1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (C) 2021 Gerhard Engleder <gerhard@engleder-embedded.com> */
3 
4 /* TSN endpoint Ethernet MAC driver
5  *
6  * The TSN endpoint Ethernet MAC is a FPGA based network device for real-time
7  * communication. It is designed for endpoints within TSN (Time Sensitive
8  * Networking) networks; e.g., for PLCs in the industrial automation case.
9  *
10  * It supports multiple TX/RX queue pairs. The first TX/RX queue pair is used
11  * by the driver.
12  *
13  * More information can be found here:
14  * - www.embedded-experts.at/tsn
15  * - www.engleder-embedded.com
16  */
17 
18 #include "tsnep.h"
19 #include "tsnep_hw.h"
20 
21 #include <linux/module.h>
22 #include <linux/of.h>
23 #include <linux/of_net.h>
24 #include <linux/of_mdio.h>
25 #include <linux/interrupt.h>
26 #include <linux/etherdevice.h>
27 #include <linux/phy.h>
28 #include <linux/iopoll.h>
29 
30 #define TSNEP_SKB_PAD (NET_SKB_PAD + NET_IP_ALIGN)
31 #define TSNEP_HEADROOM ALIGN(TSNEP_SKB_PAD, 4)
32 #define TSNEP_MAX_RX_BUF_SIZE (PAGE_SIZE - TSNEP_HEADROOM - \
33 			       SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
34 
35 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
36 #define DMA_ADDR_HIGH(dma_addr) ((u32)(((dma_addr) >> 32) & 0xFFFFFFFF))
37 #else
38 #define DMA_ADDR_HIGH(dma_addr) ((u32)(0))
39 #endif
40 #define DMA_ADDR_LOW(dma_addr) ((u32)((dma_addr) & 0xFFFFFFFF))
41 
42 static void tsnep_enable_irq(struct tsnep_adapter *adapter, u32 mask)
43 {
44 	iowrite32(mask, adapter->addr + ECM_INT_ENABLE);
45 }
46 
47 static void tsnep_disable_irq(struct tsnep_adapter *adapter, u32 mask)
48 {
49 	mask |= ECM_INT_DISABLE;
50 	iowrite32(mask, adapter->addr + ECM_INT_ENABLE);
51 }
52 
53 static irqreturn_t tsnep_irq(int irq, void *arg)
54 {
55 	struct tsnep_adapter *adapter = arg;
56 	u32 active = ioread32(adapter->addr + ECM_INT_ACTIVE);
57 
58 	/* acknowledge interrupt */
59 	if (active != 0)
60 		iowrite32(active, adapter->addr + ECM_INT_ACKNOWLEDGE);
61 
62 	/* handle link interrupt */
63 	if ((active & ECM_INT_LINK) != 0)
64 		phy_mac_interrupt(adapter->netdev->phydev);
65 
66 	/* handle TX/RX queue 0 interrupt */
67 	if ((active & adapter->queue[0].irq_mask) != 0) {
68 		tsnep_disable_irq(adapter, adapter->queue[0].irq_mask);
69 		napi_schedule(&adapter->queue[0].napi);
70 	}
71 
72 	return IRQ_HANDLED;
73 }
74 
75 static irqreturn_t tsnep_irq_txrx(int irq, void *arg)
76 {
77 	struct tsnep_queue *queue = arg;
78 
79 	/* handle TX/RX queue interrupt */
80 	tsnep_disable_irq(queue->adapter, queue->irq_mask);
81 	napi_schedule(&queue->napi);
82 
83 	return IRQ_HANDLED;
84 }
85 
86 static int tsnep_mdiobus_read(struct mii_bus *bus, int addr, int regnum)
87 {
88 	struct tsnep_adapter *adapter = bus->priv;
89 	u32 md;
90 	int retval;
91 
92 	if (regnum & MII_ADDR_C45)
93 		return -EOPNOTSUPP;
94 
95 	md = ECM_MD_READ;
96 	if (!adapter->suppress_preamble)
97 		md |= ECM_MD_PREAMBLE;
98 	md |= (regnum << ECM_MD_ADDR_SHIFT) & ECM_MD_ADDR_MASK;
99 	md |= (addr << ECM_MD_PHY_ADDR_SHIFT) & ECM_MD_PHY_ADDR_MASK;
100 	iowrite32(md, adapter->addr + ECM_MD_CONTROL);
101 	retval = readl_poll_timeout_atomic(adapter->addr + ECM_MD_STATUS, md,
102 					   !(md & ECM_MD_BUSY), 16, 1000);
103 	if (retval != 0)
104 		return retval;
105 
106 	return (md & ECM_MD_DATA_MASK) >> ECM_MD_DATA_SHIFT;
107 }
108 
109 static int tsnep_mdiobus_write(struct mii_bus *bus, int addr, int regnum,
110 			       u16 val)
111 {
112 	struct tsnep_adapter *adapter = bus->priv;
113 	u32 md;
114 	int retval;
115 
116 	if (regnum & MII_ADDR_C45)
117 		return -EOPNOTSUPP;
118 
119 	md = ECM_MD_WRITE;
120 	if (!adapter->suppress_preamble)
121 		md |= ECM_MD_PREAMBLE;
122 	md |= (regnum << ECM_MD_ADDR_SHIFT) & ECM_MD_ADDR_MASK;
123 	md |= (addr << ECM_MD_PHY_ADDR_SHIFT) & ECM_MD_PHY_ADDR_MASK;
124 	md |= ((u32)val << ECM_MD_DATA_SHIFT) & ECM_MD_DATA_MASK;
125 	iowrite32(md, adapter->addr + ECM_MD_CONTROL);
126 	retval = readl_poll_timeout_atomic(adapter->addr + ECM_MD_STATUS, md,
127 					   !(md & ECM_MD_BUSY), 16, 1000);
128 	if (retval != 0)
129 		return retval;
130 
131 	return 0;
132 }
133 
134 static void tsnep_set_link_mode(struct tsnep_adapter *adapter)
135 {
136 	u32 mode;
137 
138 	switch (adapter->phydev->speed) {
139 	case SPEED_100:
140 		mode = ECM_LINK_MODE_100;
141 		break;
142 	case SPEED_1000:
143 		mode = ECM_LINK_MODE_1000;
144 		break;
145 	default:
146 		mode = ECM_LINK_MODE_OFF;
147 		break;
148 	}
149 	iowrite32(mode, adapter->addr + ECM_STATUS);
150 }
151 
152 static void tsnep_phy_link_status_change(struct net_device *netdev)
153 {
154 	struct tsnep_adapter *adapter = netdev_priv(netdev);
155 	struct phy_device *phydev = netdev->phydev;
156 
157 	if (phydev->link)
158 		tsnep_set_link_mode(adapter);
159 
160 	phy_print_status(netdev->phydev);
161 }
162 
163 static int tsnep_phy_loopback(struct tsnep_adapter *adapter, bool enable)
164 {
165 	int retval;
166 
167 	retval = phy_loopback(adapter->phydev, enable);
168 
169 	/* PHY link state change is not signaled if loopback is enabled, it
170 	 * would delay a working loopback anyway, let's ensure that loopback
171 	 * is working immediately by setting link mode directly
172 	 */
173 	if (!retval && enable)
174 		tsnep_set_link_mode(adapter);
175 
176 	return retval;
177 }
178 
179 static int tsnep_phy_open(struct tsnep_adapter *adapter)
180 {
181 	struct phy_device *phydev;
182 	struct ethtool_eee ethtool_eee;
183 	int retval;
184 
185 	retval = phy_connect_direct(adapter->netdev, adapter->phydev,
186 				    tsnep_phy_link_status_change,
187 				    adapter->phy_mode);
188 	if (retval)
189 		return retval;
190 	phydev = adapter->netdev->phydev;
191 
192 	/* MAC supports only 100Mbps|1000Mbps full duplex
193 	 * SPE (Single Pair Ethernet) is also an option but not implemented yet
194 	 */
195 	phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_10baseT_Half_BIT);
196 	phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_10baseT_Full_BIT);
197 	phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_100baseT_Half_BIT);
198 	phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_1000baseT_Half_BIT);
199 
200 	/* disable EEE autoneg, EEE not supported by TSNEP */
201 	memset(&ethtool_eee, 0, sizeof(ethtool_eee));
202 	phy_ethtool_set_eee(adapter->phydev, &ethtool_eee);
203 
204 	adapter->phydev->irq = PHY_MAC_INTERRUPT;
205 	phy_start(adapter->phydev);
206 
207 	return 0;
208 }
209 
210 static void tsnep_phy_close(struct tsnep_adapter *adapter)
211 {
212 	phy_stop(adapter->netdev->phydev);
213 	phy_disconnect(adapter->netdev->phydev);
214 	adapter->netdev->phydev = NULL;
215 }
216 
217 static void tsnep_tx_ring_cleanup(struct tsnep_tx *tx)
218 {
219 	struct device *dmadev = tx->adapter->dmadev;
220 	int i;
221 
222 	memset(tx->entry, 0, sizeof(tx->entry));
223 
224 	for (i = 0; i < TSNEP_RING_PAGE_COUNT; i++) {
225 		if (tx->page[i]) {
226 			dma_free_coherent(dmadev, PAGE_SIZE, tx->page[i],
227 					  tx->page_dma[i]);
228 			tx->page[i] = NULL;
229 			tx->page_dma[i] = 0;
230 		}
231 	}
232 }
233 
234 static int tsnep_tx_ring_init(struct tsnep_tx *tx)
235 {
236 	struct device *dmadev = tx->adapter->dmadev;
237 	struct tsnep_tx_entry *entry;
238 	struct tsnep_tx_entry *next_entry;
239 	int i, j;
240 	int retval;
241 
242 	for (i = 0; i < TSNEP_RING_PAGE_COUNT; i++) {
243 		tx->page[i] =
244 			dma_alloc_coherent(dmadev, PAGE_SIZE, &tx->page_dma[i],
245 					   GFP_KERNEL);
246 		if (!tx->page[i]) {
247 			retval = -ENOMEM;
248 			goto alloc_failed;
249 		}
250 		for (j = 0; j < TSNEP_RING_ENTRIES_PER_PAGE; j++) {
251 			entry = &tx->entry[TSNEP_RING_ENTRIES_PER_PAGE * i + j];
252 			entry->desc_wb = (struct tsnep_tx_desc_wb *)
253 				(((u8 *)tx->page[i]) + TSNEP_DESC_SIZE * j);
254 			entry->desc = (struct tsnep_tx_desc *)
255 				(((u8 *)entry->desc_wb) + TSNEP_DESC_OFFSET);
256 			entry->desc_dma = tx->page_dma[i] + TSNEP_DESC_SIZE * j;
257 		}
258 	}
259 	for (i = 0; i < TSNEP_RING_SIZE; i++) {
260 		entry = &tx->entry[i];
261 		next_entry = &tx->entry[(i + 1) % TSNEP_RING_SIZE];
262 		entry->desc->next = __cpu_to_le64(next_entry->desc_dma);
263 	}
264 
265 	return 0;
266 
267 alloc_failed:
268 	tsnep_tx_ring_cleanup(tx);
269 	return retval;
270 }
271 
272 static void tsnep_tx_activate(struct tsnep_tx *tx, int index, int length,
273 			      bool last)
274 {
275 	struct tsnep_tx_entry *entry = &tx->entry[index];
276 
277 	entry->properties = 0;
278 	if (entry->skb) {
279 		entry->properties = length & TSNEP_DESC_LENGTH_MASK;
280 		entry->properties |= TSNEP_DESC_INTERRUPT_FLAG;
281 		if (skb_shinfo(entry->skb)->tx_flags & SKBTX_IN_PROGRESS)
282 			entry->properties |= TSNEP_DESC_EXTENDED_WRITEBACK_FLAG;
283 
284 		/* toggle user flag to prevent false acknowledge
285 		 *
286 		 * Only the first fragment is acknowledged. For all other
287 		 * fragments no acknowledge is done and the last written owner
288 		 * counter stays in the writeback descriptor. Therefore, it is
289 		 * possible that the last written owner counter is identical to
290 		 * the new incremented owner counter and a false acknowledge is
291 		 * detected before the real acknowledge has been done by
292 		 * hardware.
293 		 *
294 		 * The user flag is used to prevent this situation. The user
295 		 * flag is copied to the writeback descriptor by the hardware
296 		 * and is used as additional acknowledge data. By toggeling the
297 		 * user flag only for the first fragment (which is
298 		 * acknowledged), it is guaranteed that the last acknowledge
299 		 * done for this descriptor has used a different user flag and
300 		 * cannot be detected as false acknowledge.
301 		 */
302 		entry->owner_user_flag = !entry->owner_user_flag;
303 	}
304 	if (last)
305 		entry->properties |= TSNEP_TX_DESC_LAST_FRAGMENT_FLAG;
306 	if (index == tx->increment_owner_counter) {
307 		tx->owner_counter++;
308 		if (tx->owner_counter == 4)
309 			tx->owner_counter = 1;
310 		tx->increment_owner_counter--;
311 		if (tx->increment_owner_counter < 0)
312 			tx->increment_owner_counter = TSNEP_RING_SIZE - 1;
313 	}
314 	entry->properties |=
315 		(tx->owner_counter << TSNEP_DESC_OWNER_COUNTER_SHIFT) &
316 		TSNEP_DESC_OWNER_COUNTER_MASK;
317 	if (entry->owner_user_flag)
318 		entry->properties |= TSNEP_TX_DESC_OWNER_USER_FLAG;
319 	entry->desc->more_properties =
320 		__cpu_to_le32(entry->len & TSNEP_DESC_LENGTH_MASK);
321 
322 	/* descriptor properties shall be written last, because valid data is
323 	 * signaled there
324 	 */
325 	dma_wmb();
326 
327 	entry->desc->properties = __cpu_to_le32(entry->properties);
328 }
329 
330 static int tsnep_tx_desc_available(struct tsnep_tx *tx)
331 {
332 	if (tx->read <= tx->write)
333 		return TSNEP_RING_SIZE - tx->write + tx->read - 1;
334 	else
335 		return tx->read - tx->write - 1;
336 }
337 
338 static int tsnep_tx_map(struct sk_buff *skb, struct tsnep_tx *tx, int count)
339 {
340 	struct device *dmadev = tx->adapter->dmadev;
341 	struct tsnep_tx_entry *entry;
342 	unsigned int len;
343 	dma_addr_t dma;
344 	int map_len = 0;
345 	int i;
346 
347 	for (i = 0; i < count; i++) {
348 		entry = &tx->entry[(tx->write + i) % TSNEP_RING_SIZE];
349 
350 		if (i == 0) {
351 			len = skb_headlen(skb);
352 			dma = dma_map_single(dmadev, skb->data, len,
353 					     DMA_TO_DEVICE);
354 		} else {
355 			len = skb_frag_size(&skb_shinfo(skb)->frags[i - 1]);
356 			dma = skb_frag_dma_map(dmadev,
357 					       &skb_shinfo(skb)->frags[i - 1],
358 					       0, len, DMA_TO_DEVICE);
359 		}
360 		if (dma_mapping_error(dmadev, dma))
361 			return -ENOMEM;
362 
363 		entry->len = len;
364 		dma_unmap_addr_set(entry, dma, dma);
365 
366 		entry->desc->tx = __cpu_to_le64(dma);
367 
368 		map_len += len;
369 	}
370 
371 	return map_len;
372 }
373 
374 static int tsnep_tx_unmap(struct tsnep_tx *tx, int index, int count)
375 {
376 	struct device *dmadev = tx->adapter->dmadev;
377 	struct tsnep_tx_entry *entry;
378 	int map_len = 0;
379 	int i;
380 
381 	for (i = 0; i < count; i++) {
382 		entry = &tx->entry[(index + i) % TSNEP_RING_SIZE];
383 
384 		if (entry->len) {
385 			if (i == 0)
386 				dma_unmap_single(dmadev,
387 						 dma_unmap_addr(entry, dma),
388 						 dma_unmap_len(entry, len),
389 						 DMA_TO_DEVICE);
390 			else
391 				dma_unmap_page(dmadev,
392 					       dma_unmap_addr(entry, dma),
393 					       dma_unmap_len(entry, len),
394 					       DMA_TO_DEVICE);
395 			map_len += entry->len;
396 			entry->len = 0;
397 		}
398 	}
399 
400 	return map_len;
401 }
402 
403 static netdev_tx_t tsnep_xmit_frame_ring(struct sk_buff *skb,
404 					 struct tsnep_tx *tx)
405 {
406 	unsigned long flags;
407 	int count = 1;
408 	struct tsnep_tx_entry *entry;
409 	int length;
410 	int i;
411 	int retval;
412 
413 	if (skb_shinfo(skb)->nr_frags > 0)
414 		count += skb_shinfo(skb)->nr_frags;
415 
416 	spin_lock_irqsave(&tx->lock, flags);
417 
418 	if (tsnep_tx_desc_available(tx) < count) {
419 		/* ring full, shall not happen because queue is stopped if full
420 		 * below
421 		 */
422 		netif_stop_queue(tx->adapter->netdev);
423 
424 		spin_unlock_irqrestore(&tx->lock, flags);
425 
426 		return NETDEV_TX_BUSY;
427 	}
428 
429 	entry = &tx->entry[tx->write];
430 	entry->skb = skb;
431 
432 	retval = tsnep_tx_map(skb, tx, count);
433 	if (retval < 0) {
434 		tsnep_tx_unmap(tx, tx->write, count);
435 		dev_kfree_skb_any(entry->skb);
436 		entry->skb = NULL;
437 
438 		tx->dropped++;
439 
440 		spin_unlock_irqrestore(&tx->lock, flags);
441 
442 		netdev_err(tx->adapter->netdev, "TX DMA map failed\n");
443 
444 		return NETDEV_TX_OK;
445 	}
446 	length = retval;
447 
448 	if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)
449 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
450 
451 	for (i = 0; i < count; i++)
452 		tsnep_tx_activate(tx, (tx->write + i) % TSNEP_RING_SIZE, length,
453 				  i == (count - 1));
454 	tx->write = (tx->write + count) % TSNEP_RING_SIZE;
455 
456 	skb_tx_timestamp(skb);
457 
458 	/* descriptor properties shall be valid before hardware is notified */
459 	dma_wmb();
460 
461 	iowrite32(TSNEP_CONTROL_TX_ENABLE, tx->addr + TSNEP_CONTROL);
462 
463 	if (tsnep_tx_desc_available(tx) < (MAX_SKB_FRAGS + 1)) {
464 		/* ring can get full with next frame */
465 		netif_stop_queue(tx->adapter->netdev);
466 	}
467 
468 	spin_unlock_irqrestore(&tx->lock, flags);
469 
470 	return NETDEV_TX_OK;
471 }
472 
473 static bool tsnep_tx_poll(struct tsnep_tx *tx, int napi_budget)
474 {
475 	unsigned long flags;
476 	int budget = 128;
477 	struct tsnep_tx_entry *entry;
478 	int count;
479 	int length;
480 
481 	spin_lock_irqsave(&tx->lock, flags);
482 
483 	do {
484 		if (tx->read == tx->write)
485 			break;
486 
487 		entry = &tx->entry[tx->read];
488 		if ((__le32_to_cpu(entry->desc_wb->properties) &
489 		     TSNEP_TX_DESC_OWNER_MASK) !=
490 		    (entry->properties & TSNEP_TX_DESC_OWNER_MASK))
491 			break;
492 
493 		/* descriptor properties shall be read first, because valid data
494 		 * is signaled there
495 		 */
496 		dma_rmb();
497 
498 		count = 1;
499 		if (skb_shinfo(entry->skb)->nr_frags > 0)
500 			count += skb_shinfo(entry->skb)->nr_frags;
501 
502 		length = tsnep_tx_unmap(tx, tx->read, count);
503 
504 		if ((skb_shinfo(entry->skb)->tx_flags & SKBTX_IN_PROGRESS) &&
505 		    (__le32_to_cpu(entry->desc_wb->properties) &
506 		     TSNEP_DESC_EXTENDED_WRITEBACK_FLAG)) {
507 			struct skb_shared_hwtstamps hwtstamps;
508 			u64 timestamp;
509 
510 			if (skb_shinfo(entry->skb)->tx_flags &
511 			    SKBTX_HW_TSTAMP_USE_CYCLES)
512 				timestamp =
513 					__le64_to_cpu(entry->desc_wb->counter);
514 			else
515 				timestamp =
516 					__le64_to_cpu(entry->desc_wb->timestamp);
517 
518 			memset(&hwtstamps, 0, sizeof(hwtstamps));
519 			hwtstamps.hwtstamp = ns_to_ktime(timestamp);
520 
521 			skb_tstamp_tx(entry->skb, &hwtstamps);
522 		}
523 
524 		napi_consume_skb(entry->skb, budget);
525 		entry->skb = NULL;
526 
527 		tx->read = (tx->read + count) % TSNEP_RING_SIZE;
528 
529 		tx->packets++;
530 		tx->bytes += length + ETH_FCS_LEN;
531 
532 		budget--;
533 	} while (likely(budget));
534 
535 	if ((tsnep_tx_desc_available(tx) >= ((MAX_SKB_FRAGS + 1) * 2)) &&
536 	    netif_queue_stopped(tx->adapter->netdev)) {
537 		netif_wake_queue(tx->adapter->netdev);
538 	}
539 
540 	spin_unlock_irqrestore(&tx->lock, flags);
541 
542 	return (budget != 0);
543 }
544 
545 static int tsnep_tx_open(struct tsnep_adapter *adapter, void __iomem *addr,
546 			 int queue_index, struct tsnep_tx *tx)
547 {
548 	dma_addr_t dma;
549 	int retval;
550 
551 	memset(tx, 0, sizeof(*tx));
552 	tx->adapter = adapter;
553 	tx->addr = addr;
554 	tx->queue_index = queue_index;
555 
556 	retval = tsnep_tx_ring_init(tx);
557 	if (retval)
558 		return retval;
559 
560 	dma = tx->entry[0].desc_dma | TSNEP_RESET_OWNER_COUNTER;
561 	iowrite32(DMA_ADDR_LOW(dma), tx->addr + TSNEP_TX_DESC_ADDR_LOW);
562 	iowrite32(DMA_ADDR_HIGH(dma), tx->addr + TSNEP_TX_DESC_ADDR_HIGH);
563 	tx->owner_counter = 1;
564 	tx->increment_owner_counter = TSNEP_RING_SIZE - 1;
565 
566 	spin_lock_init(&tx->lock);
567 
568 	return 0;
569 }
570 
571 static void tsnep_tx_close(struct tsnep_tx *tx)
572 {
573 	u32 val;
574 
575 	readx_poll_timeout(ioread32, tx->addr + TSNEP_CONTROL, val,
576 			   ((val & TSNEP_CONTROL_TX_ENABLE) == 0), 10000,
577 			   1000000);
578 
579 	tsnep_tx_ring_cleanup(tx);
580 }
581 
582 static void tsnep_rx_ring_cleanup(struct tsnep_rx *rx)
583 {
584 	struct device *dmadev = rx->adapter->dmadev;
585 	struct tsnep_rx_entry *entry;
586 	int i;
587 
588 	for (i = 0; i < TSNEP_RING_SIZE; i++) {
589 		entry = &rx->entry[i];
590 		if (entry->page)
591 			page_pool_put_full_page(rx->page_pool, entry->page,
592 						false);
593 		entry->page = NULL;
594 	}
595 
596 	if (rx->page_pool)
597 		page_pool_destroy(rx->page_pool);
598 
599 	memset(rx->entry, 0, sizeof(rx->entry));
600 
601 	for (i = 0; i < TSNEP_RING_PAGE_COUNT; i++) {
602 		if (rx->page[i]) {
603 			dma_free_coherent(dmadev, PAGE_SIZE, rx->page[i],
604 					  rx->page_dma[i]);
605 			rx->page[i] = NULL;
606 			rx->page_dma[i] = 0;
607 		}
608 	}
609 }
610 
611 static int tsnep_rx_alloc_buffer(struct tsnep_rx *rx,
612 				 struct tsnep_rx_entry *entry)
613 {
614 	struct page *page;
615 
616 	page = page_pool_dev_alloc_pages(rx->page_pool);
617 	if (unlikely(!page))
618 		return -ENOMEM;
619 
620 	entry->page = page;
621 	entry->len = TSNEP_MAX_RX_BUF_SIZE;
622 	entry->dma = page_pool_get_dma_addr(entry->page);
623 	entry->desc->rx = __cpu_to_le64(entry->dma + TSNEP_SKB_PAD);
624 
625 	return 0;
626 }
627 
628 static int tsnep_rx_ring_init(struct tsnep_rx *rx)
629 {
630 	struct device *dmadev = rx->adapter->dmadev;
631 	struct tsnep_rx_entry *entry;
632 	struct page_pool_params pp_params = { 0 };
633 	struct tsnep_rx_entry *next_entry;
634 	int i, j;
635 	int retval;
636 
637 	for (i = 0; i < TSNEP_RING_PAGE_COUNT; i++) {
638 		rx->page[i] =
639 			dma_alloc_coherent(dmadev, PAGE_SIZE, &rx->page_dma[i],
640 					   GFP_KERNEL);
641 		if (!rx->page[i]) {
642 			retval = -ENOMEM;
643 			goto failed;
644 		}
645 		for (j = 0; j < TSNEP_RING_ENTRIES_PER_PAGE; j++) {
646 			entry = &rx->entry[TSNEP_RING_ENTRIES_PER_PAGE * i + j];
647 			entry->desc_wb = (struct tsnep_rx_desc_wb *)
648 				(((u8 *)rx->page[i]) + TSNEP_DESC_SIZE * j);
649 			entry->desc = (struct tsnep_rx_desc *)
650 				(((u8 *)entry->desc_wb) + TSNEP_DESC_OFFSET);
651 			entry->desc_dma = rx->page_dma[i] + TSNEP_DESC_SIZE * j;
652 		}
653 	}
654 
655 	pp_params.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV;
656 	pp_params.order = 0;
657 	pp_params.pool_size = TSNEP_RING_SIZE;
658 	pp_params.nid = dev_to_node(dmadev);
659 	pp_params.dev = dmadev;
660 	pp_params.dma_dir = DMA_FROM_DEVICE;
661 	pp_params.max_len = TSNEP_MAX_RX_BUF_SIZE;
662 	pp_params.offset = TSNEP_SKB_PAD;
663 	rx->page_pool = page_pool_create(&pp_params);
664 	if (IS_ERR(rx->page_pool)) {
665 		retval = PTR_ERR(rx->page_pool);
666 		rx->page_pool = NULL;
667 		goto failed;
668 	}
669 
670 	for (i = 0; i < TSNEP_RING_SIZE; i++) {
671 		entry = &rx->entry[i];
672 		next_entry = &rx->entry[(i + 1) % TSNEP_RING_SIZE];
673 		entry->desc->next = __cpu_to_le64(next_entry->desc_dma);
674 
675 		retval = tsnep_rx_alloc_buffer(rx, entry);
676 		if (retval)
677 			goto failed;
678 	}
679 
680 	return 0;
681 
682 failed:
683 	tsnep_rx_ring_cleanup(rx);
684 	return retval;
685 }
686 
687 static void tsnep_rx_activate(struct tsnep_rx *rx, int index)
688 {
689 	struct tsnep_rx_entry *entry = &rx->entry[index];
690 
691 	/* TSNEP_MAX_RX_BUF_SIZE is a multiple of 4 */
692 	entry->properties = entry->len & TSNEP_DESC_LENGTH_MASK;
693 	entry->properties |= TSNEP_DESC_INTERRUPT_FLAG;
694 	if (index == rx->increment_owner_counter) {
695 		rx->owner_counter++;
696 		if (rx->owner_counter == 4)
697 			rx->owner_counter = 1;
698 		rx->increment_owner_counter--;
699 		if (rx->increment_owner_counter < 0)
700 			rx->increment_owner_counter = TSNEP_RING_SIZE - 1;
701 	}
702 	entry->properties |=
703 		(rx->owner_counter << TSNEP_DESC_OWNER_COUNTER_SHIFT) &
704 		TSNEP_DESC_OWNER_COUNTER_MASK;
705 
706 	/* descriptor properties shall be written last, because valid data is
707 	 * signaled there
708 	 */
709 	dma_wmb();
710 
711 	entry->desc->properties = __cpu_to_le32(entry->properties);
712 }
713 
714 static struct sk_buff *tsnep_build_skb(struct tsnep_rx *rx, struct page *page,
715 				       int length)
716 {
717 	struct sk_buff *skb;
718 
719 	skb = napi_build_skb(page_address(page), PAGE_SIZE);
720 	if (unlikely(!skb))
721 		return NULL;
722 
723 	/* update pointers within the skb to store the data */
724 	skb_reserve(skb, TSNEP_SKB_PAD + TSNEP_RX_INLINE_METADATA_SIZE);
725 	__skb_put(skb, length - TSNEP_RX_INLINE_METADATA_SIZE - ETH_FCS_LEN);
726 
727 	if (rx->adapter->hwtstamp_config.rx_filter == HWTSTAMP_FILTER_ALL) {
728 		struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
729 		struct tsnep_rx_inline *rx_inline =
730 			(struct tsnep_rx_inline *)(page_address(page) +
731 						   TSNEP_SKB_PAD);
732 
733 		skb_shinfo(skb)->tx_flags |=
734 			SKBTX_HW_TSTAMP_NETDEV;
735 		memset(hwtstamps, 0, sizeof(*hwtstamps));
736 		hwtstamps->netdev_data = rx_inline;
737 	}
738 
739 	skb_record_rx_queue(skb, rx->queue_index);
740 	skb->protocol = eth_type_trans(skb, rx->adapter->netdev);
741 
742 	return skb;
743 }
744 
745 static int tsnep_rx_poll(struct tsnep_rx *rx, struct napi_struct *napi,
746 			 int budget)
747 {
748 	struct device *dmadev = rx->adapter->dmadev;
749 	int done = 0;
750 	enum dma_data_direction dma_dir;
751 	struct tsnep_rx_entry *entry;
752 	struct page *page;
753 	struct sk_buff *skb;
754 	int length;
755 	bool enable = false;
756 	int retval;
757 
758 	dma_dir = page_pool_get_dma_dir(rx->page_pool);
759 
760 	while (likely(done < budget)) {
761 		entry = &rx->entry[rx->read];
762 		if ((__le32_to_cpu(entry->desc_wb->properties) &
763 		     TSNEP_DESC_OWNER_COUNTER_MASK) !=
764 		    (entry->properties & TSNEP_DESC_OWNER_COUNTER_MASK))
765 			break;
766 
767 		/* descriptor properties shall be read first, because valid data
768 		 * is signaled there
769 		 */
770 		dma_rmb();
771 
772 		prefetch(page_address(entry->page) + TSNEP_SKB_PAD);
773 		length = __le32_to_cpu(entry->desc_wb->properties) &
774 			 TSNEP_DESC_LENGTH_MASK;
775 		dma_sync_single_range_for_cpu(dmadev, entry->dma, TSNEP_SKB_PAD,
776 					      length, dma_dir);
777 		page = entry->page;
778 
779 		/* forward skb only if allocation is successful, otherwise
780 		 * page is reused and frame dropped
781 		 */
782 		retval = tsnep_rx_alloc_buffer(rx, entry);
783 		if (!retval) {
784 			skb = tsnep_build_skb(rx, page, length);
785 			if (skb) {
786 				page_pool_release_page(rx->page_pool, page);
787 
788 				rx->packets++;
789 				rx->bytes += length -
790 					     TSNEP_RX_INLINE_METADATA_SIZE;
791 				if (skb->pkt_type == PACKET_MULTICAST)
792 					rx->multicast++;
793 
794 				napi_gro_receive(napi, skb);
795 			} else {
796 				page_pool_recycle_direct(rx->page_pool, page);
797 
798 				rx->dropped++;
799 			}
800 			done++;
801 		} else {
802 			rx->dropped++;
803 		}
804 
805 		tsnep_rx_activate(rx, rx->read);
806 
807 		enable = true;
808 
809 		rx->read = (rx->read + 1) % TSNEP_RING_SIZE;
810 	}
811 
812 	if (enable) {
813 		/* descriptor properties shall be valid before hardware is
814 		 * notified
815 		 */
816 		dma_wmb();
817 
818 		iowrite32(TSNEP_CONTROL_RX_ENABLE, rx->addr + TSNEP_CONTROL);
819 	}
820 
821 	return done;
822 }
823 
824 static int tsnep_rx_open(struct tsnep_adapter *adapter, void __iomem *addr,
825 			 int queue_index, struct tsnep_rx *rx)
826 {
827 	dma_addr_t dma;
828 	int i;
829 	int retval;
830 
831 	memset(rx, 0, sizeof(*rx));
832 	rx->adapter = adapter;
833 	rx->addr = addr;
834 	rx->queue_index = queue_index;
835 
836 	retval = tsnep_rx_ring_init(rx);
837 	if (retval)
838 		return retval;
839 
840 	dma = rx->entry[0].desc_dma | TSNEP_RESET_OWNER_COUNTER;
841 	iowrite32(DMA_ADDR_LOW(dma), rx->addr + TSNEP_RX_DESC_ADDR_LOW);
842 	iowrite32(DMA_ADDR_HIGH(dma), rx->addr + TSNEP_RX_DESC_ADDR_HIGH);
843 	rx->owner_counter = 1;
844 	rx->increment_owner_counter = TSNEP_RING_SIZE - 1;
845 
846 	for (i = 0; i < TSNEP_RING_SIZE; i++)
847 		tsnep_rx_activate(rx, i);
848 
849 	/* descriptor properties shall be valid before hardware is notified */
850 	dma_wmb();
851 
852 	iowrite32(TSNEP_CONTROL_RX_ENABLE, rx->addr + TSNEP_CONTROL);
853 
854 	return 0;
855 }
856 
857 static void tsnep_rx_close(struct tsnep_rx *rx)
858 {
859 	u32 val;
860 
861 	iowrite32(TSNEP_CONTROL_RX_DISABLE, rx->addr + TSNEP_CONTROL);
862 	readx_poll_timeout(ioread32, rx->addr + TSNEP_CONTROL, val,
863 			   ((val & TSNEP_CONTROL_RX_ENABLE) == 0), 10000,
864 			   1000000);
865 
866 	tsnep_rx_ring_cleanup(rx);
867 }
868 
869 static int tsnep_poll(struct napi_struct *napi, int budget)
870 {
871 	struct tsnep_queue *queue = container_of(napi, struct tsnep_queue,
872 						 napi);
873 	bool complete = true;
874 	int done = 0;
875 
876 	if (queue->tx)
877 		complete = tsnep_tx_poll(queue->tx, budget);
878 
879 	if (queue->rx) {
880 		done = tsnep_rx_poll(queue->rx, napi, budget);
881 		if (done >= budget)
882 			complete = false;
883 	}
884 
885 	/* if all work not completed, return budget and keep polling */
886 	if (!complete)
887 		return budget;
888 
889 	if (likely(napi_complete_done(napi, done)))
890 		tsnep_enable_irq(queue->adapter, queue->irq_mask);
891 
892 	return min(done, budget - 1);
893 }
894 
895 static int tsnep_request_irq(struct tsnep_queue *queue, bool first)
896 {
897 	const char *name = netdev_name(queue->adapter->netdev);
898 	irq_handler_t handler;
899 	void *dev;
900 	int retval;
901 
902 	if (first) {
903 		sprintf(queue->name, "%s-mac", name);
904 		handler = tsnep_irq;
905 		dev = queue->adapter;
906 	} else {
907 		if (queue->tx && queue->rx)
908 			sprintf(queue->name, "%s-txrx-%d", name,
909 				queue->rx->queue_index);
910 		else if (queue->tx)
911 			sprintf(queue->name, "%s-tx-%d", name,
912 				queue->tx->queue_index);
913 		else
914 			sprintf(queue->name, "%s-rx-%d", name,
915 				queue->rx->queue_index);
916 		handler = tsnep_irq_txrx;
917 		dev = queue;
918 	}
919 
920 	retval = request_irq(queue->irq, handler, 0, queue->name, dev);
921 	if (retval) {
922 		/* if name is empty, then interrupt won't be freed */
923 		memset(queue->name, 0, sizeof(queue->name));
924 	}
925 
926 	return retval;
927 }
928 
929 static void tsnep_free_irq(struct tsnep_queue *queue, bool first)
930 {
931 	void *dev;
932 
933 	if (!strlen(queue->name))
934 		return;
935 
936 	if (first)
937 		dev = queue->adapter;
938 	else
939 		dev = queue;
940 
941 	free_irq(queue->irq, dev);
942 	memset(queue->name, 0, sizeof(queue->name));
943 }
944 
945 static int tsnep_netdev_open(struct net_device *netdev)
946 {
947 	struct tsnep_adapter *adapter = netdev_priv(netdev);
948 	int i;
949 	void __iomem *addr;
950 	int tx_queue_index = 0;
951 	int rx_queue_index = 0;
952 	int retval;
953 
954 	for (i = 0; i < adapter->num_queues; i++) {
955 		adapter->queue[i].adapter = adapter;
956 		if (adapter->queue[i].tx) {
957 			addr = adapter->addr + TSNEP_QUEUE(tx_queue_index);
958 			retval = tsnep_tx_open(adapter, addr, tx_queue_index,
959 					       adapter->queue[i].tx);
960 			if (retval)
961 				goto failed;
962 			tx_queue_index++;
963 		}
964 		if (adapter->queue[i].rx) {
965 			addr = adapter->addr + TSNEP_QUEUE(rx_queue_index);
966 			retval = tsnep_rx_open(adapter, addr,
967 					       rx_queue_index,
968 					       adapter->queue[i].rx);
969 			if (retval)
970 				goto failed;
971 			rx_queue_index++;
972 		}
973 
974 		retval = tsnep_request_irq(&adapter->queue[i], i == 0);
975 		if (retval) {
976 			netif_err(adapter, drv, adapter->netdev,
977 				  "can't get assigned irq %d.\n",
978 				  adapter->queue[i].irq);
979 			goto failed;
980 		}
981 	}
982 
983 	retval = netif_set_real_num_tx_queues(adapter->netdev,
984 					      adapter->num_tx_queues);
985 	if (retval)
986 		goto failed;
987 	retval = netif_set_real_num_rx_queues(adapter->netdev,
988 					      adapter->num_rx_queues);
989 	if (retval)
990 		goto failed;
991 
992 	tsnep_enable_irq(adapter, ECM_INT_LINK);
993 	retval = tsnep_phy_open(adapter);
994 	if (retval)
995 		goto phy_failed;
996 
997 	for (i = 0; i < adapter->num_queues; i++) {
998 		netif_napi_add(adapter->netdev, &adapter->queue[i].napi,
999 			       tsnep_poll);
1000 		napi_enable(&adapter->queue[i].napi);
1001 
1002 		tsnep_enable_irq(adapter, adapter->queue[i].irq_mask);
1003 	}
1004 
1005 	return 0;
1006 
1007 phy_failed:
1008 	tsnep_disable_irq(adapter, ECM_INT_LINK);
1009 	tsnep_phy_close(adapter);
1010 failed:
1011 	for (i = 0; i < adapter->num_queues; i++) {
1012 		tsnep_free_irq(&adapter->queue[i], i == 0);
1013 
1014 		if (adapter->queue[i].rx)
1015 			tsnep_rx_close(adapter->queue[i].rx);
1016 		if (adapter->queue[i].tx)
1017 			tsnep_tx_close(adapter->queue[i].tx);
1018 	}
1019 	return retval;
1020 }
1021 
1022 static int tsnep_netdev_close(struct net_device *netdev)
1023 {
1024 	struct tsnep_adapter *adapter = netdev_priv(netdev);
1025 	int i;
1026 
1027 	tsnep_disable_irq(adapter, ECM_INT_LINK);
1028 	tsnep_phy_close(adapter);
1029 
1030 	for (i = 0; i < adapter->num_queues; i++) {
1031 		tsnep_disable_irq(adapter, adapter->queue[i].irq_mask);
1032 
1033 		napi_disable(&adapter->queue[i].napi);
1034 		netif_napi_del(&adapter->queue[i].napi);
1035 
1036 		tsnep_free_irq(&adapter->queue[i], i == 0);
1037 
1038 		if (adapter->queue[i].rx)
1039 			tsnep_rx_close(adapter->queue[i].rx);
1040 		if (adapter->queue[i].tx)
1041 			tsnep_tx_close(adapter->queue[i].tx);
1042 	}
1043 
1044 	return 0;
1045 }
1046 
1047 static netdev_tx_t tsnep_netdev_xmit_frame(struct sk_buff *skb,
1048 					   struct net_device *netdev)
1049 {
1050 	struct tsnep_adapter *adapter = netdev_priv(netdev);
1051 	u16 queue_mapping = skb_get_queue_mapping(skb);
1052 
1053 	if (queue_mapping >= adapter->num_tx_queues)
1054 		queue_mapping = 0;
1055 
1056 	return tsnep_xmit_frame_ring(skb, &adapter->tx[queue_mapping]);
1057 }
1058 
1059 static int tsnep_netdev_ioctl(struct net_device *netdev, struct ifreq *ifr,
1060 			      int cmd)
1061 {
1062 	if (!netif_running(netdev))
1063 		return -EINVAL;
1064 	if (cmd == SIOCSHWTSTAMP || cmd == SIOCGHWTSTAMP)
1065 		return tsnep_ptp_ioctl(netdev, ifr, cmd);
1066 	return phy_mii_ioctl(netdev->phydev, ifr, cmd);
1067 }
1068 
1069 static void tsnep_netdev_set_multicast(struct net_device *netdev)
1070 {
1071 	struct tsnep_adapter *adapter = netdev_priv(netdev);
1072 
1073 	u16 rx_filter = 0;
1074 
1075 	/* configured MAC address and broadcasts are never filtered */
1076 	if (netdev->flags & IFF_PROMISC) {
1077 		rx_filter |= TSNEP_RX_FILTER_ACCEPT_ALL_MULTICASTS;
1078 		rx_filter |= TSNEP_RX_FILTER_ACCEPT_ALL_UNICASTS;
1079 	} else if (!netdev_mc_empty(netdev) || (netdev->flags & IFF_ALLMULTI)) {
1080 		rx_filter |= TSNEP_RX_FILTER_ACCEPT_ALL_MULTICASTS;
1081 	}
1082 	iowrite16(rx_filter, adapter->addr + TSNEP_RX_FILTER);
1083 }
1084 
1085 static void tsnep_netdev_get_stats64(struct net_device *netdev,
1086 				     struct rtnl_link_stats64 *stats)
1087 {
1088 	struct tsnep_adapter *adapter = netdev_priv(netdev);
1089 	u32 reg;
1090 	u32 val;
1091 	int i;
1092 
1093 	for (i = 0; i < adapter->num_tx_queues; i++) {
1094 		stats->tx_packets += adapter->tx[i].packets;
1095 		stats->tx_bytes += adapter->tx[i].bytes;
1096 		stats->tx_dropped += adapter->tx[i].dropped;
1097 	}
1098 	for (i = 0; i < adapter->num_rx_queues; i++) {
1099 		stats->rx_packets += adapter->rx[i].packets;
1100 		stats->rx_bytes += adapter->rx[i].bytes;
1101 		stats->rx_dropped += adapter->rx[i].dropped;
1102 		stats->multicast += adapter->rx[i].multicast;
1103 
1104 		reg = ioread32(adapter->addr + TSNEP_QUEUE(i) +
1105 			       TSNEP_RX_STATISTIC);
1106 		val = (reg & TSNEP_RX_STATISTIC_NO_DESC_MASK) >>
1107 		      TSNEP_RX_STATISTIC_NO_DESC_SHIFT;
1108 		stats->rx_dropped += val;
1109 		val = (reg & TSNEP_RX_STATISTIC_BUFFER_TOO_SMALL_MASK) >>
1110 		      TSNEP_RX_STATISTIC_BUFFER_TOO_SMALL_SHIFT;
1111 		stats->rx_dropped += val;
1112 		val = (reg & TSNEP_RX_STATISTIC_FIFO_OVERFLOW_MASK) >>
1113 		      TSNEP_RX_STATISTIC_FIFO_OVERFLOW_SHIFT;
1114 		stats->rx_errors += val;
1115 		stats->rx_fifo_errors += val;
1116 		val = (reg & TSNEP_RX_STATISTIC_INVALID_FRAME_MASK) >>
1117 		      TSNEP_RX_STATISTIC_INVALID_FRAME_SHIFT;
1118 		stats->rx_errors += val;
1119 		stats->rx_frame_errors += val;
1120 	}
1121 
1122 	reg = ioread32(adapter->addr + ECM_STAT);
1123 	val = (reg & ECM_STAT_RX_ERR_MASK) >> ECM_STAT_RX_ERR_SHIFT;
1124 	stats->rx_errors += val;
1125 	val = (reg & ECM_STAT_INV_FRM_MASK) >> ECM_STAT_INV_FRM_SHIFT;
1126 	stats->rx_errors += val;
1127 	stats->rx_crc_errors += val;
1128 	val = (reg & ECM_STAT_FWD_RX_ERR_MASK) >> ECM_STAT_FWD_RX_ERR_SHIFT;
1129 	stats->rx_errors += val;
1130 }
1131 
1132 static void tsnep_mac_set_address(struct tsnep_adapter *adapter, u8 *addr)
1133 {
1134 	iowrite32(*(u32 *)addr, adapter->addr + TSNEP_MAC_ADDRESS_LOW);
1135 	iowrite16(*(u16 *)(addr + sizeof(u32)),
1136 		  adapter->addr + TSNEP_MAC_ADDRESS_HIGH);
1137 
1138 	ether_addr_copy(adapter->mac_address, addr);
1139 	netif_info(adapter, drv, adapter->netdev, "MAC address set to %pM\n",
1140 		   addr);
1141 }
1142 
1143 static int tsnep_netdev_set_mac_address(struct net_device *netdev, void *addr)
1144 {
1145 	struct tsnep_adapter *adapter = netdev_priv(netdev);
1146 	struct sockaddr *sock_addr = addr;
1147 	int retval;
1148 
1149 	retval = eth_prepare_mac_addr_change(netdev, sock_addr);
1150 	if (retval)
1151 		return retval;
1152 	eth_hw_addr_set(netdev, sock_addr->sa_data);
1153 	tsnep_mac_set_address(adapter, sock_addr->sa_data);
1154 
1155 	return 0;
1156 }
1157 
1158 static int tsnep_netdev_set_features(struct net_device *netdev,
1159 				     netdev_features_t features)
1160 {
1161 	struct tsnep_adapter *adapter = netdev_priv(netdev);
1162 	netdev_features_t changed = netdev->features ^ features;
1163 	bool enable;
1164 	int retval = 0;
1165 
1166 	if (changed & NETIF_F_LOOPBACK) {
1167 		enable = !!(features & NETIF_F_LOOPBACK);
1168 		retval = tsnep_phy_loopback(adapter, enable);
1169 	}
1170 
1171 	return retval;
1172 }
1173 
1174 static ktime_t tsnep_netdev_get_tstamp(struct net_device *netdev,
1175 				       const struct skb_shared_hwtstamps *hwtstamps,
1176 				       bool cycles)
1177 {
1178 	struct tsnep_rx_inline *rx_inline = hwtstamps->netdev_data;
1179 	u64 timestamp;
1180 
1181 	if (cycles)
1182 		timestamp = __le64_to_cpu(rx_inline->counter);
1183 	else
1184 		timestamp = __le64_to_cpu(rx_inline->timestamp);
1185 
1186 	return ns_to_ktime(timestamp);
1187 }
1188 
1189 static const struct net_device_ops tsnep_netdev_ops = {
1190 	.ndo_open = tsnep_netdev_open,
1191 	.ndo_stop = tsnep_netdev_close,
1192 	.ndo_start_xmit = tsnep_netdev_xmit_frame,
1193 	.ndo_eth_ioctl = tsnep_netdev_ioctl,
1194 	.ndo_set_rx_mode = tsnep_netdev_set_multicast,
1195 	.ndo_get_stats64 = tsnep_netdev_get_stats64,
1196 	.ndo_set_mac_address = tsnep_netdev_set_mac_address,
1197 	.ndo_set_features = tsnep_netdev_set_features,
1198 	.ndo_get_tstamp = tsnep_netdev_get_tstamp,
1199 	.ndo_setup_tc = tsnep_tc_setup,
1200 };
1201 
1202 static int tsnep_mac_init(struct tsnep_adapter *adapter)
1203 {
1204 	int retval;
1205 
1206 	/* initialize RX filtering, at least configured MAC address and
1207 	 * broadcast are not filtered
1208 	 */
1209 	iowrite16(0, adapter->addr + TSNEP_RX_FILTER);
1210 
1211 	/* try to get MAC address in the following order:
1212 	 * - device tree
1213 	 * - valid MAC address already set
1214 	 * - MAC address register if valid
1215 	 * - random MAC address
1216 	 */
1217 	retval = of_get_mac_address(adapter->pdev->dev.of_node,
1218 				    adapter->mac_address);
1219 	if (retval == -EPROBE_DEFER)
1220 		return retval;
1221 	if (retval && !is_valid_ether_addr(adapter->mac_address)) {
1222 		*(u32 *)adapter->mac_address =
1223 			ioread32(adapter->addr + TSNEP_MAC_ADDRESS_LOW);
1224 		*(u16 *)(adapter->mac_address + sizeof(u32)) =
1225 			ioread16(adapter->addr + TSNEP_MAC_ADDRESS_HIGH);
1226 		if (!is_valid_ether_addr(adapter->mac_address))
1227 			eth_random_addr(adapter->mac_address);
1228 	}
1229 
1230 	tsnep_mac_set_address(adapter, adapter->mac_address);
1231 	eth_hw_addr_set(adapter->netdev, adapter->mac_address);
1232 
1233 	return 0;
1234 }
1235 
1236 static int tsnep_mdio_init(struct tsnep_adapter *adapter)
1237 {
1238 	struct device_node *np = adapter->pdev->dev.of_node;
1239 	int retval;
1240 
1241 	if (np) {
1242 		np = of_get_child_by_name(np, "mdio");
1243 		if (!np)
1244 			return 0;
1245 
1246 		adapter->suppress_preamble =
1247 			of_property_read_bool(np, "suppress-preamble");
1248 	}
1249 
1250 	adapter->mdiobus = devm_mdiobus_alloc(&adapter->pdev->dev);
1251 	if (!adapter->mdiobus) {
1252 		retval = -ENOMEM;
1253 
1254 		goto out;
1255 	}
1256 
1257 	adapter->mdiobus->priv = (void *)adapter;
1258 	adapter->mdiobus->parent = &adapter->pdev->dev;
1259 	adapter->mdiobus->read = tsnep_mdiobus_read;
1260 	adapter->mdiobus->write = tsnep_mdiobus_write;
1261 	adapter->mdiobus->name = TSNEP "-mdiobus";
1262 	snprintf(adapter->mdiobus->id, MII_BUS_ID_SIZE, "%s",
1263 		 adapter->pdev->name);
1264 
1265 	/* do not scan broadcast address */
1266 	adapter->mdiobus->phy_mask = 0x0000001;
1267 
1268 	retval = of_mdiobus_register(adapter->mdiobus, np);
1269 
1270 out:
1271 	of_node_put(np);
1272 
1273 	return retval;
1274 }
1275 
1276 static int tsnep_phy_init(struct tsnep_adapter *adapter)
1277 {
1278 	struct device_node *phy_node;
1279 	int retval;
1280 
1281 	retval = of_get_phy_mode(adapter->pdev->dev.of_node,
1282 				 &adapter->phy_mode);
1283 	if (retval)
1284 		adapter->phy_mode = PHY_INTERFACE_MODE_GMII;
1285 
1286 	phy_node = of_parse_phandle(adapter->pdev->dev.of_node, "phy-handle",
1287 				    0);
1288 	adapter->phydev = of_phy_find_device(phy_node);
1289 	of_node_put(phy_node);
1290 	if (!adapter->phydev && adapter->mdiobus)
1291 		adapter->phydev = phy_find_first(adapter->mdiobus);
1292 	if (!adapter->phydev)
1293 		return -EIO;
1294 
1295 	return 0;
1296 }
1297 
1298 static int tsnep_queue_init(struct tsnep_adapter *adapter, int queue_count)
1299 {
1300 	u32 irq_mask = ECM_INT_TX_0 | ECM_INT_RX_0;
1301 	char name[8];
1302 	int i;
1303 	int retval;
1304 
1305 	/* one TX/RX queue pair for netdev is mandatory */
1306 	if (platform_irq_count(adapter->pdev) == 1)
1307 		retval = platform_get_irq(adapter->pdev, 0);
1308 	else
1309 		retval = platform_get_irq_byname(adapter->pdev, "mac");
1310 	if (retval < 0)
1311 		return retval;
1312 	adapter->num_tx_queues = 1;
1313 	adapter->num_rx_queues = 1;
1314 	adapter->num_queues = 1;
1315 	adapter->queue[0].irq = retval;
1316 	adapter->queue[0].tx = &adapter->tx[0];
1317 	adapter->queue[0].rx = &adapter->rx[0];
1318 	adapter->queue[0].irq_mask = irq_mask;
1319 
1320 	adapter->netdev->irq = adapter->queue[0].irq;
1321 
1322 	/* add additional TX/RX queue pairs only if dedicated interrupt is
1323 	 * available
1324 	 */
1325 	for (i = 1; i < queue_count; i++) {
1326 		sprintf(name, "txrx-%d", i);
1327 		retval = platform_get_irq_byname_optional(adapter->pdev, name);
1328 		if (retval < 0)
1329 			break;
1330 
1331 		adapter->num_tx_queues++;
1332 		adapter->num_rx_queues++;
1333 		adapter->num_queues++;
1334 		adapter->queue[i].irq = retval;
1335 		adapter->queue[i].tx = &adapter->tx[i];
1336 		adapter->queue[i].rx = &adapter->rx[i];
1337 		adapter->queue[i].irq_mask =
1338 			irq_mask << (ECM_INT_TXRX_SHIFT * i);
1339 	}
1340 
1341 	return 0;
1342 }
1343 
1344 static int tsnep_probe(struct platform_device *pdev)
1345 {
1346 	struct tsnep_adapter *adapter;
1347 	struct net_device *netdev;
1348 	struct resource *io;
1349 	u32 type;
1350 	int revision;
1351 	int version;
1352 	int queue_count;
1353 	int retval;
1354 
1355 	netdev = devm_alloc_etherdev_mqs(&pdev->dev,
1356 					 sizeof(struct tsnep_adapter),
1357 					 TSNEP_MAX_QUEUES, TSNEP_MAX_QUEUES);
1358 	if (!netdev)
1359 		return -ENODEV;
1360 	SET_NETDEV_DEV(netdev, &pdev->dev);
1361 	adapter = netdev_priv(netdev);
1362 	platform_set_drvdata(pdev, adapter);
1363 	adapter->pdev = pdev;
1364 	adapter->dmadev = &pdev->dev;
1365 	adapter->netdev = netdev;
1366 	adapter->msg_enable = NETIF_MSG_DRV | NETIF_MSG_PROBE |
1367 			      NETIF_MSG_LINK | NETIF_MSG_IFUP |
1368 			      NETIF_MSG_IFDOWN | NETIF_MSG_TX_QUEUED;
1369 
1370 	netdev->min_mtu = ETH_MIN_MTU;
1371 	netdev->max_mtu = TSNEP_MAX_FRAME_SIZE;
1372 
1373 	mutex_init(&adapter->gate_control_lock);
1374 	mutex_init(&adapter->rxnfc_lock);
1375 	INIT_LIST_HEAD(&adapter->rxnfc_rules);
1376 
1377 	io = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1378 	adapter->addr = devm_ioremap_resource(&pdev->dev, io);
1379 	if (IS_ERR(adapter->addr))
1380 		return PTR_ERR(adapter->addr);
1381 	netdev->mem_start = io->start;
1382 	netdev->mem_end = io->end;
1383 
1384 	type = ioread32(adapter->addr + ECM_TYPE);
1385 	revision = (type & ECM_REVISION_MASK) >> ECM_REVISION_SHIFT;
1386 	version = (type & ECM_VERSION_MASK) >> ECM_VERSION_SHIFT;
1387 	queue_count = (type & ECM_QUEUE_COUNT_MASK) >> ECM_QUEUE_COUNT_SHIFT;
1388 	adapter->gate_control = type & ECM_GATE_CONTROL;
1389 	adapter->rxnfc_max = TSNEP_RX_ASSIGN_ETHER_TYPE_COUNT;
1390 
1391 	tsnep_disable_irq(adapter, ECM_INT_ALL);
1392 
1393 	retval = tsnep_queue_init(adapter, queue_count);
1394 	if (retval)
1395 		return retval;
1396 
1397 	retval = dma_set_mask_and_coherent(&adapter->pdev->dev,
1398 					   DMA_BIT_MASK(64));
1399 	if (retval) {
1400 		dev_err(&adapter->pdev->dev, "no usable DMA configuration.\n");
1401 		return retval;
1402 	}
1403 
1404 	retval = tsnep_mac_init(adapter);
1405 	if (retval)
1406 		return retval;
1407 
1408 	retval = tsnep_mdio_init(adapter);
1409 	if (retval)
1410 		goto mdio_init_failed;
1411 
1412 	retval = tsnep_phy_init(adapter);
1413 	if (retval)
1414 		goto phy_init_failed;
1415 
1416 	retval = tsnep_ptp_init(adapter);
1417 	if (retval)
1418 		goto ptp_init_failed;
1419 
1420 	retval = tsnep_tc_init(adapter);
1421 	if (retval)
1422 		goto tc_init_failed;
1423 
1424 	retval = tsnep_rxnfc_init(adapter);
1425 	if (retval)
1426 		goto rxnfc_init_failed;
1427 
1428 	netdev->netdev_ops = &tsnep_netdev_ops;
1429 	netdev->ethtool_ops = &tsnep_ethtool_ops;
1430 	netdev->features = NETIF_F_SG;
1431 	netdev->hw_features = netdev->features | NETIF_F_LOOPBACK;
1432 
1433 	/* carrier off reporting is important to ethtool even BEFORE open */
1434 	netif_carrier_off(netdev);
1435 
1436 	retval = register_netdev(netdev);
1437 	if (retval)
1438 		goto register_failed;
1439 
1440 	dev_info(&adapter->pdev->dev, "device version %d.%02d\n", version,
1441 		 revision);
1442 	if (adapter->gate_control)
1443 		dev_info(&adapter->pdev->dev, "gate control detected\n");
1444 
1445 	return 0;
1446 
1447 register_failed:
1448 	tsnep_rxnfc_cleanup(adapter);
1449 rxnfc_init_failed:
1450 	tsnep_tc_cleanup(adapter);
1451 tc_init_failed:
1452 	tsnep_ptp_cleanup(adapter);
1453 ptp_init_failed:
1454 phy_init_failed:
1455 	if (adapter->mdiobus)
1456 		mdiobus_unregister(adapter->mdiobus);
1457 mdio_init_failed:
1458 	return retval;
1459 }
1460 
1461 static int tsnep_remove(struct platform_device *pdev)
1462 {
1463 	struct tsnep_adapter *adapter = platform_get_drvdata(pdev);
1464 
1465 	unregister_netdev(adapter->netdev);
1466 
1467 	tsnep_rxnfc_cleanup(adapter);
1468 
1469 	tsnep_tc_cleanup(adapter);
1470 
1471 	tsnep_ptp_cleanup(adapter);
1472 
1473 	if (adapter->mdiobus)
1474 		mdiobus_unregister(adapter->mdiobus);
1475 
1476 	tsnep_disable_irq(adapter, ECM_INT_ALL);
1477 
1478 	return 0;
1479 }
1480 
1481 static const struct of_device_id tsnep_of_match[] = {
1482 	{ .compatible = "engleder,tsnep", },
1483 { },
1484 };
1485 MODULE_DEVICE_TABLE(of, tsnep_of_match);
1486 
1487 static struct platform_driver tsnep_driver = {
1488 	.driver = {
1489 		.name = TSNEP,
1490 		.of_match_table = tsnep_of_match,
1491 	},
1492 	.probe = tsnep_probe,
1493 	.remove = tsnep_remove,
1494 };
1495 module_platform_driver(tsnep_driver);
1496 
1497 MODULE_AUTHOR("Gerhard Engleder <gerhard@engleder-embedded.com>");
1498 MODULE_DESCRIPTION("TSN endpoint Ethernet MAC driver");
1499 MODULE_LICENSE("GPL");
1500