xref: /openbmc/linux/drivers/net/ethernet/engleder/tsnep_main.c (revision 4cfb908054456ad8b6b8cd5108bbdf80faade8cd)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (C) 2021 Gerhard Engleder <gerhard@engleder-embedded.com> */
3 
4 /* TSN endpoint Ethernet MAC driver
5  *
6  * The TSN endpoint Ethernet MAC is a FPGA based network device for real-time
7  * communication. It is designed for endpoints within TSN (Time Sensitive
8  * Networking) networks; e.g., for PLCs in the industrial automation case.
9  *
10  * It supports multiple TX/RX queue pairs. The first TX/RX queue pair is used
11  * by the driver.
12  *
13  * More information can be found here:
14  * - www.embedded-experts.at/tsn
15  * - www.engleder-embedded.com
16  */
17 
18 #include "tsnep.h"
19 #include "tsnep_hw.h"
20 
21 #include <linux/module.h>
22 #include <linux/of.h>
23 #include <linux/of_net.h>
24 #include <linux/of_mdio.h>
25 #include <linux/interrupt.h>
26 #include <linux/etherdevice.h>
27 #include <linux/phy.h>
28 #include <linux/iopoll.h>
29 #include <linux/bpf.h>
30 #include <linux/bpf_trace.h>
31 #include <net/xdp_sock_drv.h>
32 
33 #define TSNEP_RX_OFFSET (max(NET_SKB_PAD, XDP_PACKET_HEADROOM) + NET_IP_ALIGN)
34 #define TSNEP_HEADROOM ALIGN(TSNEP_RX_OFFSET, 4)
35 #define TSNEP_MAX_RX_BUF_SIZE (PAGE_SIZE - TSNEP_HEADROOM - \
36 			       SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
37 /* XSK buffer shall store at least Q-in-Q frame */
38 #define TSNEP_XSK_RX_BUF_SIZE (ALIGN(TSNEP_RX_INLINE_METADATA_SIZE + \
39 				     ETH_FRAME_LEN + ETH_FCS_LEN + \
40 				     VLAN_HLEN * 2, 4))
41 
42 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
43 #define DMA_ADDR_HIGH(dma_addr) ((u32)(((dma_addr) >> 32) & 0xFFFFFFFF))
44 #else
45 #define DMA_ADDR_HIGH(dma_addr) ((u32)(0))
46 #endif
47 #define DMA_ADDR_LOW(dma_addr) ((u32)((dma_addr) & 0xFFFFFFFF))
48 
49 #define TSNEP_COALESCE_USECS_DEFAULT 64
50 #define TSNEP_COALESCE_USECS_MAX     ((ECM_INT_DELAY_MASK >> ECM_INT_DELAY_SHIFT) * \
51 				      ECM_INT_DELAY_BASE_US + ECM_INT_DELAY_BASE_US - 1)
52 
53 #define TSNEP_TX_TYPE_SKB	BIT(0)
54 #define TSNEP_TX_TYPE_SKB_FRAG	BIT(1)
55 #define TSNEP_TX_TYPE_XDP_TX	BIT(2)
56 #define TSNEP_TX_TYPE_XDP_NDO	BIT(3)
57 #define TSNEP_TX_TYPE_XDP	(TSNEP_TX_TYPE_XDP_TX | TSNEP_TX_TYPE_XDP_NDO)
58 #define TSNEP_TX_TYPE_XSK	BIT(4)
59 
60 #define TSNEP_XDP_TX		BIT(0)
61 #define TSNEP_XDP_REDIRECT	BIT(1)
62 
63 static void tsnep_enable_irq(struct tsnep_adapter *adapter, u32 mask)
64 {
65 	iowrite32(mask, adapter->addr + ECM_INT_ENABLE);
66 }
67 
68 static void tsnep_disable_irq(struct tsnep_adapter *adapter, u32 mask)
69 {
70 	mask |= ECM_INT_DISABLE;
71 	iowrite32(mask, adapter->addr + ECM_INT_ENABLE);
72 }
73 
74 static irqreturn_t tsnep_irq(int irq, void *arg)
75 {
76 	struct tsnep_adapter *adapter = arg;
77 	u32 active = ioread32(adapter->addr + ECM_INT_ACTIVE);
78 
79 	/* acknowledge interrupt */
80 	if (active != 0)
81 		iowrite32(active, adapter->addr + ECM_INT_ACKNOWLEDGE);
82 
83 	/* handle link interrupt */
84 	if ((active & ECM_INT_LINK) != 0)
85 		phy_mac_interrupt(adapter->netdev->phydev);
86 
87 	/* handle TX/RX queue 0 interrupt */
88 	if ((active & adapter->queue[0].irq_mask) != 0) {
89 		tsnep_disable_irq(adapter, adapter->queue[0].irq_mask);
90 		napi_schedule(&adapter->queue[0].napi);
91 	}
92 
93 	return IRQ_HANDLED;
94 }
95 
96 static irqreturn_t tsnep_irq_txrx(int irq, void *arg)
97 {
98 	struct tsnep_queue *queue = arg;
99 
100 	/* handle TX/RX queue interrupt */
101 	tsnep_disable_irq(queue->adapter, queue->irq_mask);
102 	napi_schedule(&queue->napi);
103 
104 	return IRQ_HANDLED;
105 }
106 
107 int tsnep_set_irq_coalesce(struct tsnep_queue *queue, u32 usecs)
108 {
109 	if (usecs > TSNEP_COALESCE_USECS_MAX)
110 		return -ERANGE;
111 
112 	usecs /= ECM_INT_DELAY_BASE_US;
113 	usecs <<= ECM_INT_DELAY_SHIFT;
114 	usecs &= ECM_INT_DELAY_MASK;
115 
116 	queue->irq_delay &= ~ECM_INT_DELAY_MASK;
117 	queue->irq_delay |= usecs;
118 	iowrite8(queue->irq_delay, queue->irq_delay_addr);
119 
120 	return 0;
121 }
122 
123 u32 tsnep_get_irq_coalesce(struct tsnep_queue *queue)
124 {
125 	u32 usecs;
126 
127 	usecs = (queue->irq_delay & ECM_INT_DELAY_MASK);
128 	usecs >>= ECM_INT_DELAY_SHIFT;
129 	usecs *= ECM_INT_DELAY_BASE_US;
130 
131 	return usecs;
132 }
133 
134 static int tsnep_mdiobus_read(struct mii_bus *bus, int addr, int regnum)
135 {
136 	struct tsnep_adapter *adapter = bus->priv;
137 	u32 md;
138 	int retval;
139 
140 	md = ECM_MD_READ;
141 	if (!adapter->suppress_preamble)
142 		md |= ECM_MD_PREAMBLE;
143 	md |= (regnum << ECM_MD_ADDR_SHIFT) & ECM_MD_ADDR_MASK;
144 	md |= (addr << ECM_MD_PHY_ADDR_SHIFT) & ECM_MD_PHY_ADDR_MASK;
145 	iowrite32(md, adapter->addr + ECM_MD_CONTROL);
146 	retval = readl_poll_timeout_atomic(adapter->addr + ECM_MD_STATUS, md,
147 					   !(md & ECM_MD_BUSY), 16, 1000);
148 	if (retval != 0)
149 		return retval;
150 
151 	return (md & ECM_MD_DATA_MASK) >> ECM_MD_DATA_SHIFT;
152 }
153 
154 static int tsnep_mdiobus_write(struct mii_bus *bus, int addr, int regnum,
155 			       u16 val)
156 {
157 	struct tsnep_adapter *adapter = bus->priv;
158 	u32 md;
159 	int retval;
160 
161 	md = ECM_MD_WRITE;
162 	if (!adapter->suppress_preamble)
163 		md |= ECM_MD_PREAMBLE;
164 	md |= (regnum << ECM_MD_ADDR_SHIFT) & ECM_MD_ADDR_MASK;
165 	md |= (addr << ECM_MD_PHY_ADDR_SHIFT) & ECM_MD_PHY_ADDR_MASK;
166 	md |= ((u32)val << ECM_MD_DATA_SHIFT) & ECM_MD_DATA_MASK;
167 	iowrite32(md, adapter->addr + ECM_MD_CONTROL);
168 	retval = readl_poll_timeout_atomic(adapter->addr + ECM_MD_STATUS, md,
169 					   !(md & ECM_MD_BUSY), 16, 1000);
170 	if (retval != 0)
171 		return retval;
172 
173 	return 0;
174 }
175 
176 static void tsnep_set_link_mode(struct tsnep_adapter *adapter)
177 {
178 	u32 mode;
179 
180 	switch (adapter->phydev->speed) {
181 	case SPEED_100:
182 		mode = ECM_LINK_MODE_100;
183 		break;
184 	case SPEED_1000:
185 		mode = ECM_LINK_MODE_1000;
186 		break;
187 	default:
188 		mode = ECM_LINK_MODE_OFF;
189 		break;
190 	}
191 	iowrite32(mode, adapter->addr + ECM_STATUS);
192 }
193 
194 static void tsnep_phy_link_status_change(struct net_device *netdev)
195 {
196 	struct tsnep_adapter *adapter = netdev_priv(netdev);
197 	struct phy_device *phydev = netdev->phydev;
198 
199 	if (phydev->link)
200 		tsnep_set_link_mode(adapter);
201 
202 	phy_print_status(netdev->phydev);
203 }
204 
205 static int tsnep_phy_loopback(struct tsnep_adapter *adapter, bool enable)
206 {
207 	int retval;
208 
209 	retval = phy_loopback(adapter->phydev, enable);
210 
211 	/* PHY link state change is not signaled if loopback is enabled, it
212 	 * would delay a working loopback anyway, let's ensure that loopback
213 	 * is working immediately by setting link mode directly
214 	 */
215 	if (!retval && enable)
216 		tsnep_set_link_mode(adapter);
217 
218 	return retval;
219 }
220 
221 static int tsnep_phy_open(struct tsnep_adapter *adapter)
222 {
223 	struct phy_device *phydev;
224 	struct ethtool_eee ethtool_eee;
225 	int retval;
226 
227 	retval = phy_connect_direct(adapter->netdev, adapter->phydev,
228 				    tsnep_phy_link_status_change,
229 				    adapter->phy_mode);
230 	if (retval)
231 		return retval;
232 	phydev = adapter->netdev->phydev;
233 
234 	/* MAC supports only 100Mbps|1000Mbps full duplex
235 	 * SPE (Single Pair Ethernet) is also an option but not implemented yet
236 	 */
237 	phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_10baseT_Half_BIT);
238 	phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_10baseT_Full_BIT);
239 	phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_100baseT_Half_BIT);
240 	phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_1000baseT_Half_BIT);
241 
242 	/* disable EEE autoneg, EEE not supported by TSNEP */
243 	memset(&ethtool_eee, 0, sizeof(ethtool_eee));
244 	phy_ethtool_set_eee(adapter->phydev, &ethtool_eee);
245 
246 	adapter->phydev->irq = PHY_MAC_INTERRUPT;
247 	phy_start(adapter->phydev);
248 
249 	return 0;
250 }
251 
252 static void tsnep_phy_close(struct tsnep_adapter *adapter)
253 {
254 	phy_stop(adapter->netdev->phydev);
255 	phy_disconnect(adapter->netdev->phydev);
256 }
257 
258 static void tsnep_tx_ring_cleanup(struct tsnep_tx *tx)
259 {
260 	struct device *dmadev = tx->adapter->dmadev;
261 	int i;
262 
263 	memset(tx->entry, 0, sizeof(tx->entry));
264 
265 	for (i = 0; i < TSNEP_RING_PAGE_COUNT; i++) {
266 		if (tx->page[i]) {
267 			dma_free_coherent(dmadev, PAGE_SIZE, tx->page[i],
268 					  tx->page_dma[i]);
269 			tx->page[i] = NULL;
270 			tx->page_dma[i] = 0;
271 		}
272 	}
273 }
274 
275 static int tsnep_tx_ring_create(struct tsnep_tx *tx)
276 {
277 	struct device *dmadev = tx->adapter->dmadev;
278 	struct tsnep_tx_entry *entry;
279 	struct tsnep_tx_entry *next_entry;
280 	int i, j;
281 	int retval;
282 
283 	for (i = 0; i < TSNEP_RING_PAGE_COUNT; i++) {
284 		tx->page[i] =
285 			dma_alloc_coherent(dmadev, PAGE_SIZE, &tx->page_dma[i],
286 					   GFP_KERNEL);
287 		if (!tx->page[i]) {
288 			retval = -ENOMEM;
289 			goto alloc_failed;
290 		}
291 		for (j = 0; j < TSNEP_RING_ENTRIES_PER_PAGE; j++) {
292 			entry = &tx->entry[TSNEP_RING_ENTRIES_PER_PAGE * i + j];
293 			entry->desc_wb = (struct tsnep_tx_desc_wb *)
294 				(((u8 *)tx->page[i]) + TSNEP_DESC_SIZE * j);
295 			entry->desc = (struct tsnep_tx_desc *)
296 				(((u8 *)entry->desc_wb) + TSNEP_DESC_OFFSET);
297 			entry->desc_dma = tx->page_dma[i] + TSNEP_DESC_SIZE * j;
298 			entry->owner_user_flag = false;
299 		}
300 	}
301 	for (i = 0; i < TSNEP_RING_SIZE; i++) {
302 		entry = &tx->entry[i];
303 		next_entry = &tx->entry[(i + 1) & TSNEP_RING_MASK];
304 		entry->desc->next = __cpu_to_le64(next_entry->desc_dma);
305 	}
306 
307 	return 0;
308 
309 alloc_failed:
310 	tsnep_tx_ring_cleanup(tx);
311 	return retval;
312 }
313 
314 static void tsnep_tx_init(struct tsnep_tx *tx)
315 {
316 	dma_addr_t dma;
317 
318 	dma = tx->entry[0].desc_dma | TSNEP_RESET_OWNER_COUNTER;
319 	iowrite32(DMA_ADDR_LOW(dma), tx->addr + TSNEP_TX_DESC_ADDR_LOW);
320 	iowrite32(DMA_ADDR_HIGH(dma), tx->addr + TSNEP_TX_DESC_ADDR_HIGH);
321 	tx->write = 0;
322 	tx->read = 0;
323 	tx->owner_counter = 1;
324 	tx->increment_owner_counter = TSNEP_RING_SIZE - 1;
325 }
326 
327 static void tsnep_tx_enable(struct tsnep_tx *tx)
328 {
329 	struct netdev_queue *nq;
330 
331 	nq = netdev_get_tx_queue(tx->adapter->netdev, tx->queue_index);
332 
333 	__netif_tx_lock_bh(nq);
334 	netif_tx_wake_queue(nq);
335 	__netif_tx_unlock_bh(nq);
336 }
337 
338 static void tsnep_tx_disable(struct tsnep_tx *tx, struct napi_struct *napi)
339 {
340 	struct netdev_queue *nq;
341 	u32 val;
342 
343 	nq = netdev_get_tx_queue(tx->adapter->netdev, tx->queue_index);
344 
345 	__netif_tx_lock_bh(nq);
346 	netif_tx_stop_queue(nq);
347 	__netif_tx_unlock_bh(nq);
348 
349 	/* wait until TX is done in hardware */
350 	readx_poll_timeout(ioread32, tx->addr + TSNEP_CONTROL, val,
351 			   ((val & TSNEP_CONTROL_TX_ENABLE) == 0), 10000,
352 			   1000000);
353 
354 	/* wait until TX is also done in software */
355 	while (READ_ONCE(tx->read) != tx->write) {
356 		napi_schedule(napi);
357 		napi_synchronize(napi);
358 	}
359 }
360 
361 static void tsnep_tx_activate(struct tsnep_tx *tx, int index, int length,
362 			      bool last)
363 {
364 	struct tsnep_tx_entry *entry = &tx->entry[index];
365 
366 	entry->properties = 0;
367 	/* xdpf and zc are union with skb */
368 	if (entry->skb) {
369 		entry->properties = length & TSNEP_DESC_LENGTH_MASK;
370 		entry->properties |= TSNEP_DESC_INTERRUPT_FLAG;
371 		if ((entry->type & TSNEP_TX_TYPE_SKB) &&
372 		    (skb_shinfo(entry->skb)->tx_flags & SKBTX_IN_PROGRESS))
373 			entry->properties |= TSNEP_DESC_EXTENDED_WRITEBACK_FLAG;
374 
375 		/* toggle user flag to prevent false acknowledge
376 		 *
377 		 * Only the first fragment is acknowledged. For all other
378 		 * fragments no acknowledge is done and the last written owner
379 		 * counter stays in the writeback descriptor. Therefore, it is
380 		 * possible that the last written owner counter is identical to
381 		 * the new incremented owner counter and a false acknowledge is
382 		 * detected before the real acknowledge has been done by
383 		 * hardware.
384 		 *
385 		 * The user flag is used to prevent this situation. The user
386 		 * flag is copied to the writeback descriptor by the hardware
387 		 * and is used as additional acknowledge data. By toggeling the
388 		 * user flag only for the first fragment (which is
389 		 * acknowledged), it is guaranteed that the last acknowledge
390 		 * done for this descriptor has used a different user flag and
391 		 * cannot be detected as false acknowledge.
392 		 */
393 		entry->owner_user_flag = !entry->owner_user_flag;
394 	}
395 	if (last)
396 		entry->properties |= TSNEP_TX_DESC_LAST_FRAGMENT_FLAG;
397 	if (index == tx->increment_owner_counter) {
398 		tx->owner_counter++;
399 		if (tx->owner_counter == 4)
400 			tx->owner_counter = 1;
401 		tx->increment_owner_counter--;
402 		if (tx->increment_owner_counter < 0)
403 			tx->increment_owner_counter = TSNEP_RING_SIZE - 1;
404 	}
405 	entry->properties |=
406 		(tx->owner_counter << TSNEP_DESC_OWNER_COUNTER_SHIFT) &
407 		TSNEP_DESC_OWNER_COUNTER_MASK;
408 	if (entry->owner_user_flag)
409 		entry->properties |= TSNEP_TX_DESC_OWNER_USER_FLAG;
410 	entry->desc->more_properties =
411 		__cpu_to_le32(entry->len & TSNEP_DESC_LENGTH_MASK);
412 
413 	/* descriptor properties shall be written last, because valid data is
414 	 * signaled there
415 	 */
416 	dma_wmb();
417 
418 	entry->desc->properties = __cpu_to_le32(entry->properties);
419 }
420 
421 static int tsnep_tx_desc_available(struct tsnep_tx *tx)
422 {
423 	if (tx->read <= tx->write)
424 		return TSNEP_RING_SIZE - tx->write + tx->read - 1;
425 	else
426 		return tx->read - tx->write - 1;
427 }
428 
429 static int tsnep_tx_map(struct sk_buff *skb, struct tsnep_tx *tx, int count)
430 {
431 	struct device *dmadev = tx->adapter->dmadev;
432 	struct tsnep_tx_entry *entry;
433 	unsigned int len;
434 	dma_addr_t dma;
435 	int map_len = 0;
436 	int i;
437 
438 	for (i = 0; i < count; i++) {
439 		entry = &tx->entry[(tx->write + i) & TSNEP_RING_MASK];
440 
441 		if (!i) {
442 			len = skb_headlen(skb);
443 			dma = dma_map_single(dmadev, skb->data, len,
444 					     DMA_TO_DEVICE);
445 
446 			entry->type = TSNEP_TX_TYPE_SKB;
447 		} else {
448 			len = skb_frag_size(&skb_shinfo(skb)->frags[i - 1]);
449 			dma = skb_frag_dma_map(dmadev,
450 					       &skb_shinfo(skb)->frags[i - 1],
451 					       0, len, DMA_TO_DEVICE);
452 
453 			entry->type = TSNEP_TX_TYPE_SKB_FRAG;
454 		}
455 		if (dma_mapping_error(dmadev, dma))
456 			return -ENOMEM;
457 
458 		entry->len = len;
459 		dma_unmap_addr_set(entry, dma, dma);
460 
461 		entry->desc->tx = __cpu_to_le64(dma);
462 
463 		map_len += len;
464 	}
465 
466 	return map_len;
467 }
468 
469 static int tsnep_tx_unmap(struct tsnep_tx *tx, int index, int count)
470 {
471 	struct device *dmadev = tx->adapter->dmadev;
472 	struct tsnep_tx_entry *entry;
473 	int map_len = 0;
474 	int i;
475 
476 	for (i = 0; i < count; i++) {
477 		entry = &tx->entry[(index + i) & TSNEP_RING_MASK];
478 
479 		if (entry->len) {
480 			if (entry->type & TSNEP_TX_TYPE_SKB)
481 				dma_unmap_single(dmadev,
482 						 dma_unmap_addr(entry, dma),
483 						 dma_unmap_len(entry, len),
484 						 DMA_TO_DEVICE);
485 			else if (entry->type &
486 				 (TSNEP_TX_TYPE_SKB_FRAG | TSNEP_TX_TYPE_XDP_NDO))
487 				dma_unmap_page(dmadev,
488 					       dma_unmap_addr(entry, dma),
489 					       dma_unmap_len(entry, len),
490 					       DMA_TO_DEVICE);
491 			map_len += entry->len;
492 			entry->len = 0;
493 		}
494 	}
495 
496 	return map_len;
497 }
498 
499 static netdev_tx_t tsnep_xmit_frame_ring(struct sk_buff *skb,
500 					 struct tsnep_tx *tx)
501 {
502 	int count = 1;
503 	struct tsnep_tx_entry *entry;
504 	int length;
505 	int i;
506 	int retval;
507 
508 	if (skb_shinfo(skb)->nr_frags > 0)
509 		count += skb_shinfo(skb)->nr_frags;
510 
511 	if (tsnep_tx_desc_available(tx) < count) {
512 		/* ring full, shall not happen because queue is stopped if full
513 		 * below
514 		 */
515 		netif_stop_subqueue(tx->adapter->netdev, tx->queue_index);
516 
517 		return NETDEV_TX_BUSY;
518 	}
519 
520 	entry = &tx->entry[tx->write];
521 	entry->skb = skb;
522 
523 	retval = tsnep_tx_map(skb, tx, count);
524 	if (retval < 0) {
525 		tsnep_tx_unmap(tx, tx->write, count);
526 		dev_kfree_skb_any(entry->skb);
527 		entry->skb = NULL;
528 
529 		tx->dropped++;
530 
531 		return NETDEV_TX_OK;
532 	}
533 	length = retval;
534 
535 	if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)
536 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
537 
538 	for (i = 0; i < count; i++)
539 		tsnep_tx_activate(tx, (tx->write + i) & TSNEP_RING_MASK, length,
540 				  i == count - 1);
541 	tx->write = (tx->write + count) & TSNEP_RING_MASK;
542 
543 	skb_tx_timestamp(skb);
544 
545 	/* descriptor properties shall be valid before hardware is notified */
546 	dma_wmb();
547 
548 	iowrite32(TSNEP_CONTROL_TX_ENABLE, tx->addr + TSNEP_CONTROL);
549 
550 	if (tsnep_tx_desc_available(tx) < (MAX_SKB_FRAGS + 1)) {
551 		/* ring can get full with next frame */
552 		netif_stop_subqueue(tx->adapter->netdev, tx->queue_index);
553 	}
554 
555 	return NETDEV_TX_OK;
556 }
557 
558 static int tsnep_xdp_tx_map(struct xdp_frame *xdpf, struct tsnep_tx *tx,
559 			    struct skb_shared_info *shinfo, int count, u32 type)
560 {
561 	struct device *dmadev = tx->adapter->dmadev;
562 	struct tsnep_tx_entry *entry;
563 	struct page *page;
564 	skb_frag_t *frag;
565 	unsigned int len;
566 	int map_len = 0;
567 	dma_addr_t dma;
568 	void *data;
569 	int i;
570 
571 	frag = NULL;
572 	len = xdpf->len;
573 	for (i = 0; i < count; i++) {
574 		entry = &tx->entry[(tx->write + i) & TSNEP_RING_MASK];
575 		if (type & TSNEP_TX_TYPE_XDP_NDO) {
576 			data = unlikely(frag) ? skb_frag_address(frag) :
577 						xdpf->data;
578 			dma = dma_map_single(dmadev, data, len, DMA_TO_DEVICE);
579 			if (dma_mapping_error(dmadev, dma))
580 				return -ENOMEM;
581 
582 			entry->type = TSNEP_TX_TYPE_XDP_NDO;
583 		} else {
584 			page = unlikely(frag) ? skb_frag_page(frag) :
585 						virt_to_page(xdpf->data);
586 			dma = page_pool_get_dma_addr(page);
587 			if (unlikely(frag))
588 				dma += skb_frag_off(frag);
589 			else
590 				dma += sizeof(*xdpf) + xdpf->headroom;
591 			dma_sync_single_for_device(dmadev, dma, len,
592 						   DMA_BIDIRECTIONAL);
593 
594 			entry->type = TSNEP_TX_TYPE_XDP_TX;
595 		}
596 
597 		entry->len = len;
598 		dma_unmap_addr_set(entry, dma, dma);
599 
600 		entry->desc->tx = __cpu_to_le64(dma);
601 
602 		map_len += len;
603 
604 		if (i + 1 < count) {
605 			frag = &shinfo->frags[i];
606 			len = skb_frag_size(frag);
607 		}
608 	}
609 
610 	return map_len;
611 }
612 
613 /* This function requires __netif_tx_lock is held by the caller. */
614 static bool tsnep_xdp_xmit_frame_ring(struct xdp_frame *xdpf,
615 				      struct tsnep_tx *tx, u32 type)
616 {
617 	struct skb_shared_info *shinfo = xdp_get_shared_info_from_frame(xdpf);
618 	struct tsnep_tx_entry *entry;
619 	int count, length, retval, i;
620 
621 	count = 1;
622 	if (unlikely(xdp_frame_has_frags(xdpf)))
623 		count += shinfo->nr_frags;
624 
625 	/* ensure that TX ring is not filled up by XDP, always MAX_SKB_FRAGS
626 	 * will be available for normal TX path and queue is stopped there if
627 	 * necessary
628 	 */
629 	if (tsnep_tx_desc_available(tx) < (MAX_SKB_FRAGS + 1 + count))
630 		return false;
631 
632 	entry = &tx->entry[tx->write];
633 	entry->xdpf = xdpf;
634 
635 	retval = tsnep_xdp_tx_map(xdpf, tx, shinfo, count, type);
636 	if (retval < 0) {
637 		tsnep_tx_unmap(tx, tx->write, count);
638 		entry->xdpf = NULL;
639 
640 		tx->dropped++;
641 
642 		return false;
643 	}
644 	length = retval;
645 
646 	for (i = 0; i < count; i++)
647 		tsnep_tx_activate(tx, (tx->write + i) & TSNEP_RING_MASK, length,
648 				  i == count - 1);
649 	tx->write = (tx->write + count) & TSNEP_RING_MASK;
650 
651 	/* descriptor properties shall be valid before hardware is notified */
652 	dma_wmb();
653 
654 	return true;
655 }
656 
657 static void tsnep_xdp_xmit_flush(struct tsnep_tx *tx)
658 {
659 	iowrite32(TSNEP_CONTROL_TX_ENABLE, tx->addr + TSNEP_CONTROL);
660 }
661 
662 static bool tsnep_xdp_xmit_back(struct tsnep_adapter *adapter,
663 				struct xdp_buff *xdp,
664 				struct netdev_queue *tx_nq, struct tsnep_tx *tx)
665 {
666 	struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
667 	bool xmit;
668 
669 	if (unlikely(!xdpf))
670 		return false;
671 
672 	__netif_tx_lock(tx_nq, smp_processor_id());
673 
674 	xmit = tsnep_xdp_xmit_frame_ring(xdpf, tx, TSNEP_TX_TYPE_XDP_TX);
675 
676 	/* Avoid transmit queue timeout since we share it with the slow path */
677 	if (xmit)
678 		txq_trans_cond_update(tx_nq);
679 
680 	__netif_tx_unlock(tx_nq);
681 
682 	return xmit;
683 }
684 
685 static int tsnep_xdp_tx_map_zc(struct xdp_desc *xdpd, struct tsnep_tx *tx)
686 {
687 	struct tsnep_tx_entry *entry;
688 	dma_addr_t dma;
689 
690 	entry = &tx->entry[tx->write];
691 	entry->zc = true;
692 
693 	dma = xsk_buff_raw_get_dma(tx->xsk_pool, xdpd->addr);
694 	xsk_buff_raw_dma_sync_for_device(tx->xsk_pool, dma, xdpd->len);
695 
696 	entry->type = TSNEP_TX_TYPE_XSK;
697 	entry->len = xdpd->len;
698 
699 	entry->desc->tx = __cpu_to_le64(dma);
700 
701 	return xdpd->len;
702 }
703 
704 static void tsnep_xdp_xmit_frame_ring_zc(struct xdp_desc *xdpd,
705 					 struct tsnep_tx *tx)
706 {
707 	int length;
708 
709 	length = tsnep_xdp_tx_map_zc(xdpd, tx);
710 
711 	tsnep_tx_activate(tx, tx->write, length, true);
712 	tx->write = (tx->write + 1) & TSNEP_RING_MASK;
713 }
714 
715 static void tsnep_xdp_xmit_zc(struct tsnep_tx *tx)
716 {
717 	int desc_available = tsnep_tx_desc_available(tx);
718 	struct xdp_desc *descs = tx->xsk_pool->tx_descs;
719 	int batch, i;
720 
721 	/* ensure that TX ring is not filled up by XDP, always MAX_SKB_FRAGS
722 	 * will be available for normal TX path and queue is stopped there if
723 	 * necessary
724 	 */
725 	if (desc_available <= (MAX_SKB_FRAGS + 1))
726 		return;
727 	desc_available -= MAX_SKB_FRAGS + 1;
728 
729 	batch = xsk_tx_peek_release_desc_batch(tx->xsk_pool, desc_available);
730 	for (i = 0; i < batch; i++)
731 		tsnep_xdp_xmit_frame_ring_zc(&descs[i], tx);
732 
733 	if (batch) {
734 		/* descriptor properties shall be valid before hardware is
735 		 * notified
736 		 */
737 		dma_wmb();
738 
739 		tsnep_xdp_xmit_flush(tx);
740 	}
741 }
742 
743 static bool tsnep_tx_poll(struct tsnep_tx *tx, int napi_budget)
744 {
745 	struct tsnep_tx_entry *entry;
746 	struct netdev_queue *nq;
747 	int xsk_frames = 0;
748 	int budget = 128;
749 	int length;
750 	int count;
751 
752 	nq = netdev_get_tx_queue(tx->adapter->netdev, tx->queue_index);
753 	__netif_tx_lock(nq, smp_processor_id());
754 
755 	do {
756 		if (tx->read == tx->write)
757 			break;
758 
759 		entry = &tx->entry[tx->read];
760 		if ((__le32_to_cpu(entry->desc_wb->properties) &
761 		     TSNEP_TX_DESC_OWNER_MASK) !=
762 		    (entry->properties & TSNEP_TX_DESC_OWNER_MASK))
763 			break;
764 
765 		/* descriptor properties shall be read first, because valid data
766 		 * is signaled there
767 		 */
768 		dma_rmb();
769 
770 		count = 1;
771 		if ((entry->type & TSNEP_TX_TYPE_SKB) &&
772 		    skb_shinfo(entry->skb)->nr_frags > 0)
773 			count += skb_shinfo(entry->skb)->nr_frags;
774 		else if ((entry->type & TSNEP_TX_TYPE_XDP) &&
775 			 xdp_frame_has_frags(entry->xdpf))
776 			count += xdp_get_shared_info_from_frame(entry->xdpf)->nr_frags;
777 
778 		length = tsnep_tx_unmap(tx, tx->read, count);
779 
780 		if ((entry->type & TSNEP_TX_TYPE_SKB) &&
781 		    (skb_shinfo(entry->skb)->tx_flags & SKBTX_IN_PROGRESS) &&
782 		    (__le32_to_cpu(entry->desc_wb->properties) &
783 		     TSNEP_DESC_EXTENDED_WRITEBACK_FLAG)) {
784 			struct skb_shared_hwtstamps hwtstamps;
785 			u64 timestamp;
786 
787 			if (skb_shinfo(entry->skb)->tx_flags &
788 			    SKBTX_HW_TSTAMP_USE_CYCLES)
789 				timestamp =
790 					__le64_to_cpu(entry->desc_wb->counter);
791 			else
792 				timestamp =
793 					__le64_to_cpu(entry->desc_wb->timestamp);
794 
795 			memset(&hwtstamps, 0, sizeof(hwtstamps));
796 			hwtstamps.hwtstamp = ns_to_ktime(timestamp);
797 
798 			skb_tstamp_tx(entry->skb, &hwtstamps);
799 		}
800 
801 		if (entry->type & TSNEP_TX_TYPE_SKB)
802 			napi_consume_skb(entry->skb, napi_budget);
803 		else if (entry->type & TSNEP_TX_TYPE_XDP)
804 			xdp_return_frame_rx_napi(entry->xdpf);
805 		else
806 			xsk_frames++;
807 		/* xdpf and zc are union with skb */
808 		entry->skb = NULL;
809 
810 		tx->read = (tx->read + count) & TSNEP_RING_MASK;
811 
812 		tx->packets++;
813 		tx->bytes += length + ETH_FCS_LEN;
814 
815 		budget--;
816 	} while (likely(budget));
817 
818 	if (tx->xsk_pool) {
819 		if (xsk_frames)
820 			xsk_tx_completed(tx->xsk_pool, xsk_frames);
821 		if (xsk_uses_need_wakeup(tx->xsk_pool))
822 			xsk_set_tx_need_wakeup(tx->xsk_pool);
823 		tsnep_xdp_xmit_zc(tx);
824 	}
825 
826 	if ((tsnep_tx_desc_available(tx) >= ((MAX_SKB_FRAGS + 1) * 2)) &&
827 	    netif_tx_queue_stopped(nq)) {
828 		netif_tx_wake_queue(nq);
829 	}
830 
831 	__netif_tx_unlock(nq);
832 
833 	return budget != 0;
834 }
835 
836 static bool tsnep_tx_pending(struct tsnep_tx *tx)
837 {
838 	struct tsnep_tx_entry *entry;
839 	struct netdev_queue *nq;
840 	bool pending = false;
841 
842 	nq = netdev_get_tx_queue(tx->adapter->netdev, tx->queue_index);
843 	__netif_tx_lock(nq, smp_processor_id());
844 
845 	if (tx->read != tx->write) {
846 		entry = &tx->entry[tx->read];
847 		if ((__le32_to_cpu(entry->desc_wb->properties) &
848 		     TSNEP_TX_DESC_OWNER_MASK) ==
849 		    (entry->properties & TSNEP_TX_DESC_OWNER_MASK))
850 			pending = true;
851 	}
852 
853 	__netif_tx_unlock(nq);
854 
855 	return pending;
856 }
857 
858 static int tsnep_tx_open(struct tsnep_tx *tx)
859 {
860 	int retval;
861 
862 	retval = tsnep_tx_ring_create(tx);
863 	if (retval)
864 		return retval;
865 
866 	tsnep_tx_init(tx);
867 
868 	return 0;
869 }
870 
871 static void tsnep_tx_close(struct tsnep_tx *tx)
872 {
873 	tsnep_tx_ring_cleanup(tx);
874 }
875 
876 static void tsnep_rx_ring_cleanup(struct tsnep_rx *rx)
877 {
878 	struct device *dmadev = rx->adapter->dmadev;
879 	struct tsnep_rx_entry *entry;
880 	int i;
881 
882 	for (i = 0; i < TSNEP_RING_SIZE; i++) {
883 		entry = &rx->entry[i];
884 		if (!rx->xsk_pool && entry->page)
885 			page_pool_put_full_page(rx->page_pool, entry->page,
886 						false);
887 		if (rx->xsk_pool && entry->xdp)
888 			xsk_buff_free(entry->xdp);
889 		/* xdp is union with page */
890 		entry->page = NULL;
891 	}
892 
893 	if (rx->page_pool)
894 		page_pool_destroy(rx->page_pool);
895 
896 	memset(rx->entry, 0, sizeof(rx->entry));
897 
898 	for (i = 0; i < TSNEP_RING_PAGE_COUNT; i++) {
899 		if (rx->page[i]) {
900 			dma_free_coherent(dmadev, PAGE_SIZE, rx->page[i],
901 					  rx->page_dma[i]);
902 			rx->page[i] = NULL;
903 			rx->page_dma[i] = 0;
904 		}
905 	}
906 }
907 
908 static int tsnep_rx_ring_create(struct tsnep_rx *rx)
909 {
910 	struct device *dmadev = rx->adapter->dmadev;
911 	struct tsnep_rx_entry *entry;
912 	struct page_pool_params pp_params = { 0 };
913 	struct tsnep_rx_entry *next_entry;
914 	int i, j;
915 	int retval;
916 
917 	for (i = 0; i < TSNEP_RING_PAGE_COUNT; i++) {
918 		rx->page[i] =
919 			dma_alloc_coherent(dmadev, PAGE_SIZE, &rx->page_dma[i],
920 					   GFP_KERNEL);
921 		if (!rx->page[i]) {
922 			retval = -ENOMEM;
923 			goto failed;
924 		}
925 		for (j = 0; j < TSNEP_RING_ENTRIES_PER_PAGE; j++) {
926 			entry = &rx->entry[TSNEP_RING_ENTRIES_PER_PAGE * i + j];
927 			entry->desc_wb = (struct tsnep_rx_desc_wb *)
928 				(((u8 *)rx->page[i]) + TSNEP_DESC_SIZE * j);
929 			entry->desc = (struct tsnep_rx_desc *)
930 				(((u8 *)entry->desc_wb) + TSNEP_DESC_OFFSET);
931 			entry->desc_dma = rx->page_dma[i] + TSNEP_DESC_SIZE * j;
932 		}
933 	}
934 
935 	pp_params.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV;
936 	pp_params.order = 0;
937 	pp_params.pool_size = TSNEP_RING_SIZE;
938 	pp_params.nid = dev_to_node(dmadev);
939 	pp_params.dev = dmadev;
940 	pp_params.dma_dir = DMA_BIDIRECTIONAL;
941 	pp_params.max_len = TSNEP_MAX_RX_BUF_SIZE;
942 	pp_params.offset = TSNEP_RX_OFFSET;
943 	rx->page_pool = page_pool_create(&pp_params);
944 	if (IS_ERR(rx->page_pool)) {
945 		retval = PTR_ERR(rx->page_pool);
946 		rx->page_pool = NULL;
947 		goto failed;
948 	}
949 
950 	for (i = 0; i < TSNEP_RING_SIZE; i++) {
951 		entry = &rx->entry[i];
952 		next_entry = &rx->entry[(i + 1) & TSNEP_RING_MASK];
953 		entry->desc->next = __cpu_to_le64(next_entry->desc_dma);
954 	}
955 
956 	return 0;
957 
958 failed:
959 	tsnep_rx_ring_cleanup(rx);
960 	return retval;
961 }
962 
963 static void tsnep_rx_init(struct tsnep_rx *rx)
964 {
965 	dma_addr_t dma;
966 
967 	dma = rx->entry[0].desc_dma | TSNEP_RESET_OWNER_COUNTER;
968 	iowrite32(DMA_ADDR_LOW(dma), rx->addr + TSNEP_RX_DESC_ADDR_LOW);
969 	iowrite32(DMA_ADDR_HIGH(dma), rx->addr + TSNEP_RX_DESC_ADDR_HIGH);
970 	rx->write = 0;
971 	rx->read = 0;
972 	rx->owner_counter = 1;
973 	rx->increment_owner_counter = TSNEP_RING_SIZE - 1;
974 }
975 
976 static void tsnep_rx_enable(struct tsnep_rx *rx)
977 {
978 	/* descriptor properties shall be valid before hardware is notified */
979 	dma_wmb();
980 
981 	iowrite32(TSNEP_CONTROL_RX_ENABLE, rx->addr + TSNEP_CONTROL);
982 }
983 
984 static void tsnep_rx_disable(struct tsnep_rx *rx)
985 {
986 	u32 val;
987 
988 	iowrite32(TSNEP_CONTROL_RX_DISABLE, rx->addr + TSNEP_CONTROL);
989 	readx_poll_timeout(ioread32, rx->addr + TSNEP_CONTROL, val,
990 			   ((val & TSNEP_CONTROL_RX_ENABLE) == 0), 10000,
991 			   1000000);
992 }
993 
994 static int tsnep_rx_desc_available(struct tsnep_rx *rx)
995 {
996 	if (rx->read <= rx->write)
997 		return TSNEP_RING_SIZE - rx->write + rx->read - 1;
998 	else
999 		return rx->read - rx->write - 1;
1000 }
1001 
1002 static void tsnep_rx_free_page_buffer(struct tsnep_rx *rx)
1003 {
1004 	struct page **page;
1005 
1006 	/* last entry of page_buffer is always zero, because ring cannot be
1007 	 * filled completely
1008 	 */
1009 	page = rx->page_buffer;
1010 	while (*page) {
1011 		page_pool_put_full_page(rx->page_pool, *page, false);
1012 		*page = NULL;
1013 		page++;
1014 	}
1015 }
1016 
1017 static int tsnep_rx_alloc_page_buffer(struct tsnep_rx *rx)
1018 {
1019 	int i;
1020 
1021 	/* alloc for all ring entries except the last one, because ring cannot
1022 	 * be filled completely
1023 	 */
1024 	for (i = 0; i < TSNEP_RING_SIZE - 1; i++) {
1025 		rx->page_buffer[i] = page_pool_dev_alloc_pages(rx->page_pool);
1026 		if (!rx->page_buffer[i]) {
1027 			tsnep_rx_free_page_buffer(rx);
1028 
1029 			return -ENOMEM;
1030 		}
1031 	}
1032 
1033 	return 0;
1034 }
1035 
1036 static void tsnep_rx_set_page(struct tsnep_rx *rx, struct tsnep_rx_entry *entry,
1037 			      struct page *page)
1038 {
1039 	entry->page = page;
1040 	entry->len = TSNEP_MAX_RX_BUF_SIZE;
1041 	entry->dma = page_pool_get_dma_addr(entry->page);
1042 	entry->desc->rx = __cpu_to_le64(entry->dma + TSNEP_RX_OFFSET);
1043 }
1044 
1045 static int tsnep_rx_alloc_buffer(struct tsnep_rx *rx, int index)
1046 {
1047 	struct tsnep_rx_entry *entry = &rx->entry[index];
1048 	struct page *page;
1049 
1050 	page = page_pool_dev_alloc_pages(rx->page_pool);
1051 	if (unlikely(!page))
1052 		return -ENOMEM;
1053 	tsnep_rx_set_page(rx, entry, page);
1054 
1055 	return 0;
1056 }
1057 
1058 static void tsnep_rx_reuse_buffer(struct tsnep_rx *rx, int index)
1059 {
1060 	struct tsnep_rx_entry *entry = &rx->entry[index];
1061 	struct tsnep_rx_entry *read = &rx->entry[rx->read];
1062 
1063 	tsnep_rx_set_page(rx, entry, read->page);
1064 	read->page = NULL;
1065 }
1066 
1067 static void tsnep_rx_activate(struct tsnep_rx *rx, int index)
1068 {
1069 	struct tsnep_rx_entry *entry = &rx->entry[index];
1070 
1071 	/* TSNEP_MAX_RX_BUF_SIZE and TSNEP_XSK_RX_BUF_SIZE are multiple of 4 */
1072 	entry->properties = entry->len & TSNEP_DESC_LENGTH_MASK;
1073 	entry->properties |= TSNEP_DESC_INTERRUPT_FLAG;
1074 	if (index == rx->increment_owner_counter) {
1075 		rx->owner_counter++;
1076 		if (rx->owner_counter == 4)
1077 			rx->owner_counter = 1;
1078 		rx->increment_owner_counter--;
1079 		if (rx->increment_owner_counter < 0)
1080 			rx->increment_owner_counter = TSNEP_RING_SIZE - 1;
1081 	}
1082 	entry->properties |=
1083 		(rx->owner_counter << TSNEP_DESC_OWNER_COUNTER_SHIFT) &
1084 		TSNEP_DESC_OWNER_COUNTER_MASK;
1085 
1086 	/* descriptor properties shall be written last, because valid data is
1087 	 * signaled there
1088 	 */
1089 	dma_wmb();
1090 
1091 	entry->desc->properties = __cpu_to_le32(entry->properties);
1092 }
1093 
1094 static int tsnep_rx_alloc(struct tsnep_rx *rx, int count, bool reuse)
1095 {
1096 	bool alloc_failed = false;
1097 	int i, index;
1098 
1099 	for (i = 0; i < count && !alloc_failed; i++) {
1100 		index = (rx->write + i) & TSNEP_RING_MASK;
1101 
1102 		if (unlikely(tsnep_rx_alloc_buffer(rx, index))) {
1103 			rx->alloc_failed++;
1104 			alloc_failed = true;
1105 
1106 			/* reuse only if no other allocation was successful */
1107 			if (i == 0 && reuse)
1108 				tsnep_rx_reuse_buffer(rx, index);
1109 			else
1110 				break;
1111 		}
1112 
1113 		tsnep_rx_activate(rx, index);
1114 	}
1115 
1116 	if (i)
1117 		rx->write = (rx->write + i) & TSNEP_RING_MASK;
1118 
1119 	return i;
1120 }
1121 
1122 static int tsnep_rx_refill(struct tsnep_rx *rx, int count, bool reuse)
1123 {
1124 	int desc_refilled;
1125 
1126 	desc_refilled = tsnep_rx_alloc(rx, count, reuse);
1127 	if (desc_refilled)
1128 		tsnep_rx_enable(rx);
1129 
1130 	return desc_refilled;
1131 }
1132 
1133 static void tsnep_rx_set_xdp(struct tsnep_rx *rx, struct tsnep_rx_entry *entry,
1134 			     struct xdp_buff *xdp)
1135 {
1136 	entry->xdp = xdp;
1137 	entry->len = TSNEP_XSK_RX_BUF_SIZE;
1138 	entry->dma = xsk_buff_xdp_get_dma(entry->xdp);
1139 	entry->desc->rx = __cpu_to_le64(entry->dma);
1140 }
1141 
1142 static void tsnep_rx_reuse_buffer_zc(struct tsnep_rx *rx, int index)
1143 {
1144 	struct tsnep_rx_entry *entry = &rx->entry[index];
1145 	struct tsnep_rx_entry *read = &rx->entry[rx->read];
1146 
1147 	tsnep_rx_set_xdp(rx, entry, read->xdp);
1148 	read->xdp = NULL;
1149 }
1150 
1151 static int tsnep_rx_alloc_zc(struct tsnep_rx *rx, int count, bool reuse)
1152 {
1153 	u32 allocated;
1154 	int i;
1155 
1156 	allocated = xsk_buff_alloc_batch(rx->xsk_pool, rx->xdp_batch, count);
1157 	for (i = 0; i < allocated; i++) {
1158 		int index = (rx->write + i) & TSNEP_RING_MASK;
1159 		struct tsnep_rx_entry *entry = &rx->entry[index];
1160 
1161 		tsnep_rx_set_xdp(rx, entry, rx->xdp_batch[i]);
1162 		tsnep_rx_activate(rx, index);
1163 	}
1164 	if (i == 0) {
1165 		rx->alloc_failed++;
1166 
1167 		if (reuse) {
1168 			tsnep_rx_reuse_buffer_zc(rx, rx->write);
1169 			tsnep_rx_activate(rx, rx->write);
1170 		}
1171 	}
1172 
1173 	if (i)
1174 		rx->write = (rx->write + i) & TSNEP_RING_MASK;
1175 
1176 	return i;
1177 }
1178 
1179 static void tsnep_rx_free_zc(struct tsnep_rx *rx)
1180 {
1181 	int i;
1182 
1183 	for (i = 0; i < TSNEP_RING_SIZE; i++) {
1184 		struct tsnep_rx_entry *entry = &rx->entry[i];
1185 
1186 		if (entry->xdp)
1187 			xsk_buff_free(entry->xdp);
1188 		entry->xdp = NULL;
1189 	}
1190 }
1191 
1192 static int tsnep_rx_refill_zc(struct tsnep_rx *rx, int count, bool reuse)
1193 {
1194 	int desc_refilled;
1195 
1196 	desc_refilled = tsnep_rx_alloc_zc(rx, count, reuse);
1197 	if (desc_refilled)
1198 		tsnep_rx_enable(rx);
1199 
1200 	return desc_refilled;
1201 }
1202 
1203 static bool tsnep_xdp_run_prog(struct tsnep_rx *rx, struct bpf_prog *prog,
1204 			       struct xdp_buff *xdp, int *status,
1205 			       struct netdev_queue *tx_nq, struct tsnep_tx *tx)
1206 {
1207 	unsigned int length;
1208 	unsigned int sync;
1209 	u32 act;
1210 
1211 	length = xdp->data_end - xdp->data_hard_start - XDP_PACKET_HEADROOM;
1212 
1213 	act = bpf_prog_run_xdp(prog, xdp);
1214 	switch (act) {
1215 	case XDP_PASS:
1216 		return false;
1217 	case XDP_TX:
1218 		if (!tsnep_xdp_xmit_back(rx->adapter, xdp, tx_nq, tx))
1219 			goto out_failure;
1220 		*status |= TSNEP_XDP_TX;
1221 		return true;
1222 	case XDP_REDIRECT:
1223 		if (xdp_do_redirect(rx->adapter->netdev, xdp, prog) < 0)
1224 			goto out_failure;
1225 		*status |= TSNEP_XDP_REDIRECT;
1226 		return true;
1227 	default:
1228 		bpf_warn_invalid_xdp_action(rx->adapter->netdev, prog, act);
1229 		fallthrough;
1230 	case XDP_ABORTED:
1231 out_failure:
1232 		trace_xdp_exception(rx->adapter->netdev, prog, act);
1233 		fallthrough;
1234 	case XDP_DROP:
1235 		/* Due xdp_adjust_tail: DMA sync for_device cover max len CPU
1236 		 * touch
1237 		 */
1238 		sync = xdp->data_end - xdp->data_hard_start -
1239 		       XDP_PACKET_HEADROOM;
1240 		sync = max(sync, length);
1241 		page_pool_put_page(rx->page_pool, virt_to_head_page(xdp->data),
1242 				   sync, true);
1243 		return true;
1244 	}
1245 }
1246 
1247 static bool tsnep_xdp_run_prog_zc(struct tsnep_rx *rx, struct bpf_prog *prog,
1248 				  struct xdp_buff *xdp, int *status,
1249 				  struct netdev_queue *tx_nq,
1250 				  struct tsnep_tx *tx)
1251 {
1252 	u32 act;
1253 
1254 	act = bpf_prog_run_xdp(prog, xdp);
1255 
1256 	/* XDP_REDIRECT is the main action for zero-copy */
1257 	if (likely(act == XDP_REDIRECT)) {
1258 		if (xdp_do_redirect(rx->adapter->netdev, xdp, prog) < 0)
1259 			goto out_failure;
1260 		*status |= TSNEP_XDP_REDIRECT;
1261 		return true;
1262 	}
1263 
1264 	switch (act) {
1265 	case XDP_PASS:
1266 		return false;
1267 	case XDP_TX:
1268 		if (!tsnep_xdp_xmit_back(rx->adapter, xdp, tx_nq, tx))
1269 			goto out_failure;
1270 		*status |= TSNEP_XDP_TX;
1271 		return true;
1272 	default:
1273 		bpf_warn_invalid_xdp_action(rx->adapter->netdev, prog, act);
1274 		fallthrough;
1275 	case XDP_ABORTED:
1276 out_failure:
1277 		trace_xdp_exception(rx->adapter->netdev, prog, act);
1278 		fallthrough;
1279 	case XDP_DROP:
1280 		xsk_buff_free(xdp);
1281 		return true;
1282 	}
1283 }
1284 
1285 static void tsnep_finalize_xdp(struct tsnep_adapter *adapter, int status,
1286 			       struct netdev_queue *tx_nq, struct tsnep_tx *tx)
1287 {
1288 	if (status & TSNEP_XDP_TX) {
1289 		__netif_tx_lock(tx_nq, smp_processor_id());
1290 		tsnep_xdp_xmit_flush(tx);
1291 		__netif_tx_unlock(tx_nq);
1292 	}
1293 
1294 	if (status & TSNEP_XDP_REDIRECT)
1295 		xdp_do_flush();
1296 }
1297 
1298 static struct sk_buff *tsnep_build_skb(struct tsnep_rx *rx, struct page *page,
1299 				       int length)
1300 {
1301 	struct sk_buff *skb;
1302 
1303 	skb = napi_build_skb(page_address(page), PAGE_SIZE);
1304 	if (unlikely(!skb))
1305 		return NULL;
1306 
1307 	/* update pointers within the skb to store the data */
1308 	skb_reserve(skb, TSNEP_RX_OFFSET + TSNEP_RX_INLINE_METADATA_SIZE);
1309 	__skb_put(skb, length - ETH_FCS_LEN);
1310 
1311 	if (rx->adapter->hwtstamp_config.rx_filter == HWTSTAMP_FILTER_ALL) {
1312 		struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
1313 		struct tsnep_rx_inline *rx_inline =
1314 			(struct tsnep_rx_inline *)(page_address(page) +
1315 						   TSNEP_RX_OFFSET);
1316 
1317 		skb_shinfo(skb)->tx_flags |=
1318 			SKBTX_HW_TSTAMP_NETDEV;
1319 		memset(hwtstamps, 0, sizeof(*hwtstamps));
1320 		hwtstamps->netdev_data = rx_inline;
1321 	}
1322 
1323 	skb_record_rx_queue(skb, rx->queue_index);
1324 	skb->protocol = eth_type_trans(skb, rx->adapter->netdev);
1325 
1326 	return skb;
1327 }
1328 
1329 static void tsnep_rx_page(struct tsnep_rx *rx, struct napi_struct *napi,
1330 			  struct page *page, int length)
1331 {
1332 	struct sk_buff *skb;
1333 
1334 	skb = tsnep_build_skb(rx, page, length);
1335 	if (skb) {
1336 		page_pool_release_page(rx->page_pool, page);
1337 
1338 		rx->packets++;
1339 		rx->bytes += length;
1340 		if (skb->pkt_type == PACKET_MULTICAST)
1341 			rx->multicast++;
1342 
1343 		napi_gro_receive(napi, skb);
1344 	} else {
1345 		page_pool_recycle_direct(rx->page_pool, page);
1346 
1347 		rx->dropped++;
1348 	}
1349 }
1350 
1351 static int tsnep_rx_poll(struct tsnep_rx *rx, struct napi_struct *napi,
1352 			 int budget)
1353 {
1354 	struct device *dmadev = rx->adapter->dmadev;
1355 	enum dma_data_direction dma_dir;
1356 	struct tsnep_rx_entry *entry;
1357 	struct netdev_queue *tx_nq;
1358 	struct bpf_prog *prog;
1359 	struct xdp_buff xdp;
1360 	struct tsnep_tx *tx;
1361 	int desc_available;
1362 	int xdp_status = 0;
1363 	int done = 0;
1364 	int length;
1365 
1366 	desc_available = tsnep_rx_desc_available(rx);
1367 	dma_dir = page_pool_get_dma_dir(rx->page_pool);
1368 	prog = READ_ONCE(rx->adapter->xdp_prog);
1369 	if (prog) {
1370 		tx_nq = netdev_get_tx_queue(rx->adapter->netdev,
1371 					    rx->tx_queue_index);
1372 		tx = &rx->adapter->tx[rx->tx_queue_index];
1373 
1374 		xdp_init_buff(&xdp, PAGE_SIZE, &rx->xdp_rxq);
1375 	}
1376 
1377 	while (likely(done < budget) && (rx->read != rx->write)) {
1378 		entry = &rx->entry[rx->read];
1379 		if ((__le32_to_cpu(entry->desc_wb->properties) &
1380 		     TSNEP_DESC_OWNER_COUNTER_MASK) !=
1381 		    (entry->properties & TSNEP_DESC_OWNER_COUNTER_MASK))
1382 			break;
1383 		done++;
1384 
1385 		if (desc_available >= TSNEP_RING_RX_REFILL) {
1386 			bool reuse = desc_available >= TSNEP_RING_RX_REUSE;
1387 
1388 			desc_available -= tsnep_rx_refill(rx, desc_available,
1389 							  reuse);
1390 			if (!entry->page) {
1391 				/* buffer has been reused for refill to prevent
1392 				 * empty RX ring, thus buffer cannot be used for
1393 				 * RX processing
1394 				 */
1395 				rx->read = (rx->read + 1) & TSNEP_RING_MASK;
1396 				desc_available++;
1397 
1398 				rx->dropped++;
1399 
1400 				continue;
1401 			}
1402 		}
1403 
1404 		/* descriptor properties shall be read first, because valid data
1405 		 * is signaled there
1406 		 */
1407 		dma_rmb();
1408 
1409 		prefetch(page_address(entry->page) + TSNEP_RX_OFFSET);
1410 		length = __le32_to_cpu(entry->desc_wb->properties) &
1411 			 TSNEP_DESC_LENGTH_MASK;
1412 		dma_sync_single_range_for_cpu(dmadev, entry->dma,
1413 					      TSNEP_RX_OFFSET, length, dma_dir);
1414 
1415 		/* RX metadata with timestamps is in front of actual data,
1416 		 * subtract metadata size to get length of actual data and
1417 		 * consider metadata size as offset of actual data during RX
1418 		 * processing
1419 		 */
1420 		length -= TSNEP_RX_INLINE_METADATA_SIZE;
1421 
1422 		rx->read = (rx->read + 1) & TSNEP_RING_MASK;
1423 		desc_available++;
1424 
1425 		if (prog) {
1426 			bool consume;
1427 
1428 			xdp_prepare_buff(&xdp, page_address(entry->page),
1429 					 XDP_PACKET_HEADROOM + TSNEP_RX_INLINE_METADATA_SIZE,
1430 					 length, false);
1431 
1432 			consume = tsnep_xdp_run_prog(rx, prog, &xdp,
1433 						     &xdp_status, tx_nq, tx);
1434 			if (consume) {
1435 				rx->packets++;
1436 				rx->bytes += length;
1437 
1438 				entry->page = NULL;
1439 
1440 				continue;
1441 			}
1442 		}
1443 
1444 		tsnep_rx_page(rx, napi, entry->page, length);
1445 		entry->page = NULL;
1446 	}
1447 
1448 	if (xdp_status)
1449 		tsnep_finalize_xdp(rx->adapter, xdp_status, tx_nq, tx);
1450 
1451 	if (desc_available)
1452 		tsnep_rx_refill(rx, desc_available, false);
1453 
1454 	return done;
1455 }
1456 
1457 static int tsnep_rx_poll_zc(struct tsnep_rx *rx, struct napi_struct *napi,
1458 			    int budget)
1459 {
1460 	struct tsnep_rx_entry *entry;
1461 	struct netdev_queue *tx_nq;
1462 	struct bpf_prog *prog;
1463 	struct tsnep_tx *tx;
1464 	int desc_available;
1465 	int xdp_status = 0;
1466 	struct page *page;
1467 	int done = 0;
1468 	int length;
1469 
1470 	desc_available = tsnep_rx_desc_available(rx);
1471 	prog = READ_ONCE(rx->adapter->xdp_prog);
1472 	if (prog) {
1473 		tx_nq = netdev_get_tx_queue(rx->adapter->netdev,
1474 					    rx->tx_queue_index);
1475 		tx = &rx->adapter->tx[rx->tx_queue_index];
1476 	}
1477 
1478 	while (likely(done < budget) && (rx->read != rx->write)) {
1479 		entry = &rx->entry[rx->read];
1480 		if ((__le32_to_cpu(entry->desc_wb->properties) &
1481 		     TSNEP_DESC_OWNER_COUNTER_MASK) !=
1482 		    (entry->properties & TSNEP_DESC_OWNER_COUNTER_MASK))
1483 			break;
1484 		done++;
1485 
1486 		if (desc_available >= TSNEP_RING_RX_REFILL) {
1487 			bool reuse = desc_available >= TSNEP_RING_RX_REUSE;
1488 
1489 			desc_available -= tsnep_rx_refill_zc(rx, desc_available,
1490 							     reuse);
1491 			if (!entry->xdp) {
1492 				/* buffer has been reused for refill to prevent
1493 				 * empty RX ring, thus buffer cannot be used for
1494 				 * RX processing
1495 				 */
1496 				rx->read = (rx->read + 1) & TSNEP_RING_MASK;
1497 				desc_available++;
1498 
1499 				rx->dropped++;
1500 
1501 				continue;
1502 			}
1503 		}
1504 
1505 		/* descriptor properties shall be read first, because valid data
1506 		 * is signaled there
1507 		 */
1508 		dma_rmb();
1509 
1510 		prefetch(entry->xdp->data);
1511 		length = __le32_to_cpu(entry->desc_wb->properties) &
1512 			 TSNEP_DESC_LENGTH_MASK;
1513 		xsk_buff_set_size(entry->xdp, length);
1514 		xsk_buff_dma_sync_for_cpu(entry->xdp, rx->xsk_pool);
1515 
1516 		/* RX metadata with timestamps is in front of actual data,
1517 		 * subtract metadata size to get length of actual data and
1518 		 * consider metadata size as offset of actual data during RX
1519 		 * processing
1520 		 */
1521 		length -= TSNEP_RX_INLINE_METADATA_SIZE;
1522 
1523 		rx->read = (rx->read + 1) & TSNEP_RING_MASK;
1524 		desc_available++;
1525 
1526 		if (prog) {
1527 			bool consume;
1528 
1529 			entry->xdp->data += TSNEP_RX_INLINE_METADATA_SIZE;
1530 			entry->xdp->data_meta += TSNEP_RX_INLINE_METADATA_SIZE;
1531 
1532 			consume = tsnep_xdp_run_prog_zc(rx, prog, entry->xdp,
1533 							&xdp_status, tx_nq, tx);
1534 			if (consume) {
1535 				rx->packets++;
1536 				rx->bytes += length;
1537 
1538 				entry->xdp = NULL;
1539 
1540 				continue;
1541 			}
1542 		}
1543 
1544 		page = page_pool_dev_alloc_pages(rx->page_pool);
1545 		if (page) {
1546 			memcpy(page_address(page) + TSNEP_RX_OFFSET,
1547 			       entry->xdp->data - TSNEP_RX_INLINE_METADATA_SIZE,
1548 			       length + TSNEP_RX_INLINE_METADATA_SIZE);
1549 			tsnep_rx_page(rx, napi, page, length);
1550 		} else {
1551 			rx->dropped++;
1552 		}
1553 		xsk_buff_free(entry->xdp);
1554 		entry->xdp = NULL;
1555 	}
1556 
1557 	if (xdp_status)
1558 		tsnep_finalize_xdp(rx->adapter, xdp_status, tx_nq, tx);
1559 
1560 	if (desc_available)
1561 		desc_available -= tsnep_rx_refill_zc(rx, desc_available, false);
1562 
1563 	if (xsk_uses_need_wakeup(rx->xsk_pool)) {
1564 		if (desc_available)
1565 			xsk_set_rx_need_wakeup(rx->xsk_pool);
1566 		else
1567 			xsk_clear_rx_need_wakeup(rx->xsk_pool);
1568 
1569 		return done;
1570 	}
1571 
1572 	return desc_available ? budget : done;
1573 }
1574 
1575 static bool tsnep_rx_pending(struct tsnep_rx *rx)
1576 {
1577 	struct tsnep_rx_entry *entry;
1578 
1579 	if (rx->read != rx->write) {
1580 		entry = &rx->entry[rx->read];
1581 		if ((__le32_to_cpu(entry->desc_wb->properties) &
1582 		     TSNEP_DESC_OWNER_COUNTER_MASK) ==
1583 		    (entry->properties & TSNEP_DESC_OWNER_COUNTER_MASK))
1584 			return true;
1585 	}
1586 
1587 	return false;
1588 }
1589 
1590 static int tsnep_rx_open(struct tsnep_rx *rx)
1591 {
1592 	int desc_available;
1593 	int retval;
1594 
1595 	retval = tsnep_rx_ring_create(rx);
1596 	if (retval)
1597 		return retval;
1598 
1599 	tsnep_rx_init(rx);
1600 
1601 	desc_available = tsnep_rx_desc_available(rx);
1602 	if (rx->xsk_pool)
1603 		retval = tsnep_rx_alloc_zc(rx, desc_available, false);
1604 	else
1605 		retval = tsnep_rx_alloc(rx, desc_available, false);
1606 	if (retval != desc_available) {
1607 		retval = -ENOMEM;
1608 
1609 		goto alloc_failed;
1610 	}
1611 
1612 	/* prealloc pages to prevent allocation failures when XSK pool is
1613 	 * disabled at runtime
1614 	 */
1615 	if (rx->xsk_pool) {
1616 		retval = tsnep_rx_alloc_page_buffer(rx);
1617 		if (retval)
1618 			goto alloc_failed;
1619 	}
1620 
1621 	return 0;
1622 
1623 alloc_failed:
1624 	tsnep_rx_ring_cleanup(rx);
1625 	return retval;
1626 }
1627 
1628 static void tsnep_rx_close(struct tsnep_rx *rx)
1629 {
1630 	if (rx->xsk_pool)
1631 		tsnep_rx_free_page_buffer(rx);
1632 
1633 	tsnep_rx_ring_cleanup(rx);
1634 }
1635 
1636 static void tsnep_rx_reopen(struct tsnep_rx *rx)
1637 {
1638 	struct page **page = rx->page_buffer;
1639 	int i;
1640 
1641 	tsnep_rx_init(rx);
1642 
1643 	for (i = 0; i < TSNEP_RING_SIZE; i++) {
1644 		struct tsnep_rx_entry *entry = &rx->entry[i];
1645 
1646 		/* defined initial values for properties are required for
1647 		 * correct owner counter checking
1648 		 */
1649 		entry->desc->properties = 0;
1650 		entry->desc_wb->properties = 0;
1651 
1652 		/* prevent allocation failures by reusing kept pages */
1653 		if (*page) {
1654 			tsnep_rx_set_page(rx, entry, *page);
1655 			tsnep_rx_activate(rx, rx->write);
1656 			rx->write++;
1657 
1658 			*page = NULL;
1659 			page++;
1660 		}
1661 	}
1662 }
1663 
1664 static void tsnep_rx_reopen_xsk(struct tsnep_rx *rx)
1665 {
1666 	struct page **page = rx->page_buffer;
1667 	u32 allocated;
1668 	int i;
1669 
1670 	tsnep_rx_init(rx);
1671 
1672 	/* alloc all ring entries except the last one, because ring cannot be
1673 	 * filled completely, as many buffers as possible is enough as wakeup is
1674 	 * done if new buffers are available
1675 	 */
1676 	allocated = xsk_buff_alloc_batch(rx->xsk_pool, rx->xdp_batch,
1677 					 TSNEP_RING_SIZE - 1);
1678 
1679 	for (i = 0; i < TSNEP_RING_SIZE; i++) {
1680 		struct tsnep_rx_entry *entry = &rx->entry[i];
1681 
1682 		/* keep pages to prevent allocation failures when xsk is
1683 		 * disabled
1684 		 */
1685 		if (entry->page) {
1686 			*page = entry->page;
1687 			entry->page = NULL;
1688 
1689 			page++;
1690 		}
1691 
1692 		/* defined initial values for properties are required for
1693 		 * correct owner counter checking
1694 		 */
1695 		entry->desc->properties = 0;
1696 		entry->desc_wb->properties = 0;
1697 
1698 		if (allocated) {
1699 			tsnep_rx_set_xdp(rx, entry,
1700 					 rx->xdp_batch[allocated - 1]);
1701 			tsnep_rx_activate(rx, rx->write);
1702 			rx->write++;
1703 
1704 			allocated--;
1705 		}
1706 	}
1707 }
1708 
1709 static bool tsnep_pending(struct tsnep_queue *queue)
1710 {
1711 	if (queue->tx && tsnep_tx_pending(queue->tx))
1712 		return true;
1713 
1714 	if (queue->rx && tsnep_rx_pending(queue->rx))
1715 		return true;
1716 
1717 	return false;
1718 }
1719 
1720 static int tsnep_poll(struct napi_struct *napi, int budget)
1721 {
1722 	struct tsnep_queue *queue = container_of(napi, struct tsnep_queue,
1723 						 napi);
1724 	bool complete = true;
1725 	int done = 0;
1726 
1727 	if (queue->tx)
1728 		complete = tsnep_tx_poll(queue->tx, budget);
1729 
1730 	if (queue->rx) {
1731 		done = queue->rx->xsk_pool ?
1732 		       tsnep_rx_poll_zc(queue->rx, napi, budget) :
1733 		       tsnep_rx_poll(queue->rx, napi, budget);
1734 		if (done >= budget)
1735 			complete = false;
1736 	}
1737 
1738 	/* if all work not completed, return budget and keep polling */
1739 	if (!complete)
1740 		return budget;
1741 
1742 	if (likely(napi_complete_done(napi, done))) {
1743 		tsnep_enable_irq(queue->adapter, queue->irq_mask);
1744 
1745 		/* reschedule if work is already pending, prevent rotten packets
1746 		 * which are transmitted or received after polling but before
1747 		 * interrupt enable
1748 		 */
1749 		if (tsnep_pending(queue)) {
1750 			tsnep_disable_irq(queue->adapter, queue->irq_mask);
1751 			napi_schedule(napi);
1752 		}
1753 	}
1754 
1755 	return min(done, budget - 1);
1756 }
1757 
1758 static int tsnep_request_irq(struct tsnep_queue *queue, bool first)
1759 {
1760 	const char *name = netdev_name(queue->adapter->netdev);
1761 	irq_handler_t handler;
1762 	void *dev;
1763 	int retval;
1764 
1765 	if (first) {
1766 		sprintf(queue->name, "%s-mac", name);
1767 		handler = tsnep_irq;
1768 		dev = queue->adapter;
1769 	} else {
1770 		if (queue->tx && queue->rx)
1771 			sprintf(queue->name, "%s-txrx-%d", name,
1772 				queue->rx->queue_index);
1773 		else if (queue->tx)
1774 			sprintf(queue->name, "%s-tx-%d", name,
1775 				queue->tx->queue_index);
1776 		else
1777 			sprintf(queue->name, "%s-rx-%d", name,
1778 				queue->rx->queue_index);
1779 		handler = tsnep_irq_txrx;
1780 		dev = queue;
1781 	}
1782 
1783 	retval = request_irq(queue->irq, handler, 0, queue->name, dev);
1784 	if (retval) {
1785 		/* if name is empty, then interrupt won't be freed */
1786 		memset(queue->name, 0, sizeof(queue->name));
1787 	}
1788 
1789 	return retval;
1790 }
1791 
1792 static void tsnep_free_irq(struct tsnep_queue *queue, bool first)
1793 {
1794 	void *dev;
1795 
1796 	if (!strlen(queue->name))
1797 		return;
1798 
1799 	if (first)
1800 		dev = queue->adapter;
1801 	else
1802 		dev = queue;
1803 
1804 	free_irq(queue->irq, dev);
1805 	memset(queue->name, 0, sizeof(queue->name));
1806 }
1807 
1808 static void tsnep_queue_close(struct tsnep_queue *queue, bool first)
1809 {
1810 	struct tsnep_rx *rx = queue->rx;
1811 
1812 	tsnep_free_irq(queue, first);
1813 
1814 	if (rx) {
1815 		if (xdp_rxq_info_is_reg(&rx->xdp_rxq))
1816 			xdp_rxq_info_unreg(&rx->xdp_rxq);
1817 		if (xdp_rxq_info_is_reg(&rx->xdp_rxq_zc))
1818 			xdp_rxq_info_unreg(&rx->xdp_rxq_zc);
1819 	}
1820 
1821 	netif_napi_del(&queue->napi);
1822 }
1823 
1824 static int tsnep_queue_open(struct tsnep_adapter *adapter,
1825 			    struct tsnep_queue *queue, bool first)
1826 {
1827 	struct tsnep_rx *rx = queue->rx;
1828 	struct tsnep_tx *tx = queue->tx;
1829 	int retval;
1830 
1831 	netif_napi_add(adapter->netdev, &queue->napi, tsnep_poll);
1832 
1833 	if (rx) {
1834 		/* choose TX queue for XDP_TX */
1835 		if (tx)
1836 			rx->tx_queue_index = tx->queue_index;
1837 		else if (rx->queue_index < adapter->num_tx_queues)
1838 			rx->tx_queue_index = rx->queue_index;
1839 		else
1840 			rx->tx_queue_index = 0;
1841 
1842 		/* prepare both memory models to eliminate possible registration
1843 		 * errors when memory model is switched between page pool and
1844 		 * XSK pool during runtime
1845 		 */
1846 		retval = xdp_rxq_info_reg(&rx->xdp_rxq, adapter->netdev,
1847 					  rx->queue_index, queue->napi.napi_id);
1848 		if (retval)
1849 			goto failed;
1850 		retval = xdp_rxq_info_reg_mem_model(&rx->xdp_rxq,
1851 						    MEM_TYPE_PAGE_POOL,
1852 						    rx->page_pool);
1853 		if (retval)
1854 			goto failed;
1855 		retval = xdp_rxq_info_reg(&rx->xdp_rxq_zc, adapter->netdev,
1856 					  rx->queue_index, queue->napi.napi_id);
1857 		if (retval)
1858 			goto failed;
1859 		retval = xdp_rxq_info_reg_mem_model(&rx->xdp_rxq_zc,
1860 						    MEM_TYPE_XSK_BUFF_POOL,
1861 						    NULL);
1862 		if (retval)
1863 			goto failed;
1864 		if (rx->xsk_pool)
1865 			xsk_pool_set_rxq_info(rx->xsk_pool, &rx->xdp_rxq_zc);
1866 	}
1867 
1868 	retval = tsnep_request_irq(queue, first);
1869 	if (retval) {
1870 		netif_err(adapter, drv, adapter->netdev,
1871 			  "can't get assigned irq %d.\n", queue->irq);
1872 		goto failed;
1873 	}
1874 
1875 	return 0;
1876 
1877 failed:
1878 	tsnep_queue_close(queue, first);
1879 
1880 	return retval;
1881 }
1882 
1883 static void tsnep_queue_enable(struct tsnep_queue *queue)
1884 {
1885 	napi_enable(&queue->napi);
1886 	tsnep_enable_irq(queue->adapter, queue->irq_mask);
1887 
1888 	if (queue->tx)
1889 		tsnep_tx_enable(queue->tx);
1890 
1891 	if (queue->rx)
1892 		tsnep_rx_enable(queue->rx);
1893 }
1894 
1895 static void tsnep_queue_disable(struct tsnep_queue *queue)
1896 {
1897 	if (queue->tx)
1898 		tsnep_tx_disable(queue->tx, &queue->napi);
1899 
1900 	napi_disable(&queue->napi);
1901 	tsnep_disable_irq(queue->adapter, queue->irq_mask);
1902 
1903 	/* disable RX after NAPI polling has been disabled, because RX can be
1904 	 * enabled during NAPI polling
1905 	 */
1906 	if (queue->rx)
1907 		tsnep_rx_disable(queue->rx);
1908 }
1909 
1910 static int tsnep_netdev_open(struct net_device *netdev)
1911 {
1912 	struct tsnep_adapter *adapter = netdev_priv(netdev);
1913 	int i, retval;
1914 
1915 	for (i = 0; i < adapter->num_queues; i++) {
1916 		if (adapter->queue[i].tx) {
1917 			retval = tsnep_tx_open(adapter->queue[i].tx);
1918 			if (retval)
1919 				goto failed;
1920 		}
1921 		if (adapter->queue[i].rx) {
1922 			retval = tsnep_rx_open(adapter->queue[i].rx);
1923 			if (retval)
1924 				goto failed;
1925 		}
1926 
1927 		retval = tsnep_queue_open(adapter, &adapter->queue[i], i == 0);
1928 		if (retval)
1929 			goto failed;
1930 	}
1931 
1932 	retval = netif_set_real_num_tx_queues(adapter->netdev,
1933 					      adapter->num_tx_queues);
1934 	if (retval)
1935 		goto failed;
1936 	retval = netif_set_real_num_rx_queues(adapter->netdev,
1937 					      adapter->num_rx_queues);
1938 	if (retval)
1939 		goto failed;
1940 
1941 	tsnep_enable_irq(adapter, ECM_INT_LINK);
1942 	retval = tsnep_phy_open(adapter);
1943 	if (retval)
1944 		goto phy_failed;
1945 
1946 	for (i = 0; i < adapter->num_queues; i++)
1947 		tsnep_queue_enable(&adapter->queue[i]);
1948 
1949 	return 0;
1950 
1951 phy_failed:
1952 	tsnep_disable_irq(adapter, ECM_INT_LINK);
1953 failed:
1954 	for (i = 0; i < adapter->num_queues; i++) {
1955 		tsnep_queue_close(&adapter->queue[i], i == 0);
1956 
1957 		if (adapter->queue[i].rx)
1958 			tsnep_rx_close(adapter->queue[i].rx);
1959 		if (adapter->queue[i].tx)
1960 			tsnep_tx_close(adapter->queue[i].tx);
1961 	}
1962 	return retval;
1963 }
1964 
1965 static int tsnep_netdev_close(struct net_device *netdev)
1966 {
1967 	struct tsnep_adapter *adapter = netdev_priv(netdev);
1968 	int i;
1969 
1970 	tsnep_disable_irq(adapter, ECM_INT_LINK);
1971 	tsnep_phy_close(adapter);
1972 
1973 	for (i = 0; i < adapter->num_queues; i++) {
1974 		tsnep_queue_disable(&adapter->queue[i]);
1975 
1976 		tsnep_queue_close(&adapter->queue[i], i == 0);
1977 
1978 		if (adapter->queue[i].rx)
1979 			tsnep_rx_close(adapter->queue[i].rx);
1980 		if (adapter->queue[i].tx)
1981 			tsnep_tx_close(adapter->queue[i].tx);
1982 	}
1983 
1984 	return 0;
1985 }
1986 
1987 int tsnep_enable_xsk(struct tsnep_queue *queue, struct xsk_buff_pool *pool)
1988 {
1989 	bool running = netif_running(queue->adapter->netdev);
1990 	u32 frame_size;
1991 
1992 	frame_size = xsk_pool_get_rx_frame_size(pool);
1993 	if (frame_size < TSNEP_XSK_RX_BUF_SIZE)
1994 		return -EOPNOTSUPP;
1995 
1996 	queue->rx->page_buffer = kcalloc(TSNEP_RING_SIZE,
1997 					 sizeof(*queue->rx->page_buffer),
1998 					 GFP_KERNEL);
1999 	if (!queue->rx->page_buffer)
2000 		return -ENOMEM;
2001 	queue->rx->xdp_batch = kcalloc(TSNEP_RING_SIZE,
2002 				       sizeof(*queue->rx->xdp_batch),
2003 				       GFP_KERNEL);
2004 	if (!queue->rx->xdp_batch) {
2005 		kfree(queue->rx->page_buffer);
2006 		queue->rx->page_buffer = NULL;
2007 
2008 		return -ENOMEM;
2009 	}
2010 
2011 	xsk_pool_set_rxq_info(pool, &queue->rx->xdp_rxq_zc);
2012 
2013 	if (running)
2014 		tsnep_queue_disable(queue);
2015 
2016 	queue->tx->xsk_pool = pool;
2017 	queue->rx->xsk_pool = pool;
2018 
2019 	if (running) {
2020 		tsnep_rx_reopen_xsk(queue->rx);
2021 		tsnep_queue_enable(queue);
2022 	}
2023 
2024 	return 0;
2025 }
2026 
2027 void tsnep_disable_xsk(struct tsnep_queue *queue)
2028 {
2029 	bool running = netif_running(queue->adapter->netdev);
2030 
2031 	if (running)
2032 		tsnep_queue_disable(queue);
2033 
2034 	tsnep_rx_free_zc(queue->rx);
2035 
2036 	queue->rx->xsk_pool = NULL;
2037 	queue->tx->xsk_pool = NULL;
2038 
2039 	if (running) {
2040 		tsnep_rx_reopen(queue->rx);
2041 		tsnep_queue_enable(queue);
2042 	}
2043 
2044 	kfree(queue->rx->xdp_batch);
2045 	queue->rx->xdp_batch = NULL;
2046 	kfree(queue->rx->page_buffer);
2047 	queue->rx->page_buffer = NULL;
2048 }
2049 
2050 static netdev_tx_t tsnep_netdev_xmit_frame(struct sk_buff *skb,
2051 					   struct net_device *netdev)
2052 {
2053 	struct tsnep_adapter *adapter = netdev_priv(netdev);
2054 	u16 queue_mapping = skb_get_queue_mapping(skb);
2055 
2056 	if (queue_mapping >= adapter->num_tx_queues)
2057 		queue_mapping = 0;
2058 
2059 	return tsnep_xmit_frame_ring(skb, &adapter->tx[queue_mapping]);
2060 }
2061 
2062 static int tsnep_netdev_ioctl(struct net_device *netdev, struct ifreq *ifr,
2063 			      int cmd)
2064 {
2065 	if (!netif_running(netdev))
2066 		return -EINVAL;
2067 	if (cmd == SIOCSHWTSTAMP || cmd == SIOCGHWTSTAMP)
2068 		return tsnep_ptp_ioctl(netdev, ifr, cmd);
2069 	return phy_mii_ioctl(netdev->phydev, ifr, cmd);
2070 }
2071 
2072 static void tsnep_netdev_set_multicast(struct net_device *netdev)
2073 {
2074 	struct tsnep_adapter *adapter = netdev_priv(netdev);
2075 
2076 	u16 rx_filter = 0;
2077 
2078 	/* configured MAC address and broadcasts are never filtered */
2079 	if (netdev->flags & IFF_PROMISC) {
2080 		rx_filter |= TSNEP_RX_FILTER_ACCEPT_ALL_MULTICASTS;
2081 		rx_filter |= TSNEP_RX_FILTER_ACCEPT_ALL_UNICASTS;
2082 	} else if (!netdev_mc_empty(netdev) || (netdev->flags & IFF_ALLMULTI)) {
2083 		rx_filter |= TSNEP_RX_FILTER_ACCEPT_ALL_MULTICASTS;
2084 	}
2085 	iowrite16(rx_filter, adapter->addr + TSNEP_RX_FILTER);
2086 }
2087 
2088 static void tsnep_netdev_get_stats64(struct net_device *netdev,
2089 				     struct rtnl_link_stats64 *stats)
2090 {
2091 	struct tsnep_adapter *adapter = netdev_priv(netdev);
2092 	u32 reg;
2093 	u32 val;
2094 	int i;
2095 
2096 	for (i = 0; i < adapter->num_tx_queues; i++) {
2097 		stats->tx_packets += adapter->tx[i].packets;
2098 		stats->tx_bytes += adapter->tx[i].bytes;
2099 		stats->tx_dropped += adapter->tx[i].dropped;
2100 	}
2101 	for (i = 0; i < adapter->num_rx_queues; i++) {
2102 		stats->rx_packets += adapter->rx[i].packets;
2103 		stats->rx_bytes += adapter->rx[i].bytes;
2104 		stats->rx_dropped += adapter->rx[i].dropped;
2105 		stats->multicast += adapter->rx[i].multicast;
2106 
2107 		reg = ioread32(adapter->addr + TSNEP_QUEUE(i) +
2108 			       TSNEP_RX_STATISTIC);
2109 		val = (reg & TSNEP_RX_STATISTIC_NO_DESC_MASK) >>
2110 		      TSNEP_RX_STATISTIC_NO_DESC_SHIFT;
2111 		stats->rx_dropped += val;
2112 		val = (reg & TSNEP_RX_STATISTIC_BUFFER_TOO_SMALL_MASK) >>
2113 		      TSNEP_RX_STATISTIC_BUFFER_TOO_SMALL_SHIFT;
2114 		stats->rx_dropped += val;
2115 		val = (reg & TSNEP_RX_STATISTIC_FIFO_OVERFLOW_MASK) >>
2116 		      TSNEP_RX_STATISTIC_FIFO_OVERFLOW_SHIFT;
2117 		stats->rx_errors += val;
2118 		stats->rx_fifo_errors += val;
2119 		val = (reg & TSNEP_RX_STATISTIC_INVALID_FRAME_MASK) >>
2120 		      TSNEP_RX_STATISTIC_INVALID_FRAME_SHIFT;
2121 		stats->rx_errors += val;
2122 		stats->rx_frame_errors += val;
2123 	}
2124 
2125 	reg = ioread32(adapter->addr + ECM_STAT);
2126 	val = (reg & ECM_STAT_RX_ERR_MASK) >> ECM_STAT_RX_ERR_SHIFT;
2127 	stats->rx_errors += val;
2128 	val = (reg & ECM_STAT_INV_FRM_MASK) >> ECM_STAT_INV_FRM_SHIFT;
2129 	stats->rx_errors += val;
2130 	stats->rx_crc_errors += val;
2131 	val = (reg & ECM_STAT_FWD_RX_ERR_MASK) >> ECM_STAT_FWD_RX_ERR_SHIFT;
2132 	stats->rx_errors += val;
2133 }
2134 
2135 static void tsnep_mac_set_address(struct tsnep_adapter *adapter, u8 *addr)
2136 {
2137 	iowrite32(*(u32 *)addr, adapter->addr + TSNEP_MAC_ADDRESS_LOW);
2138 	iowrite16(*(u16 *)(addr + sizeof(u32)),
2139 		  adapter->addr + TSNEP_MAC_ADDRESS_HIGH);
2140 
2141 	ether_addr_copy(adapter->mac_address, addr);
2142 	netif_info(adapter, drv, adapter->netdev, "MAC address set to %pM\n",
2143 		   addr);
2144 }
2145 
2146 static int tsnep_netdev_set_mac_address(struct net_device *netdev, void *addr)
2147 {
2148 	struct tsnep_adapter *adapter = netdev_priv(netdev);
2149 	struct sockaddr *sock_addr = addr;
2150 	int retval;
2151 
2152 	retval = eth_prepare_mac_addr_change(netdev, sock_addr);
2153 	if (retval)
2154 		return retval;
2155 	eth_hw_addr_set(netdev, sock_addr->sa_data);
2156 	tsnep_mac_set_address(adapter, sock_addr->sa_data);
2157 
2158 	return 0;
2159 }
2160 
2161 static int tsnep_netdev_set_features(struct net_device *netdev,
2162 				     netdev_features_t features)
2163 {
2164 	struct tsnep_adapter *adapter = netdev_priv(netdev);
2165 	netdev_features_t changed = netdev->features ^ features;
2166 	bool enable;
2167 	int retval = 0;
2168 
2169 	if (changed & NETIF_F_LOOPBACK) {
2170 		enable = !!(features & NETIF_F_LOOPBACK);
2171 		retval = tsnep_phy_loopback(adapter, enable);
2172 	}
2173 
2174 	return retval;
2175 }
2176 
2177 static ktime_t tsnep_netdev_get_tstamp(struct net_device *netdev,
2178 				       const struct skb_shared_hwtstamps *hwtstamps,
2179 				       bool cycles)
2180 {
2181 	struct tsnep_rx_inline *rx_inline = hwtstamps->netdev_data;
2182 	u64 timestamp;
2183 
2184 	if (cycles)
2185 		timestamp = __le64_to_cpu(rx_inline->counter);
2186 	else
2187 		timestamp = __le64_to_cpu(rx_inline->timestamp);
2188 
2189 	return ns_to_ktime(timestamp);
2190 }
2191 
2192 static int tsnep_netdev_bpf(struct net_device *dev, struct netdev_bpf *bpf)
2193 {
2194 	struct tsnep_adapter *adapter = netdev_priv(dev);
2195 
2196 	switch (bpf->command) {
2197 	case XDP_SETUP_PROG:
2198 		return tsnep_xdp_setup_prog(adapter, bpf->prog, bpf->extack);
2199 	case XDP_SETUP_XSK_POOL:
2200 		return tsnep_xdp_setup_pool(adapter, bpf->xsk.pool,
2201 					    bpf->xsk.queue_id);
2202 	default:
2203 		return -EOPNOTSUPP;
2204 	}
2205 }
2206 
2207 static struct tsnep_tx *tsnep_xdp_get_tx(struct tsnep_adapter *adapter, u32 cpu)
2208 {
2209 	if (cpu >= TSNEP_MAX_QUEUES)
2210 		cpu &= TSNEP_MAX_QUEUES - 1;
2211 
2212 	while (cpu >= adapter->num_tx_queues)
2213 		cpu -= adapter->num_tx_queues;
2214 
2215 	return &adapter->tx[cpu];
2216 }
2217 
2218 static int tsnep_netdev_xdp_xmit(struct net_device *dev, int n,
2219 				 struct xdp_frame **xdp, u32 flags)
2220 {
2221 	struct tsnep_adapter *adapter = netdev_priv(dev);
2222 	u32 cpu = smp_processor_id();
2223 	struct netdev_queue *nq;
2224 	struct tsnep_tx *tx;
2225 	int nxmit;
2226 	bool xmit;
2227 
2228 	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
2229 		return -EINVAL;
2230 
2231 	tx = tsnep_xdp_get_tx(adapter, cpu);
2232 	nq = netdev_get_tx_queue(adapter->netdev, tx->queue_index);
2233 
2234 	__netif_tx_lock(nq, cpu);
2235 
2236 	for (nxmit = 0; nxmit < n; nxmit++) {
2237 		xmit = tsnep_xdp_xmit_frame_ring(xdp[nxmit], tx,
2238 						 TSNEP_TX_TYPE_XDP_NDO);
2239 		if (!xmit)
2240 			break;
2241 
2242 		/* avoid transmit queue timeout since we share it with the slow
2243 		 * path
2244 		 */
2245 		txq_trans_cond_update(nq);
2246 	}
2247 
2248 	if (flags & XDP_XMIT_FLUSH)
2249 		tsnep_xdp_xmit_flush(tx);
2250 
2251 	__netif_tx_unlock(nq);
2252 
2253 	return nxmit;
2254 }
2255 
2256 static int tsnep_netdev_xsk_wakeup(struct net_device *dev, u32 queue_id,
2257 				   u32 flags)
2258 {
2259 	struct tsnep_adapter *adapter = netdev_priv(dev);
2260 	struct tsnep_queue *queue;
2261 
2262 	if (queue_id >= adapter->num_rx_queues ||
2263 	    queue_id >= adapter->num_tx_queues)
2264 		return -EINVAL;
2265 
2266 	queue = &adapter->queue[queue_id];
2267 
2268 	if (!napi_if_scheduled_mark_missed(&queue->napi))
2269 		napi_schedule(&queue->napi);
2270 
2271 	return 0;
2272 }
2273 
2274 static const struct net_device_ops tsnep_netdev_ops = {
2275 	.ndo_open = tsnep_netdev_open,
2276 	.ndo_stop = tsnep_netdev_close,
2277 	.ndo_start_xmit = tsnep_netdev_xmit_frame,
2278 	.ndo_eth_ioctl = tsnep_netdev_ioctl,
2279 	.ndo_set_rx_mode = tsnep_netdev_set_multicast,
2280 	.ndo_get_stats64 = tsnep_netdev_get_stats64,
2281 	.ndo_set_mac_address = tsnep_netdev_set_mac_address,
2282 	.ndo_set_features = tsnep_netdev_set_features,
2283 	.ndo_get_tstamp = tsnep_netdev_get_tstamp,
2284 	.ndo_setup_tc = tsnep_tc_setup,
2285 	.ndo_bpf = tsnep_netdev_bpf,
2286 	.ndo_xdp_xmit = tsnep_netdev_xdp_xmit,
2287 	.ndo_xsk_wakeup = tsnep_netdev_xsk_wakeup,
2288 };
2289 
2290 static int tsnep_mac_init(struct tsnep_adapter *adapter)
2291 {
2292 	int retval;
2293 
2294 	/* initialize RX filtering, at least configured MAC address and
2295 	 * broadcast are not filtered
2296 	 */
2297 	iowrite16(0, adapter->addr + TSNEP_RX_FILTER);
2298 
2299 	/* try to get MAC address in the following order:
2300 	 * - device tree
2301 	 * - valid MAC address already set
2302 	 * - MAC address register if valid
2303 	 * - random MAC address
2304 	 */
2305 	retval = of_get_mac_address(adapter->pdev->dev.of_node,
2306 				    adapter->mac_address);
2307 	if (retval == -EPROBE_DEFER)
2308 		return retval;
2309 	if (retval && !is_valid_ether_addr(adapter->mac_address)) {
2310 		*(u32 *)adapter->mac_address =
2311 			ioread32(adapter->addr + TSNEP_MAC_ADDRESS_LOW);
2312 		*(u16 *)(adapter->mac_address + sizeof(u32)) =
2313 			ioread16(adapter->addr + TSNEP_MAC_ADDRESS_HIGH);
2314 		if (!is_valid_ether_addr(adapter->mac_address))
2315 			eth_random_addr(adapter->mac_address);
2316 	}
2317 
2318 	tsnep_mac_set_address(adapter, adapter->mac_address);
2319 	eth_hw_addr_set(adapter->netdev, adapter->mac_address);
2320 
2321 	return 0;
2322 }
2323 
2324 static int tsnep_mdio_init(struct tsnep_adapter *adapter)
2325 {
2326 	struct device_node *np = adapter->pdev->dev.of_node;
2327 	int retval;
2328 
2329 	if (np) {
2330 		np = of_get_child_by_name(np, "mdio");
2331 		if (!np)
2332 			return 0;
2333 
2334 		adapter->suppress_preamble =
2335 			of_property_read_bool(np, "suppress-preamble");
2336 	}
2337 
2338 	adapter->mdiobus = devm_mdiobus_alloc(&adapter->pdev->dev);
2339 	if (!adapter->mdiobus) {
2340 		retval = -ENOMEM;
2341 
2342 		goto out;
2343 	}
2344 
2345 	adapter->mdiobus->priv = (void *)adapter;
2346 	adapter->mdiobus->parent = &adapter->pdev->dev;
2347 	adapter->mdiobus->read = tsnep_mdiobus_read;
2348 	adapter->mdiobus->write = tsnep_mdiobus_write;
2349 	adapter->mdiobus->name = TSNEP "-mdiobus";
2350 	snprintf(adapter->mdiobus->id, MII_BUS_ID_SIZE, "%s",
2351 		 adapter->pdev->name);
2352 
2353 	/* do not scan broadcast address */
2354 	adapter->mdiobus->phy_mask = 0x0000001;
2355 
2356 	retval = of_mdiobus_register(adapter->mdiobus, np);
2357 
2358 out:
2359 	of_node_put(np);
2360 
2361 	return retval;
2362 }
2363 
2364 static int tsnep_phy_init(struct tsnep_adapter *adapter)
2365 {
2366 	struct device_node *phy_node;
2367 	int retval;
2368 
2369 	retval = of_get_phy_mode(adapter->pdev->dev.of_node,
2370 				 &adapter->phy_mode);
2371 	if (retval)
2372 		adapter->phy_mode = PHY_INTERFACE_MODE_GMII;
2373 
2374 	phy_node = of_parse_phandle(adapter->pdev->dev.of_node, "phy-handle",
2375 				    0);
2376 	adapter->phydev = of_phy_find_device(phy_node);
2377 	of_node_put(phy_node);
2378 	if (!adapter->phydev && adapter->mdiobus)
2379 		adapter->phydev = phy_find_first(adapter->mdiobus);
2380 	if (!adapter->phydev)
2381 		return -EIO;
2382 
2383 	return 0;
2384 }
2385 
2386 static int tsnep_queue_init(struct tsnep_adapter *adapter, int queue_count)
2387 {
2388 	u32 irq_mask = ECM_INT_TX_0 | ECM_INT_RX_0;
2389 	char name[8];
2390 	int i;
2391 	int retval;
2392 
2393 	/* one TX/RX queue pair for netdev is mandatory */
2394 	if (platform_irq_count(adapter->pdev) == 1)
2395 		retval = platform_get_irq(adapter->pdev, 0);
2396 	else
2397 		retval = platform_get_irq_byname(adapter->pdev, "mac");
2398 	if (retval < 0)
2399 		return retval;
2400 	adapter->num_tx_queues = 1;
2401 	adapter->num_rx_queues = 1;
2402 	adapter->num_queues = 1;
2403 	adapter->queue[0].adapter = adapter;
2404 	adapter->queue[0].irq = retval;
2405 	adapter->queue[0].tx = &adapter->tx[0];
2406 	adapter->queue[0].tx->adapter = adapter;
2407 	adapter->queue[0].tx->addr = adapter->addr + TSNEP_QUEUE(0);
2408 	adapter->queue[0].tx->queue_index = 0;
2409 	adapter->queue[0].rx = &adapter->rx[0];
2410 	adapter->queue[0].rx->adapter = adapter;
2411 	adapter->queue[0].rx->addr = adapter->addr + TSNEP_QUEUE(0);
2412 	adapter->queue[0].rx->queue_index = 0;
2413 	adapter->queue[0].irq_mask = irq_mask;
2414 	adapter->queue[0].irq_delay_addr = adapter->addr + ECM_INT_DELAY;
2415 	retval = tsnep_set_irq_coalesce(&adapter->queue[0],
2416 					TSNEP_COALESCE_USECS_DEFAULT);
2417 	if (retval < 0)
2418 		return retval;
2419 
2420 	adapter->netdev->irq = adapter->queue[0].irq;
2421 
2422 	/* add additional TX/RX queue pairs only if dedicated interrupt is
2423 	 * available
2424 	 */
2425 	for (i = 1; i < queue_count; i++) {
2426 		sprintf(name, "txrx-%d", i);
2427 		retval = platform_get_irq_byname_optional(adapter->pdev, name);
2428 		if (retval < 0)
2429 			break;
2430 
2431 		adapter->num_tx_queues++;
2432 		adapter->num_rx_queues++;
2433 		adapter->num_queues++;
2434 		adapter->queue[i].adapter = adapter;
2435 		adapter->queue[i].irq = retval;
2436 		adapter->queue[i].tx = &adapter->tx[i];
2437 		adapter->queue[i].tx->adapter = adapter;
2438 		adapter->queue[i].tx->addr = adapter->addr + TSNEP_QUEUE(i);
2439 		adapter->queue[i].tx->queue_index = i;
2440 		adapter->queue[i].rx = &adapter->rx[i];
2441 		adapter->queue[i].rx->adapter = adapter;
2442 		adapter->queue[i].rx->addr = adapter->addr + TSNEP_QUEUE(i);
2443 		adapter->queue[i].rx->queue_index = i;
2444 		adapter->queue[i].irq_mask =
2445 			irq_mask << (ECM_INT_TXRX_SHIFT * i);
2446 		adapter->queue[i].irq_delay_addr =
2447 			adapter->addr + ECM_INT_DELAY + ECM_INT_DELAY_OFFSET * i;
2448 		retval = tsnep_set_irq_coalesce(&adapter->queue[i],
2449 						TSNEP_COALESCE_USECS_DEFAULT);
2450 		if (retval < 0)
2451 			return retval;
2452 	}
2453 
2454 	return 0;
2455 }
2456 
2457 static int tsnep_probe(struct platform_device *pdev)
2458 {
2459 	struct tsnep_adapter *adapter;
2460 	struct net_device *netdev;
2461 	struct resource *io;
2462 	u32 type;
2463 	int revision;
2464 	int version;
2465 	int queue_count;
2466 	int retval;
2467 
2468 	netdev = devm_alloc_etherdev_mqs(&pdev->dev,
2469 					 sizeof(struct tsnep_adapter),
2470 					 TSNEP_MAX_QUEUES, TSNEP_MAX_QUEUES);
2471 	if (!netdev)
2472 		return -ENODEV;
2473 	SET_NETDEV_DEV(netdev, &pdev->dev);
2474 	adapter = netdev_priv(netdev);
2475 	platform_set_drvdata(pdev, adapter);
2476 	adapter->pdev = pdev;
2477 	adapter->dmadev = &pdev->dev;
2478 	adapter->netdev = netdev;
2479 	adapter->msg_enable = NETIF_MSG_DRV | NETIF_MSG_PROBE |
2480 			      NETIF_MSG_LINK | NETIF_MSG_IFUP |
2481 			      NETIF_MSG_IFDOWN | NETIF_MSG_TX_QUEUED;
2482 
2483 	netdev->min_mtu = ETH_MIN_MTU;
2484 	netdev->max_mtu = TSNEP_MAX_FRAME_SIZE;
2485 
2486 	mutex_init(&adapter->gate_control_lock);
2487 	mutex_init(&adapter->rxnfc_lock);
2488 	INIT_LIST_HEAD(&adapter->rxnfc_rules);
2489 
2490 	io = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2491 	adapter->addr = devm_ioremap_resource(&pdev->dev, io);
2492 	if (IS_ERR(adapter->addr))
2493 		return PTR_ERR(adapter->addr);
2494 	netdev->mem_start = io->start;
2495 	netdev->mem_end = io->end;
2496 
2497 	type = ioread32(adapter->addr + ECM_TYPE);
2498 	revision = (type & ECM_REVISION_MASK) >> ECM_REVISION_SHIFT;
2499 	version = (type & ECM_VERSION_MASK) >> ECM_VERSION_SHIFT;
2500 	queue_count = (type & ECM_QUEUE_COUNT_MASK) >> ECM_QUEUE_COUNT_SHIFT;
2501 	adapter->gate_control = type & ECM_GATE_CONTROL;
2502 	adapter->rxnfc_max = TSNEP_RX_ASSIGN_ETHER_TYPE_COUNT;
2503 
2504 	tsnep_disable_irq(adapter, ECM_INT_ALL);
2505 
2506 	retval = tsnep_queue_init(adapter, queue_count);
2507 	if (retval)
2508 		return retval;
2509 
2510 	retval = dma_set_mask_and_coherent(&adapter->pdev->dev,
2511 					   DMA_BIT_MASK(64));
2512 	if (retval) {
2513 		dev_err(&adapter->pdev->dev, "no usable DMA configuration.\n");
2514 		return retval;
2515 	}
2516 
2517 	retval = tsnep_mac_init(adapter);
2518 	if (retval)
2519 		return retval;
2520 
2521 	retval = tsnep_mdio_init(adapter);
2522 	if (retval)
2523 		goto mdio_init_failed;
2524 
2525 	retval = tsnep_phy_init(adapter);
2526 	if (retval)
2527 		goto phy_init_failed;
2528 
2529 	retval = tsnep_ptp_init(adapter);
2530 	if (retval)
2531 		goto ptp_init_failed;
2532 
2533 	retval = tsnep_tc_init(adapter);
2534 	if (retval)
2535 		goto tc_init_failed;
2536 
2537 	retval = tsnep_rxnfc_init(adapter);
2538 	if (retval)
2539 		goto rxnfc_init_failed;
2540 
2541 	netdev->netdev_ops = &tsnep_netdev_ops;
2542 	netdev->ethtool_ops = &tsnep_ethtool_ops;
2543 	netdev->features = NETIF_F_SG;
2544 	netdev->hw_features = netdev->features | NETIF_F_LOOPBACK;
2545 
2546 	netdev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT |
2547 			       NETDEV_XDP_ACT_NDO_XMIT |
2548 			       NETDEV_XDP_ACT_NDO_XMIT_SG |
2549 			       NETDEV_XDP_ACT_XSK_ZEROCOPY;
2550 
2551 	/* carrier off reporting is important to ethtool even BEFORE open */
2552 	netif_carrier_off(netdev);
2553 
2554 	retval = register_netdev(netdev);
2555 	if (retval)
2556 		goto register_failed;
2557 
2558 	dev_info(&adapter->pdev->dev, "device version %d.%02d\n", version,
2559 		 revision);
2560 	if (adapter->gate_control)
2561 		dev_info(&adapter->pdev->dev, "gate control detected\n");
2562 
2563 	return 0;
2564 
2565 register_failed:
2566 	tsnep_rxnfc_cleanup(adapter);
2567 rxnfc_init_failed:
2568 	tsnep_tc_cleanup(adapter);
2569 tc_init_failed:
2570 	tsnep_ptp_cleanup(adapter);
2571 ptp_init_failed:
2572 phy_init_failed:
2573 	if (adapter->mdiobus)
2574 		mdiobus_unregister(adapter->mdiobus);
2575 mdio_init_failed:
2576 	return retval;
2577 }
2578 
2579 static int tsnep_remove(struct platform_device *pdev)
2580 {
2581 	struct tsnep_adapter *adapter = platform_get_drvdata(pdev);
2582 
2583 	unregister_netdev(adapter->netdev);
2584 
2585 	tsnep_rxnfc_cleanup(adapter);
2586 
2587 	tsnep_tc_cleanup(adapter);
2588 
2589 	tsnep_ptp_cleanup(adapter);
2590 
2591 	if (adapter->mdiobus)
2592 		mdiobus_unregister(adapter->mdiobus);
2593 
2594 	tsnep_disable_irq(adapter, ECM_INT_ALL);
2595 
2596 	return 0;
2597 }
2598 
2599 static const struct of_device_id tsnep_of_match[] = {
2600 	{ .compatible = "engleder,tsnep", },
2601 { },
2602 };
2603 MODULE_DEVICE_TABLE(of, tsnep_of_match);
2604 
2605 static struct platform_driver tsnep_driver = {
2606 	.driver = {
2607 		.name = TSNEP,
2608 		.of_match_table = tsnep_of_match,
2609 	},
2610 	.probe = tsnep_probe,
2611 	.remove = tsnep_remove,
2612 };
2613 module_platform_driver(tsnep_driver);
2614 
2615 MODULE_AUTHOR("Gerhard Engleder <gerhard@engleder-embedded.com>");
2616 MODULE_DESCRIPTION("TSN endpoint Ethernet MAC driver");
2617 MODULE_LICENSE("GPL");
2618