1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (C) 2021 Gerhard Engleder <gerhard@engleder-embedded.com> */
3 
4 /* TSN endpoint Ethernet MAC driver
5  *
6  * The TSN endpoint Ethernet MAC is a FPGA based network device for real-time
7  * communication. It is designed for endpoints within TSN (Time Sensitive
8  * Networking) networks; e.g., for PLCs in the industrial automation case.
9  *
10  * It supports multiple TX/RX queue pairs. The first TX/RX queue pair is used
11  * by the driver.
12  *
13  * More information can be found here:
14  * - www.embedded-experts.at/tsn
15  * - www.engleder-embedded.com
16  */
17 
18 #include "tsnep.h"
19 #include "tsnep_hw.h"
20 
21 #include <linux/module.h>
22 #include <linux/of.h>
23 #include <linux/of_net.h>
24 #include <linux/of_mdio.h>
25 #include <linux/interrupt.h>
26 #include <linux/etherdevice.h>
27 #include <linux/phy.h>
28 #include <linux/iopoll.h>
29 #include <linux/bpf.h>
30 #include <linux/bpf_trace.h>
31 #include <net/page_pool/helpers.h>
32 #include <net/xdp_sock_drv.h>
33 
34 #define TSNEP_RX_OFFSET (max(NET_SKB_PAD, XDP_PACKET_HEADROOM) + NET_IP_ALIGN)
35 #define TSNEP_HEADROOM ALIGN(TSNEP_RX_OFFSET, 4)
36 #define TSNEP_MAX_RX_BUF_SIZE (PAGE_SIZE - TSNEP_HEADROOM - \
37 			       SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
38 /* XSK buffer shall store at least Q-in-Q frame */
39 #define TSNEP_XSK_RX_BUF_SIZE (ALIGN(TSNEP_RX_INLINE_METADATA_SIZE + \
40 				     ETH_FRAME_LEN + ETH_FCS_LEN + \
41 				     VLAN_HLEN * 2, 4))
42 
43 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
44 #define DMA_ADDR_HIGH(dma_addr) ((u32)(((dma_addr) >> 32) & 0xFFFFFFFF))
45 #else
46 #define DMA_ADDR_HIGH(dma_addr) ((u32)(0))
47 #endif
48 #define DMA_ADDR_LOW(dma_addr) ((u32)((dma_addr) & 0xFFFFFFFF))
49 
50 #define TSNEP_COALESCE_USECS_DEFAULT 64
51 #define TSNEP_COALESCE_USECS_MAX     ((ECM_INT_DELAY_MASK >> ECM_INT_DELAY_SHIFT) * \
52 				      ECM_INT_DELAY_BASE_US + ECM_INT_DELAY_BASE_US - 1)
53 
54 #define TSNEP_TX_TYPE_SKB	BIT(0)
55 #define TSNEP_TX_TYPE_SKB_FRAG	BIT(1)
56 #define TSNEP_TX_TYPE_XDP_TX	BIT(2)
57 #define TSNEP_TX_TYPE_XDP_NDO	BIT(3)
58 #define TSNEP_TX_TYPE_XDP	(TSNEP_TX_TYPE_XDP_TX | TSNEP_TX_TYPE_XDP_NDO)
59 #define TSNEP_TX_TYPE_XSK	BIT(4)
60 
61 #define TSNEP_XDP_TX		BIT(0)
62 #define TSNEP_XDP_REDIRECT	BIT(1)
63 
64 static void tsnep_enable_irq(struct tsnep_adapter *adapter, u32 mask)
65 {
66 	iowrite32(mask, adapter->addr + ECM_INT_ENABLE);
67 }
68 
69 static void tsnep_disable_irq(struct tsnep_adapter *adapter, u32 mask)
70 {
71 	mask |= ECM_INT_DISABLE;
72 	iowrite32(mask, adapter->addr + ECM_INT_ENABLE);
73 }
74 
75 static irqreturn_t tsnep_irq(int irq, void *arg)
76 {
77 	struct tsnep_adapter *adapter = arg;
78 	u32 active = ioread32(adapter->addr + ECM_INT_ACTIVE);
79 
80 	/* acknowledge interrupt */
81 	if (active != 0)
82 		iowrite32(active, adapter->addr + ECM_INT_ACKNOWLEDGE);
83 
84 	/* handle link interrupt */
85 	if ((active & ECM_INT_LINK) != 0)
86 		phy_mac_interrupt(adapter->netdev->phydev);
87 
88 	/* handle TX/RX queue 0 interrupt */
89 	if ((active & adapter->queue[0].irq_mask) != 0) {
90 		tsnep_disable_irq(adapter, adapter->queue[0].irq_mask);
91 		napi_schedule(&adapter->queue[0].napi);
92 	}
93 
94 	return IRQ_HANDLED;
95 }
96 
97 static irqreturn_t tsnep_irq_txrx(int irq, void *arg)
98 {
99 	struct tsnep_queue *queue = arg;
100 
101 	/* handle TX/RX queue interrupt */
102 	tsnep_disable_irq(queue->adapter, queue->irq_mask);
103 	napi_schedule(&queue->napi);
104 
105 	return IRQ_HANDLED;
106 }
107 
108 int tsnep_set_irq_coalesce(struct tsnep_queue *queue, u32 usecs)
109 {
110 	if (usecs > TSNEP_COALESCE_USECS_MAX)
111 		return -ERANGE;
112 
113 	usecs /= ECM_INT_DELAY_BASE_US;
114 	usecs <<= ECM_INT_DELAY_SHIFT;
115 	usecs &= ECM_INT_DELAY_MASK;
116 
117 	queue->irq_delay &= ~ECM_INT_DELAY_MASK;
118 	queue->irq_delay |= usecs;
119 	iowrite8(queue->irq_delay, queue->irq_delay_addr);
120 
121 	return 0;
122 }
123 
124 u32 tsnep_get_irq_coalesce(struct tsnep_queue *queue)
125 {
126 	u32 usecs;
127 
128 	usecs = (queue->irq_delay & ECM_INT_DELAY_MASK);
129 	usecs >>= ECM_INT_DELAY_SHIFT;
130 	usecs *= ECM_INT_DELAY_BASE_US;
131 
132 	return usecs;
133 }
134 
135 static int tsnep_mdiobus_read(struct mii_bus *bus, int addr, int regnum)
136 {
137 	struct tsnep_adapter *adapter = bus->priv;
138 	u32 md;
139 	int retval;
140 
141 	md = ECM_MD_READ;
142 	if (!adapter->suppress_preamble)
143 		md |= ECM_MD_PREAMBLE;
144 	md |= (regnum << ECM_MD_ADDR_SHIFT) & ECM_MD_ADDR_MASK;
145 	md |= (addr << ECM_MD_PHY_ADDR_SHIFT) & ECM_MD_PHY_ADDR_MASK;
146 	iowrite32(md, adapter->addr + ECM_MD_CONTROL);
147 	retval = readl_poll_timeout_atomic(adapter->addr + ECM_MD_STATUS, md,
148 					   !(md & ECM_MD_BUSY), 16, 1000);
149 	if (retval != 0)
150 		return retval;
151 
152 	return (md & ECM_MD_DATA_MASK) >> ECM_MD_DATA_SHIFT;
153 }
154 
155 static int tsnep_mdiobus_write(struct mii_bus *bus, int addr, int regnum,
156 			       u16 val)
157 {
158 	struct tsnep_adapter *adapter = bus->priv;
159 	u32 md;
160 	int retval;
161 
162 	md = ECM_MD_WRITE;
163 	if (!adapter->suppress_preamble)
164 		md |= ECM_MD_PREAMBLE;
165 	md |= (regnum << ECM_MD_ADDR_SHIFT) & ECM_MD_ADDR_MASK;
166 	md |= (addr << ECM_MD_PHY_ADDR_SHIFT) & ECM_MD_PHY_ADDR_MASK;
167 	md |= ((u32)val << ECM_MD_DATA_SHIFT) & ECM_MD_DATA_MASK;
168 	iowrite32(md, adapter->addr + ECM_MD_CONTROL);
169 	retval = readl_poll_timeout_atomic(adapter->addr + ECM_MD_STATUS, md,
170 					   !(md & ECM_MD_BUSY), 16, 1000);
171 	if (retval != 0)
172 		return retval;
173 
174 	return 0;
175 }
176 
177 static void tsnep_set_link_mode(struct tsnep_adapter *adapter)
178 {
179 	u32 mode;
180 
181 	switch (adapter->phydev->speed) {
182 	case SPEED_100:
183 		mode = ECM_LINK_MODE_100;
184 		break;
185 	case SPEED_1000:
186 		mode = ECM_LINK_MODE_1000;
187 		break;
188 	default:
189 		mode = ECM_LINK_MODE_OFF;
190 		break;
191 	}
192 	iowrite32(mode, adapter->addr + ECM_STATUS);
193 }
194 
195 static void tsnep_phy_link_status_change(struct net_device *netdev)
196 {
197 	struct tsnep_adapter *adapter = netdev_priv(netdev);
198 	struct phy_device *phydev = netdev->phydev;
199 
200 	if (phydev->link)
201 		tsnep_set_link_mode(adapter);
202 
203 	phy_print_status(netdev->phydev);
204 }
205 
206 static int tsnep_phy_loopback(struct tsnep_adapter *adapter, bool enable)
207 {
208 	int retval;
209 
210 	retval = phy_loopback(adapter->phydev, enable);
211 
212 	/* PHY link state change is not signaled if loopback is enabled, it
213 	 * would delay a working loopback anyway, let's ensure that loopback
214 	 * is working immediately by setting link mode directly
215 	 */
216 	if (!retval && enable)
217 		tsnep_set_link_mode(adapter);
218 
219 	return retval;
220 }
221 
222 static int tsnep_phy_open(struct tsnep_adapter *adapter)
223 {
224 	struct phy_device *phydev;
225 	struct ethtool_eee ethtool_eee;
226 	int retval;
227 
228 	retval = phy_connect_direct(adapter->netdev, adapter->phydev,
229 				    tsnep_phy_link_status_change,
230 				    adapter->phy_mode);
231 	if (retval)
232 		return retval;
233 	phydev = adapter->netdev->phydev;
234 
235 	/* MAC supports only 100Mbps|1000Mbps full duplex
236 	 * SPE (Single Pair Ethernet) is also an option but not implemented yet
237 	 */
238 	phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_10baseT_Half_BIT);
239 	phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_10baseT_Full_BIT);
240 	phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_100baseT_Half_BIT);
241 	phy_remove_link_mode(phydev, ETHTOOL_LINK_MODE_1000baseT_Half_BIT);
242 
243 	/* disable EEE autoneg, EEE not supported by TSNEP */
244 	memset(&ethtool_eee, 0, sizeof(ethtool_eee));
245 	phy_ethtool_set_eee(adapter->phydev, &ethtool_eee);
246 
247 	adapter->phydev->irq = PHY_MAC_INTERRUPT;
248 	phy_start(adapter->phydev);
249 
250 	return 0;
251 }
252 
253 static void tsnep_phy_close(struct tsnep_adapter *adapter)
254 {
255 	phy_stop(adapter->netdev->phydev);
256 	phy_disconnect(adapter->netdev->phydev);
257 }
258 
259 static void tsnep_tx_ring_cleanup(struct tsnep_tx *tx)
260 {
261 	struct device *dmadev = tx->adapter->dmadev;
262 	int i;
263 
264 	memset(tx->entry, 0, sizeof(tx->entry));
265 
266 	for (i = 0; i < TSNEP_RING_PAGE_COUNT; i++) {
267 		if (tx->page[i]) {
268 			dma_free_coherent(dmadev, PAGE_SIZE, tx->page[i],
269 					  tx->page_dma[i]);
270 			tx->page[i] = NULL;
271 			tx->page_dma[i] = 0;
272 		}
273 	}
274 }
275 
276 static int tsnep_tx_ring_create(struct tsnep_tx *tx)
277 {
278 	struct device *dmadev = tx->adapter->dmadev;
279 	struct tsnep_tx_entry *entry;
280 	struct tsnep_tx_entry *next_entry;
281 	int i, j;
282 	int retval;
283 
284 	for (i = 0; i < TSNEP_RING_PAGE_COUNT; i++) {
285 		tx->page[i] =
286 			dma_alloc_coherent(dmadev, PAGE_SIZE, &tx->page_dma[i],
287 					   GFP_KERNEL);
288 		if (!tx->page[i]) {
289 			retval = -ENOMEM;
290 			goto alloc_failed;
291 		}
292 		for (j = 0; j < TSNEP_RING_ENTRIES_PER_PAGE; j++) {
293 			entry = &tx->entry[TSNEP_RING_ENTRIES_PER_PAGE * i + j];
294 			entry->desc_wb = (struct tsnep_tx_desc_wb *)
295 				(((u8 *)tx->page[i]) + TSNEP_DESC_SIZE * j);
296 			entry->desc = (struct tsnep_tx_desc *)
297 				(((u8 *)entry->desc_wb) + TSNEP_DESC_OFFSET);
298 			entry->desc_dma = tx->page_dma[i] + TSNEP_DESC_SIZE * j;
299 			entry->owner_user_flag = false;
300 		}
301 	}
302 	for (i = 0; i < TSNEP_RING_SIZE; i++) {
303 		entry = &tx->entry[i];
304 		next_entry = &tx->entry[(i + 1) & TSNEP_RING_MASK];
305 		entry->desc->next = __cpu_to_le64(next_entry->desc_dma);
306 	}
307 
308 	return 0;
309 
310 alloc_failed:
311 	tsnep_tx_ring_cleanup(tx);
312 	return retval;
313 }
314 
315 static void tsnep_tx_init(struct tsnep_tx *tx)
316 {
317 	dma_addr_t dma;
318 
319 	dma = tx->entry[0].desc_dma | TSNEP_RESET_OWNER_COUNTER;
320 	iowrite32(DMA_ADDR_LOW(dma), tx->addr + TSNEP_TX_DESC_ADDR_LOW);
321 	iowrite32(DMA_ADDR_HIGH(dma), tx->addr + TSNEP_TX_DESC_ADDR_HIGH);
322 	tx->write = 0;
323 	tx->read = 0;
324 	tx->owner_counter = 1;
325 	tx->increment_owner_counter = TSNEP_RING_SIZE - 1;
326 }
327 
328 static void tsnep_tx_enable(struct tsnep_tx *tx)
329 {
330 	struct netdev_queue *nq;
331 
332 	nq = netdev_get_tx_queue(tx->adapter->netdev, tx->queue_index);
333 
334 	__netif_tx_lock_bh(nq);
335 	netif_tx_wake_queue(nq);
336 	__netif_tx_unlock_bh(nq);
337 }
338 
339 static void tsnep_tx_disable(struct tsnep_tx *tx, struct napi_struct *napi)
340 {
341 	struct netdev_queue *nq;
342 	u32 val;
343 
344 	nq = netdev_get_tx_queue(tx->adapter->netdev, tx->queue_index);
345 
346 	__netif_tx_lock_bh(nq);
347 	netif_tx_stop_queue(nq);
348 	__netif_tx_unlock_bh(nq);
349 
350 	/* wait until TX is done in hardware */
351 	readx_poll_timeout(ioread32, tx->addr + TSNEP_CONTROL, val,
352 			   ((val & TSNEP_CONTROL_TX_ENABLE) == 0), 10000,
353 			   1000000);
354 
355 	/* wait until TX is also done in software */
356 	while (READ_ONCE(tx->read) != tx->write) {
357 		napi_schedule(napi);
358 		napi_synchronize(napi);
359 	}
360 }
361 
362 static void tsnep_tx_activate(struct tsnep_tx *tx, int index, int length,
363 			      bool last)
364 {
365 	struct tsnep_tx_entry *entry = &tx->entry[index];
366 
367 	entry->properties = 0;
368 	/* xdpf and zc are union with skb */
369 	if (entry->skb) {
370 		entry->properties = length & TSNEP_DESC_LENGTH_MASK;
371 		entry->properties |= TSNEP_DESC_INTERRUPT_FLAG;
372 		if ((entry->type & TSNEP_TX_TYPE_SKB) &&
373 		    (skb_shinfo(entry->skb)->tx_flags & SKBTX_IN_PROGRESS))
374 			entry->properties |= TSNEP_DESC_EXTENDED_WRITEBACK_FLAG;
375 
376 		/* toggle user flag to prevent false acknowledge
377 		 *
378 		 * Only the first fragment is acknowledged. For all other
379 		 * fragments no acknowledge is done and the last written owner
380 		 * counter stays in the writeback descriptor. Therefore, it is
381 		 * possible that the last written owner counter is identical to
382 		 * the new incremented owner counter and a false acknowledge is
383 		 * detected before the real acknowledge has been done by
384 		 * hardware.
385 		 *
386 		 * The user flag is used to prevent this situation. The user
387 		 * flag is copied to the writeback descriptor by the hardware
388 		 * and is used as additional acknowledge data. By toggeling the
389 		 * user flag only for the first fragment (which is
390 		 * acknowledged), it is guaranteed that the last acknowledge
391 		 * done for this descriptor has used a different user flag and
392 		 * cannot be detected as false acknowledge.
393 		 */
394 		entry->owner_user_flag = !entry->owner_user_flag;
395 	}
396 	if (last)
397 		entry->properties |= TSNEP_TX_DESC_LAST_FRAGMENT_FLAG;
398 	if (index == tx->increment_owner_counter) {
399 		tx->owner_counter++;
400 		if (tx->owner_counter == 4)
401 			tx->owner_counter = 1;
402 		tx->increment_owner_counter--;
403 		if (tx->increment_owner_counter < 0)
404 			tx->increment_owner_counter = TSNEP_RING_SIZE - 1;
405 	}
406 	entry->properties |=
407 		(tx->owner_counter << TSNEP_DESC_OWNER_COUNTER_SHIFT) &
408 		TSNEP_DESC_OWNER_COUNTER_MASK;
409 	if (entry->owner_user_flag)
410 		entry->properties |= TSNEP_TX_DESC_OWNER_USER_FLAG;
411 	entry->desc->more_properties =
412 		__cpu_to_le32(entry->len & TSNEP_DESC_LENGTH_MASK);
413 
414 	/* descriptor properties shall be written last, because valid data is
415 	 * signaled there
416 	 */
417 	dma_wmb();
418 
419 	entry->desc->properties = __cpu_to_le32(entry->properties);
420 }
421 
422 static int tsnep_tx_desc_available(struct tsnep_tx *tx)
423 {
424 	if (tx->read <= tx->write)
425 		return TSNEP_RING_SIZE - tx->write + tx->read - 1;
426 	else
427 		return tx->read - tx->write - 1;
428 }
429 
430 static int tsnep_tx_map(struct sk_buff *skb, struct tsnep_tx *tx, int count)
431 {
432 	struct device *dmadev = tx->adapter->dmadev;
433 	struct tsnep_tx_entry *entry;
434 	unsigned int len;
435 	dma_addr_t dma;
436 	int map_len = 0;
437 	int i;
438 
439 	for (i = 0; i < count; i++) {
440 		entry = &tx->entry[(tx->write + i) & TSNEP_RING_MASK];
441 
442 		if (!i) {
443 			len = skb_headlen(skb);
444 			dma = dma_map_single(dmadev, skb->data, len,
445 					     DMA_TO_DEVICE);
446 
447 			entry->type = TSNEP_TX_TYPE_SKB;
448 		} else {
449 			len = skb_frag_size(&skb_shinfo(skb)->frags[i - 1]);
450 			dma = skb_frag_dma_map(dmadev,
451 					       &skb_shinfo(skb)->frags[i - 1],
452 					       0, len, DMA_TO_DEVICE);
453 
454 			entry->type = TSNEP_TX_TYPE_SKB_FRAG;
455 		}
456 		if (dma_mapping_error(dmadev, dma))
457 			return -ENOMEM;
458 
459 		entry->len = len;
460 		dma_unmap_addr_set(entry, dma, dma);
461 
462 		entry->desc->tx = __cpu_to_le64(dma);
463 
464 		map_len += len;
465 	}
466 
467 	return map_len;
468 }
469 
470 static int tsnep_tx_unmap(struct tsnep_tx *tx, int index, int count)
471 {
472 	struct device *dmadev = tx->adapter->dmadev;
473 	struct tsnep_tx_entry *entry;
474 	int map_len = 0;
475 	int i;
476 
477 	for (i = 0; i < count; i++) {
478 		entry = &tx->entry[(index + i) & TSNEP_RING_MASK];
479 
480 		if (entry->len) {
481 			if (entry->type & TSNEP_TX_TYPE_SKB)
482 				dma_unmap_single(dmadev,
483 						 dma_unmap_addr(entry, dma),
484 						 dma_unmap_len(entry, len),
485 						 DMA_TO_DEVICE);
486 			else if (entry->type &
487 				 (TSNEP_TX_TYPE_SKB_FRAG | TSNEP_TX_TYPE_XDP_NDO))
488 				dma_unmap_page(dmadev,
489 					       dma_unmap_addr(entry, dma),
490 					       dma_unmap_len(entry, len),
491 					       DMA_TO_DEVICE);
492 			map_len += entry->len;
493 			entry->len = 0;
494 		}
495 	}
496 
497 	return map_len;
498 }
499 
500 static netdev_tx_t tsnep_xmit_frame_ring(struct sk_buff *skb,
501 					 struct tsnep_tx *tx)
502 {
503 	int count = 1;
504 	struct tsnep_tx_entry *entry;
505 	int length;
506 	int i;
507 	int retval;
508 
509 	if (skb_shinfo(skb)->nr_frags > 0)
510 		count += skb_shinfo(skb)->nr_frags;
511 
512 	if (tsnep_tx_desc_available(tx) < count) {
513 		/* ring full, shall not happen because queue is stopped if full
514 		 * below
515 		 */
516 		netif_stop_subqueue(tx->adapter->netdev, tx->queue_index);
517 
518 		return NETDEV_TX_BUSY;
519 	}
520 
521 	entry = &tx->entry[tx->write];
522 	entry->skb = skb;
523 
524 	retval = tsnep_tx_map(skb, tx, count);
525 	if (retval < 0) {
526 		tsnep_tx_unmap(tx, tx->write, count);
527 		dev_kfree_skb_any(entry->skb);
528 		entry->skb = NULL;
529 
530 		tx->dropped++;
531 
532 		return NETDEV_TX_OK;
533 	}
534 	length = retval;
535 
536 	if (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)
537 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
538 
539 	for (i = 0; i < count; i++)
540 		tsnep_tx_activate(tx, (tx->write + i) & TSNEP_RING_MASK, length,
541 				  i == count - 1);
542 	tx->write = (tx->write + count) & TSNEP_RING_MASK;
543 
544 	skb_tx_timestamp(skb);
545 
546 	/* descriptor properties shall be valid before hardware is notified */
547 	dma_wmb();
548 
549 	iowrite32(TSNEP_CONTROL_TX_ENABLE, tx->addr + TSNEP_CONTROL);
550 
551 	if (tsnep_tx_desc_available(tx) < (MAX_SKB_FRAGS + 1)) {
552 		/* ring can get full with next frame */
553 		netif_stop_subqueue(tx->adapter->netdev, tx->queue_index);
554 	}
555 
556 	return NETDEV_TX_OK;
557 }
558 
559 static int tsnep_xdp_tx_map(struct xdp_frame *xdpf, struct tsnep_tx *tx,
560 			    struct skb_shared_info *shinfo, int count, u32 type)
561 {
562 	struct device *dmadev = tx->adapter->dmadev;
563 	struct tsnep_tx_entry *entry;
564 	struct page *page;
565 	skb_frag_t *frag;
566 	unsigned int len;
567 	int map_len = 0;
568 	dma_addr_t dma;
569 	void *data;
570 	int i;
571 
572 	frag = NULL;
573 	len = xdpf->len;
574 	for (i = 0; i < count; i++) {
575 		entry = &tx->entry[(tx->write + i) & TSNEP_RING_MASK];
576 		if (type & TSNEP_TX_TYPE_XDP_NDO) {
577 			data = unlikely(frag) ? skb_frag_address(frag) :
578 						xdpf->data;
579 			dma = dma_map_single(dmadev, data, len, DMA_TO_DEVICE);
580 			if (dma_mapping_error(dmadev, dma))
581 				return -ENOMEM;
582 
583 			entry->type = TSNEP_TX_TYPE_XDP_NDO;
584 		} else {
585 			page = unlikely(frag) ? skb_frag_page(frag) :
586 						virt_to_page(xdpf->data);
587 			dma = page_pool_get_dma_addr(page);
588 			if (unlikely(frag))
589 				dma += skb_frag_off(frag);
590 			else
591 				dma += sizeof(*xdpf) + xdpf->headroom;
592 			dma_sync_single_for_device(dmadev, dma, len,
593 						   DMA_BIDIRECTIONAL);
594 
595 			entry->type = TSNEP_TX_TYPE_XDP_TX;
596 		}
597 
598 		entry->len = len;
599 		dma_unmap_addr_set(entry, dma, dma);
600 
601 		entry->desc->tx = __cpu_to_le64(dma);
602 
603 		map_len += len;
604 
605 		if (i + 1 < count) {
606 			frag = &shinfo->frags[i];
607 			len = skb_frag_size(frag);
608 		}
609 	}
610 
611 	return map_len;
612 }
613 
614 /* This function requires __netif_tx_lock is held by the caller. */
615 static bool tsnep_xdp_xmit_frame_ring(struct xdp_frame *xdpf,
616 				      struct tsnep_tx *tx, u32 type)
617 {
618 	struct skb_shared_info *shinfo = xdp_get_shared_info_from_frame(xdpf);
619 	struct tsnep_tx_entry *entry;
620 	int count, length, retval, i;
621 
622 	count = 1;
623 	if (unlikely(xdp_frame_has_frags(xdpf)))
624 		count += shinfo->nr_frags;
625 
626 	/* ensure that TX ring is not filled up by XDP, always MAX_SKB_FRAGS
627 	 * will be available for normal TX path and queue is stopped there if
628 	 * necessary
629 	 */
630 	if (tsnep_tx_desc_available(tx) < (MAX_SKB_FRAGS + 1 + count))
631 		return false;
632 
633 	entry = &tx->entry[tx->write];
634 	entry->xdpf = xdpf;
635 
636 	retval = tsnep_xdp_tx_map(xdpf, tx, shinfo, count, type);
637 	if (retval < 0) {
638 		tsnep_tx_unmap(tx, tx->write, count);
639 		entry->xdpf = NULL;
640 
641 		tx->dropped++;
642 
643 		return false;
644 	}
645 	length = retval;
646 
647 	for (i = 0; i < count; i++)
648 		tsnep_tx_activate(tx, (tx->write + i) & TSNEP_RING_MASK, length,
649 				  i == count - 1);
650 	tx->write = (tx->write + count) & TSNEP_RING_MASK;
651 
652 	/* descriptor properties shall be valid before hardware is notified */
653 	dma_wmb();
654 
655 	return true;
656 }
657 
658 static void tsnep_xdp_xmit_flush(struct tsnep_tx *tx)
659 {
660 	iowrite32(TSNEP_CONTROL_TX_ENABLE, tx->addr + TSNEP_CONTROL);
661 }
662 
663 static bool tsnep_xdp_xmit_back(struct tsnep_adapter *adapter,
664 				struct xdp_buff *xdp,
665 				struct netdev_queue *tx_nq, struct tsnep_tx *tx)
666 {
667 	struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
668 	bool xmit;
669 
670 	if (unlikely(!xdpf))
671 		return false;
672 
673 	__netif_tx_lock(tx_nq, smp_processor_id());
674 
675 	xmit = tsnep_xdp_xmit_frame_ring(xdpf, tx, TSNEP_TX_TYPE_XDP_TX);
676 
677 	/* Avoid transmit queue timeout since we share it with the slow path */
678 	if (xmit)
679 		txq_trans_cond_update(tx_nq);
680 
681 	__netif_tx_unlock(tx_nq);
682 
683 	return xmit;
684 }
685 
686 static int tsnep_xdp_tx_map_zc(struct xdp_desc *xdpd, struct tsnep_tx *tx)
687 {
688 	struct tsnep_tx_entry *entry;
689 	dma_addr_t dma;
690 
691 	entry = &tx->entry[tx->write];
692 	entry->zc = true;
693 
694 	dma = xsk_buff_raw_get_dma(tx->xsk_pool, xdpd->addr);
695 	xsk_buff_raw_dma_sync_for_device(tx->xsk_pool, dma, xdpd->len);
696 
697 	entry->type = TSNEP_TX_TYPE_XSK;
698 	entry->len = xdpd->len;
699 
700 	entry->desc->tx = __cpu_to_le64(dma);
701 
702 	return xdpd->len;
703 }
704 
705 static void tsnep_xdp_xmit_frame_ring_zc(struct xdp_desc *xdpd,
706 					 struct tsnep_tx *tx)
707 {
708 	int length;
709 
710 	length = tsnep_xdp_tx_map_zc(xdpd, tx);
711 
712 	tsnep_tx_activate(tx, tx->write, length, true);
713 	tx->write = (tx->write + 1) & TSNEP_RING_MASK;
714 }
715 
716 static void tsnep_xdp_xmit_zc(struct tsnep_tx *tx)
717 {
718 	int desc_available = tsnep_tx_desc_available(tx);
719 	struct xdp_desc *descs = tx->xsk_pool->tx_descs;
720 	int batch, i;
721 
722 	/* ensure that TX ring is not filled up by XDP, always MAX_SKB_FRAGS
723 	 * will be available for normal TX path and queue is stopped there if
724 	 * necessary
725 	 */
726 	if (desc_available <= (MAX_SKB_FRAGS + 1))
727 		return;
728 	desc_available -= MAX_SKB_FRAGS + 1;
729 
730 	batch = xsk_tx_peek_release_desc_batch(tx->xsk_pool, desc_available);
731 	for (i = 0; i < batch; i++)
732 		tsnep_xdp_xmit_frame_ring_zc(&descs[i], tx);
733 
734 	if (batch) {
735 		/* descriptor properties shall be valid before hardware is
736 		 * notified
737 		 */
738 		dma_wmb();
739 
740 		tsnep_xdp_xmit_flush(tx);
741 	}
742 }
743 
744 static bool tsnep_tx_poll(struct tsnep_tx *tx, int napi_budget)
745 {
746 	struct tsnep_tx_entry *entry;
747 	struct netdev_queue *nq;
748 	int xsk_frames = 0;
749 	int budget = 128;
750 	int length;
751 	int count;
752 
753 	nq = netdev_get_tx_queue(tx->adapter->netdev, tx->queue_index);
754 	__netif_tx_lock(nq, smp_processor_id());
755 
756 	do {
757 		if (tx->read == tx->write)
758 			break;
759 
760 		entry = &tx->entry[tx->read];
761 		if ((__le32_to_cpu(entry->desc_wb->properties) &
762 		     TSNEP_TX_DESC_OWNER_MASK) !=
763 		    (entry->properties & TSNEP_TX_DESC_OWNER_MASK))
764 			break;
765 
766 		/* descriptor properties shall be read first, because valid data
767 		 * is signaled there
768 		 */
769 		dma_rmb();
770 
771 		count = 1;
772 		if ((entry->type & TSNEP_TX_TYPE_SKB) &&
773 		    skb_shinfo(entry->skb)->nr_frags > 0)
774 			count += skb_shinfo(entry->skb)->nr_frags;
775 		else if ((entry->type & TSNEP_TX_TYPE_XDP) &&
776 			 xdp_frame_has_frags(entry->xdpf))
777 			count += xdp_get_shared_info_from_frame(entry->xdpf)->nr_frags;
778 
779 		length = tsnep_tx_unmap(tx, tx->read, count);
780 
781 		if ((entry->type & TSNEP_TX_TYPE_SKB) &&
782 		    (skb_shinfo(entry->skb)->tx_flags & SKBTX_IN_PROGRESS) &&
783 		    (__le32_to_cpu(entry->desc_wb->properties) &
784 		     TSNEP_DESC_EXTENDED_WRITEBACK_FLAG)) {
785 			struct skb_shared_hwtstamps hwtstamps;
786 			u64 timestamp;
787 
788 			if (skb_shinfo(entry->skb)->tx_flags &
789 			    SKBTX_HW_TSTAMP_USE_CYCLES)
790 				timestamp =
791 					__le64_to_cpu(entry->desc_wb->counter);
792 			else
793 				timestamp =
794 					__le64_to_cpu(entry->desc_wb->timestamp);
795 
796 			memset(&hwtstamps, 0, sizeof(hwtstamps));
797 			hwtstamps.hwtstamp = ns_to_ktime(timestamp);
798 
799 			skb_tstamp_tx(entry->skb, &hwtstamps);
800 		}
801 
802 		if (entry->type & TSNEP_TX_TYPE_SKB)
803 			napi_consume_skb(entry->skb, napi_budget);
804 		else if (entry->type & TSNEP_TX_TYPE_XDP)
805 			xdp_return_frame_rx_napi(entry->xdpf);
806 		else
807 			xsk_frames++;
808 		/* xdpf and zc are union with skb */
809 		entry->skb = NULL;
810 
811 		tx->read = (tx->read + count) & TSNEP_RING_MASK;
812 
813 		tx->packets++;
814 		tx->bytes += length + ETH_FCS_LEN;
815 
816 		budget--;
817 	} while (likely(budget));
818 
819 	if (tx->xsk_pool) {
820 		if (xsk_frames)
821 			xsk_tx_completed(tx->xsk_pool, xsk_frames);
822 		if (xsk_uses_need_wakeup(tx->xsk_pool))
823 			xsk_set_tx_need_wakeup(tx->xsk_pool);
824 		tsnep_xdp_xmit_zc(tx);
825 	}
826 
827 	if ((tsnep_tx_desc_available(tx) >= ((MAX_SKB_FRAGS + 1) * 2)) &&
828 	    netif_tx_queue_stopped(nq)) {
829 		netif_tx_wake_queue(nq);
830 	}
831 
832 	__netif_tx_unlock(nq);
833 
834 	return budget != 0;
835 }
836 
837 static bool tsnep_tx_pending(struct tsnep_tx *tx)
838 {
839 	struct tsnep_tx_entry *entry;
840 	struct netdev_queue *nq;
841 	bool pending = false;
842 
843 	nq = netdev_get_tx_queue(tx->adapter->netdev, tx->queue_index);
844 	__netif_tx_lock(nq, smp_processor_id());
845 
846 	if (tx->read != tx->write) {
847 		entry = &tx->entry[tx->read];
848 		if ((__le32_to_cpu(entry->desc_wb->properties) &
849 		     TSNEP_TX_DESC_OWNER_MASK) ==
850 		    (entry->properties & TSNEP_TX_DESC_OWNER_MASK))
851 			pending = true;
852 	}
853 
854 	__netif_tx_unlock(nq);
855 
856 	return pending;
857 }
858 
859 static int tsnep_tx_open(struct tsnep_tx *tx)
860 {
861 	int retval;
862 
863 	retval = tsnep_tx_ring_create(tx);
864 	if (retval)
865 		return retval;
866 
867 	tsnep_tx_init(tx);
868 
869 	return 0;
870 }
871 
872 static void tsnep_tx_close(struct tsnep_tx *tx)
873 {
874 	tsnep_tx_ring_cleanup(tx);
875 }
876 
877 static void tsnep_rx_ring_cleanup(struct tsnep_rx *rx)
878 {
879 	struct device *dmadev = rx->adapter->dmadev;
880 	struct tsnep_rx_entry *entry;
881 	int i;
882 
883 	for (i = 0; i < TSNEP_RING_SIZE; i++) {
884 		entry = &rx->entry[i];
885 		if (!rx->xsk_pool && entry->page)
886 			page_pool_put_full_page(rx->page_pool, entry->page,
887 						false);
888 		if (rx->xsk_pool && entry->xdp)
889 			xsk_buff_free(entry->xdp);
890 		/* xdp is union with page */
891 		entry->page = NULL;
892 	}
893 
894 	if (rx->page_pool)
895 		page_pool_destroy(rx->page_pool);
896 
897 	memset(rx->entry, 0, sizeof(rx->entry));
898 
899 	for (i = 0; i < TSNEP_RING_PAGE_COUNT; i++) {
900 		if (rx->page[i]) {
901 			dma_free_coherent(dmadev, PAGE_SIZE, rx->page[i],
902 					  rx->page_dma[i]);
903 			rx->page[i] = NULL;
904 			rx->page_dma[i] = 0;
905 		}
906 	}
907 }
908 
909 static int tsnep_rx_ring_create(struct tsnep_rx *rx)
910 {
911 	struct device *dmadev = rx->adapter->dmadev;
912 	struct tsnep_rx_entry *entry;
913 	struct page_pool_params pp_params = { 0 };
914 	struct tsnep_rx_entry *next_entry;
915 	int i, j;
916 	int retval;
917 
918 	for (i = 0; i < TSNEP_RING_PAGE_COUNT; i++) {
919 		rx->page[i] =
920 			dma_alloc_coherent(dmadev, PAGE_SIZE, &rx->page_dma[i],
921 					   GFP_KERNEL);
922 		if (!rx->page[i]) {
923 			retval = -ENOMEM;
924 			goto failed;
925 		}
926 		for (j = 0; j < TSNEP_RING_ENTRIES_PER_PAGE; j++) {
927 			entry = &rx->entry[TSNEP_RING_ENTRIES_PER_PAGE * i + j];
928 			entry->desc_wb = (struct tsnep_rx_desc_wb *)
929 				(((u8 *)rx->page[i]) + TSNEP_DESC_SIZE * j);
930 			entry->desc = (struct tsnep_rx_desc *)
931 				(((u8 *)entry->desc_wb) + TSNEP_DESC_OFFSET);
932 			entry->desc_dma = rx->page_dma[i] + TSNEP_DESC_SIZE * j;
933 		}
934 	}
935 
936 	pp_params.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV;
937 	pp_params.order = 0;
938 	pp_params.pool_size = TSNEP_RING_SIZE;
939 	pp_params.nid = dev_to_node(dmadev);
940 	pp_params.dev = dmadev;
941 	pp_params.dma_dir = DMA_BIDIRECTIONAL;
942 	pp_params.max_len = TSNEP_MAX_RX_BUF_SIZE;
943 	pp_params.offset = TSNEP_RX_OFFSET;
944 	rx->page_pool = page_pool_create(&pp_params);
945 	if (IS_ERR(rx->page_pool)) {
946 		retval = PTR_ERR(rx->page_pool);
947 		rx->page_pool = NULL;
948 		goto failed;
949 	}
950 
951 	for (i = 0; i < TSNEP_RING_SIZE; i++) {
952 		entry = &rx->entry[i];
953 		next_entry = &rx->entry[(i + 1) & TSNEP_RING_MASK];
954 		entry->desc->next = __cpu_to_le64(next_entry->desc_dma);
955 	}
956 
957 	return 0;
958 
959 failed:
960 	tsnep_rx_ring_cleanup(rx);
961 	return retval;
962 }
963 
964 static void tsnep_rx_init(struct tsnep_rx *rx)
965 {
966 	dma_addr_t dma;
967 
968 	dma = rx->entry[0].desc_dma | TSNEP_RESET_OWNER_COUNTER;
969 	iowrite32(DMA_ADDR_LOW(dma), rx->addr + TSNEP_RX_DESC_ADDR_LOW);
970 	iowrite32(DMA_ADDR_HIGH(dma), rx->addr + TSNEP_RX_DESC_ADDR_HIGH);
971 	rx->write = 0;
972 	rx->read = 0;
973 	rx->owner_counter = 1;
974 	rx->increment_owner_counter = TSNEP_RING_SIZE - 1;
975 }
976 
977 static void tsnep_rx_enable(struct tsnep_rx *rx)
978 {
979 	/* descriptor properties shall be valid before hardware is notified */
980 	dma_wmb();
981 
982 	iowrite32(TSNEP_CONTROL_RX_ENABLE, rx->addr + TSNEP_CONTROL);
983 }
984 
985 static void tsnep_rx_disable(struct tsnep_rx *rx)
986 {
987 	u32 val;
988 
989 	iowrite32(TSNEP_CONTROL_RX_DISABLE, rx->addr + TSNEP_CONTROL);
990 	readx_poll_timeout(ioread32, rx->addr + TSNEP_CONTROL, val,
991 			   ((val & TSNEP_CONTROL_RX_ENABLE) == 0), 10000,
992 			   1000000);
993 }
994 
995 static int tsnep_rx_desc_available(struct tsnep_rx *rx)
996 {
997 	if (rx->read <= rx->write)
998 		return TSNEP_RING_SIZE - rx->write + rx->read - 1;
999 	else
1000 		return rx->read - rx->write - 1;
1001 }
1002 
1003 static void tsnep_rx_free_page_buffer(struct tsnep_rx *rx)
1004 {
1005 	struct page **page;
1006 
1007 	/* last entry of page_buffer is always zero, because ring cannot be
1008 	 * filled completely
1009 	 */
1010 	page = rx->page_buffer;
1011 	while (*page) {
1012 		page_pool_put_full_page(rx->page_pool, *page, false);
1013 		*page = NULL;
1014 		page++;
1015 	}
1016 }
1017 
1018 static int tsnep_rx_alloc_page_buffer(struct tsnep_rx *rx)
1019 {
1020 	int i;
1021 
1022 	/* alloc for all ring entries except the last one, because ring cannot
1023 	 * be filled completely
1024 	 */
1025 	for (i = 0; i < TSNEP_RING_SIZE - 1; i++) {
1026 		rx->page_buffer[i] = page_pool_dev_alloc_pages(rx->page_pool);
1027 		if (!rx->page_buffer[i]) {
1028 			tsnep_rx_free_page_buffer(rx);
1029 
1030 			return -ENOMEM;
1031 		}
1032 	}
1033 
1034 	return 0;
1035 }
1036 
1037 static void tsnep_rx_set_page(struct tsnep_rx *rx, struct tsnep_rx_entry *entry,
1038 			      struct page *page)
1039 {
1040 	entry->page = page;
1041 	entry->len = TSNEP_MAX_RX_BUF_SIZE;
1042 	entry->dma = page_pool_get_dma_addr(entry->page);
1043 	entry->desc->rx = __cpu_to_le64(entry->dma + TSNEP_RX_OFFSET);
1044 }
1045 
1046 static int tsnep_rx_alloc_buffer(struct tsnep_rx *rx, int index)
1047 {
1048 	struct tsnep_rx_entry *entry = &rx->entry[index];
1049 	struct page *page;
1050 
1051 	page = page_pool_dev_alloc_pages(rx->page_pool);
1052 	if (unlikely(!page))
1053 		return -ENOMEM;
1054 	tsnep_rx_set_page(rx, entry, page);
1055 
1056 	return 0;
1057 }
1058 
1059 static void tsnep_rx_reuse_buffer(struct tsnep_rx *rx, int index)
1060 {
1061 	struct tsnep_rx_entry *entry = &rx->entry[index];
1062 	struct tsnep_rx_entry *read = &rx->entry[rx->read];
1063 
1064 	tsnep_rx_set_page(rx, entry, read->page);
1065 	read->page = NULL;
1066 }
1067 
1068 static void tsnep_rx_activate(struct tsnep_rx *rx, int index)
1069 {
1070 	struct tsnep_rx_entry *entry = &rx->entry[index];
1071 
1072 	/* TSNEP_MAX_RX_BUF_SIZE and TSNEP_XSK_RX_BUF_SIZE are multiple of 4 */
1073 	entry->properties = entry->len & TSNEP_DESC_LENGTH_MASK;
1074 	entry->properties |= TSNEP_DESC_INTERRUPT_FLAG;
1075 	if (index == rx->increment_owner_counter) {
1076 		rx->owner_counter++;
1077 		if (rx->owner_counter == 4)
1078 			rx->owner_counter = 1;
1079 		rx->increment_owner_counter--;
1080 		if (rx->increment_owner_counter < 0)
1081 			rx->increment_owner_counter = TSNEP_RING_SIZE - 1;
1082 	}
1083 	entry->properties |=
1084 		(rx->owner_counter << TSNEP_DESC_OWNER_COUNTER_SHIFT) &
1085 		TSNEP_DESC_OWNER_COUNTER_MASK;
1086 
1087 	/* descriptor properties shall be written last, because valid data is
1088 	 * signaled there
1089 	 */
1090 	dma_wmb();
1091 
1092 	entry->desc->properties = __cpu_to_le32(entry->properties);
1093 }
1094 
1095 static int tsnep_rx_alloc(struct tsnep_rx *rx, int count, bool reuse)
1096 {
1097 	bool alloc_failed = false;
1098 	int i, index;
1099 
1100 	for (i = 0; i < count && !alloc_failed; i++) {
1101 		index = (rx->write + i) & TSNEP_RING_MASK;
1102 
1103 		if (unlikely(tsnep_rx_alloc_buffer(rx, index))) {
1104 			rx->alloc_failed++;
1105 			alloc_failed = true;
1106 
1107 			/* reuse only if no other allocation was successful */
1108 			if (i == 0 && reuse)
1109 				tsnep_rx_reuse_buffer(rx, index);
1110 			else
1111 				break;
1112 		}
1113 
1114 		tsnep_rx_activate(rx, index);
1115 	}
1116 
1117 	if (i)
1118 		rx->write = (rx->write + i) & TSNEP_RING_MASK;
1119 
1120 	return i;
1121 }
1122 
1123 static int tsnep_rx_refill(struct tsnep_rx *rx, int count, bool reuse)
1124 {
1125 	int desc_refilled;
1126 
1127 	desc_refilled = tsnep_rx_alloc(rx, count, reuse);
1128 	if (desc_refilled)
1129 		tsnep_rx_enable(rx);
1130 
1131 	return desc_refilled;
1132 }
1133 
1134 static void tsnep_rx_set_xdp(struct tsnep_rx *rx, struct tsnep_rx_entry *entry,
1135 			     struct xdp_buff *xdp)
1136 {
1137 	entry->xdp = xdp;
1138 	entry->len = TSNEP_XSK_RX_BUF_SIZE;
1139 	entry->dma = xsk_buff_xdp_get_dma(entry->xdp);
1140 	entry->desc->rx = __cpu_to_le64(entry->dma);
1141 }
1142 
1143 static void tsnep_rx_reuse_buffer_zc(struct tsnep_rx *rx, int index)
1144 {
1145 	struct tsnep_rx_entry *entry = &rx->entry[index];
1146 	struct tsnep_rx_entry *read = &rx->entry[rx->read];
1147 
1148 	tsnep_rx_set_xdp(rx, entry, read->xdp);
1149 	read->xdp = NULL;
1150 }
1151 
1152 static int tsnep_rx_alloc_zc(struct tsnep_rx *rx, int count, bool reuse)
1153 {
1154 	u32 allocated;
1155 	int i;
1156 
1157 	allocated = xsk_buff_alloc_batch(rx->xsk_pool, rx->xdp_batch, count);
1158 	for (i = 0; i < allocated; i++) {
1159 		int index = (rx->write + i) & TSNEP_RING_MASK;
1160 		struct tsnep_rx_entry *entry = &rx->entry[index];
1161 
1162 		tsnep_rx_set_xdp(rx, entry, rx->xdp_batch[i]);
1163 		tsnep_rx_activate(rx, index);
1164 	}
1165 	if (i == 0) {
1166 		rx->alloc_failed++;
1167 
1168 		if (reuse) {
1169 			tsnep_rx_reuse_buffer_zc(rx, rx->write);
1170 			tsnep_rx_activate(rx, rx->write);
1171 		}
1172 	}
1173 
1174 	if (i)
1175 		rx->write = (rx->write + i) & TSNEP_RING_MASK;
1176 
1177 	return i;
1178 }
1179 
1180 static void tsnep_rx_free_zc(struct tsnep_rx *rx)
1181 {
1182 	int i;
1183 
1184 	for (i = 0; i < TSNEP_RING_SIZE; i++) {
1185 		struct tsnep_rx_entry *entry = &rx->entry[i];
1186 
1187 		if (entry->xdp)
1188 			xsk_buff_free(entry->xdp);
1189 		entry->xdp = NULL;
1190 	}
1191 }
1192 
1193 static int tsnep_rx_refill_zc(struct tsnep_rx *rx, int count, bool reuse)
1194 {
1195 	int desc_refilled;
1196 
1197 	desc_refilled = tsnep_rx_alloc_zc(rx, count, reuse);
1198 	if (desc_refilled)
1199 		tsnep_rx_enable(rx);
1200 
1201 	return desc_refilled;
1202 }
1203 
1204 static bool tsnep_xdp_run_prog(struct tsnep_rx *rx, struct bpf_prog *prog,
1205 			       struct xdp_buff *xdp, int *status,
1206 			       struct netdev_queue *tx_nq, struct tsnep_tx *tx)
1207 {
1208 	unsigned int length;
1209 	unsigned int sync;
1210 	u32 act;
1211 
1212 	length = xdp->data_end - xdp->data_hard_start - XDP_PACKET_HEADROOM;
1213 
1214 	act = bpf_prog_run_xdp(prog, xdp);
1215 	switch (act) {
1216 	case XDP_PASS:
1217 		return false;
1218 	case XDP_TX:
1219 		if (!tsnep_xdp_xmit_back(rx->adapter, xdp, tx_nq, tx))
1220 			goto out_failure;
1221 		*status |= TSNEP_XDP_TX;
1222 		return true;
1223 	case XDP_REDIRECT:
1224 		if (xdp_do_redirect(rx->adapter->netdev, xdp, prog) < 0)
1225 			goto out_failure;
1226 		*status |= TSNEP_XDP_REDIRECT;
1227 		return true;
1228 	default:
1229 		bpf_warn_invalid_xdp_action(rx->adapter->netdev, prog, act);
1230 		fallthrough;
1231 	case XDP_ABORTED:
1232 out_failure:
1233 		trace_xdp_exception(rx->adapter->netdev, prog, act);
1234 		fallthrough;
1235 	case XDP_DROP:
1236 		/* Due xdp_adjust_tail: DMA sync for_device cover max len CPU
1237 		 * touch
1238 		 */
1239 		sync = xdp->data_end - xdp->data_hard_start -
1240 		       XDP_PACKET_HEADROOM;
1241 		sync = max(sync, length);
1242 		page_pool_put_page(rx->page_pool, virt_to_head_page(xdp->data),
1243 				   sync, true);
1244 		return true;
1245 	}
1246 }
1247 
1248 static bool tsnep_xdp_run_prog_zc(struct tsnep_rx *rx, struct bpf_prog *prog,
1249 				  struct xdp_buff *xdp, int *status,
1250 				  struct netdev_queue *tx_nq,
1251 				  struct tsnep_tx *tx)
1252 {
1253 	u32 act;
1254 
1255 	act = bpf_prog_run_xdp(prog, xdp);
1256 
1257 	/* XDP_REDIRECT is the main action for zero-copy */
1258 	if (likely(act == XDP_REDIRECT)) {
1259 		if (xdp_do_redirect(rx->adapter->netdev, xdp, prog) < 0)
1260 			goto out_failure;
1261 		*status |= TSNEP_XDP_REDIRECT;
1262 		return true;
1263 	}
1264 
1265 	switch (act) {
1266 	case XDP_PASS:
1267 		return false;
1268 	case XDP_TX:
1269 		if (!tsnep_xdp_xmit_back(rx->adapter, xdp, tx_nq, tx))
1270 			goto out_failure;
1271 		*status |= TSNEP_XDP_TX;
1272 		return true;
1273 	default:
1274 		bpf_warn_invalid_xdp_action(rx->adapter->netdev, prog, act);
1275 		fallthrough;
1276 	case XDP_ABORTED:
1277 out_failure:
1278 		trace_xdp_exception(rx->adapter->netdev, prog, act);
1279 		fallthrough;
1280 	case XDP_DROP:
1281 		xsk_buff_free(xdp);
1282 		return true;
1283 	}
1284 }
1285 
1286 static void tsnep_finalize_xdp(struct tsnep_adapter *adapter, int status,
1287 			       struct netdev_queue *tx_nq, struct tsnep_tx *tx)
1288 {
1289 	if (status & TSNEP_XDP_TX) {
1290 		__netif_tx_lock(tx_nq, smp_processor_id());
1291 		tsnep_xdp_xmit_flush(tx);
1292 		__netif_tx_unlock(tx_nq);
1293 	}
1294 
1295 	if (status & TSNEP_XDP_REDIRECT)
1296 		xdp_do_flush();
1297 }
1298 
1299 static struct sk_buff *tsnep_build_skb(struct tsnep_rx *rx, struct page *page,
1300 				       int length)
1301 {
1302 	struct sk_buff *skb;
1303 
1304 	skb = napi_build_skb(page_address(page), PAGE_SIZE);
1305 	if (unlikely(!skb))
1306 		return NULL;
1307 
1308 	/* update pointers within the skb to store the data */
1309 	skb_reserve(skb, TSNEP_RX_OFFSET + TSNEP_RX_INLINE_METADATA_SIZE);
1310 	__skb_put(skb, length - ETH_FCS_LEN);
1311 
1312 	if (rx->adapter->hwtstamp_config.rx_filter == HWTSTAMP_FILTER_ALL) {
1313 		struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
1314 		struct tsnep_rx_inline *rx_inline =
1315 			(struct tsnep_rx_inline *)(page_address(page) +
1316 						   TSNEP_RX_OFFSET);
1317 
1318 		skb_shinfo(skb)->tx_flags |=
1319 			SKBTX_HW_TSTAMP_NETDEV;
1320 		memset(hwtstamps, 0, sizeof(*hwtstamps));
1321 		hwtstamps->netdev_data = rx_inline;
1322 	}
1323 
1324 	skb_record_rx_queue(skb, rx->queue_index);
1325 	skb->protocol = eth_type_trans(skb, rx->adapter->netdev);
1326 
1327 	return skb;
1328 }
1329 
1330 static void tsnep_rx_page(struct tsnep_rx *rx, struct napi_struct *napi,
1331 			  struct page *page, int length)
1332 {
1333 	struct sk_buff *skb;
1334 
1335 	skb = tsnep_build_skb(rx, page, length);
1336 	if (skb) {
1337 		skb_mark_for_recycle(skb);
1338 
1339 		rx->packets++;
1340 		rx->bytes += length;
1341 		if (skb->pkt_type == PACKET_MULTICAST)
1342 			rx->multicast++;
1343 
1344 		napi_gro_receive(napi, skb);
1345 	} else {
1346 		page_pool_recycle_direct(rx->page_pool, page);
1347 
1348 		rx->dropped++;
1349 	}
1350 }
1351 
1352 static int tsnep_rx_poll(struct tsnep_rx *rx, struct napi_struct *napi,
1353 			 int budget)
1354 {
1355 	struct device *dmadev = rx->adapter->dmadev;
1356 	enum dma_data_direction dma_dir;
1357 	struct tsnep_rx_entry *entry;
1358 	struct netdev_queue *tx_nq;
1359 	struct bpf_prog *prog;
1360 	struct xdp_buff xdp;
1361 	struct tsnep_tx *tx;
1362 	int desc_available;
1363 	int xdp_status = 0;
1364 	int done = 0;
1365 	int length;
1366 
1367 	desc_available = tsnep_rx_desc_available(rx);
1368 	dma_dir = page_pool_get_dma_dir(rx->page_pool);
1369 	prog = READ_ONCE(rx->adapter->xdp_prog);
1370 	if (prog) {
1371 		tx_nq = netdev_get_tx_queue(rx->adapter->netdev,
1372 					    rx->tx_queue_index);
1373 		tx = &rx->adapter->tx[rx->tx_queue_index];
1374 
1375 		xdp_init_buff(&xdp, PAGE_SIZE, &rx->xdp_rxq);
1376 	}
1377 
1378 	while (likely(done < budget) && (rx->read != rx->write)) {
1379 		entry = &rx->entry[rx->read];
1380 		if ((__le32_to_cpu(entry->desc_wb->properties) &
1381 		     TSNEP_DESC_OWNER_COUNTER_MASK) !=
1382 		    (entry->properties & TSNEP_DESC_OWNER_COUNTER_MASK))
1383 			break;
1384 		done++;
1385 
1386 		if (desc_available >= TSNEP_RING_RX_REFILL) {
1387 			bool reuse = desc_available >= TSNEP_RING_RX_REUSE;
1388 
1389 			desc_available -= tsnep_rx_refill(rx, desc_available,
1390 							  reuse);
1391 			if (!entry->page) {
1392 				/* buffer has been reused for refill to prevent
1393 				 * empty RX ring, thus buffer cannot be used for
1394 				 * RX processing
1395 				 */
1396 				rx->read = (rx->read + 1) & TSNEP_RING_MASK;
1397 				desc_available++;
1398 
1399 				rx->dropped++;
1400 
1401 				continue;
1402 			}
1403 		}
1404 
1405 		/* descriptor properties shall be read first, because valid data
1406 		 * is signaled there
1407 		 */
1408 		dma_rmb();
1409 
1410 		prefetch(page_address(entry->page) + TSNEP_RX_OFFSET);
1411 		length = __le32_to_cpu(entry->desc_wb->properties) &
1412 			 TSNEP_DESC_LENGTH_MASK;
1413 		dma_sync_single_range_for_cpu(dmadev, entry->dma,
1414 					      TSNEP_RX_OFFSET, length, dma_dir);
1415 
1416 		/* RX metadata with timestamps is in front of actual data,
1417 		 * subtract metadata size to get length of actual data and
1418 		 * consider metadata size as offset of actual data during RX
1419 		 * processing
1420 		 */
1421 		length -= TSNEP_RX_INLINE_METADATA_SIZE;
1422 
1423 		rx->read = (rx->read + 1) & TSNEP_RING_MASK;
1424 		desc_available++;
1425 
1426 		if (prog) {
1427 			bool consume;
1428 
1429 			xdp_prepare_buff(&xdp, page_address(entry->page),
1430 					 XDP_PACKET_HEADROOM + TSNEP_RX_INLINE_METADATA_SIZE,
1431 					 length, false);
1432 
1433 			consume = tsnep_xdp_run_prog(rx, prog, &xdp,
1434 						     &xdp_status, tx_nq, tx);
1435 			if (consume) {
1436 				rx->packets++;
1437 				rx->bytes += length;
1438 
1439 				entry->page = NULL;
1440 
1441 				continue;
1442 			}
1443 		}
1444 
1445 		tsnep_rx_page(rx, napi, entry->page, length);
1446 		entry->page = NULL;
1447 	}
1448 
1449 	if (xdp_status)
1450 		tsnep_finalize_xdp(rx->adapter, xdp_status, tx_nq, tx);
1451 
1452 	if (desc_available)
1453 		tsnep_rx_refill(rx, desc_available, false);
1454 
1455 	return done;
1456 }
1457 
1458 static int tsnep_rx_poll_zc(struct tsnep_rx *rx, struct napi_struct *napi,
1459 			    int budget)
1460 {
1461 	struct tsnep_rx_entry *entry;
1462 	struct netdev_queue *tx_nq;
1463 	struct bpf_prog *prog;
1464 	struct tsnep_tx *tx;
1465 	int desc_available;
1466 	int xdp_status = 0;
1467 	struct page *page;
1468 	int done = 0;
1469 	int length;
1470 
1471 	desc_available = tsnep_rx_desc_available(rx);
1472 	prog = READ_ONCE(rx->adapter->xdp_prog);
1473 	if (prog) {
1474 		tx_nq = netdev_get_tx_queue(rx->adapter->netdev,
1475 					    rx->tx_queue_index);
1476 		tx = &rx->adapter->tx[rx->tx_queue_index];
1477 	}
1478 
1479 	while (likely(done < budget) && (rx->read != rx->write)) {
1480 		entry = &rx->entry[rx->read];
1481 		if ((__le32_to_cpu(entry->desc_wb->properties) &
1482 		     TSNEP_DESC_OWNER_COUNTER_MASK) !=
1483 		    (entry->properties & TSNEP_DESC_OWNER_COUNTER_MASK))
1484 			break;
1485 		done++;
1486 
1487 		if (desc_available >= TSNEP_RING_RX_REFILL) {
1488 			bool reuse = desc_available >= TSNEP_RING_RX_REUSE;
1489 
1490 			desc_available -= tsnep_rx_refill_zc(rx, desc_available,
1491 							     reuse);
1492 			if (!entry->xdp) {
1493 				/* buffer has been reused for refill to prevent
1494 				 * empty RX ring, thus buffer cannot be used for
1495 				 * RX processing
1496 				 */
1497 				rx->read = (rx->read + 1) & TSNEP_RING_MASK;
1498 				desc_available++;
1499 
1500 				rx->dropped++;
1501 
1502 				continue;
1503 			}
1504 		}
1505 
1506 		/* descriptor properties shall be read first, because valid data
1507 		 * is signaled there
1508 		 */
1509 		dma_rmb();
1510 
1511 		prefetch(entry->xdp->data);
1512 		length = __le32_to_cpu(entry->desc_wb->properties) &
1513 			 TSNEP_DESC_LENGTH_MASK;
1514 		xsk_buff_set_size(entry->xdp, length);
1515 		xsk_buff_dma_sync_for_cpu(entry->xdp, rx->xsk_pool);
1516 
1517 		/* RX metadata with timestamps is in front of actual data,
1518 		 * subtract metadata size to get length of actual data and
1519 		 * consider metadata size as offset of actual data during RX
1520 		 * processing
1521 		 */
1522 		length -= TSNEP_RX_INLINE_METADATA_SIZE;
1523 
1524 		rx->read = (rx->read + 1) & TSNEP_RING_MASK;
1525 		desc_available++;
1526 
1527 		if (prog) {
1528 			bool consume;
1529 
1530 			entry->xdp->data += TSNEP_RX_INLINE_METADATA_SIZE;
1531 			entry->xdp->data_meta += TSNEP_RX_INLINE_METADATA_SIZE;
1532 
1533 			consume = tsnep_xdp_run_prog_zc(rx, prog, entry->xdp,
1534 							&xdp_status, tx_nq, tx);
1535 			if (consume) {
1536 				rx->packets++;
1537 				rx->bytes += length;
1538 
1539 				entry->xdp = NULL;
1540 
1541 				continue;
1542 			}
1543 		}
1544 
1545 		page = page_pool_dev_alloc_pages(rx->page_pool);
1546 		if (page) {
1547 			memcpy(page_address(page) + TSNEP_RX_OFFSET,
1548 			       entry->xdp->data - TSNEP_RX_INLINE_METADATA_SIZE,
1549 			       length + TSNEP_RX_INLINE_METADATA_SIZE);
1550 			tsnep_rx_page(rx, napi, page, length);
1551 		} else {
1552 			rx->dropped++;
1553 		}
1554 		xsk_buff_free(entry->xdp);
1555 		entry->xdp = NULL;
1556 	}
1557 
1558 	if (xdp_status)
1559 		tsnep_finalize_xdp(rx->adapter, xdp_status, tx_nq, tx);
1560 
1561 	if (desc_available)
1562 		desc_available -= tsnep_rx_refill_zc(rx, desc_available, false);
1563 
1564 	if (xsk_uses_need_wakeup(rx->xsk_pool)) {
1565 		if (desc_available)
1566 			xsk_set_rx_need_wakeup(rx->xsk_pool);
1567 		else
1568 			xsk_clear_rx_need_wakeup(rx->xsk_pool);
1569 
1570 		return done;
1571 	}
1572 
1573 	return desc_available ? budget : done;
1574 }
1575 
1576 static bool tsnep_rx_pending(struct tsnep_rx *rx)
1577 {
1578 	struct tsnep_rx_entry *entry;
1579 
1580 	if (rx->read != rx->write) {
1581 		entry = &rx->entry[rx->read];
1582 		if ((__le32_to_cpu(entry->desc_wb->properties) &
1583 		     TSNEP_DESC_OWNER_COUNTER_MASK) ==
1584 		    (entry->properties & TSNEP_DESC_OWNER_COUNTER_MASK))
1585 			return true;
1586 	}
1587 
1588 	return false;
1589 }
1590 
1591 static int tsnep_rx_open(struct tsnep_rx *rx)
1592 {
1593 	int desc_available;
1594 	int retval;
1595 
1596 	retval = tsnep_rx_ring_create(rx);
1597 	if (retval)
1598 		return retval;
1599 
1600 	tsnep_rx_init(rx);
1601 
1602 	desc_available = tsnep_rx_desc_available(rx);
1603 	if (rx->xsk_pool)
1604 		retval = tsnep_rx_alloc_zc(rx, desc_available, false);
1605 	else
1606 		retval = tsnep_rx_alloc(rx, desc_available, false);
1607 	if (retval != desc_available) {
1608 		retval = -ENOMEM;
1609 
1610 		goto alloc_failed;
1611 	}
1612 
1613 	/* prealloc pages to prevent allocation failures when XSK pool is
1614 	 * disabled at runtime
1615 	 */
1616 	if (rx->xsk_pool) {
1617 		retval = tsnep_rx_alloc_page_buffer(rx);
1618 		if (retval)
1619 			goto alloc_failed;
1620 	}
1621 
1622 	return 0;
1623 
1624 alloc_failed:
1625 	tsnep_rx_ring_cleanup(rx);
1626 	return retval;
1627 }
1628 
1629 static void tsnep_rx_close(struct tsnep_rx *rx)
1630 {
1631 	if (rx->xsk_pool)
1632 		tsnep_rx_free_page_buffer(rx);
1633 
1634 	tsnep_rx_ring_cleanup(rx);
1635 }
1636 
1637 static void tsnep_rx_reopen(struct tsnep_rx *rx)
1638 {
1639 	struct page **page = rx->page_buffer;
1640 	int i;
1641 
1642 	tsnep_rx_init(rx);
1643 
1644 	for (i = 0; i < TSNEP_RING_SIZE; i++) {
1645 		struct tsnep_rx_entry *entry = &rx->entry[i];
1646 
1647 		/* defined initial values for properties are required for
1648 		 * correct owner counter checking
1649 		 */
1650 		entry->desc->properties = 0;
1651 		entry->desc_wb->properties = 0;
1652 
1653 		/* prevent allocation failures by reusing kept pages */
1654 		if (*page) {
1655 			tsnep_rx_set_page(rx, entry, *page);
1656 			tsnep_rx_activate(rx, rx->write);
1657 			rx->write++;
1658 
1659 			*page = NULL;
1660 			page++;
1661 		}
1662 	}
1663 }
1664 
1665 static void tsnep_rx_reopen_xsk(struct tsnep_rx *rx)
1666 {
1667 	struct page **page = rx->page_buffer;
1668 	u32 allocated;
1669 	int i;
1670 
1671 	tsnep_rx_init(rx);
1672 
1673 	/* alloc all ring entries except the last one, because ring cannot be
1674 	 * filled completely, as many buffers as possible is enough as wakeup is
1675 	 * done if new buffers are available
1676 	 */
1677 	allocated = xsk_buff_alloc_batch(rx->xsk_pool, rx->xdp_batch,
1678 					 TSNEP_RING_SIZE - 1);
1679 
1680 	for (i = 0; i < TSNEP_RING_SIZE; i++) {
1681 		struct tsnep_rx_entry *entry = &rx->entry[i];
1682 
1683 		/* keep pages to prevent allocation failures when xsk is
1684 		 * disabled
1685 		 */
1686 		if (entry->page) {
1687 			*page = entry->page;
1688 			entry->page = NULL;
1689 
1690 			page++;
1691 		}
1692 
1693 		/* defined initial values for properties are required for
1694 		 * correct owner counter checking
1695 		 */
1696 		entry->desc->properties = 0;
1697 		entry->desc_wb->properties = 0;
1698 
1699 		if (allocated) {
1700 			tsnep_rx_set_xdp(rx, entry,
1701 					 rx->xdp_batch[allocated - 1]);
1702 			tsnep_rx_activate(rx, rx->write);
1703 			rx->write++;
1704 
1705 			allocated--;
1706 		}
1707 	}
1708 }
1709 
1710 static bool tsnep_pending(struct tsnep_queue *queue)
1711 {
1712 	if (queue->tx && tsnep_tx_pending(queue->tx))
1713 		return true;
1714 
1715 	if (queue->rx && tsnep_rx_pending(queue->rx))
1716 		return true;
1717 
1718 	return false;
1719 }
1720 
1721 static int tsnep_poll(struct napi_struct *napi, int budget)
1722 {
1723 	struct tsnep_queue *queue = container_of(napi, struct tsnep_queue,
1724 						 napi);
1725 	bool complete = true;
1726 	int done = 0;
1727 
1728 	if (queue->tx)
1729 		complete = tsnep_tx_poll(queue->tx, budget);
1730 
1731 	if (queue->rx) {
1732 		done = queue->rx->xsk_pool ?
1733 		       tsnep_rx_poll_zc(queue->rx, napi, budget) :
1734 		       tsnep_rx_poll(queue->rx, napi, budget);
1735 		if (done >= budget)
1736 			complete = false;
1737 	}
1738 
1739 	/* if all work not completed, return budget and keep polling */
1740 	if (!complete)
1741 		return budget;
1742 
1743 	if (likely(napi_complete_done(napi, done))) {
1744 		tsnep_enable_irq(queue->adapter, queue->irq_mask);
1745 
1746 		/* reschedule if work is already pending, prevent rotten packets
1747 		 * which are transmitted or received after polling but before
1748 		 * interrupt enable
1749 		 */
1750 		if (tsnep_pending(queue)) {
1751 			tsnep_disable_irq(queue->adapter, queue->irq_mask);
1752 			napi_schedule(napi);
1753 		}
1754 	}
1755 
1756 	return min(done, budget - 1);
1757 }
1758 
1759 static int tsnep_request_irq(struct tsnep_queue *queue, bool first)
1760 {
1761 	const char *name = netdev_name(queue->adapter->netdev);
1762 	irq_handler_t handler;
1763 	void *dev;
1764 	int retval;
1765 
1766 	if (first) {
1767 		sprintf(queue->name, "%s-mac", name);
1768 		handler = tsnep_irq;
1769 		dev = queue->adapter;
1770 	} else {
1771 		if (queue->tx && queue->rx)
1772 			sprintf(queue->name, "%s-txrx-%d", name,
1773 				queue->rx->queue_index);
1774 		else if (queue->tx)
1775 			sprintf(queue->name, "%s-tx-%d", name,
1776 				queue->tx->queue_index);
1777 		else
1778 			sprintf(queue->name, "%s-rx-%d", name,
1779 				queue->rx->queue_index);
1780 		handler = tsnep_irq_txrx;
1781 		dev = queue;
1782 	}
1783 
1784 	retval = request_irq(queue->irq, handler, 0, queue->name, dev);
1785 	if (retval) {
1786 		/* if name is empty, then interrupt won't be freed */
1787 		memset(queue->name, 0, sizeof(queue->name));
1788 	}
1789 
1790 	return retval;
1791 }
1792 
1793 static void tsnep_free_irq(struct tsnep_queue *queue, bool first)
1794 {
1795 	void *dev;
1796 
1797 	if (!strlen(queue->name))
1798 		return;
1799 
1800 	if (first)
1801 		dev = queue->adapter;
1802 	else
1803 		dev = queue;
1804 
1805 	free_irq(queue->irq, dev);
1806 	memset(queue->name, 0, sizeof(queue->name));
1807 }
1808 
1809 static void tsnep_queue_close(struct tsnep_queue *queue, bool first)
1810 {
1811 	struct tsnep_rx *rx = queue->rx;
1812 
1813 	tsnep_free_irq(queue, first);
1814 
1815 	if (rx) {
1816 		if (xdp_rxq_info_is_reg(&rx->xdp_rxq))
1817 			xdp_rxq_info_unreg(&rx->xdp_rxq);
1818 		if (xdp_rxq_info_is_reg(&rx->xdp_rxq_zc))
1819 			xdp_rxq_info_unreg(&rx->xdp_rxq_zc);
1820 	}
1821 
1822 	netif_napi_del(&queue->napi);
1823 }
1824 
1825 static int tsnep_queue_open(struct tsnep_adapter *adapter,
1826 			    struct tsnep_queue *queue, bool first)
1827 {
1828 	struct tsnep_rx *rx = queue->rx;
1829 	struct tsnep_tx *tx = queue->tx;
1830 	int retval;
1831 
1832 	netif_napi_add(adapter->netdev, &queue->napi, tsnep_poll);
1833 
1834 	if (rx) {
1835 		/* choose TX queue for XDP_TX */
1836 		if (tx)
1837 			rx->tx_queue_index = tx->queue_index;
1838 		else if (rx->queue_index < adapter->num_tx_queues)
1839 			rx->tx_queue_index = rx->queue_index;
1840 		else
1841 			rx->tx_queue_index = 0;
1842 
1843 		/* prepare both memory models to eliminate possible registration
1844 		 * errors when memory model is switched between page pool and
1845 		 * XSK pool during runtime
1846 		 */
1847 		retval = xdp_rxq_info_reg(&rx->xdp_rxq, adapter->netdev,
1848 					  rx->queue_index, queue->napi.napi_id);
1849 		if (retval)
1850 			goto failed;
1851 		retval = xdp_rxq_info_reg_mem_model(&rx->xdp_rxq,
1852 						    MEM_TYPE_PAGE_POOL,
1853 						    rx->page_pool);
1854 		if (retval)
1855 			goto failed;
1856 		retval = xdp_rxq_info_reg(&rx->xdp_rxq_zc, adapter->netdev,
1857 					  rx->queue_index, queue->napi.napi_id);
1858 		if (retval)
1859 			goto failed;
1860 		retval = xdp_rxq_info_reg_mem_model(&rx->xdp_rxq_zc,
1861 						    MEM_TYPE_XSK_BUFF_POOL,
1862 						    NULL);
1863 		if (retval)
1864 			goto failed;
1865 		if (rx->xsk_pool)
1866 			xsk_pool_set_rxq_info(rx->xsk_pool, &rx->xdp_rxq_zc);
1867 	}
1868 
1869 	retval = tsnep_request_irq(queue, first);
1870 	if (retval) {
1871 		netif_err(adapter, drv, adapter->netdev,
1872 			  "can't get assigned irq %d.\n", queue->irq);
1873 		goto failed;
1874 	}
1875 
1876 	return 0;
1877 
1878 failed:
1879 	tsnep_queue_close(queue, first);
1880 
1881 	return retval;
1882 }
1883 
1884 static void tsnep_queue_enable(struct tsnep_queue *queue)
1885 {
1886 	napi_enable(&queue->napi);
1887 	tsnep_enable_irq(queue->adapter, queue->irq_mask);
1888 
1889 	if (queue->tx)
1890 		tsnep_tx_enable(queue->tx);
1891 
1892 	if (queue->rx)
1893 		tsnep_rx_enable(queue->rx);
1894 }
1895 
1896 static void tsnep_queue_disable(struct tsnep_queue *queue)
1897 {
1898 	if (queue->tx)
1899 		tsnep_tx_disable(queue->tx, &queue->napi);
1900 
1901 	napi_disable(&queue->napi);
1902 	tsnep_disable_irq(queue->adapter, queue->irq_mask);
1903 
1904 	/* disable RX after NAPI polling has been disabled, because RX can be
1905 	 * enabled during NAPI polling
1906 	 */
1907 	if (queue->rx)
1908 		tsnep_rx_disable(queue->rx);
1909 }
1910 
1911 static int tsnep_netdev_open(struct net_device *netdev)
1912 {
1913 	struct tsnep_adapter *adapter = netdev_priv(netdev);
1914 	int i, retval;
1915 
1916 	for (i = 0; i < adapter->num_queues; i++) {
1917 		if (adapter->queue[i].tx) {
1918 			retval = tsnep_tx_open(adapter->queue[i].tx);
1919 			if (retval)
1920 				goto failed;
1921 		}
1922 		if (adapter->queue[i].rx) {
1923 			retval = tsnep_rx_open(adapter->queue[i].rx);
1924 			if (retval)
1925 				goto failed;
1926 		}
1927 
1928 		retval = tsnep_queue_open(adapter, &adapter->queue[i], i == 0);
1929 		if (retval)
1930 			goto failed;
1931 	}
1932 
1933 	retval = netif_set_real_num_tx_queues(adapter->netdev,
1934 					      adapter->num_tx_queues);
1935 	if (retval)
1936 		goto failed;
1937 	retval = netif_set_real_num_rx_queues(adapter->netdev,
1938 					      adapter->num_rx_queues);
1939 	if (retval)
1940 		goto failed;
1941 
1942 	tsnep_enable_irq(adapter, ECM_INT_LINK);
1943 	retval = tsnep_phy_open(adapter);
1944 	if (retval)
1945 		goto phy_failed;
1946 
1947 	for (i = 0; i < adapter->num_queues; i++)
1948 		tsnep_queue_enable(&adapter->queue[i]);
1949 
1950 	return 0;
1951 
1952 phy_failed:
1953 	tsnep_disable_irq(adapter, ECM_INT_LINK);
1954 failed:
1955 	for (i = 0; i < adapter->num_queues; i++) {
1956 		tsnep_queue_close(&adapter->queue[i], i == 0);
1957 
1958 		if (adapter->queue[i].rx)
1959 			tsnep_rx_close(adapter->queue[i].rx);
1960 		if (adapter->queue[i].tx)
1961 			tsnep_tx_close(adapter->queue[i].tx);
1962 	}
1963 	return retval;
1964 }
1965 
1966 static int tsnep_netdev_close(struct net_device *netdev)
1967 {
1968 	struct tsnep_adapter *adapter = netdev_priv(netdev);
1969 	int i;
1970 
1971 	tsnep_disable_irq(adapter, ECM_INT_LINK);
1972 	tsnep_phy_close(adapter);
1973 
1974 	for (i = 0; i < adapter->num_queues; i++) {
1975 		tsnep_queue_disable(&adapter->queue[i]);
1976 
1977 		tsnep_queue_close(&adapter->queue[i], i == 0);
1978 
1979 		if (adapter->queue[i].rx)
1980 			tsnep_rx_close(adapter->queue[i].rx);
1981 		if (adapter->queue[i].tx)
1982 			tsnep_tx_close(adapter->queue[i].tx);
1983 	}
1984 
1985 	return 0;
1986 }
1987 
1988 int tsnep_enable_xsk(struct tsnep_queue *queue, struct xsk_buff_pool *pool)
1989 {
1990 	bool running = netif_running(queue->adapter->netdev);
1991 	u32 frame_size;
1992 
1993 	frame_size = xsk_pool_get_rx_frame_size(pool);
1994 	if (frame_size < TSNEP_XSK_RX_BUF_SIZE)
1995 		return -EOPNOTSUPP;
1996 
1997 	queue->rx->page_buffer = kcalloc(TSNEP_RING_SIZE,
1998 					 sizeof(*queue->rx->page_buffer),
1999 					 GFP_KERNEL);
2000 	if (!queue->rx->page_buffer)
2001 		return -ENOMEM;
2002 	queue->rx->xdp_batch = kcalloc(TSNEP_RING_SIZE,
2003 				       sizeof(*queue->rx->xdp_batch),
2004 				       GFP_KERNEL);
2005 	if (!queue->rx->xdp_batch) {
2006 		kfree(queue->rx->page_buffer);
2007 		queue->rx->page_buffer = NULL;
2008 
2009 		return -ENOMEM;
2010 	}
2011 
2012 	xsk_pool_set_rxq_info(pool, &queue->rx->xdp_rxq_zc);
2013 
2014 	if (running)
2015 		tsnep_queue_disable(queue);
2016 
2017 	queue->tx->xsk_pool = pool;
2018 	queue->rx->xsk_pool = pool;
2019 
2020 	if (running) {
2021 		tsnep_rx_reopen_xsk(queue->rx);
2022 		tsnep_queue_enable(queue);
2023 	}
2024 
2025 	return 0;
2026 }
2027 
2028 void tsnep_disable_xsk(struct tsnep_queue *queue)
2029 {
2030 	bool running = netif_running(queue->adapter->netdev);
2031 
2032 	if (running)
2033 		tsnep_queue_disable(queue);
2034 
2035 	tsnep_rx_free_zc(queue->rx);
2036 
2037 	queue->rx->xsk_pool = NULL;
2038 	queue->tx->xsk_pool = NULL;
2039 
2040 	if (running) {
2041 		tsnep_rx_reopen(queue->rx);
2042 		tsnep_queue_enable(queue);
2043 	}
2044 
2045 	kfree(queue->rx->xdp_batch);
2046 	queue->rx->xdp_batch = NULL;
2047 	kfree(queue->rx->page_buffer);
2048 	queue->rx->page_buffer = NULL;
2049 }
2050 
2051 static netdev_tx_t tsnep_netdev_xmit_frame(struct sk_buff *skb,
2052 					   struct net_device *netdev)
2053 {
2054 	struct tsnep_adapter *adapter = netdev_priv(netdev);
2055 	u16 queue_mapping = skb_get_queue_mapping(skb);
2056 
2057 	if (queue_mapping >= adapter->num_tx_queues)
2058 		queue_mapping = 0;
2059 
2060 	return tsnep_xmit_frame_ring(skb, &adapter->tx[queue_mapping]);
2061 }
2062 
2063 static int tsnep_netdev_ioctl(struct net_device *netdev, struct ifreq *ifr,
2064 			      int cmd)
2065 {
2066 	if (!netif_running(netdev))
2067 		return -EINVAL;
2068 	if (cmd == SIOCSHWTSTAMP || cmd == SIOCGHWTSTAMP)
2069 		return tsnep_ptp_ioctl(netdev, ifr, cmd);
2070 	return phy_mii_ioctl(netdev->phydev, ifr, cmd);
2071 }
2072 
2073 static void tsnep_netdev_set_multicast(struct net_device *netdev)
2074 {
2075 	struct tsnep_adapter *adapter = netdev_priv(netdev);
2076 
2077 	u16 rx_filter = 0;
2078 
2079 	/* configured MAC address and broadcasts are never filtered */
2080 	if (netdev->flags & IFF_PROMISC) {
2081 		rx_filter |= TSNEP_RX_FILTER_ACCEPT_ALL_MULTICASTS;
2082 		rx_filter |= TSNEP_RX_FILTER_ACCEPT_ALL_UNICASTS;
2083 	} else if (!netdev_mc_empty(netdev) || (netdev->flags & IFF_ALLMULTI)) {
2084 		rx_filter |= TSNEP_RX_FILTER_ACCEPT_ALL_MULTICASTS;
2085 	}
2086 	iowrite16(rx_filter, adapter->addr + TSNEP_RX_FILTER);
2087 }
2088 
2089 static void tsnep_netdev_get_stats64(struct net_device *netdev,
2090 				     struct rtnl_link_stats64 *stats)
2091 {
2092 	struct tsnep_adapter *adapter = netdev_priv(netdev);
2093 	u32 reg;
2094 	u32 val;
2095 	int i;
2096 
2097 	for (i = 0; i < adapter->num_tx_queues; i++) {
2098 		stats->tx_packets += adapter->tx[i].packets;
2099 		stats->tx_bytes += adapter->tx[i].bytes;
2100 		stats->tx_dropped += adapter->tx[i].dropped;
2101 	}
2102 	for (i = 0; i < adapter->num_rx_queues; i++) {
2103 		stats->rx_packets += adapter->rx[i].packets;
2104 		stats->rx_bytes += adapter->rx[i].bytes;
2105 		stats->rx_dropped += adapter->rx[i].dropped;
2106 		stats->multicast += adapter->rx[i].multicast;
2107 
2108 		reg = ioread32(adapter->addr + TSNEP_QUEUE(i) +
2109 			       TSNEP_RX_STATISTIC);
2110 		val = (reg & TSNEP_RX_STATISTIC_NO_DESC_MASK) >>
2111 		      TSNEP_RX_STATISTIC_NO_DESC_SHIFT;
2112 		stats->rx_dropped += val;
2113 		val = (reg & TSNEP_RX_STATISTIC_BUFFER_TOO_SMALL_MASK) >>
2114 		      TSNEP_RX_STATISTIC_BUFFER_TOO_SMALL_SHIFT;
2115 		stats->rx_dropped += val;
2116 		val = (reg & TSNEP_RX_STATISTIC_FIFO_OVERFLOW_MASK) >>
2117 		      TSNEP_RX_STATISTIC_FIFO_OVERFLOW_SHIFT;
2118 		stats->rx_errors += val;
2119 		stats->rx_fifo_errors += val;
2120 		val = (reg & TSNEP_RX_STATISTIC_INVALID_FRAME_MASK) >>
2121 		      TSNEP_RX_STATISTIC_INVALID_FRAME_SHIFT;
2122 		stats->rx_errors += val;
2123 		stats->rx_frame_errors += val;
2124 	}
2125 
2126 	reg = ioread32(adapter->addr + ECM_STAT);
2127 	val = (reg & ECM_STAT_RX_ERR_MASK) >> ECM_STAT_RX_ERR_SHIFT;
2128 	stats->rx_errors += val;
2129 	val = (reg & ECM_STAT_INV_FRM_MASK) >> ECM_STAT_INV_FRM_SHIFT;
2130 	stats->rx_errors += val;
2131 	stats->rx_crc_errors += val;
2132 	val = (reg & ECM_STAT_FWD_RX_ERR_MASK) >> ECM_STAT_FWD_RX_ERR_SHIFT;
2133 	stats->rx_errors += val;
2134 }
2135 
2136 static void tsnep_mac_set_address(struct tsnep_adapter *adapter, u8 *addr)
2137 {
2138 	iowrite32(*(u32 *)addr, adapter->addr + TSNEP_MAC_ADDRESS_LOW);
2139 	iowrite16(*(u16 *)(addr + sizeof(u32)),
2140 		  adapter->addr + TSNEP_MAC_ADDRESS_HIGH);
2141 
2142 	ether_addr_copy(adapter->mac_address, addr);
2143 	netif_info(adapter, drv, adapter->netdev, "MAC address set to %pM\n",
2144 		   addr);
2145 }
2146 
2147 static int tsnep_netdev_set_mac_address(struct net_device *netdev, void *addr)
2148 {
2149 	struct tsnep_adapter *adapter = netdev_priv(netdev);
2150 	struct sockaddr *sock_addr = addr;
2151 	int retval;
2152 
2153 	retval = eth_prepare_mac_addr_change(netdev, sock_addr);
2154 	if (retval)
2155 		return retval;
2156 	eth_hw_addr_set(netdev, sock_addr->sa_data);
2157 	tsnep_mac_set_address(adapter, sock_addr->sa_data);
2158 
2159 	return 0;
2160 }
2161 
2162 static int tsnep_netdev_set_features(struct net_device *netdev,
2163 				     netdev_features_t features)
2164 {
2165 	struct tsnep_adapter *adapter = netdev_priv(netdev);
2166 	netdev_features_t changed = netdev->features ^ features;
2167 	bool enable;
2168 	int retval = 0;
2169 
2170 	if (changed & NETIF_F_LOOPBACK) {
2171 		enable = !!(features & NETIF_F_LOOPBACK);
2172 		retval = tsnep_phy_loopback(adapter, enable);
2173 	}
2174 
2175 	return retval;
2176 }
2177 
2178 static ktime_t tsnep_netdev_get_tstamp(struct net_device *netdev,
2179 				       const struct skb_shared_hwtstamps *hwtstamps,
2180 				       bool cycles)
2181 {
2182 	struct tsnep_rx_inline *rx_inline = hwtstamps->netdev_data;
2183 	u64 timestamp;
2184 
2185 	if (cycles)
2186 		timestamp = __le64_to_cpu(rx_inline->counter);
2187 	else
2188 		timestamp = __le64_to_cpu(rx_inline->timestamp);
2189 
2190 	return ns_to_ktime(timestamp);
2191 }
2192 
2193 static int tsnep_netdev_bpf(struct net_device *dev, struct netdev_bpf *bpf)
2194 {
2195 	struct tsnep_adapter *adapter = netdev_priv(dev);
2196 
2197 	switch (bpf->command) {
2198 	case XDP_SETUP_PROG:
2199 		return tsnep_xdp_setup_prog(adapter, bpf->prog, bpf->extack);
2200 	case XDP_SETUP_XSK_POOL:
2201 		return tsnep_xdp_setup_pool(adapter, bpf->xsk.pool,
2202 					    bpf->xsk.queue_id);
2203 	default:
2204 		return -EOPNOTSUPP;
2205 	}
2206 }
2207 
2208 static struct tsnep_tx *tsnep_xdp_get_tx(struct tsnep_adapter *adapter, u32 cpu)
2209 {
2210 	if (cpu >= TSNEP_MAX_QUEUES)
2211 		cpu &= TSNEP_MAX_QUEUES - 1;
2212 
2213 	while (cpu >= adapter->num_tx_queues)
2214 		cpu -= adapter->num_tx_queues;
2215 
2216 	return &adapter->tx[cpu];
2217 }
2218 
2219 static int tsnep_netdev_xdp_xmit(struct net_device *dev, int n,
2220 				 struct xdp_frame **xdp, u32 flags)
2221 {
2222 	struct tsnep_adapter *adapter = netdev_priv(dev);
2223 	u32 cpu = smp_processor_id();
2224 	struct netdev_queue *nq;
2225 	struct tsnep_tx *tx;
2226 	int nxmit;
2227 	bool xmit;
2228 
2229 	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
2230 		return -EINVAL;
2231 
2232 	tx = tsnep_xdp_get_tx(adapter, cpu);
2233 	nq = netdev_get_tx_queue(adapter->netdev, tx->queue_index);
2234 
2235 	__netif_tx_lock(nq, cpu);
2236 
2237 	for (nxmit = 0; nxmit < n; nxmit++) {
2238 		xmit = tsnep_xdp_xmit_frame_ring(xdp[nxmit], tx,
2239 						 TSNEP_TX_TYPE_XDP_NDO);
2240 		if (!xmit)
2241 			break;
2242 
2243 		/* avoid transmit queue timeout since we share it with the slow
2244 		 * path
2245 		 */
2246 		txq_trans_cond_update(nq);
2247 	}
2248 
2249 	if (flags & XDP_XMIT_FLUSH)
2250 		tsnep_xdp_xmit_flush(tx);
2251 
2252 	__netif_tx_unlock(nq);
2253 
2254 	return nxmit;
2255 }
2256 
2257 static int tsnep_netdev_xsk_wakeup(struct net_device *dev, u32 queue_id,
2258 				   u32 flags)
2259 {
2260 	struct tsnep_adapter *adapter = netdev_priv(dev);
2261 	struct tsnep_queue *queue;
2262 
2263 	if (queue_id >= adapter->num_rx_queues ||
2264 	    queue_id >= adapter->num_tx_queues)
2265 		return -EINVAL;
2266 
2267 	queue = &adapter->queue[queue_id];
2268 
2269 	if (!napi_if_scheduled_mark_missed(&queue->napi))
2270 		napi_schedule(&queue->napi);
2271 
2272 	return 0;
2273 }
2274 
2275 static const struct net_device_ops tsnep_netdev_ops = {
2276 	.ndo_open = tsnep_netdev_open,
2277 	.ndo_stop = tsnep_netdev_close,
2278 	.ndo_start_xmit = tsnep_netdev_xmit_frame,
2279 	.ndo_eth_ioctl = tsnep_netdev_ioctl,
2280 	.ndo_set_rx_mode = tsnep_netdev_set_multicast,
2281 	.ndo_get_stats64 = tsnep_netdev_get_stats64,
2282 	.ndo_set_mac_address = tsnep_netdev_set_mac_address,
2283 	.ndo_set_features = tsnep_netdev_set_features,
2284 	.ndo_get_tstamp = tsnep_netdev_get_tstamp,
2285 	.ndo_setup_tc = tsnep_tc_setup,
2286 	.ndo_bpf = tsnep_netdev_bpf,
2287 	.ndo_xdp_xmit = tsnep_netdev_xdp_xmit,
2288 	.ndo_xsk_wakeup = tsnep_netdev_xsk_wakeup,
2289 };
2290 
2291 static int tsnep_mac_init(struct tsnep_adapter *adapter)
2292 {
2293 	int retval;
2294 
2295 	/* initialize RX filtering, at least configured MAC address and
2296 	 * broadcast are not filtered
2297 	 */
2298 	iowrite16(0, adapter->addr + TSNEP_RX_FILTER);
2299 
2300 	/* try to get MAC address in the following order:
2301 	 * - device tree
2302 	 * - valid MAC address already set
2303 	 * - MAC address register if valid
2304 	 * - random MAC address
2305 	 */
2306 	retval = of_get_mac_address(adapter->pdev->dev.of_node,
2307 				    adapter->mac_address);
2308 	if (retval == -EPROBE_DEFER)
2309 		return retval;
2310 	if (retval && !is_valid_ether_addr(adapter->mac_address)) {
2311 		*(u32 *)adapter->mac_address =
2312 			ioread32(adapter->addr + TSNEP_MAC_ADDRESS_LOW);
2313 		*(u16 *)(adapter->mac_address + sizeof(u32)) =
2314 			ioread16(adapter->addr + TSNEP_MAC_ADDRESS_HIGH);
2315 		if (!is_valid_ether_addr(adapter->mac_address))
2316 			eth_random_addr(adapter->mac_address);
2317 	}
2318 
2319 	tsnep_mac_set_address(adapter, adapter->mac_address);
2320 	eth_hw_addr_set(adapter->netdev, adapter->mac_address);
2321 
2322 	return 0;
2323 }
2324 
2325 static int tsnep_mdio_init(struct tsnep_adapter *adapter)
2326 {
2327 	struct device_node *np = adapter->pdev->dev.of_node;
2328 	int retval;
2329 
2330 	if (np) {
2331 		np = of_get_child_by_name(np, "mdio");
2332 		if (!np)
2333 			return 0;
2334 
2335 		adapter->suppress_preamble =
2336 			of_property_read_bool(np, "suppress-preamble");
2337 	}
2338 
2339 	adapter->mdiobus = devm_mdiobus_alloc(&adapter->pdev->dev);
2340 	if (!adapter->mdiobus) {
2341 		retval = -ENOMEM;
2342 
2343 		goto out;
2344 	}
2345 
2346 	adapter->mdiobus->priv = (void *)adapter;
2347 	adapter->mdiobus->parent = &adapter->pdev->dev;
2348 	adapter->mdiobus->read = tsnep_mdiobus_read;
2349 	adapter->mdiobus->write = tsnep_mdiobus_write;
2350 	adapter->mdiobus->name = TSNEP "-mdiobus";
2351 	snprintf(adapter->mdiobus->id, MII_BUS_ID_SIZE, "%s",
2352 		 adapter->pdev->name);
2353 
2354 	/* do not scan broadcast address */
2355 	adapter->mdiobus->phy_mask = 0x0000001;
2356 
2357 	retval = of_mdiobus_register(adapter->mdiobus, np);
2358 
2359 out:
2360 	of_node_put(np);
2361 
2362 	return retval;
2363 }
2364 
2365 static int tsnep_phy_init(struct tsnep_adapter *adapter)
2366 {
2367 	struct device_node *phy_node;
2368 	int retval;
2369 
2370 	retval = of_get_phy_mode(adapter->pdev->dev.of_node,
2371 				 &adapter->phy_mode);
2372 	if (retval)
2373 		adapter->phy_mode = PHY_INTERFACE_MODE_GMII;
2374 
2375 	phy_node = of_parse_phandle(adapter->pdev->dev.of_node, "phy-handle",
2376 				    0);
2377 	adapter->phydev = of_phy_find_device(phy_node);
2378 	of_node_put(phy_node);
2379 	if (!adapter->phydev && adapter->mdiobus)
2380 		adapter->phydev = phy_find_first(adapter->mdiobus);
2381 	if (!adapter->phydev)
2382 		return -EIO;
2383 
2384 	return 0;
2385 }
2386 
2387 static int tsnep_queue_init(struct tsnep_adapter *adapter, int queue_count)
2388 {
2389 	u32 irq_mask = ECM_INT_TX_0 | ECM_INT_RX_0;
2390 	char name[8];
2391 	int i;
2392 	int retval;
2393 
2394 	/* one TX/RX queue pair for netdev is mandatory */
2395 	if (platform_irq_count(adapter->pdev) == 1)
2396 		retval = platform_get_irq(adapter->pdev, 0);
2397 	else
2398 		retval = platform_get_irq_byname(adapter->pdev, "mac");
2399 	if (retval < 0)
2400 		return retval;
2401 	adapter->num_tx_queues = 1;
2402 	adapter->num_rx_queues = 1;
2403 	adapter->num_queues = 1;
2404 	adapter->queue[0].adapter = adapter;
2405 	adapter->queue[0].irq = retval;
2406 	adapter->queue[0].tx = &adapter->tx[0];
2407 	adapter->queue[0].tx->adapter = adapter;
2408 	adapter->queue[0].tx->addr = adapter->addr + TSNEP_QUEUE(0);
2409 	adapter->queue[0].tx->queue_index = 0;
2410 	adapter->queue[0].rx = &adapter->rx[0];
2411 	adapter->queue[0].rx->adapter = adapter;
2412 	adapter->queue[0].rx->addr = adapter->addr + TSNEP_QUEUE(0);
2413 	adapter->queue[0].rx->queue_index = 0;
2414 	adapter->queue[0].irq_mask = irq_mask;
2415 	adapter->queue[0].irq_delay_addr = adapter->addr + ECM_INT_DELAY;
2416 	retval = tsnep_set_irq_coalesce(&adapter->queue[0],
2417 					TSNEP_COALESCE_USECS_DEFAULT);
2418 	if (retval < 0)
2419 		return retval;
2420 
2421 	adapter->netdev->irq = adapter->queue[0].irq;
2422 
2423 	/* add additional TX/RX queue pairs only if dedicated interrupt is
2424 	 * available
2425 	 */
2426 	for (i = 1; i < queue_count; i++) {
2427 		sprintf(name, "txrx-%d", i);
2428 		retval = platform_get_irq_byname_optional(adapter->pdev, name);
2429 		if (retval < 0)
2430 			break;
2431 
2432 		adapter->num_tx_queues++;
2433 		adapter->num_rx_queues++;
2434 		adapter->num_queues++;
2435 		adapter->queue[i].adapter = adapter;
2436 		adapter->queue[i].irq = retval;
2437 		adapter->queue[i].tx = &adapter->tx[i];
2438 		adapter->queue[i].tx->adapter = adapter;
2439 		adapter->queue[i].tx->addr = adapter->addr + TSNEP_QUEUE(i);
2440 		adapter->queue[i].tx->queue_index = i;
2441 		adapter->queue[i].rx = &adapter->rx[i];
2442 		adapter->queue[i].rx->adapter = adapter;
2443 		adapter->queue[i].rx->addr = adapter->addr + TSNEP_QUEUE(i);
2444 		adapter->queue[i].rx->queue_index = i;
2445 		adapter->queue[i].irq_mask =
2446 			irq_mask << (ECM_INT_TXRX_SHIFT * i);
2447 		adapter->queue[i].irq_delay_addr =
2448 			adapter->addr + ECM_INT_DELAY + ECM_INT_DELAY_OFFSET * i;
2449 		retval = tsnep_set_irq_coalesce(&adapter->queue[i],
2450 						TSNEP_COALESCE_USECS_DEFAULT);
2451 		if (retval < 0)
2452 			return retval;
2453 	}
2454 
2455 	return 0;
2456 }
2457 
2458 static int tsnep_probe(struct platform_device *pdev)
2459 {
2460 	struct tsnep_adapter *adapter;
2461 	struct net_device *netdev;
2462 	struct resource *io;
2463 	u32 type;
2464 	int revision;
2465 	int version;
2466 	int queue_count;
2467 	int retval;
2468 
2469 	netdev = devm_alloc_etherdev_mqs(&pdev->dev,
2470 					 sizeof(struct tsnep_adapter),
2471 					 TSNEP_MAX_QUEUES, TSNEP_MAX_QUEUES);
2472 	if (!netdev)
2473 		return -ENODEV;
2474 	SET_NETDEV_DEV(netdev, &pdev->dev);
2475 	adapter = netdev_priv(netdev);
2476 	platform_set_drvdata(pdev, adapter);
2477 	adapter->pdev = pdev;
2478 	adapter->dmadev = &pdev->dev;
2479 	adapter->netdev = netdev;
2480 	adapter->msg_enable = NETIF_MSG_DRV | NETIF_MSG_PROBE |
2481 			      NETIF_MSG_LINK | NETIF_MSG_IFUP |
2482 			      NETIF_MSG_IFDOWN | NETIF_MSG_TX_QUEUED;
2483 
2484 	netdev->min_mtu = ETH_MIN_MTU;
2485 	netdev->max_mtu = TSNEP_MAX_FRAME_SIZE;
2486 
2487 	mutex_init(&adapter->gate_control_lock);
2488 	mutex_init(&adapter->rxnfc_lock);
2489 	INIT_LIST_HEAD(&adapter->rxnfc_rules);
2490 
2491 	io = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2492 	adapter->addr = devm_ioremap_resource(&pdev->dev, io);
2493 	if (IS_ERR(adapter->addr))
2494 		return PTR_ERR(adapter->addr);
2495 	netdev->mem_start = io->start;
2496 	netdev->mem_end = io->end;
2497 
2498 	type = ioread32(adapter->addr + ECM_TYPE);
2499 	revision = (type & ECM_REVISION_MASK) >> ECM_REVISION_SHIFT;
2500 	version = (type & ECM_VERSION_MASK) >> ECM_VERSION_SHIFT;
2501 	queue_count = (type & ECM_QUEUE_COUNT_MASK) >> ECM_QUEUE_COUNT_SHIFT;
2502 	adapter->gate_control = type & ECM_GATE_CONTROL;
2503 	adapter->rxnfc_max = TSNEP_RX_ASSIGN_ETHER_TYPE_COUNT;
2504 
2505 	tsnep_disable_irq(adapter, ECM_INT_ALL);
2506 
2507 	retval = tsnep_queue_init(adapter, queue_count);
2508 	if (retval)
2509 		return retval;
2510 
2511 	retval = dma_set_mask_and_coherent(&adapter->pdev->dev,
2512 					   DMA_BIT_MASK(64));
2513 	if (retval) {
2514 		dev_err(&adapter->pdev->dev, "no usable DMA configuration.\n");
2515 		return retval;
2516 	}
2517 
2518 	retval = tsnep_mac_init(adapter);
2519 	if (retval)
2520 		return retval;
2521 
2522 	retval = tsnep_mdio_init(adapter);
2523 	if (retval)
2524 		goto mdio_init_failed;
2525 
2526 	retval = tsnep_phy_init(adapter);
2527 	if (retval)
2528 		goto phy_init_failed;
2529 
2530 	retval = tsnep_ptp_init(adapter);
2531 	if (retval)
2532 		goto ptp_init_failed;
2533 
2534 	retval = tsnep_tc_init(adapter);
2535 	if (retval)
2536 		goto tc_init_failed;
2537 
2538 	retval = tsnep_rxnfc_init(adapter);
2539 	if (retval)
2540 		goto rxnfc_init_failed;
2541 
2542 	netdev->netdev_ops = &tsnep_netdev_ops;
2543 	netdev->ethtool_ops = &tsnep_ethtool_ops;
2544 	netdev->features = NETIF_F_SG;
2545 	netdev->hw_features = netdev->features | NETIF_F_LOOPBACK;
2546 
2547 	netdev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT |
2548 			       NETDEV_XDP_ACT_NDO_XMIT |
2549 			       NETDEV_XDP_ACT_NDO_XMIT_SG |
2550 			       NETDEV_XDP_ACT_XSK_ZEROCOPY;
2551 
2552 	/* carrier off reporting is important to ethtool even BEFORE open */
2553 	netif_carrier_off(netdev);
2554 
2555 	retval = register_netdev(netdev);
2556 	if (retval)
2557 		goto register_failed;
2558 
2559 	dev_info(&adapter->pdev->dev, "device version %d.%02d\n", version,
2560 		 revision);
2561 	if (adapter->gate_control)
2562 		dev_info(&adapter->pdev->dev, "gate control detected\n");
2563 
2564 	return 0;
2565 
2566 register_failed:
2567 	tsnep_rxnfc_cleanup(adapter);
2568 rxnfc_init_failed:
2569 	tsnep_tc_cleanup(adapter);
2570 tc_init_failed:
2571 	tsnep_ptp_cleanup(adapter);
2572 ptp_init_failed:
2573 phy_init_failed:
2574 	if (adapter->mdiobus)
2575 		mdiobus_unregister(adapter->mdiobus);
2576 mdio_init_failed:
2577 	return retval;
2578 }
2579 
2580 static int tsnep_remove(struct platform_device *pdev)
2581 {
2582 	struct tsnep_adapter *adapter = platform_get_drvdata(pdev);
2583 
2584 	unregister_netdev(adapter->netdev);
2585 
2586 	tsnep_rxnfc_cleanup(adapter);
2587 
2588 	tsnep_tc_cleanup(adapter);
2589 
2590 	tsnep_ptp_cleanup(adapter);
2591 
2592 	if (adapter->mdiobus)
2593 		mdiobus_unregister(adapter->mdiobus);
2594 
2595 	tsnep_disable_irq(adapter, ECM_INT_ALL);
2596 
2597 	return 0;
2598 }
2599 
2600 static const struct of_device_id tsnep_of_match[] = {
2601 	{ .compatible = "engleder,tsnep", },
2602 { },
2603 };
2604 MODULE_DEVICE_TABLE(of, tsnep_of_match);
2605 
2606 static struct platform_driver tsnep_driver = {
2607 	.driver = {
2608 		.name = TSNEP,
2609 		.of_match_table = tsnep_of_match,
2610 	},
2611 	.probe = tsnep_probe,
2612 	.remove = tsnep_remove,
2613 };
2614 module_platform_driver(tsnep_driver);
2615 
2616 MODULE_AUTHOR("Gerhard Engleder <gerhard@engleder-embedded.com>");
2617 MODULE_DESCRIPTION("TSN endpoint Ethernet MAC driver");
2618 MODULE_LICENSE("GPL");
2619