue[0].napi)) {
91 			tsnep_disable_irq(adapter, adapter->queue[0].irq_mask);
92 			/* schedule after masking to avoid races */
93 			__napi_schedule(&adapter->queue[0].napi);
94 		}
95 	}
96 
97 	return IRQ_HANDLED;
98 }
99 
100 static irqreturn_t tsnep_irq_txrx(int irq, void *arg)
101 {
102 	struct tsnep_queue *queue = arg;
103 
104 	/* handle TX/RX queue interrupt */
105 	if (napi_schedule_prep(&queue->napi)) {
106 		tsnep_disable_irq(queue->adapter, queue->irq_mask);
107 		/* schedule after masking to avoid races */
108 		__napi_schedule(&queue->napi);
109 	}
110 
111 	return IRQ_HANDLED;
112 }
113 
114 int tsnep_set_irq_coalesce(struct tsnep_queue *queue, u32 usecs)
115 {
116 	if (usecs > TSNEP_COALESCE_USECS_MAX)
117 		return -ERANGE;
118 
119 	usecs /= ECM_INT_DELAY_BASE_US;
120 	usecs <<= ECM_INT_DELAY_SHIFT;
121 	usecs &= ECM_INT_DELAY_MASK;
122 
123 	queue->irq_delay &= ~ECM_INT_DELAY_MASK;
124 	queue->irq_delay |= usecs;
125 	iowrite8(queue->irq_delay, queue->irq_delay_addr);
126 
127 	return 0;
128 }
129 
130 u32 tsnep_get_irq_coalesce(struct tsnep_queue *queue)
131 {
132 	u32 usecs;
133 
134 	usecs = (queue->irq_delay & ECM_INT_DELAY_MASK);
135 	usecs >>= ECM_INT_DELAY_SHIFT;
136 	usecs *= ECM_INT_DELAY_BASE_US;
137 
138 	return usecs;
139 }
140 
141 static int tsnep_mdiobus_read(struct mii_bus *bus, int addr, int regnum)
142 {
143 	struct tsnep_adapter *adapter = bus->priv;
144 	u32 md;
145 	int retval;
146 
147 	md = ECM_MD_READ;
148 	if (!adapter->suppress_preamble)
149 		md |= ECM_MD_PREAMBLE;
150 	md |= (regnum << ECM_MD_ADDR_SHIFT) & ECM_MD_ADDR_MASK;
151 	md |= (addr << ECM_MD_PHY_ADDR_SHIFT) & ECM_MD_PHY_ADDR_MASK;
152 	iowrite32(md, adapter->addr + ECM_MD_CONTROL);
153 	retval = readl_poll_timeout_atomic(adapter->addr + ECM_MD_STATUS, md,
154 					   !(md & ECM_MD_BUSY), 16, 1000);
155 	if (retval != 0)
156 		return retval;
157 
158 	return (md & ECM_MD_DATA_MASK) >> ECM_MD_DATA_SHIFT;
159 }
160 
161 static int tsnep_mdiobus_write(struct mii_bus *bus, int addr, int regnum,
162 			       u16 val)
163 {
164 	struct tsnep_adapter *adapter = bus->priv;
165 	u32 md;
166 	int retval;
167 
168 	md = ECM_MD_WRITE;
169 	if (!adapter->suppress_preamble)
170 		md |= ECM_MD_PREAMBLE;
171 	md |= (regnum << ECM_MD_ADDR_SHIFT) & ECM_MD_ADDR_MASK;
172 	md |= (addr << ECM_MD_PHY_ADDR_SHIFT) & ECM_MD_PHY_ADDR_MASK;
173 	md |= ((u32)val << ECM_MD_DATA_SHIFT) & ECM_MD_DATA_MASK;
174 	iowrite32(md, adapter->addr + ECM_MD_CONTROL);
175 	retval = readl_poll_timeout_atomic(adapter->addr + ECM_MD_STATUS, md,
176 					   !(md & ECM_MD_BUSY), 16, 1000);
177 	if (retval != 0)
178 		return retval;
179 
180 	return 0;
181 }
182 
183 static void tsnep_set_link_mode(struct tsnep_adapter *adapter)
184 {
185 	u32 mode;
186 
187 	switch (adapter->phydev->speed) {
188 	case SPEED_100:
189 		mode = ECM_LINK_MODE_100;
190 		break;
191 	case SPEED_1000:
192 		mode = ECM_LINK_MODE_1000;
193 		break;
194 	default:
195 		mode = ECM_LINK_MODE_OFF;
196 		break;
197 	}
198 	iowrite32(mode, adapter->addr + ECM_STATUS);
199 }
200 
201 static void tsnep_phy_link_status_change(struct net_device *netdev)
202 {
203 	struct tsnep_adapter *adapter = netdev_priv(netdev);
204 	struct phy_device *phydev = netdev->phydev;
205 
206 	if (phydev->link)
207 		tsnep_set_link_mode(adapter);
208 
209 	phy_print_status(netdev->phydev);
210 }
211 
212 static int tsnep_phy_loopback(struct tsnep_adapter *adapter, bool enable)
213 {
214 	int retval;
215 
216 	retval = phy_loopback(adapter->phydev, enable);
217 
218 	/* PHY link state change is not signaled if loopback is enabled, it
219 	 * would delay a working loopback anyway, let's ensure that loopback
220 	 * is working immediately by setting link mode directly
221 	 */
222 	if (!retval && enable)
223 		tsnep_set_link_mode(adapter);
224 
225 	return retval;
226 }
227 
228 static int tsnep_phy_open(struct tsnep_adapter *adapter)
229 {
230 	struct phy_device *phydev;
231 	struct ethtool_eee ethtool_eee;
232 	int retval;
233 
234 	retval = phy_connect_direct(adapter->netdev, adapter->phydev,
235 				    tsnep_phy_link_status_change,
236 				    adapter->phy_mode);
237 	if (retval)
238 		return retval;
239 	phydev = adapter->netdev->phydev;
240 
241 	/* MAC supports only 100Mbps|1000Mbps full duplex
242 	 * SPE (Single Pair Ethernet) is also an option but not implemented yet
243 	 */
244 	phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_10baseT_Half_BIT);
245 	phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_10baseT_Full_BIT);
246 	phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_100baseT_Half_BIT);
247 	phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_1000baseT_Half_BIT);
248 
249 	/* disable EEE autoneg, EEE not supported by TSNEP */
250 	memset(&ethtool_eee, 0, sizeof(ethtool_eee));
251 	phy_ethtool_set_eee(adapter->phydev, &ethtool_eee);
252 
253 	adapter->phydev->irq = PHY_MAC_INTERRUPT;
254 	phy_start(adapter->phydev);
255 
256 	return 0;
257 }
258 
259 static void tsnep_phy_close(struct tsnep_adapter *adapter)
260 {
261 	phy_stop(adapter->netdev->phydev);
262 	phy_disconnect(adapter->netdev->phydev);
263 }
264 
265 static void tsnep_tx_ring_cleanup(struct tsnep_tx *tx)
266 {
267 	struct device *dmadev = tx->adapter->dmadev;
268 	int i;
269 
270 	memset(tx->entry, 0, sizeof(tx->entry));
271 
272 	for (i = 0; i < TSNEP_RING_PAGE_COUNT; i++) {
273 		if (tx->page[i]) {
274 			dma_free_coherent(dmadev, PAGE_SIZE, tx->page[i],
275 					  tx->page_dma[i]);
276 			tx->page[i] = NULL;
277 			tx->page_dma[i] = 0;
278 		}
279 	}
280 }
281 
282 static int tsnep_tx_ring_create(struct tsnep_tx *tx)
283 {
284 	struct device *dmadev = tx->adapter->dmadev;
285 	struct tsnep_tx_entry *entry;
286 	struct tsnep_tx_entry *next_entry;
287 	int i, j;
288 	int retval;
289 
290 	for (i = 0; i < TSNEP_RING_PAGE_COUNT; i++) {
291 		tx->page[i] =
292 			dma_alloc_coherent(dmadev, PAGE_SIZE, &tx->page_dma[i],
293 					   GFP_KERNEL);
294 		if (!tx->page[i]) {
295 			retval = -ENOMEM;
296 			goto alloc_failed;
297 		}
298 		for (j = 0; j < TSNEP_RING_ENTRIES_PER_PAGE; j++) {
299 			entry = &tx->entry[TSNEP_RING_ENTRIES_PER_PAGE * i + j];
300 			entry->desc_wb = (struct tsnep_tx_desc_wb *)
301 				(((u8 *)tx->page[i]) + TSNEP_DESC_SIZE * j);
302 			entry->desc = (struct tsnep_tx_desc *)
303 				(((u8 *)entry->desc_wb) + TSNEP_DESC_OFFSET);
304 			entry->desc_dma = tx->page_dma[i] + TSNEP_DESC_SIZE * j;
305 			entry->owner_user_flag = false;
306 		}
307 	}
308 	for (i = 0; i < TSNEP_RING_SIZE; i++) {
309 		entry = &tx->entry[i];
310 		next_entry = &tx->entry[(i + 1) & TSNEP_RING_MASK];
311 		entry->desc->next = __cpu_to_le64(next_entry->desc_dma);
312 	}
313 
314 	return 0;
315 
316 alloc_failed:
317 	tsnep_tx_ring_cleanup(tx);
318 	return retval;
319 }
320 
321 static void tsnep_tx_init(struct tsnep_tx *tx)
322 {
323 	dma_addr_t dma;
324 
325 	dma = tx->entry[0].desc_dma | TSNEP_RESET_OWNER_COUNTER;
326 	iowrite32(DMA_ADDR_LOW(dma), tx->addr + TSNEP_TX_DESC_ADDR_LOW);
327 	iowrite32(DMA_ADDR_HIGH(dma), tx->addr + TSNEP_TX_DESC_ADDR_HIGH);
328 	tx->write = 0;
329 	tx->read = 0;
330 	tx->owner_counter = 1;
331 	tx->increment_owner_counter = TSNEP_RING_SIZE - 1;
332 }
333 
334 static void tsnep_tx_enable(struct tsnep_tx *tx)
335 {
336 	struct netdev_queue *nq;
337 
338 	nq = netdev_get_tx_queue(tx->adapter->netdev, tx->queue_index);
339 
340 	__netif_tx_lock_bh(nq);
341 	netif_tx_wake_queue(nq);
342 	__netif_tx_unlock_bh(nq);
343 }
344 
345 static void tsnep_tx_disable(struct tsnep_tx *tx, struct napi_struct *napi)
346 {
347 	struct netdev_queue *nq;
348 	u32 val;
349 
350 	nq = netdev_get_tx_queue(tx->adapter->netdev, tx->queue_index);
351 
352 	__netif_tx_lock_bh(nq);
353 	netif_tx_stop_queue(nq);
354 	__netif_tx_unlock_bh(nq);
355 
356 	/* wait until TX is done in hardware */
357 	readx_poll_timeout(ioread32, tx->addr + TSNEP_CONTROL, val,
358 			   ((val & TSNEP_CONTROL_TX_ENABLE) == 0), 10000,
359 			   1000000);
360 
361 	/* wait until TX is also done in software */
362 	while (READ_ONCE(tx->read) != tx->write) {
363 		napi_schedule(napi);
364 		napi_synchronize(napi);
365 	}
366 }
367 
368 static void tsnep_tx_activate(struct tsnep_tx *tx, int index, int length,
369 			      bool last)
370 {
371 	struct tsnep_tx_entry *entry = &tx->entry[index];
372 
373 	entry->properties = 0;
374 	/* xdpf and zc are union with skb */
375 	if (entry->skb) {
376 		entry->properties = length & TSNEP_DESC_LENGTH_MASK;
377 		entry->properties |= TSNEP_DESC_INTERRUPT_FLAG;
378 		if ((entry->type & TSNEP_TX_TYPE_SKB) &&
379 		    (skb_shinfo(entry->skb)->tx_flags & SKBTX_IN_PROGRESS))
380 			entry->properties |= TSNEP_DESC_EXTENDED_WRITEBACK_FLAG;
381 
382 		/* toggle user flag to prevent false acknowledge
383 		 *
384 		 * Only the first fragment is acknowledged. For all other
385 		 * fragments no acknowledge is done and the last written owner
386 		 * counter stays in the writeback descriptor. Therefore, it is
387 		 * possible that the last written owner counter is identical to
388 		 * the new incremented owner counter and a false acknowledge is
389 		 * detected before the real acknowledge has been done by
390 		 * hardware.
391 		 *
392 		 * The user flag is used to prevent this situation. The user
393 		 * flag is copied to the writeback descriptor by the hardware
394 		 * and is used as additional acknowledge data. By toggeling the
395 		 * user flag only for the first fragment (which is
396 		 * acknowledged), it is guaranteed that the last acknowledge
397 		 * done for this descriptor has used a different user flag and
398 		 * cannot be detected as false acknowledge.
399 		 */
400 		entry->owner_user_flag = !entry->owner_user_flag;
401 	}
402 	if (last)
403 		entry->properties |= TSNEP_TX_DESC_LAST_FRAGMENT_FLAG;
404 	if (index == tx->increment_owner_counter) {
405 		tx->owner_counter++;
406 		if (tx->owner_counter == 4)
407 			tx->owner_counter = 1;
408 		tx->increment_owner_counter--;
409 		if (tx->increment_owner_counter < 0)
410 			tx->increment_owner_counter = TSNEP_RING_SIZE - 1;
411 	}
412 	entry->properties |=
413 		(tx->owner_counter << TSNEP_DESC_OWNER_COUNTER_SHIFT) &
414 		TSNEP_DESC_OWNER_COUNTER_MASK;
415 	if (entry->owner_user_flag)
416 		entry->properties |= TSNEP_TX_DESC_OWNER_USER_FLAG;
417 	entry->desc->more_properties =
418 		__cpu_to_le32(entry->len & TSNEP_DESC_LENGTH_MASK);
419 
420 	/* descriptor properties shall be written last, because valid data is
421 	 * signaled there
422 	 */
423 	dma_wmb();
424 
425 	entry->desc->properties = __cpu_to_le32(entry->properties);
426 }
427 
428 static int tsnep_tx_desc_available(struct tsnep_tx *tx)
429 {
430 	if (tx->read <= tx->write)
431 		return TSNEP_RING_SIZE - tx->write + tx->read - 1;
432 	else
433 		return tx->read - tx->write - 1;
434 }
435 
436 static int tsnep_tx_map(struct sk_buff *skb, struct tsnep_tx *tx, int count)
437 {
438 	struct device *dmadev = tx->adapter->dmadev;
439 	struct tsnep_tx_entry *entry;
440 	unsigned int len;
441 	dma_addr_t dma;
442 	int map_len = 0;
443 	int i;
444 
445 	for (i = 0; i < count; i++) {
446 		entry = &tx->entry[(tx->write + i) & TSNEP_RING_MASK];
447 
448 		if (!i) {
449 			len = skb_headlen(skb);
450 			dma = dma_map_single(dmadev, skb->data, len,
451 					     DMA_TO_DEVICE);
452 
453 			entry->type = TSNEP_TX_TYPE_SKB;
454 		} else {
455 			len = skb_frag_size(&skb_shinfo(skb)->frags[i - 1]);
456 			dma = skb_frag_dma_map(dmadev,
457 					       &skb_shinfo(skb)->frags[i - 1],
458 					       0, len, DMA_TO_DEVICE);
459 
460 			entry->type = TSNEP_TX_TYPE_SKB_FRAG;
461 		}
462 		if (dma_mapping_error(dmadev, dma))
463 			return -ENOMEM;
464 
465 		entry->len = len;
466 		dma_unmap_addr_set(entry, dma, dma);
467 
468 		entry->desc->tx = __cpu_to_le64(dma);
469 
470 		map_len += len;
471 	}
472 
473 	return map_len;
474 }
475 
476 static int tsnep_tx_unmap(struct tsnep_tx *tx, int index, int count)
477 {
478 	struct device *dmadev = tx->adapter->dmadev;
479 	struct tsnep_tx_entry *entry;
480 	int map_len = 0;
481 	int i;
482 
483 	for (i = 0; i < count; i++) {
484 		entry = &tx->entry[(index + i) & TSNEP_RING_MASK];
485 
486 		if (entry->len) {
487 			if (entry->type & TSNEP_TX_TYPE_SKB)
488 				dma_unmap_single(dmadev,
489 						 dma_unmap_addr(entry, dma),
490 						 dma_unmap_len(entry, len),
491 						 DMA_TO_DEVICE);
492 			else if (entry->type &
493 				 (TSNEP_TX_TYPE_SKB_FRAG | TSNEP_TX_TYPE_XDP_NDO))
494 				dma_unmap_page(dmadev,
495 					       dma_unmap_addr(entry, dma),
496 					       dma_unmap_len(entry, len),
497 					       DMA_TO_DEVICE);
498 			map_len += entry->len;
499 			entry->len = 0;
500 		}
501 	}
502 
503 	return map_len;
504 }
505 
506 static netdev_tx_t tsnep_xmit_frame_ring(struct sk_buff *skb,
507 					 struct tsnep_tx *tx)
508 {
509 	int count = 1;
510 	struct tsnep_tx_entry *entry;
511 	int length;
512 	int i;
513 	int retval;
514 
515 	if (skb_shinfo(skb)->nr_frags > 0)
516 		count += skb_shinfo(skb)->nr_frags;
517 
518 	if (tsnep_tx_desc_available(tx) < count) {
519 		/* ring full, shall not happen because queue is stopped if full
520 		 * below
521 		 */
522 		netif_stop_subqueue(tx->adapter->netdev, tx->queue_index);
523 
524 		return NETDEV_TX_BUSY;
525 	}
526 
527 	entry = &tx->entry[tx->write];
528 	entry->skb = skb;
529 
530 	retval = tsnep_tx_map(skb, tx, count);
531 	if (retval < 0) {
532 		tsnep_tx_unmap(tx, tx->write, count);
533 		dev_kfree_skb_any(entry->skb);
534 		entry->skb = NULL;
535 
536 		tx->dropped++;
537 
538 		return NETDEV_TX_OK;
539 	}
540 	length = retval;
541 
542 	if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)
543 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
544 
545 	for (i = 0; i < count; i++)
546 		tsnep_tx_activate(tx, (tx->write + i) & TSNEP_RING_MASK, length,
547 				  i == count - 1);
548 	tx->write = (tx->write + count) & TSNEP_RING_MASK;
549 
550 	skb_tx_timestamp(skb);
551 
552 	/* descriptor properties shall be valid before hardware is notified */
553 	dma_wmb();
554 
555 	iowrite32(TSNEP_CONTROL_TX_ENABLE, tx->addr + TSNEP_CONTROL);
556 
557 	if (tsnep_tx_desc_available(tx) < (MAX_SKB_FRAGS + 1)) {
558 		/* ring can get full with next frame */
559 		netif_stop_subqueue(tx->adapter->netdev, tx->queue_index);
560 	}
561 
562 	return NETDEV_TX_OK;
563 }
564 
565 static int tsnep_xdp_tx_map(struct xdp_frame *xdpf, struct tsnep_tx *tx,
566 			    struct skb_shared_info *shinfo, int count, u32 type)
567 {
568 	struct device *dmadev = tx->adapter->dmadev;
569 	struct tsnep_tx_entry *entry;
570 	struct page *page;
571 	skb_frag_t *frag;
572 	unsigned int len;
573 	int map_len = 0;
574 	dma_addr_t dma;
575 	void *data;
576 	int i;
577 
578 	frag = NULL;
579 	len = xdpf->len;
580 	for (i = 0; i < count; i++) {
581 		entry = &tx->entry[(tx->write + i) & TSNEP_RING_MASK];
582 		if (type & TSNEP_TX_TYPE_XDP_NDO) {
583 			data = unlikely(frag) ? skb_frag_address(frag) :
584 						xdpf->data;
585 			dma = dma_map_single(dmadev, data, len, DMA_TO_DEVICE);
586 			if (dma_mapping_error(dmadev, dma))
587 				return -ENOMEM;
588 
589 			entry->type = TSNEP_TX_TYPE_XDP_NDO;
590 		} else {
591 			page = unlikely(frag) ? skb_frag_page(frag) :
592 						virt_to_page(xdpf->data);
593 			dma = page_pool_get_dma_addr(page);
594 			if (unlikely(frag))
595 				dma += skb_frag_off(frag);
596 			else
597 				dma += sizeof(*xdpf) + xdpf->headroom;
598 			dma_sync_single_for_device(dmadev, dma, len,
599 						   DMA_BIDIRECTIONAL);
600 
601 			entry->type = TSNEP_TX_TYPE_XDP_TX;
602 		}
603 
604 		entry->len = len;
605 		dma_unmap_addr_set(entry, dma, dma);
606 
607 		entry->desc->tx = __cpu_to_le64(dma);
608 
609 		map_len += len;
610 
611 		if (i + 1 < count) {
612 			frag = &shinfo->frags[i];
613 			len = skb_frag_size(frag);
614 		}
615 	}
616 
617 	return map_len;
618 }
619 
620 /* This function requires __netif_tx_lock is held by the caller. */
621 static bool tsnep_xdp_xmit_frame_ring(struct xdp_frame *xdpf,
622 				      struct tsnep_tx *tx, u32 type)
623 {
624 	struct skb_shared_info *shinfo = xdp_get_shared_info_from_frame(xdpf);
625 	struct tsnep_tx_entry *entry;
626 	int count, length, retval, i;
627 
628 	count = 1;
629 	if (unlikely(xdp_frame_has_frags(xdpf)))
630 		count += shinfo->nr_frags;
631 
632 	/* ensure that TX ring is not filled up by XDP, always MAX_SKB_FRAGS
633 	 * will be available for normal TX path and queue is stopped there if
634 	 * necessary
635 	 */
636 	if (tsnep_tx_desc_available(tx) < (MAX_SKB_FRAGS + 1 + count))
637 		return false;
638 
639 	entry = &tx->entry[tx->write];
640 	entry->xdpf = xdpf;
641 
642 	retval = tsnep_xdp_tx_map(xdpf, tx, shinfo, count, type);
643 	if (retval < 0) {
644 		tsnep_tx_unmap(tx, tx->write, count);
645 		entry->xdpf = NULL;
646 
647 		tx->dropped++;
648 
649 		return false;
650 	}
651 	length = retval;
652 
653 	for (i = 0; i < count; i++)
654 		tsnep_tx_activate(tx, (tx->write + i) & TSNEP_RING_MASK, length,
655 				  i == count - 1);
656 	tx->write = (tx->write + count) & TSNEP_RING_MASK;
657 
658 	/* descriptor properties shall be valid before hardware is notified */
659 	dma_wmb();
660 
661 	return true;
662 }
663 
664 static void tsnep_xdp_xmit_flush(struct tsnep_tx *tx)
665 {
666 	iowrite32(TSNEP_CONTROL_TX_ENABLE, tx->addr + TSNEP_CONTROL);
667 }
668 
669 static bool tsnep_xdp_xmit_back(struct tsnep_adapter *adapter,
670 				struct xdp_buff *xdp,
671 				struct netdev_queue *tx_nq, struct tsnep_tx *tx)
672 {
673 	struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
674 	bool xmit;
675 
676 	if (unlikely(!xdpf))
677 		return false;
678 
679 	__netif_tx_lock(tx_nq, smp_processor_id());
680 
681 	xmit = tsnep_xdp_xmit_frame_ring(xdpf, tx, TSNEP_TX_TYPE_XDP_TX);
682 
683 	/* Avoid transmit queue timeout since we share it with the slow path */
684 	if (xmit)
685 		txq_trans_cond_update(tx_nq);
686 
687 	__netif_tx_unlock(tx_nq);
688 
689 	return xmit;
690 }
691 
692 static int tsnep_xdp_tx_map_zc(struct xdp_desc *xdpd, struct tsnep_tx *tx)
693 {
694 	struct tsnep_tx_entry *entry;
695 	dma_addr_t dma;
696 
697 	entry = &tx->entry[tx->write];
698 	entry->zc = true;
699 
700 	dma = xsk_buff_raw_get_dma(tx->xsk_pool, xdpd->addr);
701 	xsk_buff_raw_dma_sync_for_device(tx->xsk_pool, dma, xdpd->len);
702 
703 	entry->type = TSNEP_TX_TYPE_XSK;
704 	entry->len = xdpd->len;
705 
706 	entry->desc->tx = __cpu_to_le64(dma);
707 
708 	return xdpd->len;
709 }
710 
711 static void tsnep_xdp_xmit_frame_ring_zc(struct xdp_desc *xdpd,
712 					 struct tsnep_tx *tx)
713 {
714 	int length;
715 
716 	length = tsnep_xdp_tx_map_zc(xdpd, tx);
717 
718 	tsnep_tx_activate(tx, tx->write, length, true);
719 	tx->write = (tx->write + 1) & TSNEP_RING_MASK;
720 }
721 
722 static void tsnep_xdp_xmit_zc(struct tsnep_tx *tx)
723 {
724 	int desc_available = tsnep_tx_desc_available(tx);
725 	struct xdp_desc *descs = tx->xsk_pool->tx_descs;
726 	int batch, i;
727 
728 	/* ensure that TX ring is not filled up by XDP, always MAX_SKB_FRAGS
729 	 * will be available for normal TX path and queue is stopped there if
730 	 * necessary
731 	 */
732 	if (desc_available <= (MAX_SKB_FRAGS + 1))
733 		return;
734 	desc_available -= MAX_SKB_FRAGS + 1;
735 
736 	batch = xsk_tx_peek_release_desc_batch(tx->xsk_pool, desc_available);
737 	for (i = 0; i < batch; i++)
738 		tsnep_xdp_xmit_frame_ring_zc(&descs[i], tx);
739 
740 	if (batch) {
741 		/* descriptor properties shall be valid before hardware is
742 		 * notified
743 		 */
744 		dma_wmb();
745 
746 		tsnep_xdp_xmit_flush(tx);
747 	}
748 }
749 
750 static bool tsnep_tx_poll(struct tsnep_tx *tx, int napi_budget)
751 {
752 	struct tsnep_tx_entry *entry;
753 	struct netdev_queue *nq;
754 	int xsk_frames = 0;
755 	int budget = 128;
756 	int length;
757 	int count;
758 
759 	nq = netdev_get_tx_queue(tx->adapter->netdev, tx->queue_index);
760 	__netif_tx_lock(nq, smp_processor_id());
761 
762 	do {
763 		if (tx->read == tx->write)
764 			break;
765 
766 		entry = &tx->entry[tx->read];
767 		if ((__le32_to_cpu(entry->desc_wb->properties) &
768 		     TSNEP_TX_DESC_OWNER_MASK) !=
769 		    (entry->properties & TSNEP_TX_DESC_OWNER_MASK))
770 			break;
771 
772 		/* descriptor properties shall be read first, because valid data
773 		 * is signaled there
774 		 */
775 		dma_rmb();
776 
777 		count = 1;
778 		if ((entry->type & TSNEP_TX_TYPE_SKB) &&
779 		    skb_shinfo(entry->skb)->nr_frags > 0)
780 			count += skb_shinfo(entry->skb)->nr_frags;
781 		else if ((entry->type & TSNEP_TX_TYPE_XDP) &&
782 			 xdp_frame_has_frags(entry->xdpf))
783 			count += xdp_get_shared_info_from_frame(entry->xdpf)->nr_frags;
784 
785 		length = tsnep_tx_unmap(tx, tx->read, count);
786 
787 		if ((entry->type & TSNEP_TX_TYPE_SKB) &&
788 		    (skb_shinfo(entry->skb)->tx_flags & SKBTX_IN_PROGRESS) &&
789 		    (__le32_to_cpu(entry->desc_wb->properties) &
790 		     TSNEP_DESC_EXTENDED_WRITEBACK_FLAG)) {
791 			struct skb_shared_hwtstamps hwtstamps;
792 			u64 timestamp;
793 
794 			if (skb_shinfo(entry->skb)->tx_flags &
795 			    SKBTX_HW_TSTAMP_USE_CYCLES)
796 				timestamp =
797 					__le64_to_cpu(entry->desc_wb->counter);
798 			else
799 				timestamp =
800 					__le64_to_cpu(entry->desc_wb->timestamp);
801 
802 			memset(&hwtstamps, 0, sizeof(hwtstamps));
803 			hwtstamps.hwtstamp = ns_to_ktime(timestamp);
804 
805 			skb_tstamp_tx(entry->skb, &hwtstamps);
806 		}
807 
808 		if (entry->type & TSNEP_TX_TYPE_SKB)
809 			napi_consume_skb(entry->skb, napi_budget);
810 		else if (entry->type & TSNEP_TX_TYPE_XDP)
811 			xdp_return_frame_rx_napi(entry->xdpf);
812 		else
813 			xsk_frames++;
814 		/* xdpf and zc are union with skb */
815 		entry->skb = NULL;
816 
817 		tx->read = (tx->read + count) & TSNEP_RING_MASK;
818 
819 		tx->packets++;
820 		tx->bytes += length + ETH_FCS_LEN;
821 
822 		budget--;
823 	} while (likely(budget));
824 
825 	if (tx->xsk_pool) {
826 		if (xsk_frames)
827 			xsk_tx_completed(tx->xsk_pool, xsk_frames);
828 		if (xsk_uses_need_wakeup(tx->xsk_pool))
829 			xsk_set_tx_need_wakeup(tx->xsk_pool);
830 		tsnep_xdp_xmit_zc(tx);
831 	}
832 
833 	if ((tsnep_tx_desc_available(tx) >= ((MAX_SKB_FRAGS + 1) * 2)) &&
834 	    netif_tx_queue_stopped(nq)) {
835 		netif_tx_wake_queue(nq);
836 	}
837 
838 	__netif_tx_unlock(nq);
839 
840 	return budget != 0;
841 }
842 
843 static bool tsnep_tx_pending(struct tsnep_tx *tx)
844 {
845 	struct tsnep_tx_entry *entry;
846 	struct netdev_queue *nq;
847 	bool pending = false;
848 
849 	nq = netdev_get_tx_queue(tx->adapter->netdev, tx->queue_index);
850 	__netif_tx_lock(nq, smp_processor_id());
851 
852 	if (tx->read != tx->write) {
853 		entry = &tx->entry[tx->read];
854 		if ((__le32_to_cpu(entry->desc_wb->properties) &
855 		     TSNEP_TX_DESC_OWNER_MASK) ==
856 		    (entry->properties & TSNEP_TX_DESC_OWNER_MASK))
857 			pending = true;
858 	}
859 
860 	__netif_tx_unlock(nq);
861 
862 	return pending;
863 }
864 
865 static int tsnep_tx_open(struct tsnep_tx *tx)
866 {
867 	int retval;
868 
869 	retval = tsnep_tx_ring_create(tx);
870 	if (retval)
871 		return retval;
872 
873 	tsnep_tx_init(tx);
874 
875 	return 0;
876 }
877 
878 static void tsnep_tx_close(struct tsnep_tx *tx)
879 {
880 	tsnep_tx_ring_cleanup(tx);
881 }
882 
883 static void tsnep_rx_ring_cleanup(struct tsnep_rx *rx)
884 {
885 	struct device *dmadev = rx->adapter->dmadev;
886 	struct tsnep_rx_entry *entry;
887 	int i;
888 
889 	for (i = 0; i < TSNEP_RING_SIZE; i++) {
890 		entry = &rx->entry[i];
891 		if (!rx->xsk_pool && entry->page)
892 			page_pool_put_full_page(rx->page_pool, entry->page,
893 						false);
894 		if (rx->xsk_pool && entry->xdp)
895 			xsk_buff_free(entry->xdp);
896 		/* xdp is union with page */
897 		entry->page = NULL;
898 	}
899 
900 	if (rx->page_pool)
901 		page_pool_destroy(rx->page_pool);
902 
903 	memset(rx->entry, 0, sizeof(rx->entry));
904 
905 	for (i = 0; i < TSNEP_RING_PAGE_COUNT; i++) {
906 		if (rx->page[i]) {
907 			dma_free_coherent(dmadev, PAGE_SIZE, rx->page[i],
908 					  rx->page_dma[i]);
909 			rx->page[i] = NULL;
910 			rx->page_dma[i] = 0;
911 		}
912 	}
913 }
914 
915 static int tsnep_rx_ring_create(struct tsnep_rx *rx)
916 {
917 	struct device *dmadev = rx->adapter->dmadev;
918 	struct tsnep_rx_entry *entry;
919 	struct page_pool_params pp_params = { 0 };
920 	struct tsnep_rx_entry *next_entry;
921 	int i, j;
922 	int retval;
923 
924 	for (i = 0; i < TSNEP_RING_PAGE_COUNT; i++) {
925 		rx->page[i] =
926 			dma_alloc_coherent(dmadev, PAGE_SIZE, &rx->page_dma[i],
927 					   GFP_KERNEL);
928 		if (!rx->page[i]) {
929 			retval = -ENOMEM;
930 			goto failed;
931 		}
932 		for (j = 0; j < TSNEP_RING_ENTRIES_PER_PAGE; j++) {
933 			entry = &rx->entry[TSNEP_RING_ENTRIES_PER_PAGE * i + j];
934 			entry->desc_wb = (struct tsnep_rx_desc_wb *)
935 				(((u8 *)rx->page[i]) + TSNEP_DESC_SIZE * j);
936 			entry->desc = (struct tsnep_rx_desc *)
937 				(((u8 *)entry->desc_wb) + TSNEP_DESC_OFFSET);
938 			entry->desc_dma = rx->page_dma[i] + TSNEP_DESC_SIZE * j;
939 		}
940 	}
941 
942 	pp_params.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV;
943 	pp_params.order = 0;
944 	pp_params.pool_size = TSNEP_RING_SIZE;
945 	pp_params.nid = dev_to_node(dmadev);
946 	pp_params.dev = dmadev;
947 	pp_params.dma_dir = DMA_BIDIRECTIONAL;
948 	pp_params.max_len = TSNEP_MAX_RX_BUF_SIZE;
949 	pp_params.offset = TSNEP_RX_OFFSET;
950 	rx->page_pool = page_pool_create(&pp_params);
951 	if (IS_ERR(rx->page_pool)) {
952 		retval = PTR_ERR(rx->page_pool);
953 		rx->page_pool = NULL;
954 		goto failed;
955 	}
956 
957 	for (i = 0; i < TSNEP_RING_SIZE; i++) {
958 		entry = &rx->entry[i];
959 		next_entry = &rx->entry[(i + 1) & TSNEP_RING_MASK];
960 		entry->desc->next = __cpu_to_le64(next_entry->desc_dma);
961 	}
962 
963 	return 0;
964 
965 failed:
966 	tsnep_rx_ring_cleanup(rx);
967 	return retval;
968 }
969 
970 static void tsnep_rx_init(struct tsnep_rx *rx)
971 {
972 	dma_addr_t dma;
973 
974 	dma = rx->entry[0].desc_dma | TSNEP_RESET_OWNER_COUNTER;
975 	iowrite32(DMA_ADDR_LOW(dma), rx->addr + TSNEP_RX_DESC_ADDR_LOW);
976 	iowrite32(DMA_ADDR_HIGH(dma), rx->addr + TSNEP_RX_DESC_ADDR_HIGH);
977 	rx->write = 0;
978 	rx->read = 0;
979 	rx->owner_counter = 1;
980 	rx->increment_owner_counter = TSNEP_RING_SIZE - 1;
981 }
982 
983 static void tsnep_rx_enable(struct tsnep_rx *rx)
984 {
985 	/* descriptor properties shall be valid before hardware is notified */
986 	dma_wmb();
987 
988 	iowrite32(TSNEP_CONTROL_RX_ENABLE, rx->addr + TSNEP_CONTROL);
989 }
990 
991 static void tsnep_rx_disable(struct tsnep_rx *rx)
992 {
993 	u32 val;
994 
995 	iowrite32(TSNEP_CONTROL_RX_DISABLE, rx->addr + TSNEP_CONTROL);
996 	readx_poll_timeout(ioread32, rx->addr + TSNEP_CONTROL, val,
997 			   ((val & TSNEP_CONTROL_RX_ENABLE) == 0), 10000,
998 			   1000000);
999 }
1000 
1001 static int tsnep_rx_desc_available(struct tsnep_rx *rx)
1002 {
1003 	if (rx->read <= rx->write)
1004 		return TSNEP_RING_SIZE - rx->write + rx->read - 1;
1005 	else
1006 		return rx->read - rx->write - 1;
1007 }
1008 
1009 static void tsnep_rx_free_page_buffer(struct tsnep_rx *rx)
1010 {
1011 	struct page **page;
1012 
1013 	/* last entry of page_buffer is always zero, because ring cannot be
1014 	 * filled completely
1015 	 */
1016 	page = rx->page_buffer;
1017 	while (*page) {
1018 		page_pool_put_full_page(rx->page_pool, *page, false);
1019 		*page = NULL;
1020 		page++;
1021 	}
1022 }
1023 
1024 static int tsnep_rx_alloc_page_buffer(struct tsnep_rx *rx)
1025 {
1026 	int i;
1027 
1028 	/* alloc for all ring entries except the last one, because ring cannot
1029 	 * be filled completely
1030 	 */
1031 	for (i = 0; i < TSNEP_RING_SIZE - 1; i++) {
1032 		rx->page_buffer[i] = page_pool_dev_alloc_pages(rx->page_pool);
1033 		if (!rx->page_buffer[i]) {
1034 			tsnep_rx_free_page_buffer(rx);
1035 
1036 			return -ENOMEM;
1037 		}
1038 	}
1039 
1040 	return 0;
1041 }
1042 
1043 static void tsnep_rx_set_page(struct tsnep_rx *rx, struct tsnep_rx_entry *entry,
1044 			      struct page *page)
1045 {
1046 	entry->page = page;
1047 	entry->len = TSNEP_MAX_RX_BUF_SIZE;
1048 	entry->dma = page_pool_get_dma_addr(entry->page);
1049 	entry->desc->rx = __cpu_to_le64(entry->dma + TSNEP_RX_OFFSET);
1050 }
1051 
1052 static int tsnep_rx_alloc_buffer(struct tsnep_rx *rx, int index)
1053 {
1054 	struct tsnep_rx_entry *entry = &rx->entry[index];
1055 	struct page *page;
1056 
1057 	page = page_pool_dev_alloc_pages(rx->page_pool);
1058 	if (unlikely(!page))
1059 		return -ENOMEM;
1060 	tsnep_rx_set_page(rx, entry, page);
1061 
1062 	return 0;
1063 }
1064 
1065 static void tsnep_rx_reuse_buffer(struct tsnep_rx *rx, int index)
1066 {
1067 	struct tsnep_rx_entry *entry = &rx->entry[index];
1068 	struct tsnep_rx_entry *read = &rx->entry[rx->read];
1069 
1070 	tsnep_rx_set_page(rx, entry, read->page);
1071 	read->page = NULL;
1072 }
1073 
1074 static void tsnep_rx_activate(struct tsnep_rx *rx, int index)
1075 {
1076 	struct tsnep_rx_entry *entry = &rx->entry[index];
1077 
1078 	/* TSNEP_MAX_RX_BUF_SIZE and TSNEP_XSK_RX_BUF_SIZE are multiple of 4 */
1079 	entry->properties = entry->len & TSNEP_DESC_LENGTH_MASK;
1080 	entry->properties |= TSNEP_DESC_INTERRUPT_FLAG;
1081 	if (index == rx->increment_owner_counter) {
1082 		rx->owner_counter++;
1083 		if (rx->owner_counter == 4)
1084 			rx->owner_counter = 1;
1085 		rx->increment_owner_counter--;
1086 		if (rx->increment_owner_counter < 0)
1087 			rx->increment_owner_counter = TSNEP_RING_SIZE - 1;
1088 	}
1089 	entry->properties |=
1090 		(rx->owner_counter << TSNEP_DESC_OWNER_COUNTER_SHIFT) &
1091 		TSNEP_DESC_OWNER_COUNTER_MASK;
1092 
1093 	/* descriptor properties shall be written last, because valid data is
1094 	 * signaled there
1095 	 */
1096 	dma_wmb();
1097 
1098 	entry->desc->properties = __cpu_to_le32(entry->properties);
1099 }
1100 
1101 static int tsnep_rx_alloc(struct tsnep_rx *rx, int count, bool reuse)
1102 {
1103 	bool alloc_failed = false;
1104 	int i, index;
1105 
1106 	for (i = 0; i < count && !alloc_failed; i++) {
1107 		index = (rx->write + i) & TSNEP_RING_MASK;
1108 
1109 		if (unlikely(tsnep_rx_alloc_buffer(rx, index))) {
1110 			rx->alloc_failed++;
1111 			alloc_failed = true;
1112 
1113 			/* reuse only if no other allocation was successful */
1114 			if (i == 0 && reuse)
1115 				tsnep_rx_reuse_buffer(rx, index);
1116 			else
1117 				break;
1118 		}
1119 
1120 		tsnep_rx_activate(rx, index);
1121 	}
1122 
1123 	if (i)
1124 		rx->write = (rx->write + i) & TSNEP_RING_MASK;
1125 
1126 	return i;
1127 }
1128 
1129 static int tsnep_rx_refill(struct tsnep_rx *rx, int count, bool reuse)
1130 {
1131 	int desc_refilled;
1132 
1133 	desc_refilled = tsnep_rx_alloc(rx, count, reuse);
1134 	if (desc_refilled)
1135 		tsnep_rx_enable(rx);
1136 
1137 	return desc_refilled;
1138 }
1139 
1140 static void tsnep_rx_set_xdp(struct tsnep_rx *rx, struct tsnep_rx_entry *entry,
1141 			     struct xdp_buff *xdp)
1142 {
1143 	entry->xdp = xdp;
1144 	entry->len = TSNEP_XSK_RX_BUF_SIZE;
1145 	entry->dma = xsk_buff_xdp_get_dma(entry->xdp);
1146 	entry->desc->rx = __cpu_to_le64(entry->dma);
1147 }
1148 
1149 static void tsnep_rx_reuse_buffer_zc(struct tsnep_rx *rx, int index)
1150 {
1151 	struct tsnep_rx_entry *entry = &rx->entry[index];
1152 	struct tsnep_rx_entry *read = &rx->entry[rx->read];
1153 
1154 	tsnep_rx_set_xdp(rx, entry, read->xdp);
1155 	read->xdp = NULL;
1156 }
1157 
1158 static int tsnep_rx_alloc_zc(struct tsnep_rx *rx, int count, bool reuse)
1159 {
1160 	u32 allocated;
1161 	int i;
1162 
1163 	allocated = xsk_buff_alloc_batch(rx->xsk_pool, rx->xdp_batch, count);
1164 	for (i = 0; i < allocated; i++) {
1165 		int index = (rx->write + i) & TSNEP_RING_MASK;
1166 		struct tsnep_rx_entry *entry = &rx->entry[index];
1167 
1168 		tsnep_rx_set_xdp(rx, entry, rx->xdp_batch[i]);
1169 		tsnep_rx_activate(rx, index);
1170 	}
1171 	if (i == 0) {
1172 		rx->alloc_failed++;
1173 
1174 		if (reuse) {
1175 			tsnep_rx_reuse_buffer_zc(rx, rx->write);
1176 			tsnep_rx_activate(rx, rx->write);
1177 		}
1178 	}
1179 
1180 	if (i)
1181 		rx->write = (rx->write + i) & TSNEP_RING_MASK;
1182 
1183 	return i;
1184 }
1185 
1186 static void tsnep_rx_free_zc(struct tsnep_rx *rx)
1187 {
1188 	int i;
1189 
1190 	for (i = 0; i < TSNEP_RING_SIZE; i++) {
1191 		struct tsnep_rx_entry *entry = &rx->entry[i];
1192 
1193 		if (entry->xdp)
1194 			xsk_buff_free(entry->xdp);
1195 		entry->xdp = NULL;
1196 	}
1197 }
1198 
1199 static int tsnep_rx_refill_zc(struct tsnep_rx *rx, int count, bool reuse)
1200 {
1201 	int desc_refilled;
1202 
1203 	desc_refilled = tsnep_rx_alloc_zc(rx, count, reuse);
1204 	if (desc_refilled)
1205 		tsnep_rx_enable(rx);
1206 
1207 	return desc_refilled;
1208 }
1209 
1210 static bool tsnep_xdp_run_prog(struct tsnep_rx *rx, struct bpf_prog *prog,
1211 			       struct xdp_buff *xdp, int *status,
1212 			       struct netdev_queue *tx_nq, struct tsnep_tx *tx)
1213 {
1214 	unsigned int length;
1215 	unsigned int sync;
1216 	u32 act;
1217 
1218 	length = xdp->data_end - xdp->data_hard_start - XDP_PACKET_HEADROOM;
1219 
1220 	act = bpf_prog_run_xdp(prog, xdp);
1221 	switch (act) {
1222 	case XDP_PASS:
1223 		return false;
1224 	case XDP_TX:
1225 		if (!tsnep_xdp_xmit_back(rx->adapter, xdp, tx_nq, tx))
1226 			goto out_failure;
1227 		*status |= TSNEP_XDP_TX;
1228 		return true;
1229 	case XDP_REDIRECT:
1230 		if (xdp_do_redirect(rx->adapter->netdev, xdp, prog) < 0)
1231 			goto out_failure;
1232 		*status |= TSNEP_XDP_REDIRECT;
1233 		return true;
1234 	default:
1235 		bpf_warn_invalid_xdp_action(rx->adapter->netdev, prog, act);
1236 		fallthrough;
1237 	case XDP_ABORTED:
1238 out_failure:
1239 		trace_xdp_exception(rx->adapter->netdev, prog, act);
1240 		fallthrough;
1241 	case XDP_DROP:
1242 		/* Due xdp_adjust_tail: DMA sync for_device cover max len CPU
1243 		 * touch
1244 		 */
1245 		sync = xdp->data_end - xdp->data_hard_start -
1246 		       XDP_PACKET_HEADROOM;
1247 		sync = max(sync, length);
1248 		page_pool_put_page(rx->page_pool, virt_to_head_page(xdp->data),
1249 				   sync, true);
1250 		return true;
1251 	}
1252 }
1253 
1254 static bool tsnep_xdp_run_prog_zc(struct tsnep_rx *rx, struct bpf_prog *prog,
1255 				  struct xdp_buff *xdp, int *status,
1256 				  struct netdev_queue *tx_nq,
1257 				  struct tsnep_tx *tx)
1258 {
1259 	u32 act;
1260 
1261 	act = bpf_prog_run_xdp(prog, xdp);
1262 
1263 	/* XDP_REDIRECT is the main action for zero-copy */
1264 	if (likely(act == XDP_REDIRECT)) {
1265 		if (xdp_do_redirect(rx->adapter->netdev, xdp, prog) < 0)
1266 			goto out_failure;
1267 		*status |= TSNEP_XDP_REDIRECT;
1268 		return true;
1269 	}
1270 
1271 	switch (act) {
1272 	case XDP_PASS:
1273 		return false;
1274 	case XDP_TX:
1275 		if (!tsnep_xdp_xmit_back(rx->adapter, xdp, tx_nq, tx))
1276 			goto out_failure;
1277 		*status |= TSNEP_XDP_TX;
1278 		return true;
1279 	default:
1280 		bpf_warn_invalid_xdp_action(rx->adapter->netdev, prog, act);
1281 		fallthrough;
1282 	case XDP_ABORTED:
1283 out_failure:
1284 		trace_xdp_exception(rx->adapter->netdev, prog, act);
1285 		fallthrough;
1286 	case XDP_DROP:
1287 		xsk_buff_free(xdp);
1288 		return true;
1289 	}
1290 }
1291 
1292 static void tsnep_finalize_xdp(struct tsnep_adapter *adapter, int status,
1293 			       struct netdev_queue *tx_nq, struct tsnep_tx *tx)
1294 {
1295 	if (status & TSNEP_XDP_TX) {
1296 		__netif_tx_lock(tx_nq, smp_processor_id());
1297 		tsnep_xdp_xmit_flush(tx);
1298 		__netif_tx_unlock(tx_nq);
1299 	}
1300 
1301 	if (status & TSNEP_XDP_REDIRECT)
1302 		xdp_do_flush();
1303 }
1304 
1305 static struct sk_buff *tsnep_build_skb(struct tsnep_rx *rx, struct page *page,
1306 				       int length)
1307 {
1308 	struct sk_buff *skb;
1309 
1310 	skb = napi_build_skb(page_address(page), PAGE_SIZE);
1311 	if (unlikely(!skb))
1312 		return NULL;
1313 
1314 	/* update pointers within the skb to store the data */
1315 	skb_reserve(skb, TSNEP_RX_OFFSET + TSNEP_RX_INLINE_METADATA_SIZE);
1316 	__skb_put(skb, length - ETH_FCS_LEN);
1317 
1318 	if (rx->adapter->hwtstamp_config.rx_filter == HWTSTAMP_FILTER_ALL) {
1319 		struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
1320 		struct tsnep_rx_inline *rx_inline =
1321 			(struct tsnep_rx_inline *)(page_address(page) +
1322 						   TSNEP_RX_OFFSET);
1323 
1324 		skb_shinfo(skb)->tx_flags |=
1325 			SKBTX_HW_TSTAMP_NETDEV;
1326 		memset(hwtstamps, 0, sizeof(*hwtstamps));
1327 		hwtstamps->netdev_data = rx_inline;
1328 	}
1329 
1330 	skb_record_rx_queue(skb, rx->queue_index);
1331 	skb->protocol = eth_type_trans(skb, rx->adapter->netdev);
1332 
1333 	return skb;
1334 }
1335 
1336 static void tsnep_rx_page(struct tsnep_rx *rx, struct napi_struct *napi,
1337 			  struct page *page, int length)
1338 {
1339 	struct sk_buff *skb;
1340 
1341 	skb = tsnep_build_skb(rx, page, length);
1342 	if (skb) {
1343 		skb_mark_for_recycle(skb);
1344 
1345 		rx->packets++;
1346 		rx->bytes += length;
1347 		if (skb->pkt_type == PACKET_MULTICAST)
1348 			rx->multicast++;
1349 
1350 		napi_gro_receive(napi, skb);
1351 	} else {
1352 		page_pool_recycle_direct(rx->page_pool, page);
1353 
1354 		rx->dropped++;
1355 	}
1356 }
1357 
1358 static int tsnep_rx_poll(struct tsnep_rx *rx, struct napi_struct *napi,
1359 			 int budget)
1360 {
1361 	struct device *dmadev = rx->adapter->dmadev;
1362 	enum dma_data_direction dma_dir;
1363 	struct tsnep_rx_entry *entry;
1364 	struct netdev_queue *tx_nq;
1365 	struct bpf_prog *prog;
1366 	struct xdp_buff xdp;
1367 	struct tsnep_tx *tx;
1368 	int desc_available;
1369 	int xdp_status = 0;
1370 	int done = 0;
1371 	int length;
1372 
1373 	desc_available = tsnep_rx_desc_available(rx);
1374 	dma_dir = page_pool_get_dma_dir(rx->page_pool);
1375 	prog = READ_ONCE(rx->adapter->xdp_prog);
1376 	if (prog) {
1377 		tx_nq = netdev_get_tx_queue(rx->adapter->netdev,
1378 					    rx->tx_queue_index);
1379 		tx = &rx->adapter->tx[rx->tx_queue_index];
1380 
1381 		xdp_init_buff(&xdp, PAGE_SIZE, &rx->xdp_rxq);
1382 	}
1383 
1384 	while (likely(done < budget) && (rx->read != rx->write)) {
1385 		entry = &rx->entry[rx->read];
1386 		if ((__le32_to_cpu(entry->desc_wb->properties) &
1387 		     TSNEP_DESC_OWNER_COUNTER_MASK) !=
1388 		    (entry->properties & TSNEP_DESC_OWNER_COUNTER_MASK))
1389 			break;
1390 		done++;
1391 
1392 		if (desc_available >= TSNEP_RING_RX_REFILL) {
1393 			bool reuse = desc_available >= TSNEP_RING_RX_REUSE;
1394 
1395 			desc_available -= tsnep_rx_refill(rx, desc_available,
1396 							  reuse);
1397 			if (!entry->page) {
1398 				/* buffer has been reused for refill to prevent
1399 				 * empty RX ring, thus buffer cannot be used for
1400 				 * RX processing
1401 				 */
1402 				rx->read = (rx->read + 1) & TSNEP_RING_MASK;
1403 				desc_available++;
1404 
1405 				rx->dropped++;
1406 
1407 				continue;
1408 			}
1409 		}
1410 
1411 		/* descriptor properties shall be read first, because valid data
1412 		 * is signaled there
1413 		 */
1414 		dma_rmb();
1415 
1416 		prefetch(page_address(entry->page) + TSNEP_RX_OFFSET);
1417 		length = __le32_to_cpu(entry->desc_wb->properties) &
1418 			 TSNEP_DESC_LENGTH_MASK;
1419 		dma_sync_single_range_for_cpu(dmadev, entry->dma,
1420 					      TSNEP_RX_OFFSET, length, dma_dir);
1421 
1422 		/* RX metadata with timestamps is in front of actual data,
1423 		 * subtract metadata size to get length of actual data and
1424 		 * consider metadata size as offset of actual data during RX
1425 		 * processing
1426 		 */
1427 		length -= TSNEP_RX_INLINE_METADATA_SIZE;
1428 
1429 		rx->read = (rx->read + 1) & TSNEP_RING_MASK;
1430 		desc_available++;
1431 
1432 		if (prog) {
1433 			bool consume;
1434 
1435 			xdp_prepare_buff(&xdp, page_address(entry->page),
1436 					 XDP_PACKET_HEADROOM + TSNEP_RX_INLINE_METADATA_SIZE,
1437 					 length, false);
1438 
1439 			consume = tsnep_xdp_run_prog(rx, prog, &xdp,
1440 						     &xdp_status, tx_nq, tx);
1441 			if (consume) {
1442 				rx->packets++;
1443 				rx->bytes += length;
1444 
1445 				entry->page = NULL;
1446 
1447 				continue;
1448 			}
1449 		}
1450 
1451 		tsnep_rx_page(rx, napi, entry->page, length);
1452 		entry->page = NULL;
1453 	}
1454 
1455 	if (xdp_status)
1456 		tsnep_finalize_xdp(rx->adapter, xdp_status, tx_nq, tx);
1457 
1458 	if (desc_available)
1459 		tsnep_rx_refill(rx, desc_available, false);
1460 
1461 	return done;
1462 }
1463 
1464 static int tsnep_rx_poll_zc(struct tsnep_rx *rx, struct napi_struct *napi,
1465 			    int budget)
1466 {
1467 	struct tsnep_rx_entry *entry;
1468 	struct netdev_queue *tx_nq;
1469 	struct bpf_prog *prog;
1470 	struct tsnep_tx *tx;
1471 	int desc_available;
1472 	int xdp_status = 0;
1473 	struct page *page;
1474 	int done = 0;
1475 	int length;
1476 
1477 	desc_available = tsnep_rx_desc_available(rx);
1478 	prog = READ_ONCE(rx->adapter->xdp_prog);
1479 	if (prog) {
1480 		tx_nq = netdev_get_tx_queue(rx->adapter->netdev,
1481 					    rx->tx_queue_index);
1482 		tx = &rx->adapter->tx[rx->tx_queue_index];
1483 	}
1484 
1485 	while (likely(done < budget) && (rx->read != rx->write)) {
1486 		entry = &rx->entry[rx->read];
1487 		if ((__le32_to_cpu(entry->desc_wb->properties) &
1488 		     TSNEP_DESC_OWNER_COUNTER_MASK) !=
1489 		    (entry->properties & TSNEP_DESC_OWNER_COUNTER_MASK))
1490 			break;
1491 		done++;
1492 
1493 		if (desc_available >= TSNEP_RING_RX_REFILL) {
1494 			bool reuse = desc_available >= TSNEP_RING_RX_REUSE;
1495 
1496 			desc_available -= tsnep_rx_refill_zc(rx, desc_available,
1497 							     reuse);
1498 			if (!entry->xdp) {
1499 				/* buffer has been reused for refill to prevent
1500 				 * empty RX ring, thus buffer cannot be used for
1501 				 * RX processing
1502 				 */
1503 				rx->read = (rx->read + 1) & TSNEP_RING_MASK;
1504 				desc_available++;
1505 
1506 				rx->dropped++;
1507 
1508 				continue;
1509 			}
1510 		}
1511 
1512 		/* descriptor properties shall be read first, because valid data
1513 		 * is signaled there
1514 		 */
1515 		dma_rmb();
1516 
1517 		prefetch(entry->xdp->data);
1518 		length = __le32_to_cpu(entry->desc_wb->properties) &
1519 			 TSNEP_DESC_LENGTH_MASK;
1520 		xsk_buff_set_size(entry->xdp, length);
1521 		xsk_buff_dma_sync_for_cpu(entry->xdp, rx->xsk_pool);
1522 
1523 		/* RX metadata with timestamps is in front of actual data,
1524 		 * subtract metadata size to get length of actual data and
1525 		 * consider metadata size as offset of actual data during RX
1526 		 * processing
1527 		 */
1528 		length -= TSNEP_RX_INLINE_METADATA_SIZE;
1529 
1530 		rx->read = (rx->read + 1) & TSNEP_RING_MASK;
1531 		desc_available++;
1532 
1533 		if (prog) {
1534 			bool consume;
1535 
1536 			entry->xdp->data += TSNEP_RX_INLINE_METADATA_SIZE;
1537 			entry->xdp->data_meta += TSNEP_RX_INLINE_METADATA_SIZE;
1538 
1539 			consume = tsnep_xdp_run_prog_zc(rx, prog, entry->xdp,
1540 							&xdp_status, tx_nq, tx);
1541 			if (consume) {
1542 				rx->packets++;
1543 				rx->bytes += length;
1544 
1545 				entry->xdp = NULL;
1546 
1547 				continue;
1548 			}
1549 		}
1550 
1551 		page = page_pool_dev_alloc_pages(rx->page_pool);
1552 		if (page) {
1553 			memcpy(page_address(page) + TSNEP_RX_OFFSET,
1554 			       entry->xdp->data - TSNEP_RX_INLINE_METADATA_SIZE,
1555 			       length + TSNEP_RX_INLINE_METADATA_SIZE);
1556 			tsnep_rx_page(rx, napi, page, length);
1557 		} else {
1558 			rx->dropped++;
1559 		}
1560 		xsk_buff_free(entry->xdp);
1561 		entry->xdp = NULL;
1562 	}
1563 
1564 	if (xdp_status)
1565 		tsnep_finalize_xdp(rx->adapter, xdp_status, tx_nq, tx);
1566 
1567 	if (desc_available)
1568 		desc_available -= tsnep_rx_refill_zc(rx, desc_available, false);
1569 
1570 	if (xsk_uses_need_wakeup(rx->xsk_pool)) {
1571 		if (desc_available)
1572 			xsk_set_rx_need_wakeup(rx->xsk_pool);
1573 		else
1574 			xsk_clear_rx_need_wakeup(rx->xsk_pool);
1575 
1576 		return done;
1577 	}
1578 
1579 	return desc_available ? budget : done;
1580 }
1581 
1582 static bool tsnep_rx_pending(struct tsnep_rx *rx)
1583 {
1584 	struct tsnep_rx_entry *entry;
1585 
1586 	if (rx->read != rx->write) {
1587 		entry = &rx->entry[rx->read];
1588 		if ((__le32_to_cpu(entry->desc_wb->properties) &
1589 		     TSNEP_DESC_OWNER_COUNTER_MASK) ==
1590 		    (entry->properties & TSNEP_DESC_OWNER_COUNTER_MASK))
1591 			return true;
1592 	}
1593 
1594 	return false;
1595 }
1596 
1597 static int tsnep_rx_open(struct tsnep_rx *rx)
1598 {
1599 	int desc_available;
1600 	int retval;
1601 
1602 	retval = tsnep_rx_ring_create(rx);
1603 	if (retval)
1604 		return retval;
1605 
1606 	tsnep_rx_init(rx);
1607 
1608 	desc_available = tsnep_rx_desc_available(rx);
1609 	if (rx->xsk_pool)
1610 		retval = tsnep_rx_alloc_zc(rx, desc_available, false);
1611 	else
1612 		retval = tsnep_rx_alloc(rx, desc_available, false);
1613 	if (retval != desc_available) {
1614 		retval = -ENOMEM;
1615 
1616 		goto alloc_failed;
1617 	}
1618 
1619 	/* prealloc pages to prevent allocation failures when XSK pool is
1620 	 * disabled at runtime
1621 	 */
1622 	if (rx->xsk_pool) {
1623 		retval = tsnep_rx_alloc_page_buffer(rx);
1624 		if (retval)
1625 			goto alloc_failed;
1626 	}
1627 
1628 	return 0;
1629 
1630 alloc_failed:
1631 	tsnep_rx_ring_cleanup(rx);
1632 	return retval;
1633 }
1634 
1635 static void tsnep_rx_close(struct tsnep_rx *rx)
1636 {
1637 	if (rx->xsk_pool)
1638 		tsnep_rx_free_page_buffer(rx);
1639 
1640 	tsnep_rx_ring_cleanup(rx);
1641 }
1642 
1643 static void tsnep_rx_reopen(struct tsnep_rx *rx)
1644 {
1645 	struct page **page = rx->page_buffer;
1646 	int i;
1647 
1648 	tsnep_rx_init(rx);
1649 
1650 	for (i = 0; i < TSNEP_RING_SIZE; i++) {
1651 		struct tsnep_rx_entry *entry = &rx->entry[i];
1652 
1653 		/* defined initial values for properties are required for
1654 		 * correct owner counter checking
1655 		 */
1656 		entry->desc->properties = 0;
1657 		entry->desc_wb->properties = 0;
1658 
1659 		/* prevent allocation failures by reusing kept pages */
1660 		if (*page) {
1661 			tsnep_rx_set_page(rx, entry, *page);
1662 			tsnep_rx_activate(rx, rx->write);
1663 			rx->write++;
1664 
1665 			*page = NULL;
1666 			page++;
1667 		}
1668 	}
1669 }
1670 
1671 static void tsnep_rx_reopen_xsk(struct tsnep_rx *rx)
1672 {
1673 	struct page **page = rx->page_buffer;
1674 	u32 allocated;
1675 	int i;
1676 
1677 	tsnep_rx_init(rx);
1678 
1679 	/* alloc all ring entries except the last one, because ring cannot be
1680 	 * filled completely, as many buffers as possible is enough as wakeup is
1681 	 * done if new buffers are available
1682 	 */
1683 	allocated = xsk_buff_alloc_batch(rx->xsk_pool, rx->xdp_batch,
1684 					 TSNEP_RING_SIZE - 1);
1685 
1686 	for (i = 0; i < TSNEP_RING_SIZE; i++) {
1687 		struct tsnep_rx_entry *entry = &rx->entry[i];
1688 
1689 		/* keep pages to prevent allocation failures when xsk is
1690 		 * disabled
1691 		 */
1692 		if (entry->page) {
1693 			*page = entry->page;
1694 			entry->page = NULL;
1695 
1696 			page++;
1697 		}
1698 
1699 		/* defined initial values for properties are required for
1700 		 * correct owner counter checking
1701 		 */
1702 		entry->desc->properties = 0;
1703 		entry->desc_wb->properties = 0;
1704 
1705 		if (allocated) {
1706 			tsnep_rx_set_xdp(rx, entry,
1707 					 rx->xdp_batch[allocated - 1]);
1708 			tsnep_rx_activate(rx, rx->write);
1709 			rx->write++;
1710 
1711 			allocated--;
1712 		}
1713 	}
1714 }
1715 
1716 static bool tsnep_pending(struct tsnep_queue *queue)
1717 {
1718 	if (queue->tx && tsnep_tx_pending(queue->tx))
1719 		return true;
1720 
1721 	if (queue->rx && tsnep_rx_pending(queue->rx))
1722 		return true;
1723 
1724 	return false;
1725 }
1726 
1727 static int tsnep_poll(struct napi_struct *napi, int budget)
1728 {
1729 	struct tsnep_queue *queue = container_of(napi, struct tsnep_queue,
1730 						 napi);
1731 	bool complete = true;
1732 	int done = 0;
1733 
1734 	if (queue->tx)
1735 		complete = tsnep_tx_poll(queue->tx, budget);
1736 
1737 	/* handle case where we are called by netpoll with a budget of 0 */
1738 	if (unlikely(budget <= 0))
1739 		return budget;
1740 
1741 	if (queue->rx) {
1742 		done = queue->rx->xsk_pool ?
1743 		       tsnep_rx_poll_zc(queue->rx, napi, budget) :
1744 		       tsnep_rx_poll(queue->rx, napi, budget);
1745 		if (done >= budget)
1746 			complete = false;
1747 	}
1748 
1749 	/* if all work not completed, return budget and keep polling */
1750 	if (!complete)
1751 		return budget;
1752 
1753 	if (likely(napi_complete_done(napi, done))) {
1754 		tsnep_enable_irq(queue->adapter, queue->irq_mask);
1755 
1756 		/* reschedule if work is already pending, prevent rotten packets
1757 		 * which are transmitted or received after polling but before
1758 		 * interrupt enable
1759 		 */
1760 		if (tsnep_pending(queue)) {
1761 			tsnep_disable_irq(queue->adapter, queue->irq_mask);
1762 			napi_schedule(napi);
1763 		}
1764 	}
1765 
1766 	return min(done, budget - 1);
1767 }
1768 
1769 static int tsnep_request_irq(struct tsnep_queue *queue, bool first)
1770 {
1771 	const char *name = netdev_name(queue->adapter->netdev);
1772 	irq_handler_t handler;
1773 	void *dev;
1774 	int retval;
1775 
1776 	if (first) {
1777 		sprintf(queue->name, "%s-mac", name);
1778 		handler = tsnep_irq;
1779 		dev = queue->adapter;
1780 	} else {
1781 		if (queue->tx && queue->rx)
1782 			snprintf(queue->name, sizeof(queue->name), "%s-txrx-%d",
1783 				 name, queue->rx->queue_index);
1784 		else if (queue->tx)
1785 			snprintf(queue->name, sizeof(queue->name), "%s-tx-%d",
1786 				 name, queue->tx->queue_index);
1787 		else
1788 			snprintf(queue->name, sizeof(queue->name), "%s-rx-%d",
1789 				 name, queue->rx->queue_index);
1790 		handler = tsnep_irq_txrx;
1791 		dev = queue;
1792 	}
1793 
1794 	retval = request_irq(queue->irq, handler, 0, queue->name, dev);
1795 	if (retval) {
1796 		/* if name is empty, then interrupt won't be freed */
1797 		memset(queue->name, 0, sizeof(queue->name));
1798 	}
1799 
1800 	return retval;
1801 }
1802 
1803 static void tsnep_free_irq(struct tsnep_queue *queue, bool first)
1804 {
1805 	void *dev;
1806 
1807 	if (!strlen(queue->name))
1808 		return;
1809 
1810 	if (first)
1811 		dev = queue->adapter;
1812 	else
1813 		dev = queue;
1814 
1815 	free_irq(queue->irq, dev);
1816 	memset(queue->name, 0, sizeof(queue->name));
1817 }
1818 
1819 static void tsnep_queue_close(struct tsnep_queue *queue, bool first)
1820 {
1821 	struct tsnep_rx *rx = queue->rx;
1822 
1823 	tsnep_free_irq(queue, first);
1824 
1825 	if (rx) {
1826 		if (xdp_rxq_info_is_reg(&rx->xdp_rxq))
1827 			xdp_rxq_info_unreg(&rx->xdp_rxq);
1828 		if (xdp_rxq_info_is_reg(&rx->xdp_rxq_zc))
1829 			xdp_rxq_info_unreg(&rx->xdp_rxq_zc);
1830 	}
1831 
1832 	netif_napi_del(&queue->napi);
1833 }
1834 
1835 static int tsnep_queue_open(struct tsnep_adapter *adapter,
1836 			    struct tsnep_queue *queue, bool first)
1837 {
1838 	struct tsnep_rx *rx = queue->rx;
1839 	struct tsnep_tx *tx = queue->tx;
1840 	int retval;
1841 
1842 	netif_napi_add(adapter->netdev, &queue->napi, tsnep_poll);
1843 
1844 	if (rx) {
1845 		/* choose TX queue for XDP_TX */
1846 		if (tx)
1847 			rx->tx_queue_index = tx->queue_index;
1848 		else if (rx->queue_index < adapter->num_tx_queues)
1849 			rx->tx_queue_index = rx->queue_index;
1850 		else
1851 			rx->tx_queue_index = 0;
1852 
1853 		/* prepare both memory models to eliminate possible registration
1854 		 * errors when memory model is switched between page pool and
1855 		 * XSK pool during runtime
1856 		 */
1857 		retval = xdp_rxq_info_reg(&rx->xdp_rxq, adapter->netdev,
1858 					  rx->queue_index, queue->napi.napi_id);
1859 		if (retval)
1860 			goto failed;
1861 		retval = xdp_rxq_info_reg_mem_model(&rx->xdp_rxq,
1862 						    MEM_TYPE_PAGE_POOL,
1863 						    rx->page_pool);
1864 		if (retval)
1865 			goto failed;
1866 		retval = xdp_rxq_info_reg(&rx->xdp_rxq_zc, adapter->netdev,
1867 					  rx->queue_index, queue->napi.napi_id);
1868 		if (retval)
1869 			goto failed;
1870 		retval = xdp_rxq_info_reg_mem_model(&rx->xdp_rxq_zc,
1871 						    MEM_TYPE_XSK_BUFF_POOL,
1872 						    NULL);
1873 		if (retval)
1874 			goto failed;
1875 		if (rx->xsk_pool)
1876 			xsk_pool_set_rxq_info(rx->xsk_pool, &rx->xdp_rxq_zc);
1877 	}
1878 
1879 	retval = tsnep_request_irq(queue, first);
1880 	if (retval) {
1881 		netif_err(adapter, drv, adapter->netdev,
1882 			  "can't get assigned irq %d.\n", queue->irq);
1883 		goto failed;
1884 	}
1885 
1886 	return 0;
1887 
1888 failed:
1889 	tsnep_queue_close(queue, first);
1890 
1891 	return retval;
1892 }
1893 
1894 static void tsnep_queue_enable(struct tsnep_queue *queue)
1895 {
1896 	napi_enable(&queue->napi);
1897 	tsnep_enable_irq(queue->adapter, queue->irq_mask);
1898 
1899 	if (queue->tx)
1900 		tsnep_tx_enable(queue->tx);
1901 
1902 	if (queue->rx)
1903 		tsnep_rx_enable(queue->rx);
1904 }
1905 
1906 static void tsnep_queue_disable(struct tsnep_queue *queue)
1907 {
1908 	if (queue->tx)
1909 		tsnep_tx_disable(queue->tx, &queue->napi);
1910 
1911 	napi_disable(&queue->napi);
1912 	tsnep_disable_irq(queue->adapter, queue->irq_mask);
1913 
1914 	/* disable RX after NAPI polling has been disabled, because RX can be
1915 	 * enabled during NAPI polling
1916 	 */
1917 	if (queue->rx)
1918 		tsnep_rx_disable(queue->rx);
1919 }
1920 
1921 static int tsnep_netdev_open(struct net_device *netdev)
1922 {
1923 	struct tsnep_adapter *adapter = netdev_priv(netdev);
1924 	int i, retval;
1925 
1926 	for (i = 0; i < adapter->num_queues; i++) {
1927 		if (adapter->queue[i].tx) {
1928 			retval = tsnep_tx_open(adapter->queue[i].tx);
1929 			if (retval)
1930 				goto failed;
1931 		}
1932 		if (adapter->queue[i].rx) {
1933 			retval = tsnep_rx_open(adapter->queue[i].rx);
1934 			if (retval)
1935 				goto failed;
1936 		}
1937 
1938 		retval = tsnep_queue_open(adapter, &adapter->queue[i], i == 0);
1939 		if (retval)
1940 			goto failed;
1941 	}
1942 
1943 	retval = netif_set_real_num_tx_queues(adapter->netdev,
1944 					      adapter->num_tx_queues);
1945 	if (retval)
1946 		goto failed;
1947 	retval = netif_set_real_num_rx_queues(adapter->netdev,
1948 					      adapter->num_rx_queues);
1949 	if (retval)
1950 		goto failed;
1951 
1952 	tsnep_enable_irq(adapter, ECM_INT_LINK);
1953 	retval = tsnep_phy_open(adapter);
1954 	if (retval)
1955 		goto phy_failed;
1956 
1957 	for (i = 0; i < adapter->num_queues; i++)
1958 		tsnep_queue_enable(&adapter->queue[i]);
1959 
1960 	return 0;
1961 
1962 phy_failed:
1963 	tsnep_disable_irq(adapter, ECM_INT_LINK);
1964 failed:
1965 	for (i = 0; i < adapter->num_queues; i++) {
1966 		tsnep_queue_close(&adapter->queue[i], i == 0);
1967 
1968 		if (adapter->queue[i].rx)
1969 			tsnep_rx_close(adapter->queue[i].rx);
1970 		if (adapter->queue[i].tx)
1971 			tsnep_tx_close(adapter->queue[i].tx);
1972 	}
1973 	return retval;
1974 }
1975 
1976 static int tsnep_netdev_close(struct net_device *netdev)
1977 {
1978 	struct tsnep_adapter *adapter = netdev_priv(netdev);
1979 	int i;
1980 
1981 	tsnep_disable_irq(adapter, ECM_INT_LINK);
1982 	tsnep_phy_close(adapter);
1983 
1984 	for (i = 0; i < adapter->num_queues; i++) {
1985 		tsnep_queue_disable(&adapter->queue[i]);
1986 
1987 		tsnep_queue_close(&adapter->queue[i], i == 0);
1988 
1989 		if (adapter->queue[i].rx)
1990 			tsnep_rx_close(adapter->queue[i].rx);
1991 		if (adapter->queue[i].tx)
1992 			tsnep_tx_close(adapter->queue[i].tx);
1993 	}
1994 
1995 	return 0;
1996 }
1997 
1998 int tsnep_enable_xsk(struct tsnep_queue *queue, struct xsk_buff_pool *pool)
1999 {
2000 	bool running = netif_running(queue->adapter->netdev);
2001 	u32 frame_size;
2002 
2003 	frame_size = xsk_pool_get_rx_frame_size(pool);
2004 	if (frame_size < TSNEP_XSK_RX_BUF_SIZE)
2005 		return -EOPNOTSUPP;
2006 
2007 	queue->rx->page_buffer = kcalloc(TSNEP_RING_SIZE,
2008 					 sizeof(*queue->rx->page_buffer),
2009 					 GFP_KERNEL);
2010 	if (!queue->rx->page_buffer)
2011 		return -ENOMEM;
2012 	queue->rx->xdp_batch = kcalloc(TSNEP_RING_SIZE,
2013 				       sizeof(*queue->rx->xdp_batch),
2014 				       GFP_KERNEL);
2015 	if (!queue->rx->xdp_batch) {
2016 		kfree(queue->rx->page_buffer);
2017 		queue->rx->page_buffer = NULL;
2018 
2019 		return -ENOMEM;
2020 	}
2021 
2022 	xsk_pool_set_rxq_info(pool, &queue->rx->xdp_rxq_zc);
2023 
2024 	if (running)
2025 		tsnep_queue_disable(queue);
2026 
2027 	queue->tx->xsk_pool = pool;
2028 	queue->rx->xsk_pool = pool;
2029 
2030 	if (running) {
2031 		tsnep_rx_reopen_xsk(queue->rx);
2032 		tsnep_queue_enable(queue);
2033 	}
2034 
2035 	return 0;
2036 }
2037 
2038 void tsnep_disable_xsk(struct tsnep_queue *queue)
2039 {
2040 	bool running = netif_running(queue->adapter->netdev);
2041 
2042 	if (running)
2043 		tsnep_queue_disable(queue);
2044 
2045 	tsnep_rx_free_zc(queue->rx);
2046 
2047 	queue->rx->xsk_pool = NULL;
2048 	queue->tx->xsk_pool = NULL;
2049 
2050 	if (running) {
2051 		tsnep_rx_reopen(queue->rx);
2052 		tsnep_queue_enable(queue);
2053 	}
2054 
2055 	kfree(queue->rx->xdp_batch);
2056 	queue->rx->xdp_batch = NULL;
2057 	kfree(queue->rx->page_buffer);
2058 	queue->rx->page_buffer = NULL;
2059 }
2060 
2061 static netdev_tx_t tsnep_netdev_xmit_frame(struct sk_buff *skb,
2062 					   struct net_device *netdev)
2063 {
2064 	struct tsnep_adapter *adapter = netdev_priv(netdev);
2065 	u16 queue_mapping = skb_get_queue_mapping(skb);
2066 
2067 	if (queue_mapping >= adapter->num_tx_queues)
2068 		queue_mapping = 0;
2069 
2070 	return tsnep_xmit_frame_ring(skb, &adapter->tx[queue_mapping]);
2071 }
2072 
2073 static int tsnep_netdev_ioctl(struct net_device *netdev, struct ifreq *ifr,
2074 			      int cmd)
2075 {
2076 	if (!netif_running(netdev))
2077 		return -EINVAL;
2078 	if (cmd == SIOCSHWTSTAMP || cmd == SIOCGHWTSTAMP)
2079 		return tsnep_ptp_ioctl(netdev, ifr, cmd);
2080 	return phy_mii_ioctl(netdev->phydev, ifr, cmd);
2081 }
2082 
2083 static void tsnep_netdev_set_multicast(struct net_device *netdev)
2084 {
2085 	struct tsnep_adapter *adapter = netdev_priv(netdev);
2086 
2087 	u16 rx_filter = 0;
2088 
2089 	/* configured MAC address and broadcasts are never filtered */
2090 	if (netdev->flags & IFF_PROMISC) {
2091 		rx_filter |= TSNEP_RX_FILTER_ACCEPT_ALL_MULTICASTS;
2092 		rx_filter |= TSNEP_RX_FILTER_ACCEPT_ALL_UNICASTS;
2093 	} else if (!netdev_mc_empty(netdev) || (netdev->flags & IFF_ALLMULTI)) {
2094 		rx_filter |= TSNEP_RX_FILTER_ACCEPT_ALL_MULTICASTS;
2095 	}
2096 	iowrite16(rx_filter, adapter->addr + TSNEP_RX_FILTER);
2097 }
2098 
2099 static void tsnep_netdev_get_stats64(struct net_device *netdev,
2100 				     struct rtnl_link_stats64 *stats)
2101 {
2102 	struct tsnep_adapter *adapter = netdev_priv(netdev);
2103 	u32 reg;
2104 	u32 val;
2105 	int i;
2106 
2107 	for (i = 0; i < adapter->num_tx_queues; i++) {
2108 		stats->tx_packets += adapter->tx[i].packets;
2109 		stats->tx_bytes += adapter->tx[i].bytes;
2110 		stats->tx_dropped += adapter->tx[i].dropped;
2111 	}
2112 	for (i = 0; i < adapter->num_rx_queues; i++) {
2113 		stats->rx_packets += adapter->rx[i].packets;
2114 		stats->rx_bytes += adapter->rx[i].bytes;
2115 		stats->rx_dropped += adapter->rx[i].dropped;
2116 		stats->multicast += adapter->rx[i].multicast;
2117 
2118 		reg = ioread32(adapter->addr + TSNEP_QUEUE(i) +
2119 			       TSNEP_RX_STATISTIC);
2120 		val = (reg & TSNEP_RX_STATISTIC_NO_DESC_MASK) >>
2121 		      TSNEP_RX_STATISTIC_NO_DESC_SHIFT;
2122 		stats->rx_dropped += val;
2123 		val = (reg & TSNEP_RX_STATISTIC_BUFFER_TOO_SMALL_MASK) >>
2124 		      TSNEP_RX_STATISTIC_BUFFER_TOO_SMALL_SHIFT;
2125 		stats->rx_dropped += val;
2126 		val = (reg & TSNEP_RX_STATISTIC_FIFO_OVERFLOW_MASK) >>
2127 		      TSNEP_RX_STATISTIC_FIFO_OVERFLOW_SHIFT;
2128 		stats->rx_errors += val;
2129 		stats->rx_fifo_errors += val;
2130 		val = (reg & TSNEP_RX_STATISTIC_INVALID_FRAME_MASK) >>
2131 		      TSNEP_RX_STATISTIC_INVALID_FRAME_SHIFT;
2132 		stats->rx_errors += val;
2133 		stats->rx_frame_errors += val;
2134 	}
2135 
2136 	reg = ioread32(adapter->addr + ECM_STAT);
2137 	val = (reg & ECM_STAT_RX_ERR_MASK) >> ECM_STAT_RX_ERR_SHIFT;
2138 	stats->rx_errors += val;
2139 	val = (reg & ECM_STAT_INV_FRM_MASK) >> ECM_STAT_INV_FRM_SHIFT;
2140 	stats->rx_errors += val;
2141 	stats->rx_crc_errors += val;
2142 	val = (reg & ECM_STAT_FWD_RX_ERR_MASK) >> ECM_STAT_FWD_RX_ERR_SHIFT;
2143 	stats->rx_errors += val;
2144 }
2145 
2146 static void tsnep_mac_set_address(struct tsnep_adapter *adapter, u8 *addr)
2147 {
2148 	iowrite32(*(u32 *)addr, adapter->addr + TSNEP_MAC_ADDRESS_LOW);
2149 	iowrite16(*(u16 *)(addr + sizeof(u32)),
2150 		  adapter->addr + TSNEP_MAC_ADDRESS_HIGH);
2151 
2152 	ether_addr_copy(adapter->mac_address, addr);
2153 	netif_info(adapter, drv, adapter->netdev, "MAC address set to %pM\n",
2154 		   addr);
2155 }
2156 
2157 static int tsnep_netdev_set_mac_address(struct net_device *netdev, void *addr)
2158 {
2159 	struct tsnep_adapter *adapter = netdev_priv(netdev);
2160 	struct sockaddr *sock_addr = addr;
2161 	int retval;
2162 
2163 	retval = eth_prepare_mac_addr_change(netdev, sock_addr);
2164 	if (retval)
2165 		return retval;
2166 	eth_hw_addr_set(netdev, sock_addr->sa_data);
2167 	tsnep_mac_set_address(adapter, sock_addr->sa_data);
2168 
2169 	return 0;
2170 }
2171 
2172 static int tsnep_netdev_set_features(struct net_device *netdev,
2173 				     netdev_features_t features)
2174 {
2175 	struct tsnep_adapter *adapter = netdev_priv(netdev);
2176 	netdev_features_t changed = netdev->features ^ features;
2177 	bool enable;
2178 	int retval = 0;
2179 
2180 	if (changed & NETIF_F_LOOPBACK) {
2181 		enable = !!(features & NETIF_F_LOOPBACK);
2182 		retval = tsnep_phy_loopback(adapter, enable);
2183 	}
2184 
2185 	return retval;
2186 }
2187 
2188 static ktime_t tsnep_netdev_get_tstamp(struct net_device *netdev,
2189 				       const struct skb_shared_hwtstamps *hwtstamps,
2190 				       bool cycles)
2191 {
2192 	struct tsnep_rx_inline *rx_inline = hwtstamps->netdev_data;
2193 	u64 timestamp;
2194 
2195 	if (cycles)
2196 		timestamp = __le64_to_cpu(rx_inline->counter);
2197 	else
2198 		timestamp = __le64_to_cpu(rx_inline->timestamp);
2199 
2200 	return ns_to_ktime(timestamp);
2201 }
2202 
2203 static int tsnep_netdev_bpf(struct net_device *dev, struct netdev_bpf *bpf)
2204 {
2205 	struct tsnep_adapter *adapter = netdev_priv(dev);
2206 
2207 	switch (bpf->command) {
2208 	case XDP_SETUP_PROG:
2209 		return tsnep_xdp_setup_prog(adapter, bpf->prog, bpf->extack);
2210 	case XDP_SETUP_XSK_POOL:
2211 		return tsnep_xdp_setup_pool(adapter, bpf->xsk.pool,
2212 					    bpf->xsk.queue_id);
2213 	default:
2214 		return -EOPNOTSUPP;
2215 	}
2216 }
2217 
2218 static struct tsnep_tx *tsnep_xdp_get_tx(struct tsnep_adapter *adapter, u32 cpu)
2219 {
2220 	if (cpu >= TSNEP_MAX_QUEUES)
2221 		cpu &= TSNEP_MAX_QUEUES - 1;
2222 
2223 	while (cpu >= adapter->num_tx_queues)
2224 		cpu -= adapter->num_tx_queues;
2225 
2226 	return &adapter->tx[cpu];
2227 }
2228 
2229 static int tsnep_netdev_xdp_xmit(struct net_device *dev, int n,
2230 				 struct xdp_frame **xdp, u32 flags)
2231 {
2232 	struct tsnep_adapter *adapter = netdev_priv(dev);
2233 	u32 cpu = smp_processor_id();
2234 	struct netdev_queue *nq;
2235 	struct tsnep_tx *tx;
2236 	int nxmit;
2237 	bool xmit;
2238 
2239 	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
2240 		return -EINVAL;
2241 
2242 	tx = tsnep_xdp_get_tx(adapter, cpu);
2243 	nq = netdev_get_tx_queue(adapter->netdev, tx->queue_index);
2244 
2245 	__netif_tx_lock(nq, cpu);
2246 
2247 	for (nxmit = 0; nxmit < n; nxmit++) {
2248 		xmit = tsnep_xdp_xmit_frame_ring(xdp[nxmit], tx,
2249 						 TSNEP_TX_TYPE_XDP_NDO);
2250 		if (!xmit)
2251 			break;
2252 
2253 		/* avoid transmit queue timeout since we share it with the slow
2254 		 * path
2255 		 */
2256 		txq_trans_cond_update(nq);
2257 	}
2258 
2259 	if (flags & XDP_XMIT_FLUSH)
2260 		tsnep_xdp_xmit_flush(tx);
2261 
2262 	__netif_tx_unlock(nq);
2263 
2264 	return nxmit;
2265 }
2266 
2267 static int tsnep_netdev_xsk_wakeup(struct net_device *dev, u32 queue_id,
2268 				   u32 flags)
2269 {
2270 	struct tsnep_adapter *adapter = netdev_priv(dev);
2271 	struct tsnep_queue *queue;
2272 
2273 	if (queue_id >= adapter->num_rx_queues ||
2274 	    queue_id >= adapter->num_tx_queues)
2275 		return -EINVAL;
2276 
2277 	queue = &adapter->queue[queue_id];
2278 
2279 	if (!napi_if_scheduled_mark_missed(&queue->napi))
2280 		napi_schedule(&queue->napi);
2281 
2282 	return 0;
2283 }
2284 
2285 static const struct net_device_ops tsnep_netdev_ops = {
2286 	.ndo_open = tsnep_netdev_open,
2287 	.ndo_stop = tsnep_netdev_close,
2288 	.ndo_start_xmit = tsnep_netdev_xmit_frame,
2289 	.ndo_eth_ioctl = tsnep_netdev_ioctl,
2290 	.ndo_set_rx_mode = tsnep_netdev_set_multicast,
2291 	.ndo_get_stats64 = tsnep_netdev_get_stats64,
2292 	.ndo_set_mac_address = tsnep_netdev_set_mac_address,
2293 	.ndo_set_features = tsnep_netdev_set_features,
2294 	.ndo_get_tstamp = tsnep_netdev_get_tstamp,
2295 	.ndo_setup_tc = tsnep_tc_setup,
2296 	.ndo_bpf = tsnep_netdev_bpf,
2297 	.ndo_xdp_xmit = tsnep_netdev_xdp_xmit,
2298 	.ndo_xsk_wakeup = tsnep_netdev_xsk_wakeup,
2299 };
2300 
2301 static int tsnep_mac_init(struct tsnep_adapter *adapter)
2302 {
2303 	int retval;
2304 
2305 	/* initialize RX filtering, at least configured MAC address and
2306 	 * broadcast are not filtered
2307 	 */
2308 	iowrite16(0, adapter->addr + TSNEP_RX_FILTER);
2309 
2310 	/* try to get MAC address in the following order:
2311 	 * - device tree
2312 	 * - valid MAC address already set
2313 	 * - MAC address register if valid
2314 	 * - random MAC address
2315 	 */
2316 	retval = of_get_mac_address(adapter->pdev->dev.of_node,
2317 				    adapter->mac_address);
2318 	if (retval == -EPROBE_DEFER)
2319 		return retval;
2320 	if (retval && !is_valid_ether_addr(adapter->mac_address)) {
2321 		*(u32 *)adapter->mac_address =
2322 			ioread32(adapter->addr + TSNEP_MAC_ADDRESS_LOW);
2323 		*(u16 *)(adapter->mac_address + sizeof(u32)) =
2324 			ioread16(adapter->addr + TSNEP_MAC_ADDRESS_HIGH);
2325 		if (!is_valid_ether_addr(adapter->mac_address))
2326 			eth_random_addr(adapter->mac_address);
2327 	}
2328 
2329 	tsnep_mac_set_address(adapter, adapter->mac_address);
2330 	eth_hw_addr_set(adapter->netdev, adapter->mac_address);
2331 
2332 	return 0;
2333 }
2334 
2335 static int tsnep_mdio_init(struct tsnep_adapter *adapter)
2336 {
2337 	struct device_node *np = adapter->pdev->dev.of_node;
2338 	int retval;
2339 
2340 	if (np) {
2341 		np = of_get_child_by_name(np, "mdio");
2342 		if (!np)
2343 			return 0;
2344 
2345 		adapter->suppress_preamble =
2346 			of_property_read_bool(np, "suppress-preamble");
2347 	}
2348 
2349 	adapter->mdiobus = devm_mdiobus_alloc(&adapter->pdev->dev);
2350 	if (!adapter->mdiobus) {
2351 		retval = -ENOMEM;
2352 
2353 		goto out;
2354 	}
2355 
2356 	adapter->mdiobus->priv = (void *)adapter;
2357 	adapter->mdiobus->parent = &adapter->pdev->dev;
2358 	adapter->mdiobus->read = tsnep_mdiobus_read;
2359 	adapter->mdiobus->write = tsnep_mdiobus_write;
2360 	adapter->mdiobus->name = TSNEP "-mdiobus";
2361 	snprintf(adapter->mdiobus->id, MII_BUS_ID_SIZE, "%s",
2362 		 adapter->pdev->name);
2363 
2364 	/* do not scan broadcast address */
2365 	adapter->mdiobus->phy_mask = 0x0000001;
2366 
2367 	retval = of_mdiobus_register(adapter->mdiobus, np);
2368 
2369 out:
2370 	of_node_put(np);
2371 
2372 	return retval;
2373 }
2374 
2375 static int tsnep_phy_init(struct tsnep_adapter *adapter)
2376 {
2377 	struct device_node *phy_node;
2378 	int retval;
2379 
2380 	retval = of_get_phy_mode(adapter->pdev->dev.of_node,
2381 				 &adapter->phy_mode);
2382 	if (retval)
2383 		adapter->phy_mode = PHY_INTERFACE_MODE_GMII;
2384 
2385 	phy_node = of_parse_phandle(adapter->pdev->dev.of_node, "phy-handle",
2386 				    0);
2387 	adapter->phydev = of_phy_find_device(phy_node);
2388 	of_node_put(phy_node);
2389 	if (!adapter->phydev && adapter->mdiobus)
2390 		adapter->phydev = phy_find_first(adapter->mdiobus);
2391 	if (!adapter->phydev)
2392 		return -EIO;
2393 
2394 	return 0;
2395 }
2396 
2397 static int tsnep_queue_init(struct tsnep_adapter *adapter, int queue_count)
2398 {
2399 	u32 irq_mask = ECM_INT_TX_0 | ECM_INT_RX_0;
2400 	char name[8];
2401 	int i;
2402 	int retval;
2403 
2404 	/* one TX/RX queue pair for netdev is mandatory */
2405 	if (platform_irq_count(adapter->pdev) == 1)
2406 		retval = platform_get_irq(adapter->pdev, 0);
2407 	else
2408 		retval = platform_get_irq_byname(adapter->pdev, "mac");
2409 	if (retval < 0)
2410 		return retval;
2411 	adapter->num_tx_queues = 1;
2412 	adapter->num_rx_queues = 1;
2413 	adapter->num_queues = 1;
2414 	adapter->queue[0].adapter = adapter;
2415 	adapter->queue[0].irq = retval;
2416 	adapter->queue[0].tx = &adapter->tx[0];
2417 	adapter->queue[0].tx->adapter = adapter;
2418 	adapter->queue[0].tx->addr = adapter->addr + TSNEP_QUEUE(0);
2419 	adapter->queue[0].tx->queue_index = 0;
2420 	adapter->queue[0].rx = &adapter->rx[0];
2421 	adapter->queue[0].rx->adapter = adapter;
2422 	adapter->queue[0].rx->addr = adapter->addr + TSNEP_QUEUE(0);
2423 	adapter->queue[0].rx->queue_index = 0;
2424 	adapter->queue[0].irq_mask = irq_mask;
2425 	adapter->queue[0].irq_delay_addr = adapter->addr + ECM_INT_DELAY;
2426 	retval = tsnep_set_irq_coalesce(&adapter->queue[0],
2427 					TSNEP_COALESCE_USECS_DEFAULT);
2428 	if (retval < 0)
2429 		return retval;
2430 
2431 	adapter->netdev->irq = adapter->queue[0].irq;
2432 
2433 	/* add additional TX/RX queue pairs only if dedicated interrupt is
2434 	 * available
2435 	 */
2436 	for (i = 1; i < queue_count; i++) {
2437 		sprintf(name, "txrx-%d", i);
2438 		retval = platform_get_irq_byname_optional(adapter->pdev, name);
2439 		if (retval < 0)
2440 			break;
2441 
2442 		adapter->num_tx_queues++;
2443 		adapter->num_rx_queues++;
2444 		adapter->num_queues++;
2445 		adapter->queue[i].adapter = adapter;
2446 		adapter->queue[i].irq = retval;
2447 		adapter->queue[i].tx = &adapter->tx[i];
2448 		adapter->queue[i].tx->adapter = adapter;
2449 		adapter->queue[i].tx->addr = adapter->addr + TSNEP_QUEUE(i);
2450 		adapter->queue[i].tx->queue_index = i;
2451 		adapter->queue[i].rx = &adapter->rx[i];
2452 		adapter->queue[i].rx->adapter = adapter;
2453 		adapter->queue[i].rx->addr = adapter->addr + TSNEP_QUEUE(i);
2454 		adapter->queue[i].rx->queue_index = i;
2455 		adapter->queue[i].irq_mask =
2456 			irq_mask << (ECM_INT_TXRX_SHIFT * i);
2457 		adapter->queue[i].irq_delay_addr =
2458 			adapter->addr + ECM_INT_DELAY + ECM_INT_DELAY_OFFSET * i;
2459 		retval = tsnep_set_irq_coalesce(&adapter->queue[i],
2460 						TSNEP_COALESCE_USECS_DEFAULT);
2461 		if (retval < 0)
2462 			return retval;
2463 	}
2464 
2465 	return 0;
2466 }
2467 
2468 static int tsnep_probe(struct platform_device *pdev)
2469 {
2470 	struct tsnep_adapter *adapter;
2471 	struct net_device *netdev;
2472 	struct resource *io;
2473 	u32 type;
2474 	int revision;
2475 	int version;
2476 	int queue_count;
2477 	int retval;
2478 
2479 	netdev = devm_alloc_etherdev_mqs(&pdev->dev,
2480 					 sizeof(struct tsnep_adapter),
2481 					 TSNEP_MAX_QUEUES, TSNEP_MAX_QUEUES);
2482 	if (!netdev)
2483 		return -ENODEV;
2484 	SET_NETDEV_DEV(netdev, &pdev->dev);
2485 	adapter = netdev_priv(netdev);
2486 	platform_set_drvdata(pdev, adapter);
2487 	adapter->pdev = pdev;
2488 	adapter->dmadev = &pdev->dev;
2489 	adapter->netdev = netdev;
2490 	adapter->msg_enable = NETIF_MSG_DRV | NETIF_MSG_PROBE |
2491 			      NETIF_MSG_LINK | NETIF_MSG_IFUP |
2492 			      NETIF_MSG_IFDOWN | NETIF_MSG_TX_QUEUED;
2493 
2494 	netdev->min_mtu = ETH_MIN_MTU;
2495 	netdev->max_mtu = TSNEP_MAX_FRAME_SIZE;
2496 
2497 	mutex_init(&adapter->gate_control_lock);
2498 	mutex_init(&adapter->rxnfc_lock);
2499 	INIT_LIST_HEAD(&adapter->rxnfc_rules);
2500 
2501 	io = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2502 	adapter->addr = devm_ioremap_resource(&pdev->dev, io);
2503 	if (IS_ERR(adapter->addr))
2504 		return PTR_ERR(adapter->addr);
2505 	netdev->mem_start = io->start;
2506 	netdev->mem_end = io->end;
2507 
2508 	type = ioread32(adapter->addr + ECM_TYPE);
2509 	revision = (type & ECM_REVISION_MASK) >> ECM_REVISION_SHIFT;
2510 	version = (type & ECM_VERSION_MASK) >> ECM_VERSION_SHIFT;
2511 	queue_count = (type & ECM_QUEUE_COUNT_MASK) >> ECM_QUEUE_COUNT_SHIFT;
2512 	adapter->gate_control = type & ECM_GATE_CONTROL;
2513 	adapter->rxnfc_max = TSNEP_RX_ASSIGN_ETHER_TYPE_COUNT;
2514 
2515 	tsnep_disable_irq(adapter, ECM_INT_ALL);
2516 
2517 	retval = tsnep_queue_init(adapter, queue_count);
2518 	if (retval)
2519 		return retval;
2520 
2521 	retval = dma_set_mask_and_coherent(&adapter->pdev->dev,
2522 					   DMA_BIT_MASK(64));
2523 	if (retval) {
2524 		dev_err(&adapter->pdev->dev, "no usable DMA configuration.\n");
2525 		return retval;
2526 	}
2527 
2528 	retval = tsnep_mac_init(adapter);
2529 	if (retval)
2530 		return retval;
2531 
2532 	retval = tsnep_mdio_init(adapter);
2533 	if (retval)
2534 		goto mdio_init_failed;
2535 
2536 	retval = tsnep_phy_init(adapter);
2537 	if (retval)
2538 		goto phy_init_failed;
2539 
2540 	retval = tsnep_ptp_init(adapter);
2541 	if (retval)
2542 		goto ptp_init_failed;
2543 
2544 	retval = tsnep_tc_init(adapter);
2545 	if (retval)
2546 		goto tc_init_failed;
2547 
2548 	retval = tsnep_rxnfc_init(adapter);
2549 	if (retval)
2550 		goto rxnfc_init_failed;
2551 
2552 	netdev->netdev_ops = &tsnep_netdev_ops;
2553 	netdev->ethtool_ops = &tsnep_ethtool_ops;
2554 	netdev->features = NETIF_F_SG;
2555 	netdev->hw_features = netdev->features | NETIF_F_LOOPBACK;
2556 
2557 	netdev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT |
2558 			       NETDEV_XDP_ACT_NDO_XMIT |
2559 			       NETDEV_XDP_ACT_NDO_XMIT_SG |
2560 			       NETDEV_XDP_ACT_XSK_ZEROCOPY;
2561 
2562 	/* carrier off reporting is important to ethtool even BEFORE open */
2563 	netif_carrier_off(netdev);
2564 
2565 	retval = register_netdev(netdev);
2566 	if (retval)
2567 		goto register_failed;
2568 
2569 	dev_info(&adapter->pdev->dev, "device version %d.%02d\n", version,
2570 		 revision);
2571 	if (adapter->gate_control)
2572 		dev_info(&adapter->pdev->dev, "gate control detected\n");
2573 
2574 	return 0;
2575 
2576 register_failed:
2577 	tsnep_rxnfc_cleanup(adapter);
2578 rxnfc_init_failed:
2579 	tsnep_tc_cleanup(adapter);
2580 tc_init_failed:
2581 	tsnep_ptp_cleanup(adapter);
2582 ptp_init_failed:
2583 phy_init_failed:
2584 	if (adapter->mdiobus)
2585 		mdiobus_unregister(adapter->mdiobus);
2586 mdio_init_failed:
2587 	return retval;
2588 }
2589 
2590 static int tsnep_remove(struct platform_device *pdev)
2591 {
2592 	struct tsnep_adapter *adapter = platform_get_drvdata(pdev);
2593 
2594 	unregister_netdev(adapter->netdev);
2595 
2596 	tsnep_rxnfc_cleanup(adapter);
2597 
2598 	tsnep_tc_cleanup(adapter);
2599 
2600 	tsnep_ptp_cleanup(adapter);
2601 
2602 	if (adapter->mdiobus)
2603 		mdiobus_unregister(adapter->mdiobus);
2604 
2605 	tsnep_disable_irq(adapter, ECM_INT_ALL);
2606 
2607 	return 0;
2608 }
2609 
2610 static const struct of_device_id tsnep_of_match[] = {
2611 	{ .compatible = "engleder,tsnep", },
2612 { },
2613 };
2614 MODULE_DEVICE_TABLE(of, tsnep_of_match);
2615 
2616 static struct platform_driver tsnep_driver = {
2617 	.driver = {
2618 		.name = TSNEP,
2619 		.of_match_table = tsnep_of_match,
2620 	},
2621 	.probe = tsnep_probe,
2622 	.remove = tsnep_remove,
2623 };
2624 module_platform_driver(tsnep_driver);
2625 
2626 MODULE_AUTHOR("Gerhard Engleder <gerhard@engleder-embedded.com>");
2627 MODULE_DESCRIPTION("TSN endpoint Ethernet MAC driver");
2628 MODULE_LICENSE("GPL");
2629