1 /* sundance.c: A Linux device driver for the Sundance ST201 "Alta". */ 2 /* 3 Written 1999-2000 by Donald Becker. 4 5 This software may be used and distributed according to the terms of 6 the GNU General Public License (GPL), incorporated herein by reference. 7 Drivers based on or derived from this code fall under the GPL and must 8 retain the authorship, copyright and license notice. This file is not 9 a complete program and may only be used when the entire operating 10 system is licensed under the GPL. 11 12 The author may be reached as becker@scyld.com, or C/O 13 Scyld Computing Corporation 14 410 Severn Ave., Suite 210 15 Annapolis MD 21403 16 17 Support and updates available at 18 http://www.scyld.com/network/sundance.html 19 [link no longer provides useful info -jgarzik] 20 Archives of the mailing list are still available at 21 https://www.beowulf.org/pipermail/netdrivers/ 22 23 */ 24 25 #define DRV_NAME "sundance" 26 27 /* The user-configurable values. 28 These may be modified when a driver module is loaded.*/ 29 static int debug = 1; /* 1 normal messages, 0 quiet .. 7 verbose. */ 30 /* Maximum number of multicast addresses to filter (vs. rx-all-multicast). 31 Typical is a 64 element hash table based on the Ethernet CRC. */ 32 static const int multicast_filter_limit = 32; 33 34 /* Set the copy breakpoint for the copy-only-tiny-frames scheme. 35 Setting to > 1518 effectively disables this feature. 36 This chip can receive into offset buffers, so the Alpha does not 37 need a copy-align. */ 38 static int rx_copybreak; 39 static int flowctrl=1; 40 41 /* media[] specifies the media type the NIC operates at. 42 autosense Autosensing active media. 43 10mbps_hd 10Mbps half duplex. 44 10mbps_fd 10Mbps full duplex. 45 100mbps_hd 100Mbps half duplex. 46 100mbps_fd 100Mbps full duplex. 47 0 Autosensing active media. 48 1 10Mbps half duplex. 49 2 10Mbps full duplex. 50 3 100Mbps half duplex. 51 4 100Mbps full duplex. 52 */ 53 #define MAX_UNITS 8 54 static char *media[MAX_UNITS]; 55 56 57 /* Operational parameters that are set at compile time. */ 58 59 /* Keep the ring sizes a power of two for compile efficiency. 60 The compiler will convert <unsigned>'%'<2^N> into a bit mask. 61 Making the Tx ring too large decreases the effectiveness of channel 62 bonding and packet priority, and more than 128 requires modifying the 63 Tx error recovery. 64 Large receive rings merely waste memory. */ 65 #define TX_RING_SIZE 32 66 #define TX_QUEUE_LEN (TX_RING_SIZE - 1) /* Limit ring entries actually used. */ 67 #define RX_RING_SIZE 64 68 #define RX_BUDGET 32 69 #define TX_TOTAL_SIZE TX_RING_SIZE*sizeof(struct netdev_desc) 70 #define RX_TOTAL_SIZE RX_RING_SIZE*sizeof(struct netdev_desc) 71 72 /* Operational parameters that usually are not changed. */ 73 /* Time in jiffies before concluding the transmitter is hung. */ 74 #define TX_TIMEOUT (4*HZ) 75 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/ 76 77 /* Include files, designed to support most kernel versions 2.0.0 and later. */ 78 #include <linux/module.h> 79 #include <linux/kernel.h> 80 #include <linux/string.h> 81 #include <linux/timer.h> 82 #include <linux/errno.h> 83 #include <linux/ioport.h> 84 #include <linux/interrupt.h> 85 #include <linux/pci.h> 86 #include <linux/netdevice.h> 87 #include <linux/etherdevice.h> 88 #include <linux/skbuff.h> 89 #include <linux/init.h> 90 #include <linux/bitops.h> 91 #include <linux/uaccess.h> 92 #include <asm/processor.h> /* Processor type for cache alignment. */ 93 #include <asm/io.h> 94 #include <linux/delay.h> 95 #include <linux/spinlock.h> 96 #include <linux/dma-mapping.h> 97 #include <linux/crc32.h> 98 #include <linux/ethtool.h> 99 #include <linux/mii.h> 100 101 MODULE_AUTHOR("Donald Becker <becker@scyld.com>"); 102 MODULE_DESCRIPTION("Sundance Alta Ethernet driver"); 103 MODULE_LICENSE("GPL"); 104 105 module_param(debug, int, 0); 106 module_param(rx_copybreak, int, 0); 107 module_param_array(media, charp, NULL, 0); 108 module_param(flowctrl, int, 0); 109 MODULE_PARM_DESC(debug, "Sundance Alta debug level (0-5)"); 110 MODULE_PARM_DESC(rx_copybreak, "Sundance Alta copy breakpoint for copy-only-tiny-frames"); 111 MODULE_PARM_DESC(flowctrl, "Sundance Alta flow control [0|1]"); 112 113 /* 114 Theory of Operation 115 116 I. Board Compatibility 117 118 This driver is designed for the Sundance Technologies "Alta" ST201 chip. 119 120 II. Board-specific settings 121 122 III. Driver operation 123 124 IIIa. Ring buffers 125 126 This driver uses two statically allocated fixed-size descriptor lists 127 formed into rings by a branch from the final descriptor to the beginning of 128 the list. The ring sizes are set at compile time by RX/TX_RING_SIZE. 129 Some chips explicitly use only 2^N sized rings, while others use a 130 'next descriptor' pointer that the driver forms into rings. 131 132 IIIb/c. Transmit/Receive Structure 133 134 This driver uses a zero-copy receive and transmit scheme. 135 The driver allocates full frame size skbuffs for the Rx ring buffers at 136 open() time and passes the skb->data field to the chip as receive data 137 buffers. When an incoming frame is less than RX_COPYBREAK bytes long, 138 a fresh skbuff is allocated and the frame is copied to the new skbuff. 139 When the incoming frame is larger, the skbuff is passed directly up the 140 protocol stack. Buffers consumed this way are replaced by newly allocated 141 skbuffs in a later phase of receives. 142 143 The RX_COPYBREAK value is chosen to trade-off the memory wasted by 144 using a full-sized skbuff for small frames vs. the copying costs of larger 145 frames. New boards are typically used in generously configured machines 146 and the underfilled buffers have negligible impact compared to the benefit of 147 a single allocation size, so the default value of zero results in never 148 copying packets. When copying is done, the cost is usually mitigated by using 149 a combined copy/checksum routine. Copying also preloads the cache, which is 150 most useful with small frames. 151 152 A subtle aspect of the operation is that the IP header at offset 14 in an 153 ethernet frame isn't longword aligned for further processing. 154 Unaligned buffers are permitted by the Sundance hardware, so 155 frames are received into the skbuff at an offset of "+2", 16-byte aligning 156 the IP header. 157 158 IIId. Synchronization 159 160 The driver runs as two independent, single-threaded flows of control. One 161 is the send-packet routine, which enforces single-threaded use by the 162 dev->tbusy flag. The other thread is the interrupt handler, which is single 163 threaded by the hardware and interrupt handling software. 164 165 The send packet thread has partial control over the Tx ring and 'dev->tbusy' 166 flag. It sets the tbusy flag whenever it's queuing a Tx packet. If the next 167 queue slot is empty, it clears the tbusy flag when finished otherwise it sets 168 the 'lp->tx_full' flag. 169 170 The interrupt handler has exclusive control over the Rx ring and records stats 171 from the Tx ring. After reaping the stats, it marks the Tx queue entry as 172 empty by incrementing the dirty_tx mark. Iff the 'lp->tx_full' flag is set, it 173 clears both the tx_full and tbusy flags. 174 175 IV. Notes 176 177 IVb. References 178 179 The Sundance ST201 datasheet, preliminary version. 180 The Kendin KS8723 datasheet, preliminary version. 181 The ICplus IP100 datasheet, preliminary version. 182 http://www.scyld.com/expert/100mbps.html 183 http://www.scyld.com/expert/NWay.html 184 185 IVc. Errata 186 187 */ 188 189 /* Work-around for Kendin chip bugs. */ 190 #ifndef CONFIG_SUNDANCE_MMIO 191 #define USE_IO_OPS 1 192 #endif 193 194 static const struct pci_device_id sundance_pci_tbl[] = { 195 { 0x1186, 0x1002, 0x1186, 0x1002, 0, 0, 0 }, 196 { 0x1186, 0x1002, 0x1186, 0x1003, 0, 0, 1 }, 197 { 0x1186, 0x1002, 0x1186, 0x1012, 0, 0, 2 }, 198 { 0x1186, 0x1002, 0x1186, 0x1040, 0, 0, 3 }, 199 { 0x1186, 0x1002, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 4 }, 200 { 0x13F0, 0x0201, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 5 }, 201 { 0x13F0, 0x0200, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 6 }, 202 { } 203 }; 204 MODULE_DEVICE_TABLE(pci, sundance_pci_tbl); 205 206 enum { 207 netdev_io_size = 128 208 }; 209 210 struct pci_id_info { 211 const char *name; 212 }; 213 static const struct pci_id_info pci_id_tbl[] = { 214 {"D-Link DFE-550TX FAST Ethernet Adapter"}, 215 {"D-Link DFE-550FX 100Mbps Fiber-optics Adapter"}, 216 {"D-Link DFE-580TX 4 port Server Adapter"}, 217 {"D-Link DFE-530TXS FAST Ethernet Adapter"}, 218 {"D-Link DL10050-based FAST Ethernet Adapter"}, 219 {"Sundance Technology Alta"}, 220 {"IC Plus Corporation IP100A FAST Ethernet Adapter"}, 221 { } /* terminate list. */ 222 }; 223 224 /* This driver was written to use PCI memory space, however x86-oriented 225 hardware often uses I/O space accesses. */ 226 227 /* Offsets to the device registers. 228 Unlike software-only systems, device drivers interact with complex hardware. 229 It's not useful to define symbolic names for every register bit in the 230 device. The name can only partially document the semantics and make 231 the driver longer and more difficult to read. 232 In general, only the important configuration values or bits changed 233 multiple times should be defined symbolically. 234 */ 235 enum alta_offsets { 236 DMACtrl = 0x00, 237 TxListPtr = 0x04, 238 TxDMABurstThresh = 0x08, 239 TxDMAUrgentThresh = 0x09, 240 TxDMAPollPeriod = 0x0a, 241 RxDMAStatus = 0x0c, 242 RxListPtr = 0x10, 243 DebugCtrl0 = 0x1a, 244 DebugCtrl1 = 0x1c, 245 RxDMABurstThresh = 0x14, 246 RxDMAUrgentThresh = 0x15, 247 RxDMAPollPeriod = 0x16, 248 LEDCtrl = 0x1a, 249 ASICCtrl = 0x30, 250 EEData = 0x34, 251 EECtrl = 0x36, 252 FlashAddr = 0x40, 253 FlashData = 0x44, 254 WakeEvent = 0x45, 255 TxStatus = 0x46, 256 TxFrameId = 0x47, 257 DownCounter = 0x18, 258 IntrClear = 0x4a, 259 IntrEnable = 0x4c, 260 IntrStatus = 0x4e, 261 MACCtrl0 = 0x50, 262 MACCtrl1 = 0x52, 263 StationAddr = 0x54, 264 MaxFrameSize = 0x5A, 265 RxMode = 0x5c, 266 MIICtrl = 0x5e, 267 MulticastFilter0 = 0x60, 268 MulticastFilter1 = 0x64, 269 RxOctetsLow = 0x68, 270 RxOctetsHigh = 0x6a, 271 TxOctetsLow = 0x6c, 272 TxOctetsHigh = 0x6e, 273 TxFramesOK = 0x70, 274 RxFramesOK = 0x72, 275 StatsCarrierError = 0x74, 276 StatsLateColl = 0x75, 277 StatsMultiColl = 0x76, 278 StatsOneColl = 0x77, 279 StatsTxDefer = 0x78, 280 RxMissed = 0x79, 281 StatsTxXSDefer = 0x7a, 282 StatsTxAbort = 0x7b, 283 StatsBcastTx = 0x7c, 284 StatsBcastRx = 0x7d, 285 StatsMcastTx = 0x7e, 286 StatsMcastRx = 0x7f, 287 /* Aliased and bogus values! */ 288 RxStatus = 0x0c, 289 }; 290 291 #define ASIC_HI_WORD(x) ((x) + 2) 292 293 enum ASICCtrl_HiWord_bit { 294 GlobalReset = 0x0001, 295 RxReset = 0x0002, 296 TxReset = 0x0004, 297 DMAReset = 0x0008, 298 FIFOReset = 0x0010, 299 NetworkReset = 0x0020, 300 HostReset = 0x0040, 301 ResetBusy = 0x0400, 302 }; 303 304 /* Bits in the interrupt status/mask registers. */ 305 enum intr_status_bits { 306 IntrSummary=0x0001, IntrPCIErr=0x0002, IntrMACCtrl=0x0008, 307 IntrTxDone=0x0004, IntrRxDone=0x0010, IntrRxStart=0x0020, 308 IntrDrvRqst=0x0040, 309 StatsMax=0x0080, LinkChange=0x0100, 310 IntrTxDMADone=0x0200, IntrRxDMADone=0x0400, 311 }; 312 313 /* Bits in the RxMode register. */ 314 enum rx_mode_bits { 315 AcceptAllIPMulti=0x20, AcceptMultiHash=0x10, AcceptAll=0x08, 316 AcceptBroadcast=0x04, AcceptMulticast=0x02, AcceptMyPhys=0x01, 317 }; 318 /* Bits in MACCtrl. */ 319 enum mac_ctrl0_bits { 320 EnbFullDuplex=0x20, EnbRcvLargeFrame=0x40, 321 EnbFlowCtrl=0x100, EnbPassRxCRC=0x200, 322 }; 323 enum mac_ctrl1_bits { 324 StatsEnable=0x0020, StatsDisable=0x0040, StatsEnabled=0x0080, 325 TxEnable=0x0100, TxDisable=0x0200, TxEnabled=0x0400, 326 RxEnable=0x0800, RxDisable=0x1000, RxEnabled=0x2000, 327 }; 328 329 /* Bits in WakeEvent register. */ 330 enum wake_event_bits { 331 WakePktEnable = 0x01, 332 MagicPktEnable = 0x02, 333 LinkEventEnable = 0x04, 334 WolEnable = 0x80, 335 }; 336 337 /* The Rx and Tx buffer descriptors. */ 338 /* Note that using only 32 bit fields simplifies conversion to big-endian 339 architectures. */ 340 struct netdev_desc { 341 __le32 next_desc; 342 __le32 status; 343 struct desc_frag { __le32 addr, length; } frag[1]; 344 }; 345 346 /* Bits in netdev_desc.status */ 347 enum desc_status_bits { 348 DescOwn=0x8000, 349 DescEndPacket=0x4000, 350 DescEndRing=0x2000, 351 LastFrag=0x80000000, 352 DescIntrOnTx=0x8000, 353 DescIntrOnDMADone=0x80000000, 354 DisableAlign = 0x00000001, 355 }; 356 357 #define PRIV_ALIGN 15 /* Required alignment mask */ 358 /* Use __attribute__((aligned (L1_CACHE_BYTES))) to maintain alignment 359 within the structure. */ 360 #define MII_CNT 4 361 struct netdev_private { 362 /* Descriptor rings first for alignment. */ 363 struct netdev_desc *rx_ring; 364 struct netdev_desc *tx_ring; 365 struct sk_buff* rx_skbuff[RX_RING_SIZE]; 366 struct sk_buff* tx_skbuff[TX_RING_SIZE]; 367 dma_addr_t tx_ring_dma; 368 dma_addr_t rx_ring_dma; 369 struct timer_list timer; /* Media monitoring timer. */ 370 struct net_device *ndev; /* backpointer */ 371 /* ethtool extra stats */ 372 struct { 373 u64 tx_multiple_collisions; 374 u64 tx_single_collisions; 375 u64 tx_late_collisions; 376 u64 tx_deferred; 377 u64 tx_deferred_excessive; 378 u64 tx_aborted; 379 u64 tx_bcasts; 380 u64 rx_bcasts; 381 u64 tx_mcasts; 382 u64 rx_mcasts; 383 } xstats; 384 /* Frequently used values: keep some adjacent for cache effect. */ 385 spinlock_t lock; 386 int msg_enable; 387 int chip_id; 388 unsigned int cur_rx, dirty_rx; /* Producer/consumer ring indices */ 389 unsigned int rx_buf_sz; /* Based on MTU+slack. */ 390 struct netdev_desc *last_tx; /* Last Tx descriptor used. */ 391 unsigned int cur_tx, dirty_tx; 392 /* These values are keep track of the transceiver/media in use. */ 393 unsigned int flowctrl:1; 394 unsigned int default_port:4; /* Last dev->if_port value. */ 395 unsigned int an_enable:1; 396 unsigned int speed; 397 unsigned int wol_enabled:1; /* Wake on LAN enabled */ 398 struct tasklet_struct rx_tasklet; 399 struct tasklet_struct tx_tasklet; 400 int budget; 401 int cur_task; 402 /* Multicast and receive mode. */ 403 spinlock_t mcastlock; /* SMP lock multicast updates. */ 404 u16 mcast_filter[4]; 405 /* MII transceiver section. */ 406 struct mii_if_info mii_if; 407 int mii_preamble_required; 408 unsigned char phys[MII_CNT]; /* MII device addresses, only first one used. */ 409 struct pci_dev *pci_dev; 410 void __iomem *base; 411 spinlock_t statlock; 412 }; 413 414 /* The station address location in the EEPROM. */ 415 #define EEPROM_SA_OFFSET 0x10 416 #define DEFAULT_INTR (IntrRxDMADone | IntrPCIErr | \ 417 IntrDrvRqst | IntrTxDone | StatsMax | \ 418 LinkChange) 419 420 static int change_mtu(struct net_device *dev, int new_mtu); 421 static int eeprom_read(void __iomem *ioaddr, int location); 422 static int mdio_read(struct net_device *dev, int phy_id, int location); 423 static void mdio_write(struct net_device *dev, int phy_id, int location, int value); 424 static int mdio_wait_link(struct net_device *dev, int wait); 425 static int netdev_open(struct net_device *dev); 426 static void check_duplex(struct net_device *dev); 427 static void netdev_timer(struct timer_list *t); 428 static void tx_timeout(struct net_device *dev, unsigned int txqueue); 429 static void init_ring(struct net_device *dev); 430 static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev); 431 static int reset_tx (struct net_device *dev); 432 static irqreturn_t intr_handler(int irq, void *dev_instance); 433 static void rx_poll(struct tasklet_struct *t); 434 static void tx_poll(struct tasklet_struct *t); 435 static void refill_rx (struct net_device *dev); 436 static void netdev_error(struct net_device *dev, int intr_status); 437 static void netdev_error(struct net_device *dev, int intr_status); 438 static void set_rx_mode(struct net_device *dev); 439 static int __set_mac_addr(struct net_device *dev); 440 static int sundance_set_mac_addr(struct net_device *dev, void *data); 441 static struct net_device_stats *get_stats(struct net_device *dev); 442 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd); 443 static int netdev_close(struct net_device *dev); 444 static const struct ethtool_ops ethtool_ops; 445 446 static void sundance_reset(struct net_device *dev, unsigned long reset_cmd) 447 { 448 struct netdev_private *np = netdev_priv(dev); 449 void __iomem *ioaddr = np->base + ASICCtrl; 450 int countdown; 451 452 /* ST201 documentation states ASICCtrl is a 32bit register */ 453 iowrite32 (reset_cmd | ioread32 (ioaddr), ioaddr); 454 /* ST201 documentation states reset can take up to 1 ms */ 455 countdown = 10 + 1; 456 while (ioread32 (ioaddr) & (ResetBusy << 16)) { 457 if (--countdown == 0) { 458 printk(KERN_WARNING "%s : reset not completed !!\n", dev->name); 459 break; 460 } 461 udelay(100); 462 } 463 } 464 465 #ifdef CONFIG_NET_POLL_CONTROLLER 466 static void sundance_poll_controller(struct net_device *dev) 467 { 468 struct netdev_private *np = netdev_priv(dev); 469 470 disable_irq(np->pci_dev->irq); 471 intr_handler(np->pci_dev->irq, dev); 472 enable_irq(np->pci_dev->irq); 473 } 474 #endif 475 476 static const struct net_device_ops netdev_ops = { 477 .ndo_open = netdev_open, 478 .ndo_stop = netdev_close, 479 .ndo_start_xmit = start_tx, 480 .ndo_get_stats = get_stats, 481 .ndo_set_rx_mode = set_rx_mode, 482 .ndo_do_ioctl = netdev_ioctl, 483 .ndo_tx_timeout = tx_timeout, 484 .ndo_change_mtu = change_mtu, 485 .ndo_set_mac_address = sundance_set_mac_addr, 486 .ndo_validate_addr = eth_validate_addr, 487 #ifdef CONFIG_NET_POLL_CONTROLLER 488 .ndo_poll_controller = sundance_poll_controller, 489 #endif 490 }; 491 492 static int sundance_probe1(struct pci_dev *pdev, 493 const struct pci_device_id *ent) 494 { 495 struct net_device *dev; 496 struct netdev_private *np; 497 static int card_idx; 498 int chip_idx = ent->driver_data; 499 int irq; 500 int i; 501 void __iomem *ioaddr; 502 u16 mii_ctl; 503 void *ring_space; 504 dma_addr_t ring_dma; 505 #ifdef USE_IO_OPS 506 int bar = 0; 507 #else 508 int bar = 1; 509 #endif 510 int phy, phy_end, phy_idx = 0; 511 512 if (pci_enable_device(pdev)) 513 return -EIO; 514 pci_set_master(pdev); 515 516 irq = pdev->irq; 517 518 dev = alloc_etherdev(sizeof(*np)); 519 if (!dev) 520 return -ENOMEM; 521 SET_NETDEV_DEV(dev, &pdev->dev); 522 523 if (pci_request_regions(pdev, DRV_NAME)) 524 goto err_out_netdev; 525 526 ioaddr = pci_iomap(pdev, bar, netdev_io_size); 527 if (!ioaddr) 528 goto err_out_res; 529 530 for (i = 0; i < 3; i++) 531 ((__le16 *)dev->dev_addr)[i] = 532 cpu_to_le16(eeprom_read(ioaddr, i + EEPROM_SA_OFFSET)); 533 534 np = netdev_priv(dev); 535 np->ndev = dev; 536 np->base = ioaddr; 537 np->pci_dev = pdev; 538 np->chip_id = chip_idx; 539 np->msg_enable = (1 << debug) - 1; 540 spin_lock_init(&np->lock); 541 spin_lock_init(&np->statlock); 542 tasklet_setup(&np->rx_tasklet, rx_poll); 543 tasklet_setup(&np->tx_tasklet, tx_poll); 544 545 ring_space = dma_alloc_coherent(&pdev->dev, TX_TOTAL_SIZE, 546 &ring_dma, GFP_KERNEL); 547 if (!ring_space) 548 goto err_out_cleardev; 549 np->tx_ring = (struct netdev_desc *)ring_space; 550 np->tx_ring_dma = ring_dma; 551 552 ring_space = dma_alloc_coherent(&pdev->dev, RX_TOTAL_SIZE, 553 &ring_dma, GFP_KERNEL); 554 if (!ring_space) 555 goto err_out_unmap_tx; 556 np->rx_ring = (struct netdev_desc *)ring_space; 557 np->rx_ring_dma = ring_dma; 558 559 np->mii_if.dev = dev; 560 np->mii_if.mdio_read = mdio_read; 561 np->mii_if.mdio_write = mdio_write; 562 np->mii_if.phy_id_mask = 0x1f; 563 np->mii_if.reg_num_mask = 0x1f; 564 565 /* The chip-specific entries in the device structure. */ 566 dev->netdev_ops = &netdev_ops; 567 dev->ethtool_ops = ðtool_ops; 568 dev->watchdog_timeo = TX_TIMEOUT; 569 570 /* MTU range: 68 - 8191 */ 571 dev->min_mtu = ETH_MIN_MTU; 572 dev->max_mtu = 8191; 573 574 pci_set_drvdata(pdev, dev); 575 576 i = register_netdev(dev); 577 if (i) 578 goto err_out_unmap_rx; 579 580 printk(KERN_INFO "%s: %s at %p, %pM, IRQ %d.\n", 581 dev->name, pci_id_tbl[chip_idx].name, ioaddr, 582 dev->dev_addr, irq); 583 584 np->phys[0] = 1; /* Default setting */ 585 np->mii_preamble_required++; 586 587 /* 588 * It seems some phys doesn't deal well with address 0 being accessed 589 * first 590 */ 591 if (sundance_pci_tbl[np->chip_id].device == 0x0200) { 592 phy = 0; 593 phy_end = 31; 594 } else { 595 phy = 1; 596 phy_end = 32; /* wraps to zero, due to 'phy & 0x1f' */ 597 } 598 for (; phy <= phy_end && phy_idx < MII_CNT; phy++) { 599 int phyx = phy & 0x1f; 600 int mii_status = mdio_read(dev, phyx, MII_BMSR); 601 if (mii_status != 0xffff && mii_status != 0x0000) { 602 np->phys[phy_idx++] = phyx; 603 np->mii_if.advertising = mdio_read(dev, phyx, MII_ADVERTISE); 604 if ((mii_status & 0x0040) == 0) 605 np->mii_preamble_required++; 606 printk(KERN_INFO "%s: MII PHY found at address %d, status " 607 "0x%4.4x advertising %4.4x.\n", 608 dev->name, phyx, mii_status, np->mii_if.advertising); 609 } 610 } 611 np->mii_preamble_required--; 612 613 if (phy_idx == 0) { 614 printk(KERN_INFO "%s: No MII transceiver found, aborting. ASIC status %x\n", 615 dev->name, ioread32(ioaddr + ASICCtrl)); 616 goto err_out_unregister; 617 } 618 619 np->mii_if.phy_id = np->phys[0]; 620 621 /* Parse override configuration */ 622 np->an_enable = 1; 623 if (card_idx < MAX_UNITS) { 624 if (media[card_idx] != NULL) { 625 np->an_enable = 0; 626 if (strcmp (media[card_idx], "100mbps_fd") == 0 || 627 strcmp (media[card_idx], "4") == 0) { 628 np->speed = 100; 629 np->mii_if.full_duplex = 1; 630 } else if (strcmp (media[card_idx], "100mbps_hd") == 0 || 631 strcmp (media[card_idx], "3") == 0) { 632 np->speed = 100; 633 np->mii_if.full_duplex = 0; 634 } else if (strcmp (media[card_idx], "10mbps_fd") == 0 || 635 strcmp (media[card_idx], "2") == 0) { 636 np->speed = 10; 637 np->mii_if.full_duplex = 1; 638 } else if (strcmp (media[card_idx], "10mbps_hd") == 0 || 639 strcmp (media[card_idx], "1") == 0) { 640 np->speed = 10; 641 np->mii_if.full_duplex = 0; 642 } else { 643 np->an_enable = 1; 644 } 645 } 646 if (flowctrl == 1) 647 np->flowctrl = 1; 648 } 649 650 /* Fibre PHY? */ 651 if (ioread32 (ioaddr + ASICCtrl) & 0x80) { 652 /* Default 100Mbps Full */ 653 if (np->an_enable) { 654 np->speed = 100; 655 np->mii_if.full_duplex = 1; 656 np->an_enable = 0; 657 } 658 } 659 /* Reset PHY */ 660 mdio_write (dev, np->phys[0], MII_BMCR, BMCR_RESET); 661 mdelay (300); 662 /* If flow control enabled, we need to advertise it.*/ 663 if (np->flowctrl) 664 mdio_write (dev, np->phys[0], MII_ADVERTISE, np->mii_if.advertising | 0x0400); 665 mdio_write (dev, np->phys[0], MII_BMCR, BMCR_ANENABLE|BMCR_ANRESTART); 666 /* Force media type */ 667 if (!np->an_enable) { 668 mii_ctl = 0; 669 mii_ctl |= (np->speed == 100) ? BMCR_SPEED100 : 0; 670 mii_ctl |= (np->mii_if.full_duplex) ? BMCR_FULLDPLX : 0; 671 mdio_write (dev, np->phys[0], MII_BMCR, mii_ctl); 672 printk (KERN_INFO "Override speed=%d, %s duplex\n", 673 np->speed, np->mii_if.full_duplex ? "Full" : "Half"); 674 675 } 676 677 /* Perhaps move the reset here? */ 678 /* Reset the chip to erase previous misconfiguration. */ 679 if (netif_msg_hw(np)) 680 printk("ASIC Control is %x.\n", ioread32(ioaddr + ASICCtrl)); 681 sundance_reset(dev, 0x00ff << 16); 682 if (netif_msg_hw(np)) 683 printk("ASIC Control is now %x.\n", ioread32(ioaddr + ASICCtrl)); 684 685 card_idx++; 686 return 0; 687 688 err_out_unregister: 689 unregister_netdev(dev); 690 err_out_unmap_rx: 691 dma_free_coherent(&pdev->dev, RX_TOTAL_SIZE, 692 np->rx_ring, np->rx_ring_dma); 693 err_out_unmap_tx: 694 dma_free_coherent(&pdev->dev, TX_TOTAL_SIZE, 695 np->tx_ring, np->tx_ring_dma); 696 err_out_cleardev: 697 pci_iounmap(pdev, ioaddr); 698 err_out_res: 699 pci_release_regions(pdev); 700 err_out_netdev: 701 free_netdev (dev); 702 return -ENODEV; 703 } 704 705 static int change_mtu(struct net_device *dev, int new_mtu) 706 { 707 if (netif_running(dev)) 708 return -EBUSY; 709 dev->mtu = new_mtu; 710 return 0; 711 } 712 713 #define eeprom_delay(ee_addr) ioread32(ee_addr) 714 /* Read the EEPROM and MII Management Data I/O (MDIO) interfaces. */ 715 static int eeprom_read(void __iomem *ioaddr, int location) 716 { 717 int boguscnt = 10000; /* Typical 1900 ticks. */ 718 iowrite16(0x0200 | (location & 0xff), ioaddr + EECtrl); 719 do { 720 eeprom_delay(ioaddr + EECtrl); 721 if (! (ioread16(ioaddr + EECtrl) & 0x8000)) { 722 return ioread16(ioaddr + EEData); 723 } 724 } while (--boguscnt > 0); 725 return 0; 726 } 727 728 /* MII transceiver control section. 729 Read and write the MII registers using software-generated serial 730 MDIO protocol. See the MII specifications or DP83840A data sheet 731 for details. 732 733 The maximum data clock rate is 2.5 Mhz. The minimum timing is usually 734 met by back-to-back 33Mhz PCI cycles. */ 735 #define mdio_delay() ioread8(mdio_addr) 736 737 enum mii_reg_bits { 738 MDIO_ShiftClk=0x0001, MDIO_Data=0x0002, MDIO_EnbOutput=0x0004, 739 }; 740 #define MDIO_EnbIn (0) 741 #define MDIO_WRITE0 (MDIO_EnbOutput) 742 #define MDIO_WRITE1 (MDIO_Data | MDIO_EnbOutput) 743 744 /* Generate the preamble required for initial synchronization and 745 a few older transceivers. */ 746 static void mdio_sync(void __iomem *mdio_addr) 747 { 748 int bits = 32; 749 750 /* Establish sync by sending at least 32 logic ones. */ 751 while (--bits >= 0) { 752 iowrite8(MDIO_WRITE1, mdio_addr); 753 mdio_delay(); 754 iowrite8(MDIO_WRITE1 | MDIO_ShiftClk, mdio_addr); 755 mdio_delay(); 756 } 757 } 758 759 static int mdio_read(struct net_device *dev, int phy_id, int location) 760 { 761 struct netdev_private *np = netdev_priv(dev); 762 void __iomem *mdio_addr = np->base + MIICtrl; 763 int mii_cmd = (0xf6 << 10) | (phy_id << 5) | location; 764 int i, retval = 0; 765 766 if (np->mii_preamble_required) 767 mdio_sync(mdio_addr); 768 769 /* Shift the read command bits out. */ 770 for (i = 15; i >= 0; i--) { 771 int dataval = (mii_cmd & (1 << i)) ? MDIO_WRITE1 : MDIO_WRITE0; 772 773 iowrite8(dataval, mdio_addr); 774 mdio_delay(); 775 iowrite8(dataval | MDIO_ShiftClk, mdio_addr); 776 mdio_delay(); 777 } 778 /* Read the two transition, 16 data, and wire-idle bits. */ 779 for (i = 19; i > 0; i--) { 780 iowrite8(MDIO_EnbIn, mdio_addr); 781 mdio_delay(); 782 retval = (retval << 1) | ((ioread8(mdio_addr) & MDIO_Data) ? 1 : 0); 783 iowrite8(MDIO_EnbIn | MDIO_ShiftClk, mdio_addr); 784 mdio_delay(); 785 } 786 return (retval>>1) & 0xffff; 787 } 788 789 static void mdio_write(struct net_device *dev, int phy_id, int location, int value) 790 { 791 struct netdev_private *np = netdev_priv(dev); 792 void __iomem *mdio_addr = np->base + MIICtrl; 793 int mii_cmd = (0x5002 << 16) | (phy_id << 23) | (location<<18) | value; 794 int i; 795 796 if (np->mii_preamble_required) 797 mdio_sync(mdio_addr); 798 799 /* Shift the command bits out. */ 800 for (i = 31; i >= 0; i--) { 801 int dataval = (mii_cmd & (1 << i)) ? MDIO_WRITE1 : MDIO_WRITE0; 802 803 iowrite8(dataval, mdio_addr); 804 mdio_delay(); 805 iowrite8(dataval | MDIO_ShiftClk, mdio_addr); 806 mdio_delay(); 807 } 808 /* Clear out extra bits. */ 809 for (i = 2; i > 0; i--) { 810 iowrite8(MDIO_EnbIn, mdio_addr); 811 mdio_delay(); 812 iowrite8(MDIO_EnbIn | MDIO_ShiftClk, mdio_addr); 813 mdio_delay(); 814 } 815 } 816 817 static int mdio_wait_link(struct net_device *dev, int wait) 818 { 819 int bmsr; 820 int phy_id; 821 struct netdev_private *np; 822 823 np = netdev_priv(dev); 824 phy_id = np->phys[0]; 825 826 do { 827 bmsr = mdio_read(dev, phy_id, MII_BMSR); 828 if (bmsr & 0x0004) 829 return 0; 830 mdelay(1); 831 } while (--wait > 0); 832 return -1; 833 } 834 835 static int netdev_open(struct net_device *dev) 836 { 837 struct netdev_private *np = netdev_priv(dev); 838 void __iomem *ioaddr = np->base; 839 const int irq = np->pci_dev->irq; 840 unsigned long flags; 841 int i; 842 843 sundance_reset(dev, 0x00ff << 16); 844 845 i = request_irq(irq, intr_handler, IRQF_SHARED, dev->name, dev); 846 if (i) 847 return i; 848 849 if (netif_msg_ifup(np)) 850 printk(KERN_DEBUG "%s: netdev_open() irq %d\n", dev->name, irq); 851 852 init_ring(dev); 853 854 iowrite32(np->rx_ring_dma, ioaddr + RxListPtr); 855 /* The Tx list pointer is written as packets are queued. */ 856 857 /* Initialize other registers. */ 858 __set_mac_addr(dev); 859 #if IS_ENABLED(CONFIG_VLAN_8021Q) 860 iowrite16(dev->mtu + 18, ioaddr + MaxFrameSize); 861 #else 862 iowrite16(dev->mtu + 14, ioaddr + MaxFrameSize); 863 #endif 864 if (dev->mtu > 2047) 865 iowrite32(ioread32(ioaddr + ASICCtrl) | 0x0C, ioaddr + ASICCtrl); 866 867 /* Configure the PCI bus bursts and FIFO thresholds. */ 868 869 if (dev->if_port == 0) 870 dev->if_port = np->default_port; 871 872 spin_lock_init(&np->mcastlock); 873 874 set_rx_mode(dev); 875 iowrite16(0, ioaddr + IntrEnable); 876 iowrite16(0, ioaddr + DownCounter); 877 /* Set the chip to poll every N*320nsec. */ 878 iowrite8(100, ioaddr + RxDMAPollPeriod); 879 iowrite8(127, ioaddr + TxDMAPollPeriod); 880 /* Fix DFE-580TX packet drop issue */ 881 if (np->pci_dev->revision >= 0x14) 882 iowrite8(0x01, ioaddr + DebugCtrl1); 883 netif_start_queue(dev); 884 885 spin_lock_irqsave(&np->lock, flags); 886 reset_tx(dev); 887 spin_unlock_irqrestore(&np->lock, flags); 888 889 iowrite16 (StatsEnable | RxEnable | TxEnable, ioaddr + MACCtrl1); 890 891 /* Disable Wol */ 892 iowrite8(ioread8(ioaddr + WakeEvent) | 0x00, ioaddr + WakeEvent); 893 np->wol_enabled = 0; 894 895 if (netif_msg_ifup(np)) 896 printk(KERN_DEBUG "%s: Done netdev_open(), status: Rx %x Tx %x " 897 "MAC Control %x, %4.4x %4.4x.\n", 898 dev->name, ioread32(ioaddr + RxStatus), ioread8(ioaddr + TxStatus), 899 ioread32(ioaddr + MACCtrl0), 900 ioread16(ioaddr + MACCtrl1), ioread16(ioaddr + MACCtrl0)); 901 902 /* Set the timer to check for link beat. */ 903 timer_setup(&np->timer, netdev_timer, 0); 904 np->timer.expires = jiffies + 3*HZ; 905 add_timer(&np->timer); 906 907 /* Enable interrupts by setting the interrupt mask. */ 908 iowrite16(DEFAULT_INTR, ioaddr + IntrEnable); 909 910 return 0; 911 } 912 913 static void check_duplex(struct net_device *dev) 914 { 915 struct netdev_private *np = netdev_priv(dev); 916 void __iomem *ioaddr = np->base; 917 int mii_lpa = mdio_read(dev, np->phys[0], MII_LPA); 918 int negotiated = mii_lpa & np->mii_if.advertising; 919 int duplex; 920 921 /* Force media */ 922 if (!np->an_enable || mii_lpa == 0xffff) { 923 if (np->mii_if.full_duplex) 924 iowrite16 (ioread16 (ioaddr + MACCtrl0) | EnbFullDuplex, 925 ioaddr + MACCtrl0); 926 return; 927 } 928 929 /* Autonegotiation */ 930 duplex = (negotiated & 0x0100) || (negotiated & 0x01C0) == 0x0040; 931 if (np->mii_if.full_duplex != duplex) { 932 np->mii_if.full_duplex = duplex; 933 if (netif_msg_link(np)) 934 printk(KERN_INFO "%s: Setting %s-duplex based on MII #%d " 935 "negotiated capability %4.4x.\n", dev->name, 936 duplex ? "full" : "half", np->phys[0], negotiated); 937 iowrite16(ioread16(ioaddr + MACCtrl0) | (duplex ? 0x20 : 0), ioaddr + MACCtrl0); 938 } 939 } 940 941 static void netdev_timer(struct timer_list *t) 942 { 943 struct netdev_private *np = from_timer(np, t, timer); 944 struct net_device *dev = np->mii_if.dev; 945 void __iomem *ioaddr = np->base; 946 int next_tick = 10*HZ; 947 948 if (netif_msg_timer(np)) { 949 printk(KERN_DEBUG "%s: Media selection timer tick, intr status %4.4x, " 950 "Tx %x Rx %x.\n", 951 dev->name, ioread16(ioaddr + IntrEnable), 952 ioread8(ioaddr + TxStatus), ioread32(ioaddr + RxStatus)); 953 } 954 check_duplex(dev); 955 np->timer.expires = jiffies + next_tick; 956 add_timer(&np->timer); 957 } 958 959 static void tx_timeout(struct net_device *dev, unsigned int txqueue) 960 { 961 struct netdev_private *np = netdev_priv(dev); 962 void __iomem *ioaddr = np->base; 963 unsigned long flag; 964 965 netif_stop_queue(dev); 966 tasklet_disable(&np->tx_tasklet); 967 iowrite16(0, ioaddr + IntrEnable); 968 printk(KERN_WARNING "%s: Transmit timed out, TxStatus %2.2x " 969 "TxFrameId %2.2x," 970 " resetting...\n", dev->name, ioread8(ioaddr + TxStatus), 971 ioread8(ioaddr + TxFrameId)); 972 973 { 974 int i; 975 for (i=0; i<TX_RING_SIZE; i++) { 976 printk(KERN_DEBUG "%02x %08llx %08x %08x(%02x) %08x %08x\n", i, 977 (unsigned long long)(np->tx_ring_dma + i*sizeof(*np->tx_ring)), 978 le32_to_cpu(np->tx_ring[i].next_desc), 979 le32_to_cpu(np->tx_ring[i].status), 980 (le32_to_cpu(np->tx_ring[i].status) >> 2) & 0xff, 981 le32_to_cpu(np->tx_ring[i].frag[0].addr), 982 le32_to_cpu(np->tx_ring[i].frag[0].length)); 983 } 984 printk(KERN_DEBUG "TxListPtr=%08x netif_queue_stopped=%d\n", 985 ioread32(np->base + TxListPtr), 986 netif_queue_stopped(dev)); 987 printk(KERN_DEBUG "cur_tx=%d(%02x) dirty_tx=%d(%02x)\n", 988 np->cur_tx, np->cur_tx % TX_RING_SIZE, 989 np->dirty_tx, np->dirty_tx % TX_RING_SIZE); 990 printk(KERN_DEBUG "cur_rx=%d dirty_rx=%d\n", np->cur_rx, np->dirty_rx); 991 printk(KERN_DEBUG "cur_task=%d\n", np->cur_task); 992 } 993 spin_lock_irqsave(&np->lock, flag); 994 995 /* Stop and restart the chip's Tx processes . */ 996 reset_tx(dev); 997 spin_unlock_irqrestore(&np->lock, flag); 998 999 dev->if_port = 0; 1000 1001 netif_trans_update(dev); /* prevent tx timeout */ 1002 dev->stats.tx_errors++; 1003 if (np->cur_tx - np->dirty_tx < TX_QUEUE_LEN - 4) { 1004 netif_wake_queue(dev); 1005 } 1006 iowrite16(DEFAULT_INTR, ioaddr + IntrEnable); 1007 tasklet_enable(&np->tx_tasklet); 1008 } 1009 1010 1011 /* Initialize the Rx and Tx rings, along with various 'dev' bits. */ 1012 static void init_ring(struct net_device *dev) 1013 { 1014 struct netdev_private *np = netdev_priv(dev); 1015 int i; 1016 1017 np->cur_rx = np->cur_tx = 0; 1018 np->dirty_rx = np->dirty_tx = 0; 1019 np->cur_task = 0; 1020 1021 np->rx_buf_sz = (dev->mtu <= 1520 ? PKT_BUF_SZ : dev->mtu + 16); 1022 1023 /* Initialize all Rx descriptors. */ 1024 for (i = 0; i < RX_RING_SIZE; i++) { 1025 np->rx_ring[i].next_desc = cpu_to_le32(np->rx_ring_dma + 1026 ((i+1)%RX_RING_SIZE)*sizeof(*np->rx_ring)); 1027 np->rx_ring[i].status = 0; 1028 np->rx_ring[i].frag[0].length = 0; 1029 np->rx_skbuff[i] = NULL; 1030 } 1031 1032 /* Fill in the Rx buffers. Handle allocation failure gracefully. */ 1033 for (i = 0; i < RX_RING_SIZE; i++) { 1034 struct sk_buff *skb = 1035 netdev_alloc_skb(dev, np->rx_buf_sz + 2); 1036 np->rx_skbuff[i] = skb; 1037 if (skb == NULL) 1038 break; 1039 skb_reserve(skb, 2); /* 16 byte align the IP header. */ 1040 np->rx_ring[i].frag[0].addr = cpu_to_le32( 1041 dma_map_single(&np->pci_dev->dev, skb->data, 1042 np->rx_buf_sz, DMA_FROM_DEVICE)); 1043 if (dma_mapping_error(&np->pci_dev->dev, 1044 np->rx_ring[i].frag[0].addr)) { 1045 dev_kfree_skb(skb); 1046 np->rx_skbuff[i] = NULL; 1047 break; 1048 } 1049 np->rx_ring[i].frag[0].length = cpu_to_le32(np->rx_buf_sz | LastFrag); 1050 } 1051 np->dirty_rx = (unsigned int)(i - RX_RING_SIZE); 1052 1053 for (i = 0; i < TX_RING_SIZE; i++) { 1054 np->tx_skbuff[i] = NULL; 1055 np->tx_ring[i].status = 0; 1056 } 1057 } 1058 1059 static void tx_poll(struct tasklet_struct *t) 1060 { 1061 struct netdev_private *np = from_tasklet(np, t, tx_tasklet); 1062 unsigned head = np->cur_task % TX_RING_SIZE; 1063 struct netdev_desc *txdesc = 1064 &np->tx_ring[(np->cur_tx - 1) % TX_RING_SIZE]; 1065 1066 /* Chain the next pointer */ 1067 for (; np->cur_tx - np->cur_task > 0; np->cur_task++) { 1068 int entry = np->cur_task % TX_RING_SIZE; 1069 txdesc = &np->tx_ring[entry]; 1070 if (np->last_tx) { 1071 np->last_tx->next_desc = cpu_to_le32(np->tx_ring_dma + 1072 entry*sizeof(struct netdev_desc)); 1073 } 1074 np->last_tx = txdesc; 1075 } 1076 /* Indicate the latest descriptor of tx ring */ 1077 txdesc->status |= cpu_to_le32(DescIntrOnTx); 1078 1079 if (ioread32 (np->base + TxListPtr) == 0) 1080 iowrite32 (np->tx_ring_dma + head * sizeof(struct netdev_desc), 1081 np->base + TxListPtr); 1082 } 1083 1084 static netdev_tx_t 1085 start_tx (struct sk_buff *skb, struct net_device *dev) 1086 { 1087 struct netdev_private *np = netdev_priv(dev); 1088 struct netdev_desc *txdesc; 1089 unsigned entry; 1090 1091 /* Calculate the next Tx descriptor entry. */ 1092 entry = np->cur_tx % TX_RING_SIZE; 1093 np->tx_skbuff[entry] = skb; 1094 txdesc = &np->tx_ring[entry]; 1095 1096 txdesc->next_desc = 0; 1097 txdesc->status = cpu_to_le32 ((entry << 2) | DisableAlign); 1098 txdesc->frag[0].addr = cpu_to_le32(dma_map_single(&np->pci_dev->dev, 1099 skb->data, skb->len, DMA_TO_DEVICE)); 1100 if (dma_mapping_error(&np->pci_dev->dev, 1101 txdesc->frag[0].addr)) 1102 goto drop_frame; 1103 txdesc->frag[0].length = cpu_to_le32 (skb->len | LastFrag); 1104 1105 /* Increment cur_tx before tasklet_schedule() */ 1106 np->cur_tx++; 1107 mb(); 1108 /* Schedule a tx_poll() task */ 1109 tasklet_schedule(&np->tx_tasklet); 1110 1111 /* On some architectures: explicitly flush cache lines here. */ 1112 if (np->cur_tx - np->dirty_tx < TX_QUEUE_LEN - 1 && 1113 !netif_queue_stopped(dev)) { 1114 /* do nothing */ 1115 } else { 1116 netif_stop_queue (dev); 1117 } 1118 if (netif_msg_tx_queued(np)) { 1119 printk (KERN_DEBUG 1120 "%s: Transmit frame #%d queued in slot %d.\n", 1121 dev->name, np->cur_tx, entry); 1122 } 1123 return NETDEV_TX_OK; 1124 1125 drop_frame: 1126 dev_kfree_skb_any(skb); 1127 np->tx_skbuff[entry] = NULL; 1128 dev->stats.tx_dropped++; 1129 return NETDEV_TX_OK; 1130 } 1131 1132 /* Reset hardware tx and free all of tx buffers */ 1133 static int 1134 reset_tx (struct net_device *dev) 1135 { 1136 struct netdev_private *np = netdev_priv(dev); 1137 void __iomem *ioaddr = np->base; 1138 struct sk_buff *skb; 1139 int i; 1140 1141 /* Reset tx logic, TxListPtr will be cleaned */ 1142 iowrite16 (TxDisable, ioaddr + MACCtrl1); 1143 sundance_reset(dev, (NetworkReset|FIFOReset|DMAReset|TxReset) << 16); 1144 1145 /* free all tx skbuff */ 1146 for (i = 0; i < TX_RING_SIZE; i++) { 1147 np->tx_ring[i].next_desc = 0; 1148 1149 skb = np->tx_skbuff[i]; 1150 if (skb) { 1151 dma_unmap_single(&np->pci_dev->dev, 1152 le32_to_cpu(np->tx_ring[i].frag[0].addr), 1153 skb->len, DMA_TO_DEVICE); 1154 dev_kfree_skb_any(skb); 1155 np->tx_skbuff[i] = NULL; 1156 dev->stats.tx_dropped++; 1157 } 1158 } 1159 np->cur_tx = np->dirty_tx = 0; 1160 np->cur_task = 0; 1161 1162 np->last_tx = NULL; 1163 iowrite8(127, ioaddr + TxDMAPollPeriod); 1164 1165 iowrite16 (StatsEnable | RxEnable | TxEnable, ioaddr + MACCtrl1); 1166 return 0; 1167 } 1168 1169 /* The interrupt handler cleans up after the Tx thread, 1170 and schedule a Rx thread work */ 1171 static irqreturn_t intr_handler(int irq, void *dev_instance) 1172 { 1173 struct net_device *dev = (struct net_device *)dev_instance; 1174 struct netdev_private *np = netdev_priv(dev); 1175 void __iomem *ioaddr = np->base; 1176 int hw_frame_id; 1177 int tx_cnt; 1178 int tx_status; 1179 int handled = 0; 1180 int i; 1181 1182 do { 1183 int intr_status = ioread16(ioaddr + IntrStatus); 1184 iowrite16(intr_status, ioaddr + IntrStatus); 1185 1186 if (netif_msg_intr(np)) 1187 printk(KERN_DEBUG "%s: Interrupt, status %4.4x.\n", 1188 dev->name, intr_status); 1189 1190 if (!(intr_status & DEFAULT_INTR)) 1191 break; 1192 1193 handled = 1; 1194 1195 if (intr_status & (IntrRxDMADone)) { 1196 iowrite16(DEFAULT_INTR & ~(IntrRxDone|IntrRxDMADone), 1197 ioaddr + IntrEnable); 1198 if (np->budget < 0) 1199 np->budget = RX_BUDGET; 1200 tasklet_schedule(&np->rx_tasklet); 1201 } 1202 if (intr_status & (IntrTxDone | IntrDrvRqst)) { 1203 tx_status = ioread16 (ioaddr + TxStatus); 1204 for (tx_cnt=32; tx_status & 0x80; --tx_cnt) { 1205 if (netif_msg_tx_done(np)) 1206 printk 1207 ("%s: Transmit status is %2.2x.\n", 1208 dev->name, tx_status); 1209 if (tx_status & 0x1e) { 1210 if (netif_msg_tx_err(np)) 1211 printk("%s: Transmit error status %4.4x.\n", 1212 dev->name, tx_status); 1213 dev->stats.tx_errors++; 1214 if (tx_status & 0x10) 1215 dev->stats.tx_fifo_errors++; 1216 if (tx_status & 0x08) 1217 dev->stats.collisions++; 1218 if (tx_status & 0x04) 1219 dev->stats.tx_fifo_errors++; 1220 if (tx_status & 0x02) 1221 dev->stats.tx_window_errors++; 1222 1223 /* 1224 ** This reset has been verified on 1225 ** DFE-580TX boards ! phdm@macqel.be. 1226 */ 1227 if (tx_status & 0x10) { /* TxUnderrun */ 1228 /* Restart Tx FIFO and transmitter */ 1229 sundance_reset(dev, (NetworkReset|FIFOReset|TxReset) << 16); 1230 /* No need to reset the Tx pointer here */ 1231 } 1232 /* Restart the Tx. Need to make sure tx enabled */ 1233 i = 10; 1234 do { 1235 iowrite16(ioread16(ioaddr + MACCtrl1) | TxEnable, ioaddr + MACCtrl1); 1236 if (ioread16(ioaddr + MACCtrl1) & TxEnabled) 1237 break; 1238 mdelay(1); 1239 } while (--i); 1240 } 1241 /* Yup, this is a documentation bug. It cost me *hours*. */ 1242 iowrite16 (0, ioaddr + TxStatus); 1243 if (tx_cnt < 0) { 1244 iowrite32(5000, ioaddr + DownCounter); 1245 break; 1246 } 1247 tx_status = ioread16 (ioaddr + TxStatus); 1248 } 1249 hw_frame_id = (tx_status >> 8) & 0xff; 1250 } else { 1251 hw_frame_id = ioread8(ioaddr + TxFrameId); 1252 } 1253 1254 if (np->pci_dev->revision >= 0x14) { 1255 spin_lock(&np->lock); 1256 for (; np->cur_tx - np->dirty_tx > 0; np->dirty_tx++) { 1257 int entry = np->dirty_tx % TX_RING_SIZE; 1258 struct sk_buff *skb; 1259 int sw_frame_id; 1260 sw_frame_id = (le32_to_cpu( 1261 np->tx_ring[entry].status) >> 2) & 0xff; 1262 if (sw_frame_id == hw_frame_id && 1263 !(le32_to_cpu(np->tx_ring[entry].status) 1264 & 0x00010000)) 1265 break; 1266 if (sw_frame_id == (hw_frame_id + 1) % 1267 TX_RING_SIZE) 1268 break; 1269 skb = np->tx_skbuff[entry]; 1270 /* Free the original skb. */ 1271 dma_unmap_single(&np->pci_dev->dev, 1272 le32_to_cpu(np->tx_ring[entry].frag[0].addr), 1273 skb->len, DMA_TO_DEVICE); 1274 dev_consume_skb_irq(np->tx_skbuff[entry]); 1275 np->tx_skbuff[entry] = NULL; 1276 np->tx_ring[entry].frag[0].addr = 0; 1277 np->tx_ring[entry].frag[0].length = 0; 1278 } 1279 spin_unlock(&np->lock); 1280 } else { 1281 spin_lock(&np->lock); 1282 for (; np->cur_tx - np->dirty_tx > 0; np->dirty_tx++) { 1283 int entry = np->dirty_tx % TX_RING_SIZE; 1284 struct sk_buff *skb; 1285 if (!(le32_to_cpu(np->tx_ring[entry].status) 1286 & 0x00010000)) 1287 break; 1288 skb = np->tx_skbuff[entry]; 1289 /* Free the original skb. */ 1290 dma_unmap_single(&np->pci_dev->dev, 1291 le32_to_cpu(np->tx_ring[entry].frag[0].addr), 1292 skb->len, DMA_TO_DEVICE); 1293 dev_consume_skb_irq(np->tx_skbuff[entry]); 1294 np->tx_skbuff[entry] = NULL; 1295 np->tx_ring[entry].frag[0].addr = 0; 1296 np->tx_ring[entry].frag[0].length = 0; 1297 } 1298 spin_unlock(&np->lock); 1299 } 1300 1301 if (netif_queue_stopped(dev) && 1302 np->cur_tx - np->dirty_tx < TX_QUEUE_LEN - 4) { 1303 /* The ring is no longer full, clear busy flag. */ 1304 netif_wake_queue (dev); 1305 } 1306 /* Abnormal error summary/uncommon events handlers. */ 1307 if (intr_status & (IntrPCIErr | LinkChange | StatsMax)) 1308 netdev_error(dev, intr_status); 1309 } while (0); 1310 if (netif_msg_intr(np)) 1311 printk(KERN_DEBUG "%s: exiting interrupt, status=%#4.4x.\n", 1312 dev->name, ioread16(ioaddr + IntrStatus)); 1313 return IRQ_RETVAL(handled); 1314 } 1315 1316 static void rx_poll(struct tasklet_struct *t) 1317 { 1318 struct netdev_private *np = from_tasklet(np, t, rx_tasklet); 1319 struct net_device *dev = np->ndev; 1320 int entry = np->cur_rx % RX_RING_SIZE; 1321 int boguscnt = np->budget; 1322 void __iomem *ioaddr = np->base; 1323 int received = 0; 1324 1325 /* If EOP is set on the next entry, it's a new packet. Send it up. */ 1326 while (1) { 1327 struct netdev_desc *desc = &(np->rx_ring[entry]); 1328 u32 frame_status = le32_to_cpu(desc->status); 1329 int pkt_len; 1330 1331 if (--boguscnt < 0) { 1332 goto not_done; 1333 } 1334 if (!(frame_status & DescOwn)) 1335 break; 1336 pkt_len = frame_status & 0x1fff; /* Chip omits the CRC. */ 1337 if (netif_msg_rx_status(np)) 1338 printk(KERN_DEBUG " netdev_rx() status was %8.8x.\n", 1339 frame_status); 1340 if (frame_status & 0x001f4000) { 1341 /* There was a error. */ 1342 if (netif_msg_rx_err(np)) 1343 printk(KERN_DEBUG " netdev_rx() Rx error was %8.8x.\n", 1344 frame_status); 1345 dev->stats.rx_errors++; 1346 if (frame_status & 0x00100000) 1347 dev->stats.rx_length_errors++; 1348 if (frame_status & 0x00010000) 1349 dev->stats.rx_fifo_errors++; 1350 if (frame_status & 0x00060000) 1351 dev->stats.rx_frame_errors++; 1352 if (frame_status & 0x00080000) 1353 dev->stats.rx_crc_errors++; 1354 if (frame_status & 0x00100000) { 1355 printk(KERN_WARNING "%s: Oversized Ethernet frame," 1356 " status %8.8x.\n", 1357 dev->name, frame_status); 1358 } 1359 } else { 1360 struct sk_buff *skb; 1361 #ifndef final_version 1362 if (netif_msg_rx_status(np)) 1363 printk(KERN_DEBUG " netdev_rx() normal Rx pkt length %d" 1364 ", bogus_cnt %d.\n", 1365 pkt_len, boguscnt); 1366 #endif 1367 /* Check if the packet is long enough to accept without copying 1368 to a minimally-sized skbuff. */ 1369 if (pkt_len < rx_copybreak && 1370 (skb = netdev_alloc_skb(dev, pkt_len + 2)) != NULL) { 1371 skb_reserve(skb, 2); /* 16 byte align the IP header */ 1372 dma_sync_single_for_cpu(&np->pci_dev->dev, 1373 le32_to_cpu(desc->frag[0].addr), 1374 np->rx_buf_sz, DMA_FROM_DEVICE); 1375 skb_copy_to_linear_data(skb, np->rx_skbuff[entry]->data, pkt_len); 1376 dma_sync_single_for_device(&np->pci_dev->dev, 1377 le32_to_cpu(desc->frag[0].addr), 1378 np->rx_buf_sz, DMA_FROM_DEVICE); 1379 skb_put(skb, pkt_len); 1380 } else { 1381 dma_unmap_single(&np->pci_dev->dev, 1382 le32_to_cpu(desc->frag[0].addr), 1383 np->rx_buf_sz, DMA_FROM_DEVICE); 1384 skb_put(skb = np->rx_skbuff[entry], pkt_len); 1385 np->rx_skbuff[entry] = NULL; 1386 } 1387 skb->protocol = eth_type_trans(skb, dev); 1388 /* Note: checksum -> skb->ip_summed = CHECKSUM_UNNECESSARY; */ 1389 netif_rx(skb); 1390 } 1391 entry = (entry + 1) % RX_RING_SIZE; 1392 received++; 1393 } 1394 np->cur_rx = entry; 1395 refill_rx (dev); 1396 np->budget -= received; 1397 iowrite16(DEFAULT_INTR, ioaddr + IntrEnable); 1398 return; 1399 1400 not_done: 1401 np->cur_rx = entry; 1402 refill_rx (dev); 1403 if (!received) 1404 received = 1; 1405 np->budget -= received; 1406 if (np->budget <= 0) 1407 np->budget = RX_BUDGET; 1408 tasklet_schedule(&np->rx_tasklet); 1409 } 1410 1411 static void refill_rx (struct net_device *dev) 1412 { 1413 struct netdev_private *np = netdev_priv(dev); 1414 int entry; 1415 int cnt = 0; 1416 1417 /* Refill the Rx ring buffers. */ 1418 for (;(np->cur_rx - np->dirty_rx + RX_RING_SIZE) % RX_RING_SIZE > 0; 1419 np->dirty_rx = (np->dirty_rx + 1) % RX_RING_SIZE) { 1420 struct sk_buff *skb; 1421 entry = np->dirty_rx % RX_RING_SIZE; 1422 if (np->rx_skbuff[entry] == NULL) { 1423 skb = netdev_alloc_skb(dev, np->rx_buf_sz + 2); 1424 np->rx_skbuff[entry] = skb; 1425 if (skb == NULL) 1426 break; /* Better luck next round. */ 1427 skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */ 1428 np->rx_ring[entry].frag[0].addr = cpu_to_le32( 1429 dma_map_single(&np->pci_dev->dev, skb->data, 1430 np->rx_buf_sz, DMA_FROM_DEVICE)); 1431 if (dma_mapping_error(&np->pci_dev->dev, 1432 np->rx_ring[entry].frag[0].addr)) { 1433 dev_kfree_skb_irq(skb); 1434 np->rx_skbuff[entry] = NULL; 1435 break; 1436 } 1437 } 1438 /* Perhaps we need not reset this field. */ 1439 np->rx_ring[entry].frag[0].length = 1440 cpu_to_le32(np->rx_buf_sz | LastFrag); 1441 np->rx_ring[entry].status = 0; 1442 cnt++; 1443 } 1444 } 1445 static void netdev_error(struct net_device *dev, int intr_status) 1446 { 1447 struct netdev_private *np = netdev_priv(dev); 1448 void __iomem *ioaddr = np->base; 1449 u16 mii_ctl, mii_advertise, mii_lpa; 1450 int speed; 1451 1452 if (intr_status & LinkChange) { 1453 if (mdio_wait_link(dev, 10) == 0) { 1454 printk(KERN_INFO "%s: Link up\n", dev->name); 1455 if (np->an_enable) { 1456 mii_advertise = mdio_read(dev, np->phys[0], 1457 MII_ADVERTISE); 1458 mii_lpa = mdio_read(dev, np->phys[0], MII_LPA); 1459 mii_advertise &= mii_lpa; 1460 printk(KERN_INFO "%s: Link changed: ", 1461 dev->name); 1462 if (mii_advertise & ADVERTISE_100FULL) { 1463 np->speed = 100; 1464 printk("100Mbps, full duplex\n"); 1465 } else if (mii_advertise & ADVERTISE_100HALF) { 1466 np->speed = 100; 1467 printk("100Mbps, half duplex\n"); 1468 } else if (mii_advertise & ADVERTISE_10FULL) { 1469 np->speed = 10; 1470 printk("10Mbps, full duplex\n"); 1471 } else if (mii_advertise & ADVERTISE_10HALF) { 1472 np->speed = 10; 1473 printk("10Mbps, half duplex\n"); 1474 } else 1475 printk("\n"); 1476 1477 } else { 1478 mii_ctl = mdio_read(dev, np->phys[0], MII_BMCR); 1479 speed = (mii_ctl & BMCR_SPEED100) ? 100 : 10; 1480 np->speed = speed; 1481 printk(KERN_INFO "%s: Link changed: %dMbps ,", 1482 dev->name, speed); 1483 printk("%s duplex.\n", 1484 (mii_ctl & BMCR_FULLDPLX) ? 1485 "full" : "half"); 1486 } 1487 check_duplex(dev); 1488 if (np->flowctrl && np->mii_if.full_duplex) { 1489 iowrite16(ioread16(ioaddr + MulticastFilter1+2) | 0x0200, 1490 ioaddr + MulticastFilter1+2); 1491 iowrite16(ioread16(ioaddr + MACCtrl0) | EnbFlowCtrl, 1492 ioaddr + MACCtrl0); 1493 } 1494 netif_carrier_on(dev); 1495 } else { 1496 printk(KERN_INFO "%s: Link down\n", dev->name); 1497 netif_carrier_off(dev); 1498 } 1499 } 1500 if (intr_status & StatsMax) { 1501 get_stats(dev); 1502 } 1503 if (intr_status & IntrPCIErr) { 1504 printk(KERN_ERR "%s: Something Wicked happened! %4.4x.\n", 1505 dev->name, intr_status); 1506 /* We must do a global reset of DMA to continue. */ 1507 } 1508 } 1509 1510 static struct net_device_stats *get_stats(struct net_device *dev) 1511 { 1512 struct netdev_private *np = netdev_priv(dev); 1513 void __iomem *ioaddr = np->base; 1514 unsigned long flags; 1515 u8 late_coll, single_coll, mult_coll; 1516 1517 spin_lock_irqsave(&np->statlock, flags); 1518 /* The chip only need report frame silently dropped. */ 1519 dev->stats.rx_missed_errors += ioread8(ioaddr + RxMissed); 1520 dev->stats.tx_packets += ioread16(ioaddr + TxFramesOK); 1521 dev->stats.rx_packets += ioread16(ioaddr + RxFramesOK); 1522 dev->stats.tx_carrier_errors += ioread8(ioaddr + StatsCarrierError); 1523 1524 mult_coll = ioread8(ioaddr + StatsMultiColl); 1525 np->xstats.tx_multiple_collisions += mult_coll; 1526 single_coll = ioread8(ioaddr + StatsOneColl); 1527 np->xstats.tx_single_collisions += single_coll; 1528 late_coll = ioread8(ioaddr + StatsLateColl); 1529 np->xstats.tx_late_collisions += late_coll; 1530 dev->stats.collisions += mult_coll 1531 + single_coll 1532 + late_coll; 1533 1534 np->xstats.tx_deferred += ioread8(ioaddr + StatsTxDefer); 1535 np->xstats.tx_deferred_excessive += ioread8(ioaddr + StatsTxXSDefer); 1536 np->xstats.tx_aborted += ioread8(ioaddr + StatsTxAbort); 1537 np->xstats.tx_bcasts += ioread8(ioaddr + StatsBcastTx); 1538 np->xstats.rx_bcasts += ioread8(ioaddr + StatsBcastRx); 1539 np->xstats.tx_mcasts += ioread8(ioaddr + StatsMcastTx); 1540 np->xstats.rx_mcasts += ioread8(ioaddr + StatsMcastRx); 1541 1542 dev->stats.tx_bytes += ioread16(ioaddr + TxOctetsLow); 1543 dev->stats.tx_bytes += ioread16(ioaddr + TxOctetsHigh) << 16; 1544 dev->stats.rx_bytes += ioread16(ioaddr + RxOctetsLow); 1545 dev->stats.rx_bytes += ioread16(ioaddr + RxOctetsHigh) << 16; 1546 1547 spin_unlock_irqrestore(&np->statlock, flags); 1548 1549 return &dev->stats; 1550 } 1551 1552 static void set_rx_mode(struct net_device *dev) 1553 { 1554 struct netdev_private *np = netdev_priv(dev); 1555 void __iomem *ioaddr = np->base; 1556 u16 mc_filter[4]; /* Multicast hash filter */ 1557 u32 rx_mode; 1558 int i; 1559 1560 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */ 1561 memset(mc_filter, 0xff, sizeof(mc_filter)); 1562 rx_mode = AcceptBroadcast | AcceptMulticast | AcceptAll | AcceptMyPhys; 1563 } else if ((netdev_mc_count(dev) > multicast_filter_limit) || 1564 (dev->flags & IFF_ALLMULTI)) { 1565 /* Too many to match, or accept all multicasts. */ 1566 memset(mc_filter, 0xff, sizeof(mc_filter)); 1567 rx_mode = AcceptBroadcast | AcceptMulticast | AcceptMyPhys; 1568 } else if (!netdev_mc_empty(dev)) { 1569 struct netdev_hw_addr *ha; 1570 int bit; 1571 int index; 1572 int crc; 1573 memset (mc_filter, 0, sizeof (mc_filter)); 1574 netdev_for_each_mc_addr(ha, dev) { 1575 crc = ether_crc_le(ETH_ALEN, ha->addr); 1576 for (index=0, bit=0; bit < 6; bit++, crc <<= 1) 1577 if (crc & 0x80000000) index |= 1 << bit; 1578 mc_filter[index/16] |= (1 << (index % 16)); 1579 } 1580 rx_mode = AcceptBroadcast | AcceptMultiHash | AcceptMyPhys; 1581 } else { 1582 iowrite8(AcceptBroadcast | AcceptMyPhys, ioaddr + RxMode); 1583 return; 1584 } 1585 if (np->mii_if.full_duplex && np->flowctrl) 1586 mc_filter[3] |= 0x0200; 1587 1588 for (i = 0; i < 4; i++) 1589 iowrite16(mc_filter[i], ioaddr + MulticastFilter0 + i*2); 1590 iowrite8(rx_mode, ioaddr + RxMode); 1591 } 1592 1593 static int __set_mac_addr(struct net_device *dev) 1594 { 1595 struct netdev_private *np = netdev_priv(dev); 1596 u16 addr16; 1597 1598 addr16 = (dev->dev_addr[0] | (dev->dev_addr[1] << 8)); 1599 iowrite16(addr16, np->base + StationAddr); 1600 addr16 = (dev->dev_addr[2] | (dev->dev_addr[3] << 8)); 1601 iowrite16(addr16, np->base + StationAddr+2); 1602 addr16 = (dev->dev_addr[4] | (dev->dev_addr[5] << 8)); 1603 iowrite16(addr16, np->base + StationAddr+4); 1604 return 0; 1605 } 1606 1607 /* Invoked with rtnl_lock held */ 1608 static int sundance_set_mac_addr(struct net_device *dev, void *data) 1609 { 1610 const struct sockaddr *addr = data; 1611 1612 if (!is_valid_ether_addr(addr->sa_data)) 1613 return -EADDRNOTAVAIL; 1614 memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN); 1615 __set_mac_addr(dev); 1616 1617 return 0; 1618 } 1619 1620 static const struct { 1621 const char name[ETH_GSTRING_LEN]; 1622 } sundance_stats[] = { 1623 { "tx_multiple_collisions" }, 1624 { "tx_single_collisions" }, 1625 { "tx_late_collisions" }, 1626 { "tx_deferred" }, 1627 { "tx_deferred_excessive" }, 1628 { "tx_aborted" }, 1629 { "tx_bcasts" }, 1630 { "rx_bcasts" }, 1631 { "tx_mcasts" }, 1632 { "rx_mcasts" }, 1633 }; 1634 1635 static int check_if_running(struct net_device *dev) 1636 { 1637 if (!netif_running(dev)) 1638 return -EINVAL; 1639 return 0; 1640 } 1641 1642 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) 1643 { 1644 struct netdev_private *np = netdev_priv(dev); 1645 strlcpy(info->driver, DRV_NAME, sizeof(info->driver)); 1646 strlcpy(info->bus_info, pci_name(np->pci_dev), sizeof(info->bus_info)); 1647 } 1648 1649 static int get_link_ksettings(struct net_device *dev, 1650 struct ethtool_link_ksettings *cmd) 1651 { 1652 struct netdev_private *np = netdev_priv(dev); 1653 spin_lock_irq(&np->lock); 1654 mii_ethtool_get_link_ksettings(&np->mii_if, cmd); 1655 spin_unlock_irq(&np->lock); 1656 return 0; 1657 } 1658 1659 static int set_link_ksettings(struct net_device *dev, 1660 const struct ethtool_link_ksettings *cmd) 1661 { 1662 struct netdev_private *np = netdev_priv(dev); 1663 int res; 1664 spin_lock_irq(&np->lock); 1665 res = mii_ethtool_set_link_ksettings(&np->mii_if, cmd); 1666 spin_unlock_irq(&np->lock); 1667 return res; 1668 } 1669 1670 static int nway_reset(struct net_device *dev) 1671 { 1672 struct netdev_private *np = netdev_priv(dev); 1673 return mii_nway_restart(&np->mii_if); 1674 } 1675 1676 static u32 get_link(struct net_device *dev) 1677 { 1678 struct netdev_private *np = netdev_priv(dev); 1679 return mii_link_ok(&np->mii_if); 1680 } 1681 1682 static u32 get_msglevel(struct net_device *dev) 1683 { 1684 struct netdev_private *np = netdev_priv(dev); 1685 return np->msg_enable; 1686 } 1687 1688 static void set_msglevel(struct net_device *dev, u32 val) 1689 { 1690 struct netdev_private *np = netdev_priv(dev); 1691 np->msg_enable = val; 1692 } 1693 1694 static void get_strings(struct net_device *dev, u32 stringset, 1695 u8 *data) 1696 { 1697 if (stringset == ETH_SS_STATS) 1698 memcpy(data, sundance_stats, sizeof(sundance_stats)); 1699 } 1700 1701 static int get_sset_count(struct net_device *dev, int sset) 1702 { 1703 switch (sset) { 1704 case ETH_SS_STATS: 1705 return ARRAY_SIZE(sundance_stats); 1706 default: 1707 return -EOPNOTSUPP; 1708 } 1709 } 1710 1711 static void get_ethtool_stats(struct net_device *dev, 1712 struct ethtool_stats *stats, u64 *data) 1713 { 1714 struct netdev_private *np = netdev_priv(dev); 1715 int i = 0; 1716 1717 get_stats(dev); 1718 data[i++] = np->xstats.tx_multiple_collisions; 1719 data[i++] = np->xstats.tx_single_collisions; 1720 data[i++] = np->xstats.tx_late_collisions; 1721 data[i++] = np->xstats.tx_deferred; 1722 data[i++] = np->xstats.tx_deferred_excessive; 1723 data[i++] = np->xstats.tx_aborted; 1724 data[i++] = np->xstats.tx_bcasts; 1725 data[i++] = np->xstats.rx_bcasts; 1726 data[i++] = np->xstats.tx_mcasts; 1727 data[i++] = np->xstats.rx_mcasts; 1728 } 1729 1730 #ifdef CONFIG_PM 1731 1732 static void sundance_get_wol(struct net_device *dev, 1733 struct ethtool_wolinfo *wol) 1734 { 1735 struct netdev_private *np = netdev_priv(dev); 1736 void __iomem *ioaddr = np->base; 1737 u8 wol_bits; 1738 1739 wol->wolopts = 0; 1740 1741 wol->supported = (WAKE_PHY | WAKE_MAGIC); 1742 if (!np->wol_enabled) 1743 return; 1744 1745 wol_bits = ioread8(ioaddr + WakeEvent); 1746 if (wol_bits & MagicPktEnable) 1747 wol->wolopts |= WAKE_MAGIC; 1748 if (wol_bits & LinkEventEnable) 1749 wol->wolopts |= WAKE_PHY; 1750 } 1751 1752 static int sundance_set_wol(struct net_device *dev, 1753 struct ethtool_wolinfo *wol) 1754 { 1755 struct netdev_private *np = netdev_priv(dev); 1756 void __iomem *ioaddr = np->base; 1757 u8 wol_bits; 1758 1759 if (!device_can_wakeup(&np->pci_dev->dev)) 1760 return -EOPNOTSUPP; 1761 1762 np->wol_enabled = !!(wol->wolopts); 1763 wol_bits = ioread8(ioaddr + WakeEvent); 1764 wol_bits &= ~(WakePktEnable | MagicPktEnable | 1765 LinkEventEnable | WolEnable); 1766 1767 if (np->wol_enabled) { 1768 if (wol->wolopts & WAKE_MAGIC) 1769 wol_bits |= (MagicPktEnable | WolEnable); 1770 if (wol->wolopts & WAKE_PHY) 1771 wol_bits |= (LinkEventEnable | WolEnable); 1772 } 1773 iowrite8(wol_bits, ioaddr + WakeEvent); 1774 1775 device_set_wakeup_enable(&np->pci_dev->dev, np->wol_enabled); 1776 1777 return 0; 1778 } 1779 #else 1780 #define sundance_get_wol NULL 1781 #define sundance_set_wol NULL 1782 #endif /* CONFIG_PM */ 1783 1784 static const struct ethtool_ops ethtool_ops = { 1785 .begin = check_if_running, 1786 .get_drvinfo = get_drvinfo, 1787 .nway_reset = nway_reset, 1788 .get_link = get_link, 1789 .get_wol = sundance_get_wol, 1790 .set_wol = sundance_set_wol, 1791 .get_msglevel = get_msglevel, 1792 .set_msglevel = set_msglevel, 1793 .get_strings = get_strings, 1794 .get_sset_count = get_sset_count, 1795 .get_ethtool_stats = get_ethtool_stats, 1796 .get_link_ksettings = get_link_ksettings, 1797 .set_link_ksettings = set_link_ksettings, 1798 }; 1799 1800 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 1801 { 1802 struct netdev_private *np = netdev_priv(dev); 1803 int rc; 1804 1805 if (!netif_running(dev)) 1806 return -EINVAL; 1807 1808 spin_lock_irq(&np->lock); 1809 rc = generic_mii_ioctl(&np->mii_if, if_mii(rq), cmd, NULL); 1810 spin_unlock_irq(&np->lock); 1811 1812 return rc; 1813 } 1814 1815 static int netdev_close(struct net_device *dev) 1816 { 1817 struct netdev_private *np = netdev_priv(dev); 1818 void __iomem *ioaddr = np->base; 1819 struct sk_buff *skb; 1820 int i; 1821 1822 /* Wait and kill tasklet */ 1823 tasklet_kill(&np->rx_tasklet); 1824 tasklet_kill(&np->tx_tasklet); 1825 np->cur_tx = 0; 1826 np->dirty_tx = 0; 1827 np->cur_task = 0; 1828 np->last_tx = NULL; 1829 1830 netif_stop_queue(dev); 1831 1832 if (netif_msg_ifdown(np)) { 1833 printk(KERN_DEBUG "%s: Shutting down ethercard, status was Tx %2.2x " 1834 "Rx %4.4x Int %2.2x.\n", 1835 dev->name, ioread8(ioaddr + TxStatus), 1836 ioread32(ioaddr + RxStatus), ioread16(ioaddr + IntrStatus)); 1837 printk(KERN_DEBUG "%s: Queue pointers were Tx %d / %d, Rx %d / %d.\n", 1838 dev->name, np->cur_tx, np->dirty_tx, np->cur_rx, np->dirty_rx); 1839 } 1840 1841 /* Disable interrupts by clearing the interrupt mask. */ 1842 iowrite16(0x0000, ioaddr + IntrEnable); 1843 1844 /* Disable Rx and Tx DMA for safely release resource */ 1845 iowrite32(0x500, ioaddr + DMACtrl); 1846 1847 /* Stop the chip's Tx and Rx processes. */ 1848 iowrite16(TxDisable | RxDisable | StatsDisable, ioaddr + MACCtrl1); 1849 1850 for (i = 2000; i > 0; i--) { 1851 if ((ioread32(ioaddr + DMACtrl) & 0xc000) == 0) 1852 break; 1853 mdelay(1); 1854 } 1855 1856 iowrite16(GlobalReset | DMAReset | FIFOReset | NetworkReset, 1857 ioaddr + ASIC_HI_WORD(ASICCtrl)); 1858 1859 for (i = 2000; i > 0; i--) { 1860 if ((ioread16(ioaddr + ASIC_HI_WORD(ASICCtrl)) & ResetBusy) == 0) 1861 break; 1862 mdelay(1); 1863 } 1864 1865 #ifdef __i386__ 1866 if (netif_msg_hw(np)) { 1867 printk(KERN_DEBUG " Tx ring at %8.8x:\n", 1868 (int)(np->tx_ring_dma)); 1869 for (i = 0; i < TX_RING_SIZE; i++) 1870 printk(KERN_DEBUG " #%d desc. %4.4x %8.8x %8.8x.\n", 1871 i, np->tx_ring[i].status, np->tx_ring[i].frag[0].addr, 1872 np->tx_ring[i].frag[0].length); 1873 printk(KERN_DEBUG " Rx ring %8.8x:\n", 1874 (int)(np->rx_ring_dma)); 1875 for (i = 0; i < /*RX_RING_SIZE*/4 ; i++) { 1876 printk(KERN_DEBUG " #%d desc. %4.4x %4.4x %8.8x\n", 1877 i, np->rx_ring[i].status, np->rx_ring[i].frag[0].addr, 1878 np->rx_ring[i].frag[0].length); 1879 } 1880 } 1881 #endif /* __i386__ debugging only */ 1882 1883 free_irq(np->pci_dev->irq, dev); 1884 1885 del_timer_sync(&np->timer); 1886 1887 /* Free all the skbuffs in the Rx queue. */ 1888 for (i = 0; i < RX_RING_SIZE; i++) { 1889 np->rx_ring[i].status = 0; 1890 skb = np->rx_skbuff[i]; 1891 if (skb) { 1892 dma_unmap_single(&np->pci_dev->dev, 1893 le32_to_cpu(np->rx_ring[i].frag[0].addr), 1894 np->rx_buf_sz, DMA_FROM_DEVICE); 1895 dev_kfree_skb(skb); 1896 np->rx_skbuff[i] = NULL; 1897 } 1898 np->rx_ring[i].frag[0].addr = cpu_to_le32(0xBADF00D0); /* poison */ 1899 } 1900 for (i = 0; i < TX_RING_SIZE; i++) { 1901 np->tx_ring[i].next_desc = 0; 1902 skb = np->tx_skbuff[i]; 1903 if (skb) { 1904 dma_unmap_single(&np->pci_dev->dev, 1905 le32_to_cpu(np->tx_ring[i].frag[0].addr), 1906 skb->len, DMA_TO_DEVICE); 1907 dev_kfree_skb(skb); 1908 np->tx_skbuff[i] = NULL; 1909 } 1910 } 1911 1912 return 0; 1913 } 1914 1915 static void sundance_remove1(struct pci_dev *pdev) 1916 { 1917 struct net_device *dev = pci_get_drvdata(pdev); 1918 1919 if (dev) { 1920 struct netdev_private *np = netdev_priv(dev); 1921 unregister_netdev(dev); 1922 dma_free_coherent(&pdev->dev, RX_TOTAL_SIZE, 1923 np->rx_ring, np->rx_ring_dma); 1924 dma_free_coherent(&pdev->dev, TX_TOTAL_SIZE, 1925 np->tx_ring, np->tx_ring_dma); 1926 pci_iounmap(pdev, np->base); 1927 pci_release_regions(pdev); 1928 free_netdev(dev); 1929 } 1930 } 1931 1932 static int __maybe_unused sundance_suspend(struct device *dev_d) 1933 { 1934 struct net_device *dev = dev_get_drvdata(dev_d); 1935 struct netdev_private *np = netdev_priv(dev); 1936 void __iomem *ioaddr = np->base; 1937 1938 if (!netif_running(dev)) 1939 return 0; 1940 1941 netdev_close(dev); 1942 netif_device_detach(dev); 1943 1944 if (np->wol_enabled) { 1945 iowrite8(AcceptBroadcast | AcceptMyPhys, ioaddr + RxMode); 1946 iowrite16(RxEnable, ioaddr + MACCtrl1); 1947 } 1948 1949 device_set_wakeup_enable(dev_d, np->wol_enabled); 1950 1951 return 0; 1952 } 1953 1954 static int __maybe_unused sundance_resume(struct device *dev_d) 1955 { 1956 struct net_device *dev = dev_get_drvdata(dev_d); 1957 int err = 0; 1958 1959 if (!netif_running(dev)) 1960 return 0; 1961 1962 err = netdev_open(dev); 1963 if (err) { 1964 printk(KERN_ERR "%s: Can't resume interface!\n", 1965 dev->name); 1966 goto out; 1967 } 1968 1969 netif_device_attach(dev); 1970 1971 out: 1972 return err; 1973 } 1974 1975 static SIMPLE_DEV_PM_OPS(sundance_pm_ops, sundance_suspend, sundance_resume); 1976 1977 static struct pci_driver sundance_driver = { 1978 .name = DRV_NAME, 1979 .id_table = sundance_pci_tbl, 1980 .probe = sundance_probe1, 1981 .remove = sundance_remove1, 1982 .driver.pm = &sundance_pm_ops, 1983 }; 1984 1985 static int __init sundance_init(void) 1986 { 1987 return pci_register_driver(&sundance_driver); 1988 } 1989 1990 static void __exit sundance_exit(void) 1991 { 1992 pci_unregister_driver(&sundance_driver); 1993 } 1994 1995 module_init(sundance_init); 1996 module_exit(sundance_exit); 1997 1998 1999