1 /* sundance.c: A Linux device driver for the Sundance ST201 "Alta". */ 2 /* 3 Written 1999-2000 by Donald Becker. 4 5 This software may be used and distributed according to the terms of 6 the GNU General Public License (GPL), incorporated herein by reference. 7 Drivers based on or derived from this code fall under the GPL and must 8 retain the authorship, copyright and license notice. This file is not 9 a complete program and may only be used when the entire operating 10 system is licensed under the GPL. 11 12 The author may be reached as becker@scyld.com, or C/O 13 Scyld Computing Corporation 14 410 Severn Ave., Suite 210 15 Annapolis MD 21403 16 17 Support and updates available at 18 http://www.scyld.com/network/sundance.html 19 [link no longer provides useful info -jgarzik] 20 Archives of the mailing list are still available at 21 http://www.beowulf.org/pipermail/netdrivers/ 22 23 */ 24 25 #define DRV_NAME "sundance" 26 #define DRV_VERSION "1.2" 27 #define DRV_RELDATE "11-Sep-2006" 28 29 30 /* The user-configurable values. 31 These may be modified when a driver module is loaded.*/ 32 static int debug = 1; /* 1 normal messages, 0 quiet .. 7 verbose. */ 33 /* Maximum number of multicast addresses to filter (vs. rx-all-multicast). 34 Typical is a 64 element hash table based on the Ethernet CRC. */ 35 static const int multicast_filter_limit = 32; 36 37 /* Set the copy breakpoint for the copy-only-tiny-frames scheme. 38 Setting to > 1518 effectively disables this feature. 39 This chip can receive into offset buffers, so the Alpha does not 40 need a copy-align. */ 41 static int rx_copybreak; 42 static int flowctrl=1; 43 44 /* media[] specifies the media type the NIC operates at. 45 autosense Autosensing active media. 46 10mbps_hd 10Mbps half duplex. 47 10mbps_fd 10Mbps full duplex. 48 100mbps_hd 100Mbps half duplex. 49 100mbps_fd 100Mbps full duplex. 50 0 Autosensing active media. 51 1 10Mbps half duplex. 52 2 10Mbps full duplex. 53 3 100Mbps half duplex. 54 4 100Mbps full duplex. 55 */ 56 #define MAX_UNITS 8 57 static char *media[MAX_UNITS]; 58 59 60 /* Operational parameters that are set at compile time. */ 61 62 /* Keep the ring sizes a power of two for compile efficiency. 63 The compiler will convert <unsigned>'%'<2^N> into a bit mask. 64 Making the Tx ring too large decreases the effectiveness of channel 65 bonding and packet priority, and more than 128 requires modifying the 66 Tx error recovery. 67 Large receive rings merely waste memory. */ 68 #define TX_RING_SIZE 32 69 #define TX_QUEUE_LEN (TX_RING_SIZE - 1) /* Limit ring entries actually used. */ 70 #define RX_RING_SIZE 64 71 #define RX_BUDGET 32 72 #define TX_TOTAL_SIZE TX_RING_SIZE*sizeof(struct netdev_desc) 73 #define RX_TOTAL_SIZE RX_RING_SIZE*sizeof(struct netdev_desc) 74 75 /* Operational parameters that usually are not changed. */ 76 /* Time in jiffies before concluding the transmitter is hung. */ 77 #define TX_TIMEOUT (4*HZ) 78 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/ 79 80 /* Include files, designed to support most kernel versions 2.0.0 and later. */ 81 #include <linux/module.h> 82 #include <linux/kernel.h> 83 #include <linux/string.h> 84 #include <linux/timer.h> 85 #include <linux/errno.h> 86 #include <linux/ioport.h> 87 #include <linux/interrupt.h> 88 #include <linux/pci.h> 89 #include <linux/netdevice.h> 90 #include <linux/etherdevice.h> 91 #include <linux/skbuff.h> 92 #include <linux/init.h> 93 #include <linux/bitops.h> 94 #include <asm/uaccess.h> 95 #include <asm/processor.h> /* Processor type for cache alignment. */ 96 #include <asm/io.h> 97 #include <linux/delay.h> 98 #include <linux/spinlock.h> 99 #include <linux/dma-mapping.h> 100 #include <linux/crc32.h> 101 #include <linux/ethtool.h> 102 #include <linux/mii.h> 103 104 /* These identify the driver base version and may not be removed. */ 105 static const char version[] = 106 KERN_INFO DRV_NAME ".c:v" DRV_VERSION " " DRV_RELDATE 107 " Written by Donald Becker\n"; 108 109 MODULE_AUTHOR("Donald Becker <becker@scyld.com>"); 110 MODULE_DESCRIPTION("Sundance Alta Ethernet driver"); 111 MODULE_LICENSE("GPL"); 112 113 module_param(debug, int, 0); 114 module_param(rx_copybreak, int, 0); 115 module_param_array(media, charp, NULL, 0); 116 module_param(flowctrl, int, 0); 117 MODULE_PARM_DESC(debug, "Sundance Alta debug level (0-5)"); 118 MODULE_PARM_DESC(rx_copybreak, "Sundance Alta copy breakpoint for copy-only-tiny-frames"); 119 MODULE_PARM_DESC(flowctrl, "Sundance Alta flow control [0|1]"); 120 121 /* 122 Theory of Operation 123 124 I. Board Compatibility 125 126 This driver is designed for the Sundance Technologies "Alta" ST201 chip. 127 128 II. Board-specific settings 129 130 III. Driver operation 131 132 IIIa. Ring buffers 133 134 This driver uses two statically allocated fixed-size descriptor lists 135 formed into rings by a branch from the final descriptor to the beginning of 136 the list. The ring sizes are set at compile time by RX/TX_RING_SIZE. 137 Some chips explicitly use only 2^N sized rings, while others use a 138 'next descriptor' pointer that the driver forms into rings. 139 140 IIIb/c. Transmit/Receive Structure 141 142 This driver uses a zero-copy receive and transmit scheme. 143 The driver allocates full frame size skbuffs for the Rx ring buffers at 144 open() time and passes the skb->data field to the chip as receive data 145 buffers. When an incoming frame is less than RX_COPYBREAK bytes long, 146 a fresh skbuff is allocated and the frame is copied to the new skbuff. 147 When the incoming frame is larger, the skbuff is passed directly up the 148 protocol stack. Buffers consumed this way are replaced by newly allocated 149 skbuffs in a later phase of receives. 150 151 The RX_COPYBREAK value is chosen to trade-off the memory wasted by 152 using a full-sized skbuff for small frames vs. the copying costs of larger 153 frames. New boards are typically used in generously configured machines 154 and the underfilled buffers have negligible impact compared to the benefit of 155 a single allocation size, so the default value of zero results in never 156 copying packets. When copying is done, the cost is usually mitigated by using 157 a combined copy/checksum routine. Copying also preloads the cache, which is 158 most useful with small frames. 159 160 A subtle aspect of the operation is that the IP header at offset 14 in an 161 ethernet frame isn't longword aligned for further processing. 162 Unaligned buffers are permitted by the Sundance hardware, so 163 frames are received into the skbuff at an offset of "+2", 16-byte aligning 164 the IP header. 165 166 IIId. Synchronization 167 168 The driver runs as two independent, single-threaded flows of control. One 169 is the send-packet routine, which enforces single-threaded use by the 170 dev->tbusy flag. The other thread is the interrupt handler, which is single 171 threaded by the hardware and interrupt handling software. 172 173 The send packet thread has partial control over the Tx ring and 'dev->tbusy' 174 flag. It sets the tbusy flag whenever it's queuing a Tx packet. If the next 175 queue slot is empty, it clears the tbusy flag when finished otherwise it sets 176 the 'lp->tx_full' flag. 177 178 The interrupt handler has exclusive control over the Rx ring and records stats 179 from the Tx ring. After reaping the stats, it marks the Tx queue entry as 180 empty by incrementing the dirty_tx mark. Iff the 'lp->tx_full' flag is set, it 181 clears both the tx_full and tbusy flags. 182 183 IV. Notes 184 185 IVb. References 186 187 The Sundance ST201 datasheet, preliminary version. 188 The Kendin KS8723 datasheet, preliminary version. 189 The ICplus IP100 datasheet, preliminary version. 190 http://www.scyld.com/expert/100mbps.html 191 http://www.scyld.com/expert/NWay.html 192 193 IVc. Errata 194 195 */ 196 197 /* Work-around for Kendin chip bugs. */ 198 #ifndef CONFIG_SUNDANCE_MMIO 199 #define USE_IO_OPS 1 200 #endif 201 202 static const struct pci_device_id sundance_pci_tbl[] = { 203 { 0x1186, 0x1002, 0x1186, 0x1002, 0, 0, 0 }, 204 { 0x1186, 0x1002, 0x1186, 0x1003, 0, 0, 1 }, 205 { 0x1186, 0x1002, 0x1186, 0x1012, 0, 0, 2 }, 206 { 0x1186, 0x1002, 0x1186, 0x1040, 0, 0, 3 }, 207 { 0x1186, 0x1002, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 4 }, 208 { 0x13F0, 0x0201, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 5 }, 209 { 0x13F0, 0x0200, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 6 }, 210 { } 211 }; 212 MODULE_DEVICE_TABLE(pci, sundance_pci_tbl); 213 214 enum { 215 netdev_io_size = 128 216 }; 217 218 struct pci_id_info { 219 const char *name; 220 }; 221 static const struct pci_id_info pci_id_tbl[] = { 222 {"D-Link DFE-550TX FAST Ethernet Adapter"}, 223 {"D-Link DFE-550FX 100Mbps Fiber-optics Adapter"}, 224 {"D-Link DFE-580TX 4 port Server Adapter"}, 225 {"D-Link DFE-530TXS FAST Ethernet Adapter"}, 226 {"D-Link DL10050-based FAST Ethernet Adapter"}, 227 {"Sundance Technology Alta"}, 228 {"IC Plus Corporation IP100A FAST Ethernet Adapter"}, 229 { } /* terminate list. */ 230 }; 231 232 /* This driver was written to use PCI memory space, however x86-oriented 233 hardware often uses I/O space accesses. */ 234 235 /* Offsets to the device registers. 236 Unlike software-only systems, device drivers interact with complex hardware. 237 It's not useful to define symbolic names for every register bit in the 238 device. The name can only partially document the semantics and make 239 the driver longer and more difficult to read. 240 In general, only the important configuration values or bits changed 241 multiple times should be defined symbolically. 242 */ 243 enum alta_offsets { 244 DMACtrl = 0x00, 245 TxListPtr = 0x04, 246 TxDMABurstThresh = 0x08, 247 TxDMAUrgentThresh = 0x09, 248 TxDMAPollPeriod = 0x0a, 249 RxDMAStatus = 0x0c, 250 RxListPtr = 0x10, 251 DebugCtrl0 = 0x1a, 252 DebugCtrl1 = 0x1c, 253 RxDMABurstThresh = 0x14, 254 RxDMAUrgentThresh = 0x15, 255 RxDMAPollPeriod = 0x16, 256 LEDCtrl = 0x1a, 257 ASICCtrl = 0x30, 258 EEData = 0x34, 259 EECtrl = 0x36, 260 FlashAddr = 0x40, 261 FlashData = 0x44, 262 WakeEvent = 0x45, 263 TxStatus = 0x46, 264 TxFrameId = 0x47, 265 DownCounter = 0x18, 266 IntrClear = 0x4a, 267 IntrEnable = 0x4c, 268 IntrStatus = 0x4e, 269 MACCtrl0 = 0x50, 270 MACCtrl1 = 0x52, 271 StationAddr = 0x54, 272 MaxFrameSize = 0x5A, 273 RxMode = 0x5c, 274 MIICtrl = 0x5e, 275 MulticastFilter0 = 0x60, 276 MulticastFilter1 = 0x64, 277 RxOctetsLow = 0x68, 278 RxOctetsHigh = 0x6a, 279 TxOctetsLow = 0x6c, 280 TxOctetsHigh = 0x6e, 281 TxFramesOK = 0x70, 282 RxFramesOK = 0x72, 283 StatsCarrierError = 0x74, 284 StatsLateColl = 0x75, 285 StatsMultiColl = 0x76, 286 StatsOneColl = 0x77, 287 StatsTxDefer = 0x78, 288 RxMissed = 0x79, 289 StatsTxXSDefer = 0x7a, 290 StatsTxAbort = 0x7b, 291 StatsBcastTx = 0x7c, 292 StatsBcastRx = 0x7d, 293 StatsMcastTx = 0x7e, 294 StatsMcastRx = 0x7f, 295 /* Aliased and bogus values! */ 296 RxStatus = 0x0c, 297 }; 298 299 #define ASIC_HI_WORD(x) ((x) + 2) 300 301 enum ASICCtrl_HiWord_bit { 302 GlobalReset = 0x0001, 303 RxReset = 0x0002, 304 TxReset = 0x0004, 305 DMAReset = 0x0008, 306 FIFOReset = 0x0010, 307 NetworkReset = 0x0020, 308 HostReset = 0x0040, 309 ResetBusy = 0x0400, 310 }; 311 312 /* Bits in the interrupt status/mask registers. */ 313 enum intr_status_bits { 314 IntrSummary=0x0001, IntrPCIErr=0x0002, IntrMACCtrl=0x0008, 315 IntrTxDone=0x0004, IntrRxDone=0x0010, IntrRxStart=0x0020, 316 IntrDrvRqst=0x0040, 317 StatsMax=0x0080, LinkChange=0x0100, 318 IntrTxDMADone=0x0200, IntrRxDMADone=0x0400, 319 }; 320 321 /* Bits in the RxMode register. */ 322 enum rx_mode_bits { 323 AcceptAllIPMulti=0x20, AcceptMultiHash=0x10, AcceptAll=0x08, 324 AcceptBroadcast=0x04, AcceptMulticast=0x02, AcceptMyPhys=0x01, 325 }; 326 /* Bits in MACCtrl. */ 327 enum mac_ctrl0_bits { 328 EnbFullDuplex=0x20, EnbRcvLargeFrame=0x40, 329 EnbFlowCtrl=0x100, EnbPassRxCRC=0x200, 330 }; 331 enum mac_ctrl1_bits { 332 StatsEnable=0x0020, StatsDisable=0x0040, StatsEnabled=0x0080, 333 TxEnable=0x0100, TxDisable=0x0200, TxEnabled=0x0400, 334 RxEnable=0x0800, RxDisable=0x1000, RxEnabled=0x2000, 335 }; 336 337 /* Bits in WakeEvent register. */ 338 enum wake_event_bits { 339 WakePktEnable = 0x01, 340 MagicPktEnable = 0x02, 341 LinkEventEnable = 0x04, 342 WolEnable = 0x80, 343 }; 344 345 /* The Rx and Tx buffer descriptors. */ 346 /* Note that using only 32 bit fields simplifies conversion to big-endian 347 architectures. */ 348 struct netdev_desc { 349 __le32 next_desc; 350 __le32 status; 351 struct desc_frag { __le32 addr, length; } frag[1]; 352 }; 353 354 /* Bits in netdev_desc.status */ 355 enum desc_status_bits { 356 DescOwn=0x8000, 357 DescEndPacket=0x4000, 358 DescEndRing=0x2000, 359 LastFrag=0x80000000, 360 DescIntrOnTx=0x8000, 361 DescIntrOnDMADone=0x80000000, 362 DisableAlign = 0x00000001, 363 }; 364 365 #define PRIV_ALIGN 15 /* Required alignment mask */ 366 /* Use __attribute__((aligned (L1_CACHE_BYTES))) to maintain alignment 367 within the structure. */ 368 #define MII_CNT 4 369 struct netdev_private { 370 /* Descriptor rings first for alignment. */ 371 struct netdev_desc *rx_ring; 372 struct netdev_desc *tx_ring; 373 struct sk_buff* rx_skbuff[RX_RING_SIZE]; 374 struct sk_buff* tx_skbuff[TX_RING_SIZE]; 375 dma_addr_t tx_ring_dma; 376 dma_addr_t rx_ring_dma; 377 struct timer_list timer; /* Media monitoring timer. */ 378 /* ethtool extra stats */ 379 struct { 380 u64 tx_multiple_collisions; 381 u64 tx_single_collisions; 382 u64 tx_late_collisions; 383 u64 tx_deferred; 384 u64 tx_deferred_excessive; 385 u64 tx_aborted; 386 u64 tx_bcasts; 387 u64 rx_bcasts; 388 u64 tx_mcasts; 389 u64 rx_mcasts; 390 } xstats; 391 /* Frequently used values: keep some adjacent for cache effect. */ 392 spinlock_t lock; 393 int msg_enable; 394 int chip_id; 395 unsigned int cur_rx, dirty_rx; /* Producer/consumer ring indices */ 396 unsigned int rx_buf_sz; /* Based on MTU+slack. */ 397 struct netdev_desc *last_tx; /* Last Tx descriptor used. */ 398 unsigned int cur_tx, dirty_tx; 399 /* These values are keep track of the transceiver/media in use. */ 400 unsigned int flowctrl:1; 401 unsigned int default_port:4; /* Last dev->if_port value. */ 402 unsigned int an_enable:1; 403 unsigned int speed; 404 unsigned int wol_enabled:1; /* Wake on LAN enabled */ 405 struct tasklet_struct rx_tasklet; 406 struct tasklet_struct tx_tasklet; 407 int budget; 408 int cur_task; 409 /* Multicast and receive mode. */ 410 spinlock_t mcastlock; /* SMP lock multicast updates. */ 411 u16 mcast_filter[4]; 412 /* MII transceiver section. */ 413 struct mii_if_info mii_if; 414 int mii_preamble_required; 415 unsigned char phys[MII_CNT]; /* MII device addresses, only first one used. */ 416 struct pci_dev *pci_dev; 417 void __iomem *base; 418 spinlock_t statlock; 419 }; 420 421 /* The station address location in the EEPROM. */ 422 #define EEPROM_SA_OFFSET 0x10 423 #define DEFAULT_INTR (IntrRxDMADone | IntrPCIErr | \ 424 IntrDrvRqst | IntrTxDone | StatsMax | \ 425 LinkChange) 426 427 static int change_mtu(struct net_device *dev, int new_mtu); 428 static int eeprom_read(void __iomem *ioaddr, int location); 429 static int mdio_read(struct net_device *dev, int phy_id, int location); 430 static void mdio_write(struct net_device *dev, int phy_id, int location, int value); 431 static int mdio_wait_link(struct net_device *dev, int wait); 432 static int netdev_open(struct net_device *dev); 433 static void check_duplex(struct net_device *dev); 434 static void netdev_timer(unsigned long data); 435 static void tx_timeout(struct net_device *dev); 436 static void init_ring(struct net_device *dev); 437 static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev); 438 static int reset_tx (struct net_device *dev); 439 static irqreturn_t intr_handler(int irq, void *dev_instance); 440 static void rx_poll(unsigned long data); 441 static void tx_poll(unsigned long data); 442 static void refill_rx (struct net_device *dev); 443 static void netdev_error(struct net_device *dev, int intr_status); 444 static void netdev_error(struct net_device *dev, int intr_status); 445 static void set_rx_mode(struct net_device *dev); 446 static int __set_mac_addr(struct net_device *dev); 447 static int sundance_set_mac_addr(struct net_device *dev, void *data); 448 static struct net_device_stats *get_stats(struct net_device *dev); 449 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd); 450 static int netdev_close(struct net_device *dev); 451 static const struct ethtool_ops ethtool_ops; 452 453 static void sundance_reset(struct net_device *dev, unsigned long reset_cmd) 454 { 455 struct netdev_private *np = netdev_priv(dev); 456 void __iomem *ioaddr = np->base + ASICCtrl; 457 int countdown; 458 459 /* ST201 documentation states ASICCtrl is a 32bit register */ 460 iowrite32 (reset_cmd | ioread32 (ioaddr), ioaddr); 461 /* ST201 documentation states reset can take up to 1 ms */ 462 countdown = 10 + 1; 463 while (ioread32 (ioaddr) & (ResetBusy << 16)) { 464 if (--countdown == 0) { 465 printk(KERN_WARNING "%s : reset not completed !!\n", dev->name); 466 break; 467 } 468 udelay(100); 469 } 470 } 471 472 #ifdef CONFIG_NET_POLL_CONTROLLER 473 static void sundance_poll_controller(struct net_device *dev) 474 { 475 struct netdev_private *np = netdev_priv(dev); 476 477 disable_irq(np->pci_dev->irq); 478 intr_handler(np->pci_dev->irq, dev); 479 enable_irq(np->pci_dev->irq); 480 } 481 #endif 482 483 static const struct net_device_ops netdev_ops = { 484 .ndo_open = netdev_open, 485 .ndo_stop = netdev_close, 486 .ndo_start_xmit = start_tx, 487 .ndo_get_stats = get_stats, 488 .ndo_set_rx_mode = set_rx_mode, 489 .ndo_do_ioctl = netdev_ioctl, 490 .ndo_tx_timeout = tx_timeout, 491 .ndo_change_mtu = change_mtu, 492 .ndo_set_mac_address = sundance_set_mac_addr, 493 .ndo_validate_addr = eth_validate_addr, 494 #ifdef CONFIG_NET_POLL_CONTROLLER 495 .ndo_poll_controller = sundance_poll_controller, 496 #endif 497 }; 498 499 static int sundance_probe1(struct pci_dev *pdev, 500 const struct pci_device_id *ent) 501 { 502 struct net_device *dev; 503 struct netdev_private *np; 504 static int card_idx; 505 int chip_idx = ent->driver_data; 506 int irq; 507 int i; 508 void __iomem *ioaddr; 509 u16 mii_ctl; 510 void *ring_space; 511 dma_addr_t ring_dma; 512 #ifdef USE_IO_OPS 513 int bar = 0; 514 #else 515 int bar = 1; 516 #endif 517 int phy, phy_end, phy_idx = 0; 518 519 /* when built into the kernel, we only print version if device is found */ 520 #ifndef MODULE 521 static int printed_version; 522 if (!printed_version++) 523 printk(version); 524 #endif 525 526 if (pci_enable_device(pdev)) 527 return -EIO; 528 pci_set_master(pdev); 529 530 irq = pdev->irq; 531 532 dev = alloc_etherdev(sizeof(*np)); 533 if (!dev) 534 return -ENOMEM; 535 SET_NETDEV_DEV(dev, &pdev->dev); 536 537 if (pci_request_regions(pdev, DRV_NAME)) 538 goto err_out_netdev; 539 540 ioaddr = pci_iomap(pdev, bar, netdev_io_size); 541 if (!ioaddr) 542 goto err_out_res; 543 544 for (i = 0; i < 3; i++) 545 ((__le16 *)dev->dev_addr)[i] = 546 cpu_to_le16(eeprom_read(ioaddr, i + EEPROM_SA_OFFSET)); 547 548 np = netdev_priv(dev); 549 np->base = ioaddr; 550 np->pci_dev = pdev; 551 np->chip_id = chip_idx; 552 np->msg_enable = (1 << debug) - 1; 553 spin_lock_init(&np->lock); 554 spin_lock_init(&np->statlock); 555 tasklet_init(&np->rx_tasklet, rx_poll, (unsigned long)dev); 556 tasklet_init(&np->tx_tasklet, tx_poll, (unsigned long)dev); 557 558 ring_space = dma_alloc_coherent(&pdev->dev, TX_TOTAL_SIZE, 559 &ring_dma, GFP_KERNEL); 560 if (!ring_space) 561 goto err_out_cleardev; 562 np->tx_ring = (struct netdev_desc *)ring_space; 563 np->tx_ring_dma = ring_dma; 564 565 ring_space = dma_alloc_coherent(&pdev->dev, RX_TOTAL_SIZE, 566 &ring_dma, GFP_KERNEL); 567 if (!ring_space) 568 goto err_out_unmap_tx; 569 np->rx_ring = (struct netdev_desc *)ring_space; 570 np->rx_ring_dma = ring_dma; 571 572 np->mii_if.dev = dev; 573 np->mii_if.mdio_read = mdio_read; 574 np->mii_if.mdio_write = mdio_write; 575 np->mii_if.phy_id_mask = 0x1f; 576 np->mii_if.reg_num_mask = 0x1f; 577 578 /* The chip-specific entries in the device structure. */ 579 dev->netdev_ops = &netdev_ops; 580 dev->ethtool_ops = ðtool_ops; 581 dev->watchdog_timeo = TX_TIMEOUT; 582 583 pci_set_drvdata(pdev, dev); 584 585 i = register_netdev(dev); 586 if (i) 587 goto err_out_unmap_rx; 588 589 printk(KERN_INFO "%s: %s at %p, %pM, IRQ %d.\n", 590 dev->name, pci_id_tbl[chip_idx].name, ioaddr, 591 dev->dev_addr, irq); 592 593 np->phys[0] = 1; /* Default setting */ 594 np->mii_preamble_required++; 595 596 /* 597 * It seems some phys doesn't deal well with address 0 being accessed 598 * first 599 */ 600 if (sundance_pci_tbl[np->chip_id].device == 0x0200) { 601 phy = 0; 602 phy_end = 31; 603 } else { 604 phy = 1; 605 phy_end = 32; /* wraps to zero, due to 'phy & 0x1f' */ 606 } 607 for (; phy <= phy_end && phy_idx < MII_CNT; phy++) { 608 int phyx = phy & 0x1f; 609 int mii_status = mdio_read(dev, phyx, MII_BMSR); 610 if (mii_status != 0xffff && mii_status != 0x0000) { 611 np->phys[phy_idx++] = phyx; 612 np->mii_if.advertising = mdio_read(dev, phyx, MII_ADVERTISE); 613 if ((mii_status & 0x0040) == 0) 614 np->mii_preamble_required++; 615 printk(KERN_INFO "%s: MII PHY found at address %d, status " 616 "0x%4.4x advertising %4.4x.\n", 617 dev->name, phyx, mii_status, np->mii_if.advertising); 618 } 619 } 620 np->mii_preamble_required--; 621 622 if (phy_idx == 0) { 623 printk(KERN_INFO "%s: No MII transceiver found, aborting. ASIC status %x\n", 624 dev->name, ioread32(ioaddr + ASICCtrl)); 625 goto err_out_unregister; 626 } 627 628 np->mii_if.phy_id = np->phys[0]; 629 630 /* Parse override configuration */ 631 np->an_enable = 1; 632 if (card_idx < MAX_UNITS) { 633 if (media[card_idx] != NULL) { 634 np->an_enable = 0; 635 if (strcmp (media[card_idx], "100mbps_fd") == 0 || 636 strcmp (media[card_idx], "4") == 0) { 637 np->speed = 100; 638 np->mii_if.full_duplex = 1; 639 } else if (strcmp (media[card_idx], "100mbps_hd") == 0 || 640 strcmp (media[card_idx], "3") == 0) { 641 np->speed = 100; 642 np->mii_if.full_duplex = 0; 643 } else if (strcmp (media[card_idx], "10mbps_fd") == 0 || 644 strcmp (media[card_idx], "2") == 0) { 645 np->speed = 10; 646 np->mii_if.full_duplex = 1; 647 } else if (strcmp (media[card_idx], "10mbps_hd") == 0 || 648 strcmp (media[card_idx], "1") == 0) { 649 np->speed = 10; 650 np->mii_if.full_duplex = 0; 651 } else { 652 np->an_enable = 1; 653 } 654 } 655 if (flowctrl == 1) 656 np->flowctrl = 1; 657 } 658 659 /* Fibre PHY? */ 660 if (ioread32 (ioaddr + ASICCtrl) & 0x80) { 661 /* Default 100Mbps Full */ 662 if (np->an_enable) { 663 np->speed = 100; 664 np->mii_if.full_duplex = 1; 665 np->an_enable = 0; 666 } 667 } 668 /* Reset PHY */ 669 mdio_write (dev, np->phys[0], MII_BMCR, BMCR_RESET); 670 mdelay (300); 671 /* If flow control enabled, we need to advertise it.*/ 672 if (np->flowctrl) 673 mdio_write (dev, np->phys[0], MII_ADVERTISE, np->mii_if.advertising | 0x0400); 674 mdio_write (dev, np->phys[0], MII_BMCR, BMCR_ANENABLE|BMCR_ANRESTART); 675 /* Force media type */ 676 if (!np->an_enable) { 677 mii_ctl = 0; 678 mii_ctl |= (np->speed == 100) ? BMCR_SPEED100 : 0; 679 mii_ctl |= (np->mii_if.full_duplex) ? BMCR_FULLDPLX : 0; 680 mdio_write (dev, np->phys[0], MII_BMCR, mii_ctl); 681 printk (KERN_INFO "Override speed=%d, %s duplex\n", 682 np->speed, np->mii_if.full_duplex ? "Full" : "Half"); 683 684 } 685 686 /* Perhaps move the reset here? */ 687 /* Reset the chip to erase previous misconfiguration. */ 688 if (netif_msg_hw(np)) 689 printk("ASIC Control is %x.\n", ioread32(ioaddr + ASICCtrl)); 690 sundance_reset(dev, 0x00ff << 16); 691 if (netif_msg_hw(np)) 692 printk("ASIC Control is now %x.\n", ioread32(ioaddr + ASICCtrl)); 693 694 card_idx++; 695 return 0; 696 697 err_out_unregister: 698 unregister_netdev(dev); 699 err_out_unmap_rx: 700 dma_free_coherent(&pdev->dev, RX_TOTAL_SIZE, 701 np->rx_ring, np->rx_ring_dma); 702 err_out_unmap_tx: 703 dma_free_coherent(&pdev->dev, TX_TOTAL_SIZE, 704 np->tx_ring, np->tx_ring_dma); 705 err_out_cleardev: 706 pci_iounmap(pdev, ioaddr); 707 err_out_res: 708 pci_release_regions(pdev); 709 err_out_netdev: 710 free_netdev (dev); 711 return -ENODEV; 712 } 713 714 static int change_mtu(struct net_device *dev, int new_mtu) 715 { 716 if ((new_mtu < 68) || (new_mtu > 8191)) /* Set by RxDMAFrameLen */ 717 return -EINVAL; 718 if (netif_running(dev)) 719 return -EBUSY; 720 dev->mtu = new_mtu; 721 return 0; 722 } 723 724 #define eeprom_delay(ee_addr) ioread32(ee_addr) 725 /* Read the EEPROM and MII Management Data I/O (MDIO) interfaces. */ 726 static int eeprom_read(void __iomem *ioaddr, int location) 727 { 728 int boguscnt = 10000; /* Typical 1900 ticks. */ 729 iowrite16(0x0200 | (location & 0xff), ioaddr + EECtrl); 730 do { 731 eeprom_delay(ioaddr + EECtrl); 732 if (! (ioread16(ioaddr + EECtrl) & 0x8000)) { 733 return ioread16(ioaddr + EEData); 734 } 735 } while (--boguscnt > 0); 736 return 0; 737 } 738 739 /* MII transceiver control section. 740 Read and write the MII registers using software-generated serial 741 MDIO protocol. See the MII specifications or DP83840A data sheet 742 for details. 743 744 The maximum data clock rate is 2.5 Mhz. The minimum timing is usually 745 met by back-to-back 33Mhz PCI cycles. */ 746 #define mdio_delay() ioread8(mdio_addr) 747 748 enum mii_reg_bits { 749 MDIO_ShiftClk=0x0001, MDIO_Data=0x0002, MDIO_EnbOutput=0x0004, 750 }; 751 #define MDIO_EnbIn (0) 752 #define MDIO_WRITE0 (MDIO_EnbOutput) 753 #define MDIO_WRITE1 (MDIO_Data | MDIO_EnbOutput) 754 755 /* Generate the preamble required for initial synchronization and 756 a few older transceivers. */ 757 static void mdio_sync(void __iomem *mdio_addr) 758 { 759 int bits = 32; 760 761 /* Establish sync by sending at least 32 logic ones. */ 762 while (--bits >= 0) { 763 iowrite8(MDIO_WRITE1, mdio_addr); 764 mdio_delay(); 765 iowrite8(MDIO_WRITE1 | MDIO_ShiftClk, mdio_addr); 766 mdio_delay(); 767 } 768 } 769 770 static int mdio_read(struct net_device *dev, int phy_id, int location) 771 { 772 struct netdev_private *np = netdev_priv(dev); 773 void __iomem *mdio_addr = np->base + MIICtrl; 774 int mii_cmd = (0xf6 << 10) | (phy_id << 5) | location; 775 int i, retval = 0; 776 777 if (np->mii_preamble_required) 778 mdio_sync(mdio_addr); 779 780 /* Shift the read command bits out. */ 781 for (i = 15; i >= 0; i--) { 782 int dataval = (mii_cmd & (1 << i)) ? MDIO_WRITE1 : MDIO_WRITE0; 783 784 iowrite8(dataval, mdio_addr); 785 mdio_delay(); 786 iowrite8(dataval | MDIO_ShiftClk, mdio_addr); 787 mdio_delay(); 788 } 789 /* Read the two transition, 16 data, and wire-idle bits. */ 790 for (i = 19; i > 0; i--) { 791 iowrite8(MDIO_EnbIn, mdio_addr); 792 mdio_delay(); 793 retval = (retval << 1) | ((ioread8(mdio_addr) & MDIO_Data) ? 1 : 0); 794 iowrite8(MDIO_EnbIn | MDIO_ShiftClk, mdio_addr); 795 mdio_delay(); 796 } 797 return (retval>>1) & 0xffff; 798 } 799 800 static void mdio_write(struct net_device *dev, int phy_id, int location, int value) 801 { 802 struct netdev_private *np = netdev_priv(dev); 803 void __iomem *mdio_addr = np->base + MIICtrl; 804 int mii_cmd = (0x5002 << 16) | (phy_id << 23) | (location<<18) | value; 805 int i; 806 807 if (np->mii_preamble_required) 808 mdio_sync(mdio_addr); 809 810 /* Shift the command bits out. */ 811 for (i = 31; i >= 0; i--) { 812 int dataval = (mii_cmd & (1 << i)) ? MDIO_WRITE1 : MDIO_WRITE0; 813 814 iowrite8(dataval, mdio_addr); 815 mdio_delay(); 816 iowrite8(dataval | MDIO_ShiftClk, mdio_addr); 817 mdio_delay(); 818 } 819 /* Clear out extra bits. */ 820 for (i = 2; i > 0; i--) { 821 iowrite8(MDIO_EnbIn, mdio_addr); 822 mdio_delay(); 823 iowrite8(MDIO_EnbIn | MDIO_ShiftClk, mdio_addr); 824 mdio_delay(); 825 } 826 } 827 828 static int mdio_wait_link(struct net_device *dev, int wait) 829 { 830 int bmsr; 831 int phy_id; 832 struct netdev_private *np; 833 834 np = netdev_priv(dev); 835 phy_id = np->phys[0]; 836 837 do { 838 bmsr = mdio_read(dev, phy_id, MII_BMSR); 839 if (bmsr & 0x0004) 840 return 0; 841 mdelay(1); 842 } while (--wait > 0); 843 return -1; 844 } 845 846 static int netdev_open(struct net_device *dev) 847 { 848 struct netdev_private *np = netdev_priv(dev); 849 void __iomem *ioaddr = np->base; 850 const int irq = np->pci_dev->irq; 851 unsigned long flags; 852 int i; 853 854 sundance_reset(dev, 0x00ff << 16); 855 856 i = request_irq(irq, intr_handler, IRQF_SHARED, dev->name, dev); 857 if (i) 858 return i; 859 860 if (netif_msg_ifup(np)) 861 printk(KERN_DEBUG "%s: netdev_open() irq %d\n", dev->name, irq); 862 863 init_ring(dev); 864 865 iowrite32(np->rx_ring_dma, ioaddr + RxListPtr); 866 /* The Tx list pointer is written as packets are queued. */ 867 868 /* Initialize other registers. */ 869 __set_mac_addr(dev); 870 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE) 871 iowrite16(dev->mtu + 18, ioaddr + MaxFrameSize); 872 #else 873 iowrite16(dev->mtu + 14, ioaddr + MaxFrameSize); 874 #endif 875 if (dev->mtu > 2047) 876 iowrite32(ioread32(ioaddr + ASICCtrl) | 0x0C, ioaddr + ASICCtrl); 877 878 /* Configure the PCI bus bursts and FIFO thresholds. */ 879 880 if (dev->if_port == 0) 881 dev->if_port = np->default_port; 882 883 spin_lock_init(&np->mcastlock); 884 885 set_rx_mode(dev); 886 iowrite16(0, ioaddr + IntrEnable); 887 iowrite16(0, ioaddr + DownCounter); 888 /* Set the chip to poll every N*320nsec. */ 889 iowrite8(100, ioaddr + RxDMAPollPeriod); 890 iowrite8(127, ioaddr + TxDMAPollPeriod); 891 /* Fix DFE-580TX packet drop issue */ 892 if (np->pci_dev->revision >= 0x14) 893 iowrite8(0x01, ioaddr + DebugCtrl1); 894 netif_start_queue(dev); 895 896 spin_lock_irqsave(&np->lock, flags); 897 reset_tx(dev); 898 spin_unlock_irqrestore(&np->lock, flags); 899 900 iowrite16 (StatsEnable | RxEnable | TxEnable, ioaddr + MACCtrl1); 901 902 /* Disable Wol */ 903 iowrite8(ioread8(ioaddr + WakeEvent) | 0x00, ioaddr + WakeEvent); 904 np->wol_enabled = 0; 905 906 if (netif_msg_ifup(np)) 907 printk(KERN_DEBUG "%s: Done netdev_open(), status: Rx %x Tx %x " 908 "MAC Control %x, %4.4x %4.4x.\n", 909 dev->name, ioread32(ioaddr + RxStatus), ioread8(ioaddr + TxStatus), 910 ioread32(ioaddr + MACCtrl0), 911 ioread16(ioaddr + MACCtrl1), ioread16(ioaddr + MACCtrl0)); 912 913 /* Set the timer to check for link beat. */ 914 init_timer(&np->timer); 915 np->timer.expires = jiffies + 3*HZ; 916 np->timer.data = (unsigned long)dev; 917 np->timer.function = netdev_timer; /* timer handler */ 918 add_timer(&np->timer); 919 920 /* Enable interrupts by setting the interrupt mask. */ 921 iowrite16(DEFAULT_INTR, ioaddr + IntrEnable); 922 923 return 0; 924 } 925 926 static void check_duplex(struct net_device *dev) 927 { 928 struct netdev_private *np = netdev_priv(dev); 929 void __iomem *ioaddr = np->base; 930 int mii_lpa = mdio_read(dev, np->phys[0], MII_LPA); 931 int negotiated = mii_lpa & np->mii_if.advertising; 932 int duplex; 933 934 /* Force media */ 935 if (!np->an_enable || mii_lpa == 0xffff) { 936 if (np->mii_if.full_duplex) 937 iowrite16 (ioread16 (ioaddr + MACCtrl0) | EnbFullDuplex, 938 ioaddr + MACCtrl0); 939 return; 940 } 941 942 /* Autonegotiation */ 943 duplex = (negotiated & 0x0100) || (negotiated & 0x01C0) == 0x0040; 944 if (np->mii_if.full_duplex != duplex) { 945 np->mii_if.full_duplex = duplex; 946 if (netif_msg_link(np)) 947 printk(KERN_INFO "%s: Setting %s-duplex based on MII #%d " 948 "negotiated capability %4.4x.\n", dev->name, 949 duplex ? "full" : "half", np->phys[0], negotiated); 950 iowrite16(ioread16(ioaddr + MACCtrl0) | (duplex ? 0x20 : 0), ioaddr + MACCtrl0); 951 } 952 } 953 954 static void netdev_timer(unsigned long data) 955 { 956 struct net_device *dev = (struct net_device *)data; 957 struct netdev_private *np = netdev_priv(dev); 958 void __iomem *ioaddr = np->base; 959 int next_tick = 10*HZ; 960 961 if (netif_msg_timer(np)) { 962 printk(KERN_DEBUG "%s: Media selection timer tick, intr status %4.4x, " 963 "Tx %x Rx %x.\n", 964 dev->name, ioread16(ioaddr + IntrEnable), 965 ioread8(ioaddr + TxStatus), ioread32(ioaddr + RxStatus)); 966 } 967 check_duplex(dev); 968 np->timer.expires = jiffies + next_tick; 969 add_timer(&np->timer); 970 } 971 972 static void tx_timeout(struct net_device *dev) 973 { 974 struct netdev_private *np = netdev_priv(dev); 975 void __iomem *ioaddr = np->base; 976 unsigned long flag; 977 978 netif_stop_queue(dev); 979 tasklet_disable(&np->tx_tasklet); 980 iowrite16(0, ioaddr + IntrEnable); 981 printk(KERN_WARNING "%s: Transmit timed out, TxStatus %2.2x " 982 "TxFrameId %2.2x," 983 " resetting...\n", dev->name, ioread8(ioaddr + TxStatus), 984 ioread8(ioaddr + TxFrameId)); 985 986 { 987 int i; 988 for (i=0; i<TX_RING_SIZE; i++) { 989 printk(KERN_DEBUG "%02x %08llx %08x %08x(%02x) %08x %08x\n", i, 990 (unsigned long long)(np->tx_ring_dma + i*sizeof(*np->tx_ring)), 991 le32_to_cpu(np->tx_ring[i].next_desc), 992 le32_to_cpu(np->tx_ring[i].status), 993 (le32_to_cpu(np->tx_ring[i].status) >> 2) & 0xff, 994 le32_to_cpu(np->tx_ring[i].frag[0].addr), 995 le32_to_cpu(np->tx_ring[i].frag[0].length)); 996 } 997 printk(KERN_DEBUG "TxListPtr=%08x netif_queue_stopped=%d\n", 998 ioread32(np->base + TxListPtr), 999 netif_queue_stopped(dev)); 1000 printk(KERN_DEBUG "cur_tx=%d(%02x) dirty_tx=%d(%02x)\n", 1001 np->cur_tx, np->cur_tx % TX_RING_SIZE, 1002 np->dirty_tx, np->dirty_tx % TX_RING_SIZE); 1003 printk(KERN_DEBUG "cur_rx=%d dirty_rx=%d\n", np->cur_rx, np->dirty_rx); 1004 printk(KERN_DEBUG "cur_task=%d\n", np->cur_task); 1005 } 1006 spin_lock_irqsave(&np->lock, flag); 1007 1008 /* Stop and restart the chip's Tx processes . */ 1009 reset_tx(dev); 1010 spin_unlock_irqrestore(&np->lock, flag); 1011 1012 dev->if_port = 0; 1013 1014 dev->trans_start = jiffies; /* prevent tx timeout */ 1015 dev->stats.tx_errors++; 1016 if (np->cur_tx - np->dirty_tx < TX_QUEUE_LEN - 4) { 1017 netif_wake_queue(dev); 1018 } 1019 iowrite16(DEFAULT_INTR, ioaddr + IntrEnable); 1020 tasklet_enable(&np->tx_tasklet); 1021 } 1022 1023 1024 /* Initialize the Rx and Tx rings, along with various 'dev' bits. */ 1025 static void init_ring(struct net_device *dev) 1026 { 1027 struct netdev_private *np = netdev_priv(dev); 1028 int i; 1029 1030 np->cur_rx = np->cur_tx = 0; 1031 np->dirty_rx = np->dirty_tx = 0; 1032 np->cur_task = 0; 1033 1034 np->rx_buf_sz = (dev->mtu <= 1520 ? PKT_BUF_SZ : dev->mtu + 16); 1035 1036 /* Initialize all Rx descriptors. */ 1037 for (i = 0; i < RX_RING_SIZE; i++) { 1038 np->rx_ring[i].next_desc = cpu_to_le32(np->rx_ring_dma + 1039 ((i+1)%RX_RING_SIZE)*sizeof(*np->rx_ring)); 1040 np->rx_ring[i].status = 0; 1041 np->rx_ring[i].frag[0].length = 0; 1042 np->rx_skbuff[i] = NULL; 1043 } 1044 1045 /* Fill in the Rx buffers. Handle allocation failure gracefully. */ 1046 for (i = 0; i < RX_RING_SIZE; i++) { 1047 struct sk_buff *skb = 1048 netdev_alloc_skb(dev, np->rx_buf_sz + 2); 1049 np->rx_skbuff[i] = skb; 1050 if (skb == NULL) 1051 break; 1052 skb_reserve(skb, 2); /* 16 byte align the IP header. */ 1053 np->rx_ring[i].frag[0].addr = cpu_to_le32( 1054 dma_map_single(&np->pci_dev->dev, skb->data, 1055 np->rx_buf_sz, DMA_FROM_DEVICE)); 1056 if (dma_mapping_error(&np->pci_dev->dev, 1057 np->rx_ring[i].frag[0].addr)) { 1058 dev_kfree_skb(skb); 1059 np->rx_skbuff[i] = NULL; 1060 break; 1061 } 1062 np->rx_ring[i].frag[0].length = cpu_to_le32(np->rx_buf_sz | LastFrag); 1063 } 1064 np->dirty_rx = (unsigned int)(i - RX_RING_SIZE); 1065 1066 for (i = 0; i < TX_RING_SIZE; i++) { 1067 np->tx_skbuff[i] = NULL; 1068 np->tx_ring[i].status = 0; 1069 } 1070 } 1071 1072 static void tx_poll (unsigned long data) 1073 { 1074 struct net_device *dev = (struct net_device *)data; 1075 struct netdev_private *np = netdev_priv(dev); 1076 unsigned head = np->cur_task % TX_RING_SIZE; 1077 struct netdev_desc *txdesc = 1078 &np->tx_ring[(np->cur_tx - 1) % TX_RING_SIZE]; 1079 1080 /* Chain the next pointer */ 1081 for (; np->cur_tx - np->cur_task > 0; np->cur_task++) { 1082 int entry = np->cur_task % TX_RING_SIZE; 1083 txdesc = &np->tx_ring[entry]; 1084 if (np->last_tx) { 1085 np->last_tx->next_desc = cpu_to_le32(np->tx_ring_dma + 1086 entry*sizeof(struct netdev_desc)); 1087 } 1088 np->last_tx = txdesc; 1089 } 1090 /* Indicate the latest descriptor of tx ring */ 1091 txdesc->status |= cpu_to_le32(DescIntrOnTx); 1092 1093 if (ioread32 (np->base + TxListPtr) == 0) 1094 iowrite32 (np->tx_ring_dma + head * sizeof(struct netdev_desc), 1095 np->base + TxListPtr); 1096 } 1097 1098 static netdev_tx_t 1099 start_tx (struct sk_buff *skb, struct net_device *dev) 1100 { 1101 struct netdev_private *np = netdev_priv(dev); 1102 struct netdev_desc *txdesc; 1103 unsigned entry; 1104 1105 /* Calculate the next Tx descriptor entry. */ 1106 entry = np->cur_tx % TX_RING_SIZE; 1107 np->tx_skbuff[entry] = skb; 1108 txdesc = &np->tx_ring[entry]; 1109 1110 txdesc->next_desc = 0; 1111 txdesc->status = cpu_to_le32 ((entry << 2) | DisableAlign); 1112 txdesc->frag[0].addr = cpu_to_le32(dma_map_single(&np->pci_dev->dev, 1113 skb->data, skb->len, DMA_TO_DEVICE)); 1114 if (dma_mapping_error(&np->pci_dev->dev, 1115 txdesc->frag[0].addr)) 1116 goto drop_frame; 1117 txdesc->frag[0].length = cpu_to_le32 (skb->len | LastFrag); 1118 1119 /* Increment cur_tx before tasklet_schedule() */ 1120 np->cur_tx++; 1121 mb(); 1122 /* Schedule a tx_poll() task */ 1123 tasklet_schedule(&np->tx_tasklet); 1124 1125 /* On some architectures: explicitly flush cache lines here. */ 1126 if (np->cur_tx - np->dirty_tx < TX_QUEUE_LEN - 1 && 1127 !netif_queue_stopped(dev)) { 1128 /* do nothing */ 1129 } else { 1130 netif_stop_queue (dev); 1131 } 1132 if (netif_msg_tx_queued(np)) { 1133 printk (KERN_DEBUG 1134 "%s: Transmit frame #%d queued in slot %d.\n", 1135 dev->name, np->cur_tx, entry); 1136 } 1137 return NETDEV_TX_OK; 1138 1139 drop_frame: 1140 dev_kfree_skb_any(skb); 1141 np->tx_skbuff[entry] = NULL; 1142 dev->stats.tx_dropped++; 1143 return NETDEV_TX_OK; 1144 } 1145 1146 /* Reset hardware tx and free all of tx buffers */ 1147 static int 1148 reset_tx (struct net_device *dev) 1149 { 1150 struct netdev_private *np = netdev_priv(dev); 1151 void __iomem *ioaddr = np->base; 1152 struct sk_buff *skb; 1153 int i; 1154 1155 /* Reset tx logic, TxListPtr will be cleaned */ 1156 iowrite16 (TxDisable, ioaddr + MACCtrl1); 1157 sundance_reset(dev, (NetworkReset|FIFOReset|DMAReset|TxReset) << 16); 1158 1159 /* free all tx skbuff */ 1160 for (i = 0; i < TX_RING_SIZE; i++) { 1161 np->tx_ring[i].next_desc = 0; 1162 1163 skb = np->tx_skbuff[i]; 1164 if (skb) { 1165 dma_unmap_single(&np->pci_dev->dev, 1166 le32_to_cpu(np->tx_ring[i].frag[0].addr), 1167 skb->len, DMA_TO_DEVICE); 1168 dev_kfree_skb_any(skb); 1169 np->tx_skbuff[i] = NULL; 1170 dev->stats.tx_dropped++; 1171 } 1172 } 1173 np->cur_tx = np->dirty_tx = 0; 1174 np->cur_task = 0; 1175 1176 np->last_tx = NULL; 1177 iowrite8(127, ioaddr + TxDMAPollPeriod); 1178 1179 iowrite16 (StatsEnable | RxEnable | TxEnable, ioaddr + MACCtrl1); 1180 return 0; 1181 } 1182 1183 /* The interrupt handler cleans up after the Tx thread, 1184 and schedule a Rx thread work */ 1185 static irqreturn_t intr_handler(int irq, void *dev_instance) 1186 { 1187 struct net_device *dev = (struct net_device *)dev_instance; 1188 struct netdev_private *np = netdev_priv(dev); 1189 void __iomem *ioaddr = np->base; 1190 int hw_frame_id; 1191 int tx_cnt; 1192 int tx_status; 1193 int handled = 0; 1194 int i; 1195 1196 1197 do { 1198 int intr_status = ioread16(ioaddr + IntrStatus); 1199 iowrite16(intr_status, ioaddr + IntrStatus); 1200 1201 if (netif_msg_intr(np)) 1202 printk(KERN_DEBUG "%s: Interrupt, status %4.4x.\n", 1203 dev->name, intr_status); 1204 1205 if (!(intr_status & DEFAULT_INTR)) 1206 break; 1207 1208 handled = 1; 1209 1210 if (intr_status & (IntrRxDMADone)) { 1211 iowrite16(DEFAULT_INTR & ~(IntrRxDone|IntrRxDMADone), 1212 ioaddr + IntrEnable); 1213 if (np->budget < 0) 1214 np->budget = RX_BUDGET; 1215 tasklet_schedule(&np->rx_tasklet); 1216 } 1217 if (intr_status & (IntrTxDone | IntrDrvRqst)) { 1218 tx_status = ioread16 (ioaddr + TxStatus); 1219 for (tx_cnt=32; tx_status & 0x80; --tx_cnt) { 1220 if (netif_msg_tx_done(np)) 1221 printk 1222 ("%s: Transmit status is %2.2x.\n", 1223 dev->name, tx_status); 1224 if (tx_status & 0x1e) { 1225 if (netif_msg_tx_err(np)) 1226 printk("%s: Transmit error status %4.4x.\n", 1227 dev->name, tx_status); 1228 dev->stats.tx_errors++; 1229 if (tx_status & 0x10) 1230 dev->stats.tx_fifo_errors++; 1231 if (tx_status & 0x08) 1232 dev->stats.collisions++; 1233 if (tx_status & 0x04) 1234 dev->stats.tx_fifo_errors++; 1235 if (tx_status & 0x02) 1236 dev->stats.tx_window_errors++; 1237 1238 /* 1239 ** This reset has been verified on 1240 ** DFE-580TX boards ! phdm@macqel.be. 1241 */ 1242 if (tx_status & 0x10) { /* TxUnderrun */ 1243 /* Restart Tx FIFO and transmitter */ 1244 sundance_reset(dev, (NetworkReset|FIFOReset|TxReset) << 16); 1245 /* No need to reset the Tx pointer here */ 1246 } 1247 /* Restart the Tx. Need to make sure tx enabled */ 1248 i = 10; 1249 do { 1250 iowrite16(ioread16(ioaddr + MACCtrl1) | TxEnable, ioaddr + MACCtrl1); 1251 if (ioread16(ioaddr + MACCtrl1) & TxEnabled) 1252 break; 1253 mdelay(1); 1254 } while (--i); 1255 } 1256 /* Yup, this is a documentation bug. It cost me *hours*. */ 1257 iowrite16 (0, ioaddr + TxStatus); 1258 if (tx_cnt < 0) { 1259 iowrite32(5000, ioaddr + DownCounter); 1260 break; 1261 } 1262 tx_status = ioread16 (ioaddr + TxStatus); 1263 } 1264 hw_frame_id = (tx_status >> 8) & 0xff; 1265 } else { 1266 hw_frame_id = ioread8(ioaddr + TxFrameId); 1267 } 1268 1269 if (np->pci_dev->revision >= 0x14) { 1270 spin_lock(&np->lock); 1271 for (; np->cur_tx - np->dirty_tx > 0; np->dirty_tx++) { 1272 int entry = np->dirty_tx % TX_RING_SIZE; 1273 struct sk_buff *skb; 1274 int sw_frame_id; 1275 sw_frame_id = (le32_to_cpu( 1276 np->tx_ring[entry].status) >> 2) & 0xff; 1277 if (sw_frame_id == hw_frame_id && 1278 !(le32_to_cpu(np->tx_ring[entry].status) 1279 & 0x00010000)) 1280 break; 1281 if (sw_frame_id == (hw_frame_id + 1) % 1282 TX_RING_SIZE) 1283 break; 1284 skb = np->tx_skbuff[entry]; 1285 /* Free the original skb. */ 1286 dma_unmap_single(&np->pci_dev->dev, 1287 le32_to_cpu(np->tx_ring[entry].frag[0].addr), 1288 skb->len, DMA_TO_DEVICE); 1289 dev_kfree_skb_irq (np->tx_skbuff[entry]); 1290 np->tx_skbuff[entry] = NULL; 1291 np->tx_ring[entry].frag[0].addr = 0; 1292 np->tx_ring[entry].frag[0].length = 0; 1293 } 1294 spin_unlock(&np->lock); 1295 } else { 1296 spin_lock(&np->lock); 1297 for (; np->cur_tx - np->dirty_tx > 0; np->dirty_tx++) { 1298 int entry = np->dirty_tx % TX_RING_SIZE; 1299 struct sk_buff *skb; 1300 if (!(le32_to_cpu(np->tx_ring[entry].status) 1301 & 0x00010000)) 1302 break; 1303 skb = np->tx_skbuff[entry]; 1304 /* Free the original skb. */ 1305 dma_unmap_single(&np->pci_dev->dev, 1306 le32_to_cpu(np->tx_ring[entry].frag[0].addr), 1307 skb->len, DMA_TO_DEVICE); 1308 dev_kfree_skb_irq (np->tx_skbuff[entry]); 1309 np->tx_skbuff[entry] = NULL; 1310 np->tx_ring[entry].frag[0].addr = 0; 1311 np->tx_ring[entry].frag[0].length = 0; 1312 } 1313 spin_unlock(&np->lock); 1314 } 1315 1316 if (netif_queue_stopped(dev) && 1317 np->cur_tx - np->dirty_tx < TX_QUEUE_LEN - 4) { 1318 /* The ring is no longer full, clear busy flag. */ 1319 netif_wake_queue (dev); 1320 } 1321 /* Abnormal error summary/uncommon events handlers. */ 1322 if (intr_status & (IntrPCIErr | LinkChange | StatsMax)) 1323 netdev_error(dev, intr_status); 1324 } while (0); 1325 if (netif_msg_intr(np)) 1326 printk(KERN_DEBUG "%s: exiting interrupt, status=%#4.4x.\n", 1327 dev->name, ioread16(ioaddr + IntrStatus)); 1328 return IRQ_RETVAL(handled); 1329 } 1330 1331 static void rx_poll(unsigned long data) 1332 { 1333 struct net_device *dev = (struct net_device *)data; 1334 struct netdev_private *np = netdev_priv(dev); 1335 int entry = np->cur_rx % RX_RING_SIZE; 1336 int boguscnt = np->budget; 1337 void __iomem *ioaddr = np->base; 1338 int received = 0; 1339 1340 /* If EOP is set on the next entry, it's a new packet. Send it up. */ 1341 while (1) { 1342 struct netdev_desc *desc = &(np->rx_ring[entry]); 1343 u32 frame_status = le32_to_cpu(desc->status); 1344 int pkt_len; 1345 1346 if (--boguscnt < 0) { 1347 goto not_done; 1348 } 1349 if (!(frame_status & DescOwn)) 1350 break; 1351 pkt_len = frame_status & 0x1fff; /* Chip omits the CRC. */ 1352 if (netif_msg_rx_status(np)) 1353 printk(KERN_DEBUG " netdev_rx() status was %8.8x.\n", 1354 frame_status); 1355 if (frame_status & 0x001f4000) { 1356 /* There was a error. */ 1357 if (netif_msg_rx_err(np)) 1358 printk(KERN_DEBUG " netdev_rx() Rx error was %8.8x.\n", 1359 frame_status); 1360 dev->stats.rx_errors++; 1361 if (frame_status & 0x00100000) 1362 dev->stats.rx_length_errors++; 1363 if (frame_status & 0x00010000) 1364 dev->stats.rx_fifo_errors++; 1365 if (frame_status & 0x00060000) 1366 dev->stats.rx_frame_errors++; 1367 if (frame_status & 0x00080000) 1368 dev->stats.rx_crc_errors++; 1369 if (frame_status & 0x00100000) { 1370 printk(KERN_WARNING "%s: Oversized Ethernet frame," 1371 " status %8.8x.\n", 1372 dev->name, frame_status); 1373 } 1374 } else { 1375 struct sk_buff *skb; 1376 #ifndef final_version 1377 if (netif_msg_rx_status(np)) 1378 printk(KERN_DEBUG " netdev_rx() normal Rx pkt length %d" 1379 ", bogus_cnt %d.\n", 1380 pkt_len, boguscnt); 1381 #endif 1382 /* Check if the packet is long enough to accept without copying 1383 to a minimally-sized skbuff. */ 1384 if (pkt_len < rx_copybreak && 1385 (skb = netdev_alloc_skb(dev, pkt_len + 2)) != NULL) { 1386 skb_reserve(skb, 2); /* 16 byte align the IP header */ 1387 dma_sync_single_for_cpu(&np->pci_dev->dev, 1388 le32_to_cpu(desc->frag[0].addr), 1389 np->rx_buf_sz, DMA_FROM_DEVICE); 1390 skb_copy_to_linear_data(skb, np->rx_skbuff[entry]->data, pkt_len); 1391 dma_sync_single_for_device(&np->pci_dev->dev, 1392 le32_to_cpu(desc->frag[0].addr), 1393 np->rx_buf_sz, DMA_FROM_DEVICE); 1394 skb_put(skb, pkt_len); 1395 } else { 1396 dma_unmap_single(&np->pci_dev->dev, 1397 le32_to_cpu(desc->frag[0].addr), 1398 np->rx_buf_sz, DMA_FROM_DEVICE); 1399 skb_put(skb = np->rx_skbuff[entry], pkt_len); 1400 np->rx_skbuff[entry] = NULL; 1401 } 1402 skb->protocol = eth_type_trans(skb, dev); 1403 /* Note: checksum -> skb->ip_summed = CHECKSUM_UNNECESSARY; */ 1404 netif_rx(skb); 1405 } 1406 entry = (entry + 1) % RX_RING_SIZE; 1407 received++; 1408 } 1409 np->cur_rx = entry; 1410 refill_rx (dev); 1411 np->budget -= received; 1412 iowrite16(DEFAULT_INTR, ioaddr + IntrEnable); 1413 return; 1414 1415 not_done: 1416 np->cur_rx = entry; 1417 refill_rx (dev); 1418 if (!received) 1419 received = 1; 1420 np->budget -= received; 1421 if (np->budget <= 0) 1422 np->budget = RX_BUDGET; 1423 tasklet_schedule(&np->rx_tasklet); 1424 } 1425 1426 static void refill_rx (struct net_device *dev) 1427 { 1428 struct netdev_private *np = netdev_priv(dev); 1429 int entry; 1430 int cnt = 0; 1431 1432 /* Refill the Rx ring buffers. */ 1433 for (;(np->cur_rx - np->dirty_rx + RX_RING_SIZE) % RX_RING_SIZE > 0; 1434 np->dirty_rx = (np->dirty_rx + 1) % RX_RING_SIZE) { 1435 struct sk_buff *skb; 1436 entry = np->dirty_rx % RX_RING_SIZE; 1437 if (np->rx_skbuff[entry] == NULL) { 1438 skb = netdev_alloc_skb(dev, np->rx_buf_sz + 2); 1439 np->rx_skbuff[entry] = skb; 1440 if (skb == NULL) 1441 break; /* Better luck next round. */ 1442 skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */ 1443 np->rx_ring[entry].frag[0].addr = cpu_to_le32( 1444 dma_map_single(&np->pci_dev->dev, skb->data, 1445 np->rx_buf_sz, DMA_FROM_DEVICE)); 1446 if (dma_mapping_error(&np->pci_dev->dev, 1447 np->rx_ring[entry].frag[0].addr)) { 1448 dev_kfree_skb_irq(skb); 1449 np->rx_skbuff[entry] = NULL; 1450 break; 1451 } 1452 } 1453 /* Perhaps we need not reset this field. */ 1454 np->rx_ring[entry].frag[0].length = 1455 cpu_to_le32(np->rx_buf_sz | LastFrag); 1456 np->rx_ring[entry].status = 0; 1457 cnt++; 1458 } 1459 } 1460 static void netdev_error(struct net_device *dev, int intr_status) 1461 { 1462 struct netdev_private *np = netdev_priv(dev); 1463 void __iomem *ioaddr = np->base; 1464 u16 mii_ctl, mii_advertise, mii_lpa; 1465 int speed; 1466 1467 if (intr_status & LinkChange) { 1468 if (mdio_wait_link(dev, 10) == 0) { 1469 printk(KERN_INFO "%s: Link up\n", dev->name); 1470 if (np->an_enable) { 1471 mii_advertise = mdio_read(dev, np->phys[0], 1472 MII_ADVERTISE); 1473 mii_lpa = mdio_read(dev, np->phys[0], MII_LPA); 1474 mii_advertise &= mii_lpa; 1475 printk(KERN_INFO "%s: Link changed: ", 1476 dev->name); 1477 if (mii_advertise & ADVERTISE_100FULL) { 1478 np->speed = 100; 1479 printk("100Mbps, full duplex\n"); 1480 } else if (mii_advertise & ADVERTISE_100HALF) { 1481 np->speed = 100; 1482 printk("100Mbps, half duplex\n"); 1483 } else if (mii_advertise & ADVERTISE_10FULL) { 1484 np->speed = 10; 1485 printk("10Mbps, full duplex\n"); 1486 } else if (mii_advertise & ADVERTISE_10HALF) { 1487 np->speed = 10; 1488 printk("10Mbps, half duplex\n"); 1489 } else 1490 printk("\n"); 1491 1492 } else { 1493 mii_ctl = mdio_read(dev, np->phys[0], MII_BMCR); 1494 speed = (mii_ctl & BMCR_SPEED100) ? 100 : 10; 1495 np->speed = speed; 1496 printk(KERN_INFO "%s: Link changed: %dMbps ,", 1497 dev->name, speed); 1498 printk("%s duplex.\n", 1499 (mii_ctl & BMCR_FULLDPLX) ? 1500 "full" : "half"); 1501 } 1502 check_duplex(dev); 1503 if (np->flowctrl && np->mii_if.full_duplex) { 1504 iowrite16(ioread16(ioaddr + MulticastFilter1+2) | 0x0200, 1505 ioaddr + MulticastFilter1+2); 1506 iowrite16(ioread16(ioaddr + MACCtrl0) | EnbFlowCtrl, 1507 ioaddr + MACCtrl0); 1508 } 1509 netif_carrier_on(dev); 1510 } else { 1511 printk(KERN_INFO "%s: Link down\n", dev->name); 1512 netif_carrier_off(dev); 1513 } 1514 } 1515 if (intr_status & StatsMax) { 1516 get_stats(dev); 1517 } 1518 if (intr_status & IntrPCIErr) { 1519 printk(KERN_ERR "%s: Something Wicked happened! %4.4x.\n", 1520 dev->name, intr_status); 1521 /* We must do a global reset of DMA to continue. */ 1522 } 1523 } 1524 1525 static struct net_device_stats *get_stats(struct net_device *dev) 1526 { 1527 struct netdev_private *np = netdev_priv(dev); 1528 void __iomem *ioaddr = np->base; 1529 unsigned long flags; 1530 u8 late_coll, single_coll, mult_coll; 1531 1532 spin_lock_irqsave(&np->statlock, flags); 1533 /* The chip only need report frame silently dropped. */ 1534 dev->stats.rx_missed_errors += ioread8(ioaddr + RxMissed); 1535 dev->stats.tx_packets += ioread16(ioaddr + TxFramesOK); 1536 dev->stats.rx_packets += ioread16(ioaddr + RxFramesOK); 1537 dev->stats.tx_carrier_errors += ioread8(ioaddr + StatsCarrierError); 1538 1539 mult_coll = ioread8(ioaddr + StatsMultiColl); 1540 np->xstats.tx_multiple_collisions += mult_coll; 1541 single_coll = ioread8(ioaddr + StatsOneColl); 1542 np->xstats.tx_single_collisions += single_coll; 1543 late_coll = ioread8(ioaddr + StatsLateColl); 1544 np->xstats.tx_late_collisions += late_coll; 1545 dev->stats.collisions += mult_coll 1546 + single_coll 1547 + late_coll; 1548 1549 np->xstats.tx_deferred += ioread8(ioaddr + StatsTxDefer); 1550 np->xstats.tx_deferred_excessive += ioread8(ioaddr + StatsTxXSDefer); 1551 np->xstats.tx_aborted += ioread8(ioaddr + StatsTxAbort); 1552 np->xstats.tx_bcasts += ioread8(ioaddr + StatsBcastTx); 1553 np->xstats.rx_bcasts += ioread8(ioaddr + StatsBcastRx); 1554 np->xstats.tx_mcasts += ioread8(ioaddr + StatsMcastTx); 1555 np->xstats.rx_mcasts += ioread8(ioaddr + StatsMcastRx); 1556 1557 dev->stats.tx_bytes += ioread16(ioaddr + TxOctetsLow); 1558 dev->stats.tx_bytes += ioread16(ioaddr + TxOctetsHigh) << 16; 1559 dev->stats.rx_bytes += ioread16(ioaddr + RxOctetsLow); 1560 dev->stats.rx_bytes += ioread16(ioaddr + RxOctetsHigh) << 16; 1561 1562 spin_unlock_irqrestore(&np->statlock, flags); 1563 1564 return &dev->stats; 1565 } 1566 1567 static void set_rx_mode(struct net_device *dev) 1568 { 1569 struct netdev_private *np = netdev_priv(dev); 1570 void __iomem *ioaddr = np->base; 1571 u16 mc_filter[4]; /* Multicast hash filter */ 1572 u32 rx_mode; 1573 int i; 1574 1575 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */ 1576 memset(mc_filter, 0xff, sizeof(mc_filter)); 1577 rx_mode = AcceptBroadcast | AcceptMulticast | AcceptAll | AcceptMyPhys; 1578 } else if ((netdev_mc_count(dev) > multicast_filter_limit) || 1579 (dev->flags & IFF_ALLMULTI)) { 1580 /* Too many to match, or accept all multicasts. */ 1581 memset(mc_filter, 0xff, sizeof(mc_filter)); 1582 rx_mode = AcceptBroadcast | AcceptMulticast | AcceptMyPhys; 1583 } else if (!netdev_mc_empty(dev)) { 1584 struct netdev_hw_addr *ha; 1585 int bit; 1586 int index; 1587 int crc; 1588 memset (mc_filter, 0, sizeof (mc_filter)); 1589 netdev_for_each_mc_addr(ha, dev) { 1590 crc = ether_crc_le(ETH_ALEN, ha->addr); 1591 for (index=0, bit=0; bit < 6; bit++, crc <<= 1) 1592 if (crc & 0x80000000) index |= 1 << bit; 1593 mc_filter[index/16] |= (1 << (index % 16)); 1594 } 1595 rx_mode = AcceptBroadcast | AcceptMultiHash | AcceptMyPhys; 1596 } else { 1597 iowrite8(AcceptBroadcast | AcceptMyPhys, ioaddr + RxMode); 1598 return; 1599 } 1600 if (np->mii_if.full_duplex && np->flowctrl) 1601 mc_filter[3] |= 0x0200; 1602 1603 for (i = 0; i < 4; i++) 1604 iowrite16(mc_filter[i], ioaddr + MulticastFilter0 + i*2); 1605 iowrite8(rx_mode, ioaddr + RxMode); 1606 } 1607 1608 static int __set_mac_addr(struct net_device *dev) 1609 { 1610 struct netdev_private *np = netdev_priv(dev); 1611 u16 addr16; 1612 1613 addr16 = (dev->dev_addr[0] | (dev->dev_addr[1] << 8)); 1614 iowrite16(addr16, np->base + StationAddr); 1615 addr16 = (dev->dev_addr[2] | (dev->dev_addr[3] << 8)); 1616 iowrite16(addr16, np->base + StationAddr+2); 1617 addr16 = (dev->dev_addr[4] | (dev->dev_addr[5] << 8)); 1618 iowrite16(addr16, np->base + StationAddr+4); 1619 return 0; 1620 } 1621 1622 /* Invoked with rtnl_lock held */ 1623 static int sundance_set_mac_addr(struct net_device *dev, void *data) 1624 { 1625 const struct sockaddr *addr = data; 1626 1627 if (!is_valid_ether_addr(addr->sa_data)) 1628 return -EADDRNOTAVAIL; 1629 memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN); 1630 __set_mac_addr(dev); 1631 1632 return 0; 1633 } 1634 1635 static const struct { 1636 const char name[ETH_GSTRING_LEN]; 1637 } sundance_stats[] = { 1638 { "tx_multiple_collisions" }, 1639 { "tx_single_collisions" }, 1640 { "tx_late_collisions" }, 1641 { "tx_deferred" }, 1642 { "tx_deferred_excessive" }, 1643 { "tx_aborted" }, 1644 { "tx_bcasts" }, 1645 { "rx_bcasts" }, 1646 { "tx_mcasts" }, 1647 { "rx_mcasts" }, 1648 }; 1649 1650 static int check_if_running(struct net_device *dev) 1651 { 1652 if (!netif_running(dev)) 1653 return -EINVAL; 1654 return 0; 1655 } 1656 1657 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) 1658 { 1659 struct netdev_private *np = netdev_priv(dev); 1660 strlcpy(info->driver, DRV_NAME, sizeof(info->driver)); 1661 strlcpy(info->version, DRV_VERSION, sizeof(info->version)); 1662 strlcpy(info->bus_info, pci_name(np->pci_dev), sizeof(info->bus_info)); 1663 } 1664 1665 static int get_settings(struct net_device *dev, struct ethtool_cmd *ecmd) 1666 { 1667 struct netdev_private *np = netdev_priv(dev); 1668 spin_lock_irq(&np->lock); 1669 mii_ethtool_gset(&np->mii_if, ecmd); 1670 spin_unlock_irq(&np->lock); 1671 return 0; 1672 } 1673 1674 static int set_settings(struct net_device *dev, struct ethtool_cmd *ecmd) 1675 { 1676 struct netdev_private *np = netdev_priv(dev); 1677 int res; 1678 spin_lock_irq(&np->lock); 1679 res = mii_ethtool_sset(&np->mii_if, ecmd); 1680 spin_unlock_irq(&np->lock); 1681 return res; 1682 } 1683 1684 static int nway_reset(struct net_device *dev) 1685 { 1686 struct netdev_private *np = netdev_priv(dev); 1687 return mii_nway_restart(&np->mii_if); 1688 } 1689 1690 static u32 get_link(struct net_device *dev) 1691 { 1692 struct netdev_private *np = netdev_priv(dev); 1693 return mii_link_ok(&np->mii_if); 1694 } 1695 1696 static u32 get_msglevel(struct net_device *dev) 1697 { 1698 struct netdev_private *np = netdev_priv(dev); 1699 return np->msg_enable; 1700 } 1701 1702 static void set_msglevel(struct net_device *dev, u32 val) 1703 { 1704 struct netdev_private *np = netdev_priv(dev); 1705 np->msg_enable = val; 1706 } 1707 1708 static void get_strings(struct net_device *dev, u32 stringset, 1709 u8 *data) 1710 { 1711 if (stringset == ETH_SS_STATS) 1712 memcpy(data, sundance_stats, sizeof(sundance_stats)); 1713 } 1714 1715 static int get_sset_count(struct net_device *dev, int sset) 1716 { 1717 switch (sset) { 1718 case ETH_SS_STATS: 1719 return ARRAY_SIZE(sundance_stats); 1720 default: 1721 return -EOPNOTSUPP; 1722 } 1723 } 1724 1725 static void get_ethtool_stats(struct net_device *dev, 1726 struct ethtool_stats *stats, u64 *data) 1727 { 1728 struct netdev_private *np = netdev_priv(dev); 1729 int i = 0; 1730 1731 get_stats(dev); 1732 data[i++] = np->xstats.tx_multiple_collisions; 1733 data[i++] = np->xstats.tx_single_collisions; 1734 data[i++] = np->xstats.tx_late_collisions; 1735 data[i++] = np->xstats.tx_deferred; 1736 data[i++] = np->xstats.tx_deferred_excessive; 1737 data[i++] = np->xstats.tx_aborted; 1738 data[i++] = np->xstats.tx_bcasts; 1739 data[i++] = np->xstats.rx_bcasts; 1740 data[i++] = np->xstats.tx_mcasts; 1741 data[i++] = np->xstats.rx_mcasts; 1742 } 1743 1744 #ifdef CONFIG_PM 1745 1746 static void sundance_get_wol(struct net_device *dev, 1747 struct ethtool_wolinfo *wol) 1748 { 1749 struct netdev_private *np = netdev_priv(dev); 1750 void __iomem *ioaddr = np->base; 1751 u8 wol_bits; 1752 1753 wol->wolopts = 0; 1754 1755 wol->supported = (WAKE_PHY | WAKE_MAGIC); 1756 if (!np->wol_enabled) 1757 return; 1758 1759 wol_bits = ioread8(ioaddr + WakeEvent); 1760 if (wol_bits & MagicPktEnable) 1761 wol->wolopts |= WAKE_MAGIC; 1762 if (wol_bits & LinkEventEnable) 1763 wol->wolopts |= WAKE_PHY; 1764 } 1765 1766 static int sundance_set_wol(struct net_device *dev, 1767 struct ethtool_wolinfo *wol) 1768 { 1769 struct netdev_private *np = netdev_priv(dev); 1770 void __iomem *ioaddr = np->base; 1771 u8 wol_bits; 1772 1773 if (!device_can_wakeup(&np->pci_dev->dev)) 1774 return -EOPNOTSUPP; 1775 1776 np->wol_enabled = !!(wol->wolopts); 1777 wol_bits = ioread8(ioaddr + WakeEvent); 1778 wol_bits &= ~(WakePktEnable | MagicPktEnable | 1779 LinkEventEnable | WolEnable); 1780 1781 if (np->wol_enabled) { 1782 if (wol->wolopts & WAKE_MAGIC) 1783 wol_bits |= (MagicPktEnable | WolEnable); 1784 if (wol->wolopts & WAKE_PHY) 1785 wol_bits |= (LinkEventEnable | WolEnable); 1786 } 1787 iowrite8(wol_bits, ioaddr + WakeEvent); 1788 1789 device_set_wakeup_enable(&np->pci_dev->dev, np->wol_enabled); 1790 1791 return 0; 1792 } 1793 #else 1794 #define sundance_get_wol NULL 1795 #define sundance_set_wol NULL 1796 #endif /* CONFIG_PM */ 1797 1798 static const struct ethtool_ops ethtool_ops = { 1799 .begin = check_if_running, 1800 .get_drvinfo = get_drvinfo, 1801 .get_settings = get_settings, 1802 .set_settings = set_settings, 1803 .nway_reset = nway_reset, 1804 .get_link = get_link, 1805 .get_wol = sundance_get_wol, 1806 .set_wol = sundance_set_wol, 1807 .get_msglevel = get_msglevel, 1808 .set_msglevel = set_msglevel, 1809 .get_strings = get_strings, 1810 .get_sset_count = get_sset_count, 1811 .get_ethtool_stats = get_ethtool_stats, 1812 }; 1813 1814 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 1815 { 1816 struct netdev_private *np = netdev_priv(dev); 1817 int rc; 1818 1819 if (!netif_running(dev)) 1820 return -EINVAL; 1821 1822 spin_lock_irq(&np->lock); 1823 rc = generic_mii_ioctl(&np->mii_if, if_mii(rq), cmd, NULL); 1824 spin_unlock_irq(&np->lock); 1825 1826 return rc; 1827 } 1828 1829 static int netdev_close(struct net_device *dev) 1830 { 1831 struct netdev_private *np = netdev_priv(dev); 1832 void __iomem *ioaddr = np->base; 1833 struct sk_buff *skb; 1834 int i; 1835 1836 /* Wait and kill tasklet */ 1837 tasklet_kill(&np->rx_tasklet); 1838 tasklet_kill(&np->tx_tasklet); 1839 np->cur_tx = 0; 1840 np->dirty_tx = 0; 1841 np->cur_task = 0; 1842 np->last_tx = NULL; 1843 1844 netif_stop_queue(dev); 1845 1846 if (netif_msg_ifdown(np)) { 1847 printk(KERN_DEBUG "%s: Shutting down ethercard, status was Tx %2.2x " 1848 "Rx %4.4x Int %2.2x.\n", 1849 dev->name, ioread8(ioaddr + TxStatus), 1850 ioread32(ioaddr + RxStatus), ioread16(ioaddr + IntrStatus)); 1851 printk(KERN_DEBUG "%s: Queue pointers were Tx %d / %d, Rx %d / %d.\n", 1852 dev->name, np->cur_tx, np->dirty_tx, np->cur_rx, np->dirty_rx); 1853 } 1854 1855 /* Disable interrupts by clearing the interrupt mask. */ 1856 iowrite16(0x0000, ioaddr + IntrEnable); 1857 1858 /* Disable Rx and Tx DMA for safely release resource */ 1859 iowrite32(0x500, ioaddr + DMACtrl); 1860 1861 /* Stop the chip's Tx and Rx processes. */ 1862 iowrite16(TxDisable | RxDisable | StatsDisable, ioaddr + MACCtrl1); 1863 1864 for (i = 2000; i > 0; i--) { 1865 if ((ioread32(ioaddr + DMACtrl) & 0xc000) == 0) 1866 break; 1867 mdelay(1); 1868 } 1869 1870 iowrite16(GlobalReset | DMAReset | FIFOReset | NetworkReset, 1871 ioaddr + ASIC_HI_WORD(ASICCtrl)); 1872 1873 for (i = 2000; i > 0; i--) { 1874 if ((ioread16(ioaddr + ASIC_HI_WORD(ASICCtrl)) & ResetBusy) == 0) 1875 break; 1876 mdelay(1); 1877 } 1878 1879 #ifdef __i386__ 1880 if (netif_msg_hw(np)) { 1881 printk(KERN_DEBUG " Tx ring at %8.8x:\n", 1882 (int)(np->tx_ring_dma)); 1883 for (i = 0; i < TX_RING_SIZE; i++) 1884 printk(KERN_DEBUG " #%d desc. %4.4x %8.8x %8.8x.\n", 1885 i, np->tx_ring[i].status, np->tx_ring[i].frag[0].addr, 1886 np->tx_ring[i].frag[0].length); 1887 printk(KERN_DEBUG " Rx ring %8.8x:\n", 1888 (int)(np->rx_ring_dma)); 1889 for (i = 0; i < /*RX_RING_SIZE*/4 ; i++) { 1890 printk(KERN_DEBUG " #%d desc. %4.4x %4.4x %8.8x\n", 1891 i, np->rx_ring[i].status, np->rx_ring[i].frag[0].addr, 1892 np->rx_ring[i].frag[0].length); 1893 } 1894 } 1895 #endif /* __i386__ debugging only */ 1896 1897 free_irq(np->pci_dev->irq, dev); 1898 1899 del_timer_sync(&np->timer); 1900 1901 /* Free all the skbuffs in the Rx queue. */ 1902 for (i = 0; i < RX_RING_SIZE; i++) { 1903 np->rx_ring[i].status = 0; 1904 skb = np->rx_skbuff[i]; 1905 if (skb) { 1906 dma_unmap_single(&np->pci_dev->dev, 1907 le32_to_cpu(np->rx_ring[i].frag[0].addr), 1908 np->rx_buf_sz, DMA_FROM_DEVICE); 1909 dev_kfree_skb(skb); 1910 np->rx_skbuff[i] = NULL; 1911 } 1912 np->rx_ring[i].frag[0].addr = cpu_to_le32(0xBADF00D0); /* poison */ 1913 } 1914 for (i = 0; i < TX_RING_SIZE; i++) { 1915 np->tx_ring[i].next_desc = 0; 1916 skb = np->tx_skbuff[i]; 1917 if (skb) { 1918 dma_unmap_single(&np->pci_dev->dev, 1919 le32_to_cpu(np->tx_ring[i].frag[0].addr), 1920 skb->len, DMA_TO_DEVICE); 1921 dev_kfree_skb(skb); 1922 np->tx_skbuff[i] = NULL; 1923 } 1924 } 1925 1926 return 0; 1927 } 1928 1929 static void sundance_remove1(struct pci_dev *pdev) 1930 { 1931 struct net_device *dev = pci_get_drvdata(pdev); 1932 1933 if (dev) { 1934 struct netdev_private *np = netdev_priv(dev); 1935 unregister_netdev(dev); 1936 dma_free_coherent(&pdev->dev, RX_TOTAL_SIZE, 1937 np->rx_ring, np->rx_ring_dma); 1938 dma_free_coherent(&pdev->dev, TX_TOTAL_SIZE, 1939 np->tx_ring, np->tx_ring_dma); 1940 pci_iounmap(pdev, np->base); 1941 pci_release_regions(pdev); 1942 free_netdev(dev); 1943 } 1944 } 1945 1946 #ifdef CONFIG_PM 1947 1948 static int sundance_suspend(struct pci_dev *pci_dev, pm_message_t state) 1949 { 1950 struct net_device *dev = pci_get_drvdata(pci_dev); 1951 struct netdev_private *np = netdev_priv(dev); 1952 void __iomem *ioaddr = np->base; 1953 1954 if (!netif_running(dev)) 1955 return 0; 1956 1957 netdev_close(dev); 1958 netif_device_detach(dev); 1959 1960 pci_save_state(pci_dev); 1961 if (np->wol_enabled) { 1962 iowrite8(AcceptBroadcast | AcceptMyPhys, ioaddr + RxMode); 1963 iowrite16(RxEnable, ioaddr + MACCtrl1); 1964 } 1965 pci_enable_wake(pci_dev, pci_choose_state(pci_dev, state), 1966 np->wol_enabled); 1967 pci_set_power_state(pci_dev, pci_choose_state(pci_dev, state)); 1968 1969 return 0; 1970 } 1971 1972 static int sundance_resume(struct pci_dev *pci_dev) 1973 { 1974 struct net_device *dev = pci_get_drvdata(pci_dev); 1975 int err = 0; 1976 1977 if (!netif_running(dev)) 1978 return 0; 1979 1980 pci_set_power_state(pci_dev, PCI_D0); 1981 pci_restore_state(pci_dev); 1982 pci_enable_wake(pci_dev, PCI_D0, 0); 1983 1984 err = netdev_open(dev); 1985 if (err) { 1986 printk(KERN_ERR "%s: Can't resume interface!\n", 1987 dev->name); 1988 goto out; 1989 } 1990 1991 netif_device_attach(dev); 1992 1993 out: 1994 return err; 1995 } 1996 1997 #endif /* CONFIG_PM */ 1998 1999 static struct pci_driver sundance_driver = { 2000 .name = DRV_NAME, 2001 .id_table = sundance_pci_tbl, 2002 .probe = sundance_probe1, 2003 .remove = sundance_remove1, 2004 #ifdef CONFIG_PM 2005 .suspend = sundance_suspend, 2006 .resume = sundance_resume, 2007 #endif /* CONFIG_PM */ 2008 }; 2009 2010 static int __init sundance_init(void) 2011 { 2012 /* when a module, this is printed whether or not devices are found in probe */ 2013 #ifdef MODULE 2014 printk(version); 2015 #endif 2016 return pci_register_driver(&sundance_driver); 2017 } 2018 2019 static void __exit sundance_exit(void) 2020 { 2021 pci_unregister_driver(&sundance_driver); 2022 } 2023 2024 module_init(sundance_init); 2025 module_exit(sundance_exit); 2026 2027 2028