1 /* sundance.c: A Linux device driver for the Sundance ST201 "Alta". */ 2 /* 3 Written 1999-2000 by Donald Becker. 4 5 This software may be used and distributed according to the terms of 6 the GNU General Public License (GPL), incorporated herein by reference. 7 Drivers based on or derived from this code fall under the GPL and must 8 retain the authorship, copyright and license notice. This file is not 9 a complete program and may only be used when the entire operating 10 system is licensed under the GPL. 11 12 The author may be reached as becker@scyld.com, or C/O 13 Scyld Computing Corporation 14 410 Severn Ave., Suite 210 15 Annapolis MD 21403 16 17 Support and updates available at 18 http://www.scyld.com/network/sundance.html 19 [link no longer provides useful info -jgarzik] 20 Archives of the mailing list are still available at 21 https://www.beowulf.org/pipermail/netdrivers/ 22 23 */ 24 25 #define DRV_NAME "sundance" 26 27 /* The user-configurable values. 28 These may be modified when a driver module is loaded.*/ 29 static int debug = 1; /* 1 normal messages, 0 quiet .. 7 verbose. */ 30 /* Maximum number of multicast addresses to filter (vs. rx-all-multicast). 31 Typical is a 64 element hash table based on the Ethernet CRC. */ 32 static const int multicast_filter_limit = 32; 33 34 /* Set the copy breakpoint for the copy-only-tiny-frames scheme. 35 Setting to > 1518 effectively disables this feature. 36 This chip can receive into offset buffers, so the Alpha does not 37 need a copy-align. */ 38 static int rx_copybreak; 39 static int flowctrl=1; 40 41 /* media[] specifies the media type the NIC operates at. 42 autosense Autosensing active media. 43 10mbps_hd 10Mbps half duplex. 44 10mbps_fd 10Mbps full duplex. 45 100mbps_hd 100Mbps half duplex. 46 100mbps_fd 100Mbps full duplex. 47 0 Autosensing active media. 48 1 10Mbps half duplex. 49 2 10Mbps full duplex. 50 3 100Mbps half duplex. 51 4 100Mbps full duplex. 52 */ 53 #define MAX_UNITS 8 54 static char *media[MAX_UNITS]; 55 56 57 /* Operational parameters that are set at compile time. */ 58 59 /* Keep the ring sizes a power of two for compile efficiency. 60 The compiler will convert <unsigned>'%'<2^N> into a bit mask. 61 Making the Tx ring too large decreases the effectiveness of channel 62 bonding and packet priority, and more than 128 requires modifying the 63 Tx error recovery. 64 Large receive rings merely waste memory. */ 65 #define TX_RING_SIZE 32 66 #define TX_QUEUE_LEN (TX_RING_SIZE - 1) /* Limit ring entries actually used. */ 67 #define RX_RING_SIZE 64 68 #define RX_BUDGET 32 69 #define TX_TOTAL_SIZE TX_RING_SIZE*sizeof(struct netdev_desc) 70 #define RX_TOTAL_SIZE RX_RING_SIZE*sizeof(struct netdev_desc) 71 72 /* Operational parameters that usually are not changed. */ 73 /* Time in jiffies before concluding the transmitter is hung. */ 74 #define TX_TIMEOUT (4*HZ) 75 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/ 76 77 /* Include files, designed to support most kernel versions 2.0.0 and later. */ 78 #include <linux/module.h> 79 #include <linux/kernel.h> 80 #include <linux/string.h> 81 #include <linux/timer.h> 82 #include <linux/errno.h> 83 #include <linux/ioport.h> 84 #include <linux/interrupt.h> 85 #include <linux/pci.h> 86 #include <linux/netdevice.h> 87 #include <linux/etherdevice.h> 88 #include <linux/skbuff.h> 89 #include <linux/init.h> 90 #include <linux/bitops.h> 91 #include <linux/uaccess.h> 92 #include <asm/processor.h> /* Processor type for cache alignment. */ 93 #include <asm/io.h> 94 #include <linux/delay.h> 95 #include <linux/spinlock.h> 96 #include <linux/dma-mapping.h> 97 #include <linux/crc32.h> 98 #include <linux/ethtool.h> 99 #include <linux/mii.h> 100 101 MODULE_AUTHOR("Donald Becker <becker@scyld.com>"); 102 MODULE_DESCRIPTION("Sundance Alta Ethernet driver"); 103 MODULE_LICENSE("GPL"); 104 105 module_param(debug, int, 0); 106 module_param(rx_copybreak, int, 0); 107 module_param_array(media, charp, NULL, 0); 108 module_param(flowctrl, int, 0); 109 MODULE_PARM_DESC(debug, "Sundance Alta debug level (0-5)"); 110 MODULE_PARM_DESC(rx_copybreak, "Sundance Alta copy breakpoint for copy-only-tiny-frames"); 111 MODULE_PARM_DESC(flowctrl, "Sundance Alta flow control [0|1]"); 112 113 /* 114 Theory of Operation 115 116 I. Board Compatibility 117 118 This driver is designed for the Sundance Technologies "Alta" ST201 chip. 119 120 II. Board-specific settings 121 122 III. Driver operation 123 124 IIIa. Ring buffers 125 126 This driver uses two statically allocated fixed-size descriptor lists 127 formed into rings by a branch from the final descriptor to the beginning of 128 the list. The ring sizes are set at compile time by RX/TX_RING_SIZE. 129 Some chips explicitly use only 2^N sized rings, while others use a 130 'next descriptor' pointer that the driver forms into rings. 131 132 IIIb/c. Transmit/Receive Structure 133 134 This driver uses a zero-copy receive and transmit scheme. 135 The driver allocates full frame size skbuffs for the Rx ring buffers at 136 open() time and passes the skb->data field to the chip as receive data 137 buffers. When an incoming frame is less than RX_COPYBREAK bytes long, 138 a fresh skbuff is allocated and the frame is copied to the new skbuff. 139 When the incoming frame is larger, the skbuff is passed directly up the 140 protocol stack. Buffers consumed this way are replaced by newly allocated 141 skbuffs in a later phase of receives. 142 143 The RX_COPYBREAK value is chosen to trade-off the memory wasted by 144 using a full-sized skbuff for small frames vs. the copying costs of larger 145 frames. New boards are typically used in generously configured machines 146 and the underfilled buffers have negligible impact compared to the benefit of 147 a single allocation size, so the default value of zero results in never 148 copying packets. When copying is done, the cost is usually mitigated by using 149 a combined copy/checksum routine. Copying also preloads the cache, which is 150 most useful with small frames. 151 152 A subtle aspect of the operation is that the IP header at offset 14 in an 153 ethernet frame isn't longword aligned for further processing. 154 Unaligned buffers are permitted by the Sundance hardware, so 155 frames are received into the skbuff at an offset of "+2", 16-byte aligning 156 the IP header. 157 158 IIId. Synchronization 159 160 The driver runs as two independent, single-threaded flows of control. One 161 is the send-packet routine, which enforces single-threaded use by the 162 dev->tbusy flag. The other thread is the interrupt handler, which is single 163 threaded by the hardware and interrupt handling software. 164 165 The send packet thread has partial control over the Tx ring and 'dev->tbusy' 166 flag. It sets the tbusy flag whenever it's queuing a Tx packet. If the next 167 queue slot is empty, it clears the tbusy flag when finished otherwise it sets 168 the 'lp->tx_full' flag. 169 170 The interrupt handler has exclusive control over the Rx ring and records stats 171 from the Tx ring. After reaping the stats, it marks the Tx queue entry as 172 empty by incrementing the dirty_tx mark. Iff the 'lp->tx_full' flag is set, it 173 clears both the tx_full and tbusy flags. 174 175 IV. Notes 176 177 IVb. References 178 179 The Sundance ST201 datasheet, preliminary version. 180 The Kendin KS8723 datasheet, preliminary version. 181 The ICplus IP100 datasheet, preliminary version. 182 http://www.scyld.com/expert/100mbps.html 183 http://www.scyld.com/expert/NWay.html 184 185 IVc. Errata 186 187 */ 188 189 /* Work-around for Kendin chip bugs. */ 190 #ifndef CONFIG_SUNDANCE_MMIO 191 #define USE_IO_OPS 1 192 #endif 193 194 static const struct pci_device_id sundance_pci_tbl[] = { 195 { 0x1186, 0x1002, 0x1186, 0x1002, 0, 0, 0 }, 196 { 0x1186, 0x1002, 0x1186, 0x1003, 0, 0, 1 }, 197 { 0x1186, 0x1002, 0x1186, 0x1012, 0, 0, 2 }, 198 { 0x1186, 0x1002, 0x1186, 0x1040, 0, 0, 3 }, 199 { 0x1186, 0x1002, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 4 }, 200 { 0x13F0, 0x0201, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 5 }, 201 { 0x13F0, 0x0200, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 6 }, 202 { } 203 }; 204 MODULE_DEVICE_TABLE(pci, sundance_pci_tbl); 205 206 enum { 207 netdev_io_size = 128 208 }; 209 210 struct pci_id_info { 211 const char *name; 212 }; 213 static const struct pci_id_info pci_id_tbl[] = { 214 {"D-Link DFE-550TX FAST Ethernet Adapter"}, 215 {"D-Link DFE-550FX 100Mbps Fiber-optics Adapter"}, 216 {"D-Link DFE-580TX 4 port Server Adapter"}, 217 {"D-Link DFE-530TXS FAST Ethernet Adapter"}, 218 {"D-Link DL10050-based FAST Ethernet Adapter"}, 219 {"Sundance Technology Alta"}, 220 {"IC Plus Corporation IP100A FAST Ethernet Adapter"}, 221 { } /* terminate list. */ 222 }; 223 224 /* This driver was written to use PCI memory space, however x86-oriented 225 hardware often uses I/O space accesses. */ 226 227 /* Offsets to the device registers. 228 Unlike software-only systems, device drivers interact with complex hardware. 229 It's not useful to define symbolic names for every register bit in the 230 device. The name can only partially document the semantics and make 231 the driver longer and more difficult to read. 232 In general, only the important configuration values or bits changed 233 multiple times should be defined symbolically. 234 */ 235 enum alta_offsets { 236 DMACtrl = 0x00, 237 TxListPtr = 0x04, 238 TxDMABurstThresh = 0x08, 239 TxDMAUrgentThresh = 0x09, 240 TxDMAPollPeriod = 0x0a, 241 RxDMAStatus = 0x0c, 242 RxListPtr = 0x10, 243 DebugCtrl0 = 0x1a, 244 DebugCtrl1 = 0x1c, 245 RxDMABurstThresh = 0x14, 246 RxDMAUrgentThresh = 0x15, 247 RxDMAPollPeriod = 0x16, 248 LEDCtrl = 0x1a, 249 ASICCtrl = 0x30, 250 EEData = 0x34, 251 EECtrl = 0x36, 252 FlashAddr = 0x40, 253 FlashData = 0x44, 254 WakeEvent = 0x45, 255 TxStatus = 0x46, 256 TxFrameId = 0x47, 257 DownCounter = 0x18, 258 IntrClear = 0x4a, 259 IntrEnable = 0x4c, 260 IntrStatus = 0x4e, 261 MACCtrl0 = 0x50, 262 MACCtrl1 = 0x52, 263 StationAddr = 0x54, 264 MaxFrameSize = 0x5A, 265 RxMode = 0x5c, 266 MIICtrl = 0x5e, 267 MulticastFilter0 = 0x60, 268 MulticastFilter1 = 0x64, 269 RxOctetsLow = 0x68, 270 RxOctetsHigh = 0x6a, 271 TxOctetsLow = 0x6c, 272 TxOctetsHigh = 0x6e, 273 TxFramesOK = 0x70, 274 RxFramesOK = 0x72, 275 StatsCarrierError = 0x74, 276 StatsLateColl = 0x75, 277 StatsMultiColl = 0x76, 278 StatsOneColl = 0x77, 279 StatsTxDefer = 0x78, 280 RxMissed = 0x79, 281 StatsTxXSDefer = 0x7a, 282 StatsTxAbort = 0x7b, 283 StatsBcastTx = 0x7c, 284 StatsBcastRx = 0x7d, 285 StatsMcastTx = 0x7e, 286 StatsMcastRx = 0x7f, 287 /* Aliased and bogus values! */ 288 RxStatus = 0x0c, 289 }; 290 291 #define ASIC_HI_WORD(x) ((x) + 2) 292 293 enum ASICCtrl_HiWord_bit { 294 GlobalReset = 0x0001, 295 RxReset = 0x0002, 296 TxReset = 0x0004, 297 DMAReset = 0x0008, 298 FIFOReset = 0x0010, 299 NetworkReset = 0x0020, 300 HostReset = 0x0040, 301 ResetBusy = 0x0400, 302 }; 303 304 /* Bits in the interrupt status/mask registers. */ 305 enum intr_status_bits { 306 IntrSummary=0x0001, IntrPCIErr=0x0002, IntrMACCtrl=0x0008, 307 IntrTxDone=0x0004, IntrRxDone=0x0010, IntrRxStart=0x0020, 308 IntrDrvRqst=0x0040, 309 StatsMax=0x0080, LinkChange=0x0100, 310 IntrTxDMADone=0x0200, IntrRxDMADone=0x0400, 311 }; 312 313 /* Bits in the RxMode register. */ 314 enum rx_mode_bits { 315 AcceptAllIPMulti=0x20, AcceptMultiHash=0x10, AcceptAll=0x08, 316 AcceptBroadcast=0x04, AcceptMulticast=0x02, AcceptMyPhys=0x01, 317 }; 318 /* Bits in MACCtrl. */ 319 enum mac_ctrl0_bits { 320 EnbFullDuplex=0x20, EnbRcvLargeFrame=0x40, 321 EnbFlowCtrl=0x100, EnbPassRxCRC=0x200, 322 }; 323 enum mac_ctrl1_bits { 324 StatsEnable=0x0020, StatsDisable=0x0040, StatsEnabled=0x0080, 325 TxEnable=0x0100, TxDisable=0x0200, TxEnabled=0x0400, 326 RxEnable=0x0800, RxDisable=0x1000, RxEnabled=0x2000, 327 }; 328 329 /* Bits in WakeEvent register. */ 330 enum wake_event_bits { 331 WakePktEnable = 0x01, 332 MagicPktEnable = 0x02, 333 LinkEventEnable = 0x04, 334 WolEnable = 0x80, 335 }; 336 337 /* The Rx and Tx buffer descriptors. */ 338 /* Note that using only 32 bit fields simplifies conversion to big-endian 339 architectures. */ 340 struct netdev_desc { 341 __le32 next_desc; 342 __le32 status; 343 struct desc_frag { __le32 addr, length; } frag; 344 }; 345 346 /* Bits in netdev_desc.status */ 347 enum desc_status_bits { 348 DescOwn=0x8000, 349 DescEndPacket=0x4000, 350 DescEndRing=0x2000, 351 LastFrag=0x80000000, 352 DescIntrOnTx=0x8000, 353 DescIntrOnDMADone=0x80000000, 354 DisableAlign = 0x00000001, 355 }; 356 357 #define PRIV_ALIGN 15 /* Required alignment mask */ 358 /* Use __attribute__((aligned (L1_CACHE_BYTES))) to maintain alignment 359 within the structure. */ 360 #define MII_CNT 4 361 struct netdev_private { 362 /* Descriptor rings first for alignment. */ 363 struct netdev_desc *rx_ring; 364 struct netdev_desc *tx_ring; 365 struct sk_buff* rx_skbuff[RX_RING_SIZE]; 366 struct sk_buff* tx_skbuff[TX_RING_SIZE]; 367 dma_addr_t tx_ring_dma; 368 dma_addr_t rx_ring_dma; 369 struct timer_list timer; /* Media monitoring timer. */ 370 struct net_device *ndev; /* backpointer */ 371 /* ethtool extra stats */ 372 struct { 373 u64 tx_multiple_collisions; 374 u64 tx_single_collisions; 375 u64 tx_late_collisions; 376 u64 tx_deferred; 377 u64 tx_deferred_excessive; 378 u64 tx_aborted; 379 u64 tx_bcasts; 380 u64 rx_bcasts; 381 u64 tx_mcasts; 382 u64 rx_mcasts; 383 } xstats; 384 /* Frequently used values: keep some adjacent for cache effect. */ 385 spinlock_t lock; 386 int msg_enable; 387 int chip_id; 388 unsigned int cur_rx, dirty_rx; /* Producer/consumer ring indices */ 389 unsigned int rx_buf_sz; /* Based on MTU+slack. */ 390 struct netdev_desc *last_tx; /* Last Tx descriptor used. */ 391 unsigned int cur_tx, dirty_tx; 392 /* These values are keep track of the transceiver/media in use. */ 393 unsigned int flowctrl:1; 394 unsigned int default_port:4; /* Last dev->if_port value. */ 395 unsigned int an_enable:1; 396 unsigned int speed; 397 unsigned int wol_enabled:1; /* Wake on LAN enabled */ 398 struct tasklet_struct rx_tasklet; 399 struct tasklet_struct tx_tasklet; 400 int budget; 401 int cur_task; 402 /* Multicast and receive mode. */ 403 spinlock_t mcastlock; /* SMP lock multicast updates. */ 404 u16 mcast_filter[4]; 405 /* MII transceiver section. */ 406 struct mii_if_info mii_if; 407 int mii_preamble_required; 408 unsigned char phys[MII_CNT]; /* MII device addresses, only first one used. */ 409 struct pci_dev *pci_dev; 410 void __iomem *base; 411 spinlock_t statlock; 412 }; 413 414 /* The station address location in the EEPROM. */ 415 #define EEPROM_SA_OFFSET 0x10 416 #define DEFAULT_INTR (IntrRxDMADone | IntrPCIErr | \ 417 IntrDrvRqst | IntrTxDone | StatsMax | \ 418 LinkChange) 419 420 static int change_mtu(struct net_device *dev, int new_mtu); 421 static int eeprom_read(void __iomem *ioaddr, int location); 422 static int mdio_read(struct net_device *dev, int phy_id, int location); 423 static void mdio_write(struct net_device *dev, int phy_id, int location, int value); 424 static int mdio_wait_link(struct net_device *dev, int wait); 425 static int netdev_open(struct net_device *dev); 426 static void check_duplex(struct net_device *dev); 427 static void netdev_timer(struct timer_list *t); 428 static void tx_timeout(struct net_device *dev, unsigned int txqueue); 429 static void init_ring(struct net_device *dev); 430 static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev); 431 static int reset_tx (struct net_device *dev); 432 static irqreturn_t intr_handler(int irq, void *dev_instance); 433 static void rx_poll(struct tasklet_struct *t); 434 static void tx_poll(struct tasklet_struct *t); 435 static void refill_rx (struct net_device *dev); 436 static void netdev_error(struct net_device *dev, int intr_status); 437 static void netdev_error(struct net_device *dev, int intr_status); 438 static void set_rx_mode(struct net_device *dev); 439 static int __set_mac_addr(struct net_device *dev); 440 static int sundance_set_mac_addr(struct net_device *dev, void *data); 441 static struct net_device_stats *get_stats(struct net_device *dev); 442 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd); 443 static int netdev_close(struct net_device *dev); 444 static const struct ethtool_ops ethtool_ops; 445 446 static void sundance_reset(struct net_device *dev, unsigned long reset_cmd) 447 { 448 struct netdev_private *np = netdev_priv(dev); 449 void __iomem *ioaddr = np->base + ASICCtrl; 450 int countdown; 451 452 /* ST201 documentation states ASICCtrl is a 32bit register */ 453 iowrite32 (reset_cmd | ioread32 (ioaddr), ioaddr); 454 /* ST201 documentation states reset can take up to 1 ms */ 455 countdown = 10 + 1; 456 while (ioread32 (ioaddr) & (ResetBusy << 16)) { 457 if (--countdown == 0) { 458 printk(KERN_WARNING "%s : reset not completed !!\n", dev->name); 459 break; 460 } 461 udelay(100); 462 } 463 } 464 465 #ifdef CONFIG_NET_POLL_CONTROLLER 466 static void sundance_poll_controller(struct net_device *dev) 467 { 468 struct netdev_private *np = netdev_priv(dev); 469 470 disable_irq(np->pci_dev->irq); 471 intr_handler(np->pci_dev->irq, dev); 472 enable_irq(np->pci_dev->irq); 473 } 474 #endif 475 476 static const struct net_device_ops netdev_ops = { 477 .ndo_open = netdev_open, 478 .ndo_stop = netdev_close, 479 .ndo_start_xmit = start_tx, 480 .ndo_get_stats = get_stats, 481 .ndo_set_rx_mode = set_rx_mode, 482 .ndo_eth_ioctl = netdev_ioctl, 483 .ndo_tx_timeout = tx_timeout, 484 .ndo_change_mtu = change_mtu, 485 .ndo_set_mac_address = sundance_set_mac_addr, 486 .ndo_validate_addr = eth_validate_addr, 487 #ifdef CONFIG_NET_POLL_CONTROLLER 488 .ndo_poll_controller = sundance_poll_controller, 489 #endif 490 }; 491 492 static int sundance_probe1(struct pci_dev *pdev, 493 const struct pci_device_id *ent) 494 { 495 struct net_device *dev; 496 struct netdev_private *np; 497 static int card_idx; 498 int chip_idx = ent->driver_data; 499 int irq; 500 int i; 501 void __iomem *ioaddr; 502 u16 mii_ctl; 503 void *ring_space; 504 dma_addr_t ring_dma; 505 #ifdef USE_IO_OPS 506 int bar = 0; 507 #else 508 int bar = 1; 509 #endif 510 int phy, phy_end, phy_idx = 0; 511 __le16 addr[ETH_ALEN / 2]; 512 513 if (pci_enable_device(pdev)) 514 return -EIO; 515 pci_set_master(pdev); 516 517 irq = pdev->irq; 518 519 dev = alloc_etherdev(sizeof(*np)); 520 if (!dev) 521 return -ENOMEM; 522 SET_NETDEV_DEV(dev, &pdev->dev); 523 524 if (pci_request_regions(pdev, DRV_NAME)) 525 goto err_out_netdev; 526 527 ioaddr = pci_iomap(pdev, bar, netdev_io_size); 528 if (!ioaddr) 529 goto err_out_res; 530 531 for (i = 0; i < 3; i++) 532 addr[i] = 533 cpu_to_le16(eeprom_read(ioaddr, i + EEPROM_SA_OFFSET)); 534 eth_hw_addr_set(dev, (u8 *)addr); 535 536 np = netdev_priv(dev); 537 np->ndev = dev; 538 np->base = ioaddr; 539 np->pci_dev = pdev; 540 np->chip_id = chip_idx; 541 np->msg_enable = (1 << debug) - 1; 542 spin_lock_init(&np->lock); 543 spin_lock_init(&np->statlock); 544 tasklet_setup(&np->rx_tasklet, rx_poll); 545 tasklet_setup(&np->tx_tasklet, tx_poll); 546 547 ring_space = dma_alloc_coherent(&pdev->dev, TX_TOTAL_SIZE, 548 &ring_dma, GFP_KERNEL); 549 if (!ring_space) 550 goto err_out_cleardev; 551 np->tx_ring = (struct netdev_desc *)ring_space; 552 np->tx_ring_dma = ring_dma; 553 554 ring_space = dma_alloc_coherent(&pdev->dev, RX_TOTAL_SIZE, 555 &ring_dma, GFP_KERNEL); 556 if (!ring_space) 557 goto err_out_unmap_tx; 558 np->rx_ring = (struct netdev_desc *)ring_space; 559 np->rx_ring_dma = ring_dma; 560 561 np->mii_if.dev = dev; 562 np->mii_if.mdio_read = mdio_read; 563 np->mii_if.mdio_write = mdio_write; 564 np->mii_if.phy_id_mask = 0x1f; 565 np->mii_if.reg_num_mask = 0x1f; 566 567 /* The chip-specific entries in the device structure. */ 568 dev->netdev_ops = &netdev_ops; 569 dev->ethtool_ops = ðtool_ops; 570 dev->watchdog_timeo = TX_TIMEOUT; 571 572 /* MTU range: 68 - 8191 */ 573 dev->min_mtu = ETH_MIN_MTU; 574 dev->max_mtu = 8191; 575 576 pci_set_drvdata(pdev, dev); 577 578 i = register_netdev(dev); 579 if (i) 580 goto err_out_unmap_rx; 581 582 printk(KERN_INFO "%s: %s at %p, %pM, IRQ %d.\n", 583 dev->name, pci_id_tbl[chip_idx].name, ioaddr, 584 dev->dev_addr, irq); 585 586 np->phys[0] = 1; /* Default setting */ 587 np->mii_preamble_required++; 588 589 /* 590 * It seems some phys doesn't deal well with address 0 being accessed 591 * first 592 */ 593 if (sundance_pci_tbl[np->chip_id].device == 0x0200) { 594 phy = 0; 595 phy_end = 31; 596 } else { 597 phy = 1; 598 phy_end = 32; /* wraps to zero, due to 'phy & 0x1f' */ 599 } 600 for (; phy <= phy_end && phy_idx < MII_CNT; phy++) { 601 int phyx = phy & 0x1f; 602 int mii_status = mdio_read(dev, phyx, MII_BMSR); 603 if (mii_status != 0xffff && mii_status != 0x0000) { 604 np->phys[phy_idx++] = phyx; 605 np->mii_if.advertising = mdio_read(dev, phyx, MII_ADVERTISE); 606 if ((mii_status & 0x0040) == 0) 607 np->mii_preamble_required++; 608 printk(KERN_INFO "%s: MII PHY found at address %d, status " 609 "0x%4.4x advertising %4.4x.\n", 610 dev->name, phyx, mii_status, np->mii_if.advertising); 611 } 612 } 613 np->mii_preamble_required--; 614 615 if (phy_idx == 0) { 616 printk(KERN_INFO "%s: No MII transceiver found, aborting. ASIC status %x\n", 617 dev->name, ioread32(ioaddr + ASICCtrl)); 618 goto err_out_unregister; 619 } 620 621 np->mii_if.phy_id = np->phys[0]; 622 623 /* Parse override configuration */ 624 np->an_enable = 1; 625 if (card_idx < MAX_UNITS) { 626 if (media[card_idx] != NULL) { 627 np->an_enable = 0; 628 if (strcmp (media[card_idx], "100mbps_fd") == 0 || 629 strcmp (media[card_idx], "4") == 0) { 630 np->speed = 100; 631 np->mii_if.full_duplex = 1; 632 } else if (strcmp (media[card_idx], "100mbps_hd") == 0 || 633 strcmp (media[card_idx], "3") == 0) { 634 np->speed = 100; 635 np->mii_if.full_duplex = 0; 636 } else if (strcmp (media[card_idx], "10mbps_fd") == 0 || 637 strcmp (media[card_idx], "2") == 0) { 638 np->speed = 10; 639 np->mii_if.full_duplex = 1; 640 } else if (strcmp (media[card_idx], "10mbps_hd") == 0 || 641 strcmp (media[card_idx], "1") == 0) { 642 np->speed = 10; 643 np->mii_if.full_duplex = 0; 644 } else { 645 np->an_enable = 1; 646 } 647 } 648 if (flowctrl == 1) 649 np->flowctrl = 1; 650 } 651 652 /* Fibre PHY? */ 653 if (ioread32 (ioaddr + ASICCtrl) & 0x80) { 654 /* Default 100Mbps Full */ 655 if (np->an_enable) { 656 np->speed = 100; 657 np->mii_if.full_duplex = 1; 658 np->an_enable = 0; 659 } 660 } 661 /* Reset PHY */ 662 mdio_write (dev, np->phys[0], MII_BMCR, BMCR_RESET); 663 mdelay (300); 664 /* If flow control enabled, we need to advertise it.*/ 665 if (np->flowctrl) 666 mdio_write (dev, np->phys[0], MII_ADVERTISE, np->mii_if.advertising | 0x0400); 667 mdio_write (dev, np->phys[0], MII_BMCR, BMCR_ANENABLE|BMCR_ANRESTART); 668 /* Force media type */ 669 if (!np->an_enable) { 670 mii_ctl = 0; 671 mii_ctl |= (np->speed == 100) ? BMCR_SPEED100 : 0; 672 mii_ctl |= (np->mii_if.full_duplex) ? BMCR_FULLDPLX : 0; 673 mdio_write (dev, np->phys[0], MII_BMCR, mii_ctl); 674 printk (KERN_INFO "Override speed=%d, %s duplex\n", 675 np->speed, np->mii_if.full_duplex ? "Full" : "Half"); 676 677 } 678 679 /* Perhaps move the reset here? */ 680 /* Reset the chip to erase previous misconfiguration. */ 681 if (netif_msg_hw(np)) 682 printk("ASIC Control is %x.\n", ioread32(ioaddr + ASICCtrl)); 683 sundance_reset(dev, 0x00ff << 16); 684 if (netif_msg_hw(np)) 685 printk("ASIC Control is now %x.\n", ioread32(ioaddr + ASICCtrl)); 686 687 card_idx++; 688 return 0; 689 690 err_out_unregister: 691 unregister_netdev(dev); 692 err_out_unmap_rx: 693 dma_free_coherent(&pdev->dev, RX_TOTAL_SIZE, 694 np->rx_ring, np->rx_ring_dma); 695 err_out_unmap_tx: 696 dma_free_coherent(&pdev->dev, TX_TOTAL_SIZE, 697 np->tx_ring, np->tx_ring_dma); 698 err_out_cleardev: 699 pci_iounmap(pdev, ioaddr); 700 err_out_res: 701 pci_release_regions(pdev); 702 err_out_netdev: 703 free_netdev (dev); 704 return -ENODEV; 705 } 706 707 static int change_mtu(struct net_device *dev, int new_mtu) 708 { 709 if (netif_running(dev)) 710 return -EBUSY; 711 dev->mtu = new_mtu; 712 return 0; 713 } 714 715 #define eeprom_delay(ee_addr) ioread32(ee_addr) 716 /* Read the EEPROM and MII Management Data I/O (MDIO) interfaces. */ 717 static int eeprom_read(void __iomem *ioaddr, int location) 718 { 719 int boguscnt = 10000; /* Typical 1900 ticks. */ 720 iowrite16(0x0200 | (location & 0xff), ioaddr + EECtrl); 721 do { 722 eeprom_delay(ioaddr + EECtrl); 723 if (! (ioread16(ioaddr + EECtrl) & 0x8000)) { 724 return ioread16(ioaddr + EEData); 725 } 726 } while (--boguscnt > 0); 727 return 0; 728 } 729 730 /* MII transceiver control section. 731 Read and write the MII registers using software-generated serial 732 MDIO protocol. See the MII specifications or DP83840A data sheet 733 for details. 734 735 The maximum data clock rate is 2.5 Mhz. The minimum timing is usually 736 met by back-to-back 33Mhz PCI cycles. */ 737 #define mdio_delay() ioread8(mdio_addr) 738 739 enum mii_reg_bits { 740 MDIO_ShiftClk=0x0001, MDIO_Data=0x0002, MDIO_EnbOutput=0x0004, 741 }; 742 #define MDIO_EnbIn (0) 743 #define MDIO_WRITE0 (MDIO_EnbOutput) 744 #define MDIO_WRITE1 (MDIO_Data | MDIO_EnbOutput) 745 746 /* Generate the preamble required for initial synchronization and 747 a few older transceivers. */ 748 static void mdio_sync(void __iomem *mdio_addr) 749 { 750 int bits = 32; 751 752 /* Establish sync by sending at least 32 logic ones. */ 753 while (--bits >= 0) { 754 iowrite8(MDIO_WRITE1, mdio_addr); 755 mdio_delay(); 756 iowrite8(MDIO_WRITE1 | MDIO_ShiftClk, mdio_addr); 757 mdio_delay(); 758 } 759 } 760 761 static int mdio_read(struct net_device *dev, int phy_id, int location) 762 { 763 struct netdev_private *np = netdev_priv(dev); 764 void __iomem *mdio_addr = np->base + MIICtrl; 765 int mii_cmd = (0xf6 << 10) | (phy_id << 5) | location; 766 int i, retval = 0; 767 768 if (np->mii_preamble_required) 769 mdio_sync(mdio_addr); 770 771 /* Shift the read command bits out. */ 772 for (i = 15; i >= 0; i--) { 773 int dataval = (mii_cmd & (1 << i)) ? MDIO_WRITE1 : MDIO_WRITE0; 774 775 iowrite8(dataval, mdio_addr); 776 mdio_delay(); 777 iowrite8(dataval | MDIO_ShiftClk, mdio_addr); 778 mdio_delay(); 779 } 780 /* Read the two transition, 16 data, and wire-idle bits. */ 781 for (i = 19; i > 0; i--) { 782 iowrite8(MDIO_EnbIn, mdio_addr); 783 mdio_delay(); 784 retval = (retval << 1) | ((ioread8(mdio_addr) & MDIO_Data) ? 1 : 0); 785 iowrite8(MDIO_EnbIn | MDIO_ShiftClk, mdio_addr); 786 mdio_delay(); 787 } 788 return (retval>>1) & 0xffff; 789 } 790 791 static void mdio_write(struct net_device *dev, int phy_id, int location, int value) 792 { 793 struct netdev_private *np = netdev_priv(dev); 794 void __iomem *mdio_addr = np->base + MIICtrl; 795 int mii_cmd = (0x5002 << 16) | (phy_id << 23) | (location<<18) | value; 796 int i; 797 798 if (np->mii_preamble_required) 799 mdio_sync(mdio_addr); 800 801 /* Shift the command bits out. */ 802 for (i = 31; i >= 0; i--) { 803 int dataval = (mii_cmd & (1 << i)) ? MDIO_WRITE1 : MDIO_WRITE0; 804 805 iowrite8(dataval, mdio_addr); 806 mdio_delay(); 807 iowrite8(dataval | MDIO_ShiftClk, mdio_addr); 808 mdio_delay(); 809 } 810 /* Clear out extra bits. */ 811 for (i = 2; i > 0; i--) { 812 iowrite8(MDIO_EnbIn, mdio_addr); 813 mdio_delay(); 814 iowrite8(MDIO_EnbIn | MDIO_ShiftClk, mdio_addr); 815 mdio_delay(); 816 } 817 } 818 819 static int mdio_wait_link(struct net_device *dev, int wait) 820 { 821 int bmsr; 822 int phy_id; 823 struct netdev_private *np; 824 825 np = netdev_priv(dev); 826 phy_id = np->phys[0]; 827 828 do { 829 bmsr = mdio_read(dev, phy_id, MII_BMSR); 830 if (bmsr & 0x0004) 831 return 0; 832 mdelay(1); 833 } while (--wait > 0); 834 return -1; 835 } 836 837 static int netdev_open(struct net_device *dev) 838 { 839 struct netdev_private *np = netdev_priv(dev); 840 void __iomem *ioaddr = np->base; 841 const int irq = np->pci_dev->irq; 842 unsigned long flags; 843 int i; 844 845 sundance_reset(dev, 0x00ff << 16); 846 847 i = request_irq(irq, intr_handler, IRQF_SHARED, dev->name, dev); 848 if (i) 849 return i; 850 851 if (netif_msg_ifup(np)) 852 printk(KERN_DEBUG "%s: netdev_open() irq %d\n", dev->name, irq); 853 854 init_ring(dev); 855 856 iowrite32(np->rx_ring_dma, ioaddr + RxListPtr); 857 /* The Tx list pointer is written as packets are queued. */ 858 859 /* Initialize other registers. */ 860 __set_mac_addr(dev); 861 #if IS_ENABLED(CONFIG_VLAN_8021Q) 862 iowrite16(dev->mtu + 18, ioaddr + MaxFrameSize); 863 #else 864 iowrite16(dev->mtu + 14, ioaddr + MaxFrameSize); 865 #endif 866 if (dev->mtu > 2047) 867 iowrite32(ioread32(ioaddr + ASICCtrl) | 0x0C, ioaddr + ASICCtrl); 868 869 /* Configure the PCI bus bursts and FIFO thresholds. */ 870 871 if (dev->if_port == 0) 872 dev->if_port = np->default_port; 873 874 spin_lock_init(&np->mcastlock); 875 876 set_rx_mode(dev); 877 iowrite16(0, ioaddr + IntrEnable); 878 iowrite16(0, ioaddr + DownCounter); 879 /* Set the chip to poll every N*320nsec. */ 880 iowrite8(100, ioaddr + RxDMAPollPeriod); 881 iowrite8(127, ioaddr + TxDMAPollPeriod); 882 /* Fix DFE-580TX packet drop issue */ 883 if (np->pci_dev->revision >= 0x14) 884 iowrite8(0x01, ioaddr + DebugCtrl1); 885 netif_start_queue(dev); 886 887 spin_lock_irqsave(&np->lock, flags); 888 reset_tx(dev); 889 spin_unlock_irqrestore(&np->lock, flags); 890 891 iowrite16 (StatsEnable | RxEnable | TxEnable, ioaddr + MACCtrl1); 892 893 /* Disable Wol */ 894 iowrite8(ioread8(ioaddr + WakeEvent) | 0x00, ioaddr + WakeEvent); 895 np->wol_enabled = 0; 896 897 if (netif_msg_ifup(np)) 898 printk(KERN_DEBUG "%s: Done netdev_open(), status: Rx %x Tx %x " 899 "MAC Control %x, %4.4x %4.4x.\n", 900 dev->name, ioread32(ioaddr + RxStatus), ioread8(ioaddr + TxStatus), 901 ioread32(ioaddr + MACCtrl0), 902 ioread16(ioaddr + MACCtrl1), ioread16(ioaddr + MACCtrl0)); 903 904 /* Set the timer to check for link beat. */ 905 timer_setup(&np->timer, netdev_timer, 0); 906 np->timer.expires = jiffies + 3*HZ; 907 add_timer(&np->timer); 908 909 /* Enable interrupts by setting the interrupt mask. */ 910 iowrite16(DEFAULT_INTR, ioaddr + IntrEnable); 911 912 return 0; 913 } 914 915 static void check_duplex(struct net_device *dev) 916 { 917 struct netdev_private *np = netdev_priv(dev); 918 void __iomem *ioaddr = np->base; 919 int mii_lpa = mdio_read(dev, np->phys[0], MII_LPA); 920 int negotiated = mii_lpa & np->mii_if.advertising; 921 int duplex; 922 923 /* Force media */ 924 if (!np->an_enable || mii_lpa == 0xffff) { 925 if (np->mii_if.full_duplex) 926 iowrite16 (ioread16 (ioaddr + MACCtrl0) | EnbFullDuplex, 927 ioaddr + MACCtrl0); 928 return; 929 } 930 931 /* Autonegotiation */ 932 duplex = (negotiated & 0x0100) || (negotiated & 0x01C0) == 0x0040; 933 if (np->mii_if.full_duplex != duplex) { 934 np->mii_if.full_duplex = duplex; 935 if (netif_msg_link(np)) 936 printk(KERN_INFO "%s: Setting %s-duplex based on MII #%d " 937 "negotiated capability %4.4x.\n", dev->name, 938 duplex ? "full" : "half", np->phys[0], negotiated); 939 iowrite16(ioread16(ioaddr + MACCtrl0) | (duplex ? 0x20 : 0), ioaddr + MACCtrl0); 940 } 941 } 942 943 static void netdev_timer(struct timer_list *t) 944 { 945 struct netdev_private *np = from_timer(np, t, timer); 946 struct net_device *dev = np->mii_if.dev; 947 void __iomem *ioaddr = np->base; 948 int next_tick = 10*HZ; 949 950 if (netif_msg_timer(np)) { 951 printk(KERN_DEBUG "%s: Media selection timer tick, intr status %4.4x, " 952 "Tx %x Rx %x.\n", 953 dev->name, ioread16(ioaddr + IntrEnable), 954 ioread8(ioaddr + TxStatus), ioread32(ioaddr + RxStatus)); 955 } 956 check_duplex(dev); 957 np->timer.expires = jiffies + next_tick; 958 add_timer(&np->timer); 959 } 960 961 static void tx_timeout(struct net_device *dev, unsigned int txqueue) 962 { 963 struct netdev_private *np = netdev_priv(dev); 964 void __iomem *ioaddr = np->base; 965 unsigned long flag; 966 967 netif_stop_queue(dev); 968 tasklet_disable_in_atomic(&np->tx_tasklet); 969 iowrite16(0, ioaddr + IntrEnable); 970 printk(KERN_WARNING "%s: Transmit timed out, TxStatus %2.2x " 971 "TxFrameId %2.2x," 972 " resetting...\n", dev->name, ioread8(ioaddr + TxStatus), 973 ioread8(ioaddr + TxFrameId)); 974 975 { 976 int i; 977 for (i=0; i<TX_RING_SIZE; i++) { 978 printk(KERN_DEBUG "%02x %08llx %08x %08x(%02x) %08x %08x\n", i, 979 (unsigned long long)(np->tx_ring_dma + i*sizeof(*np->tx_ring)), 980 le32_to_cpu(np->tx_ring[i].next_desc), 981 le32_to_cpu(np->tx_ring[i].status), 982 (le32_to_cpu(np->tx_ring[i].status) >> 2) & 0xff, 983 le32_to_cpu(np->tx_ring[i].frag.addr), 984 le32_to_cpu(np->tx_ring[i].frag.length)); 985 } 986 printk(KERN_DEBUG "TxListPtr=%08x netif_queue_stopped=%d\n", 987 ioread32(np->base + TxListPtr), 988 netif_queue_stopped(dev)); 989 printk(KERN_DEBUG "cur_tx=%d(%02x) dirty_tx=%d(%02x)\n", 990 np->cur_tx, np->cur_tx % TX_RING_SIZE, 991 np->dirty_tx, np->dirty_tx % TX_RING_SIZE); 992 printk(KERN_DEBUG "cur_rx=%d dirty_rx=%d\n", np->cur_rx, np->dirty_rx); 993 printk(KERN_DEBUG "cur_task=%d\n", np->cur_task); 994 } 995 spin_lock_irqsave(&np->lock, flag); 996 997 /* Stop and restart the chip's Tx processes . */ 998 reset_tx(dev); 999 spin_unlock_irqrestore(&np->lock, flag); 1000 1001 dev->if_port = 0; 1002 1003 netif_trans_update(dev); /* prevent tx timeout */ 1004 dev->stats.tx_errors++; 1005 if (np->cur_tx - np->dirty_tx < TX_QUEUE_LEN - 4) { 1006 netif_wake_queue(dev); 1007 } 1008 iowrite16(DEFAULT_INTR, ioaddr + IntrEnable); 1009 tasklet_enable(&np->tx_tasklet); 1010 } 1011 1012 1013 /* Initialize the Rx and Tx rings, along with various 'dev' bits. */ 1014 static void init_ring(struct net_device *dev) 1015 { 1016 struct netdev_private *np = netdev_priv(dev); 1017 int i; 1018 1019 np->cur_rx = np->cur_tx = 0; 1020 np->dirty_rx = np->dirty_tx = 0; 1021 np->cur_task = 0; 1022 1023 np->rx_buf_sz = (dev->mtu <= 1520 ? PKT_BUF_SZ : dev->mtu + 16); 1024 1025 /* Initialize all Rx descriptors. */ 1026 for (i = 0; i < RX_RING_SIZE; i++) { 1027 np->rx_ring[i].next_desc = cpu_to_le32(np->rx_ring_dma + 1028 ((i+1)%RX_RING_SIZE)*sizeof(*np->rx_ring)); 1029 np->rx_ring[i].status = 0; 1030 np->rx_ring[i].frag.length = 0; 1031 np->rx_skbuff[i] = NULL; 1032 } 1033 1034 /* Fill in the Rx buffers. Handle allocation failure gracefully. */ 1035 for (i = 0; i < RX_RING_SIZE; i++) { 1036 struct sk_buff *skb = 1037 netdev_alloc_skb(dev, np->rx_buf_sz + 2); 1038 np->rx_skbuff[i] = skb; 1039 if (skb == NULL) 1040 break; 1041 skb_reserve(skb, 2); /* 16 byte align the IP header. */ 1042 np->rx_ring[i].frag.addr = cpu_to_le32( 1043 dma_map_single(&np->pci_dev->dev, skb->data, 1044 np->rx_buf_sz, DMA_FROM_DEVICE)); 1045 if (dma_mapping_error(&np->pci_dev->dev, 1046 np->rx_ring[i].frag.addr)) { 1047 dev_kfree_skb(skb); 1048 np->rx_skbuff[i] = NULL; 1049 break; 1050 } 1051 np->rx_ring[i].frag.length = cpu_to_le32(np->rx_buf_sz | LastFrag); 1052 } 1053 np->dirty_rx = (unsigned int)(i - RX_RING_SIZE); 1054 1055 for (i = 0; i < TX_RING_SIZE; i++) { 1056 np->tx_skbuff[i] = NULL; 1057 np->tx_ring[i].status = 0; 1058 } 1059 } 1060 1061 static void tx_poll(struct tasklet_struct *t) 1062 { 1063 struct netdev_private *np = from_tasklet(np, t, tx_tasklet); 1064 unsigned head = np->cur_task % TX_RING_SIZE; 1065 struct netdev_desc *txdesc = 1066 &np->tx_ring[(np->cur_tx - 1) % TX_RING_SIZE]; 1067 1068 /* Chain the next pointer */ 1069 for (; np->cur_tx - np->cur_task > 0; np->cur_task++) { 1070 int entry = np->cur_task % TX_RING_SIZE; 1071 txdesc = &np->tx_ring[entry]; 1072 if (np->last_tx) { 1073 np->last_tx->next_desc = cpu_to_le32(np->tx_ring_dma + 1074 entry*sizeof(struct netdev_desc)); 1075 } 1076 np->last_tx = txdesc; 1077 } 1078 /* Indicate the latest descriptor of tx ring */ 1079 txdesc->status |= cpu_to_le32(DescIntrOnTx); 1080 1081 if (ioread32 (np->base + TxListPtr) == 0) 1082 iowrite32 (np->tx_ring_dma + head * sizeof(struct netdev_desc), 1083 np->base + TxListPtr); 1084 } 1085 1086 static netdev_tx_t 1087 start_tx (struct sk_buff *skb, struct net_device *dev) 1088 { 1089 struct netdev_private *np = netdev_priv(dev); 1090 struct netdev_desc *txdesc; 1091 unsigned entry; 1092 1093 /* Calculate the next Tx descriptor entry. */ 1094 entry = np->cur_tx % TX_RING_SIZE; 1095 np->tx_skbuff[entry] = skb; 1096 txdesc = &np->tx_ring[entry]; 1097 1098 txdesc->next_desc = 0; 1099 txdesc->status = cpu_to_le32 ((entry << 2) | DisableAlign); 1100 txdesc->frag.addr = cpu_to_le32(dma_map_single(&np->pci_dev->dev, 1101 skb->data, skb->len, DMA_TO_DEVICE)); 1102 if (dma_mapping_error(&np->pci_dev->dev, 1103 txdesc->frag.addr)) 1104 goto drop_frame; 1105 txdesc->frag.length = cpu_to_le32 (skb->len | LastFrag); 1106 1107 /* Increment cur_tx before tasklet_schedule() */ 1108 np->cur_tx++; 1109 mb(); 1110 /* Schedule a tx_poll() task */ 1111 tasklet_schedule(&np->tx_tasklet); 1112 1113 /* On some architectures: explicitly flush cache lines here. */ 1114 if (np->cur_tx - np->dirty_tx < TX_QUEUE_LEN - 1 && 1115 !netif_queue_stopped(dev)) { 1116 /* do nothing */ 1117 } else { 1118 netif_stop_queue (dev); 1119 } 1120 if (netif_msg_tx_queued(np)) { 1121 printk (KERN_DEBUG 1122 "%s: Transmit frame #%d queued in slot %d.\n", 1123 dev->name, np->cur_tx, entry); 1124 } 1125 return NETDEV_TX_OK; 1126 1127 drop_frame: 1128 dev_kfree_skb_any(skb); 1129 np->tx_skbuff[entry] = NULL; 1130 dev->stats.tx_dropped++; 1131 return NETDEV_TX_OK; 1132 } 1133 1134 /* Reset hardware tx and free all of tx buffers */ 1135 static int 1136 reset_tx (struct net_device *dev) 1137 { 1138 struct netdev_private *np = netdev_priv(dev); 1139 void __iomem *ioaddr = np->base; 1140 struct sk_buff *skb; 1141 int i; 1142 1143 /* Reset tx logic, TxListPtr will be cleaned */ 1144 iowrite16 (TxDisable, ioaddr + MACCtrl1); 1145 sundance_reset(dev, (NetworkReset|FIFOReset|DMAReset|TxReset) << 16); 1146 1147 /* free all tx skbuff */ 1148 for (i = 0; i < TX_RING_SIZE; i++) { 1149 np->tx_ring[i].next_desc = 0; 1150 1151 skb = np->tx_skbuff[i]; 1152 if (skb) { 1153 dma_unmap_single(&np->pci_dev->dev, 1154 le32_to_cpu(np->tx_ring[i].frag.addr), 1155 skb->len, DMA_TO_DEVICE); 1156 dev_kfree_skb_any(skb); 1157 np->tx_skbuff[i] = NULL; 1158 dev->stats.tx_dropped++; 1159 } 1160 } 1161 np->cur_tx = np->dirty_tx = 0; 1162 np->cur_task = 0; 1163 1164 np->last_tx = NULL; 1165 iowrite8(127, ioaddr + TxDMAPollPeriod); 1166 1167 iowrite16 (StatsEnable | RxEnable | TxEnable, ioaddr + MACCtrl1); 1168 return 0; 1169 } 1170 1171 /* The interrupt handler cleans up after the Tx thread, 1172 and schedule a Rx thread work */ 1173 static irqreturn_t intr_handler(int irq, void *dev_instance) 1174 { 1175 struct net_device *dev = (struct net_device *)dev_instance; 1176 struct netdev_private *np = netdev_priv(dev); 1177 void __iomem *ioaddr = np->base; 1178 int hw_frame_id; 1179 int tx_cnt; 1180 int tx_status; 1181 int handled = 0; 1182 int i; 1183 1184 do { 1185 int intr_status = ioread16(ioaddr + IntrStatus); 1186 iowrite16(intr_status, ioaddr + IntrStatus); 1187 1188 if (netif_msg_intr(np)) 1189 printk(KERN_DEBUG "%s: Interrupt, status %4.4x.\n", 1190 dev->name, intr_status); 1191 1192 if (!(intr_status & DEFAULT_INTR)) 1193 break; 1194 1195 handled = 1; 1196 1197 if (intr_status & (IntrRxDMADone)) { 1198 iowrite16(DEFAULT_INTR & ~(IntrRxDone|IntrRxDMADone), 1199 ioaddr + IntrEnable); 1200 if (np->budget < 0) 1201 np->budget = RX_BUDGET; 1202 tasklet_schedule(&np->rx_tasklet); 1203 } 1204 if (intr_status & (IntrTxDone | IntrDrvRqst)) { 1205 tx_status = ioread16 (ioaddr + TxStatus); 1206 for (tx_cnt=32; tx_status & 0x80; --tx_cnt) { 1207 if (netif_msg_tx_done(np)) 1208 printk 1209 ("%s: Transmit status is %2.2x.\n", 1210 dev->name, tx_status); 1211 if (tx_status & 0x1e) { 1212 if (netif_msg_tx_err(np)) 1213 printk("%s: Transmit error status %4.4x.\n", 1214 dev->name, tx_status); 1215 dev->stats.tx_errors++; 1216 if (tx_status & 0x10) 1217 dev->stats.tx_fifo_errors++; 1218 if (tx_status & 0x08) 1219 dev->stats.collisions++; 1220 if (tx_status & 0x04) 1221 dev->stats.tx_fifo_errors++; 1222 if (tx_status & 0x02) 1223 dev->stats.tx_window_errors++; 1224 1225 /* 1226 ** This reset has been verified on 1227 ** DFE-580TX boards ! phdm@macqel.be. 1228 */ 1229 if (tx_status & 0x10) { /* TxUnderrun */ 1230 /* Restart Tx FIFO and transmitter */ 1231 sundance_reset(dev, (NetworkReset|FIFOReset|TxReset) << 16); 1232 /* No need to reset the Tx pointer here */ 1233 } 1234 /* Restart the Tx. Need to make sure tx enabled */ 1235 i = 10; 1236 do { 1237 iowrite16(ioread16(ioaddr + MACCtrl1) | TxEnable, ioaddr + MACCtrl1); 1238 if (ioread16(ioaddr + MACCtrl1) & TxEnabled) 1239 break; 1240 mdelay(1); 1241 } while (--i); 1242 } 1243 /* Yup, this is a documentation bug. It cost me *hours*. */ 1244 iowrite16 (0, ioaddr + TxStatus); 1245 if (tx_cnt < 0) { 1246 iowrite32(5000, ioaddr + DownCounter); 1247 break; 1248 } 1249 tx_status = ioread16 (ioaddr + TxStatus); 1250 } 1251 hw_frame_id = (tx_status >> 8) & 0xff; 1252 } else { 1253 hw_frame_id = ioread8(ioaddr + TxFrameId); 1254 } 1255 1256 if (np->pci_dev->revision >= 0x14) { 1257 spin_lock(&np->lock); 1258 for (; np->cur_tx - np->dirty_tx > 0; np->dirty_tx++) { 1259 int entry = np->dirty_tx % TX_RING_SIZE; 1260 struct sk_buff *skb; 1261 int sw_frame_id; 1262 sw_frame_id = (le32_to_cpu( 1263 np->tx_ring[entry].status) >> 2) & 0xff; 1264 if (sw_frame_id == hw_frame_id && 1265 !(le32_to_cpu(np->tx_ring[entry].status) 1266 & 0x00010000)) 1267 break; 1268 if (sw_frame_id == (hw_frame_id + 1) % 1269 TX_RING_SIZE) 1270 break; 1271 skb = np->tx_skbuff[entry]; 1272 /* Free the original skb. */ 1273 dma_unmap_single(&np->pci_dev->dev, 1274 le32_to_cpu(np->tx_ring[entry].frag.addr), 1275 skb->len, DMA_TO_DEVICE); 1276 dev_consume_skb_irq(np->tx_skbuff[entry]); 1277 np->tx_skbuff[entry] = NULL; 1278 np->tx_ring[entry].frag.addr = 0; 1279 np->tx_ring[entry].frag.length = 0; 1280 } 1281 spin_unlock(&np->lock); 1282 } else { 1283 spin_lock(&np->lock); 1284 for (; np->cur_tx - np->dirty_tx > 0; np->dirty_tx++) { 1285 int entry = np->dirty_tx % TX_RING_SIZE; 1286 struct sk_buff *skb; 1287 if (!(le32_to_cpu(np->tx_ring[entry].status) 1288 & 0x00010000)) 1289 break; 1290 skb = np->tx_skbuff[entry]; 1291 /* Free the original skb. */ 1292 dma_unmap_single(&np->pci_dev->dev, 1293 le32_to_cpu(np->tx_ring[entry].frag.addr), 1294 skb->len, DMA_TO_DEVICE); 1295 dev_consume_skb_irq(np->tx_skbuff[entry]); 1296 np->tx_skbuff[entry] = NULL; 1297 np->tx_ring[entry].frag.addr = 0; 1298 np->tx_ring[entry].frag.length = 0; 1299 } 1300 spin_unlock(&np->lock); 1301 } 1302 1303 if (netif_queue_stopped(dev) && 1304 np->cur_tx - np->dirty_tx < TX_QUEUE_LEN - 4) { 1305 /* The ring is no longer full, clear busy flag. */ 1306 netif_wake_queue (dev); 1307 } 1308 /* Abnormal error summary/uncommon events handlers. */ 1309 if (intr_status & (IntrPCIErr | LinkChange | StatsMax)) 1310 netdev_error(dev, intr_status); 1311 } while (0); 1312 if (netif_msg_intr(np)) 1313 printk(KERN_DEBUG "%s: exiting interrupt, status=%#4.4x.\n", 1314 dev->name, ioread16(ioaddr + IntrStatus)); 1315 return IRQ_RETVAL(handled); 1316 } 1317 1318 static void rx_poll(struct tasklet_struct *t) 1319 { 1320 struct netdev_private *np = from_tasklet(np, t, rx_tasklet); 1321 struct net_device *dev = np->ndev; 1322 int entry = np->cur_rx % RX_RING_SIZE; 1323 int boguscnt = np->budget; 1324 void __iomem *ioaddr = np->base; 1325 int received = 0; 1326 1327 /* If EOP is set on the next entry, it's a new packet. Send it up. */ 1328 while (1) { 1329 struct netdev_desc *desc = &(np->rx_ring[entry]); 1330 u32 frame_status = le32_to_cpu(desc->status); 1331 int pkt_len; 1332 1333 if (--boguscnt < 0) { 1334 goto not_done; 1335 } 1336 if (!(frame_status & DescOwn)) 1337 break; 1338 pkt_len = frame_status & 0x1fff; /* Chip omits the CRC. */ 1339 if (netif_msg_rx_status(np)) 1340 printk(KERN_DEBUG " netdev_rx() status was %8.8x.\n", 1341 frame_status); 1342 if (frame_status & 0x001f4000) { 1343 /* There was a error. */ 1344 if (netif_msg_rx_err(np)) 1345 printk(KERN_DEBUG " netdev_rx() Rx error was %8.8x.\n", 1346 frame_status); 1347 dev->stats.rx_errors++; 1348 if (frame_status & 0x00100000) 1349 dev->stats.rx_length_errors++; 1350 if (frame_status & 0x00010000) 1351 dev->stats.rx_fifo_errors++; 1352 if (frame_status & 0x00060000) 1353 dev->stats.rx_frame_errors++; 1354 if (frame_status & 0x00080000) 1355 dev->stats.rx_crc_errors++; 1356 if (frame_status & 0x00100000) { 1357 printk(KERN_WARNING "%s: Oversized Ethernet frame," 1358 " status %8.8x.\n", 1359 dev->name, frame_status); 1360 } 1361 } else { 1362 struct sk_buff *skb; 1363 #ifndef final_version 1364 if (netif_msg_rx_status(np)) 1365 printk(KERN_DEBUG " netdev_rx() normal Rx pkt length %d" 1366 ", bogus_cnt %d.\n", 1367 pkt_len, boguscnt); 1368 #endif 1369 /* Check if the packet is long enough to accept without copying 1370 to a minimally-sized skbuff. */ 1371 if (pkt_len < rx_copybreak && 1372 (skb = netdev_alloc_skb(dev, pkt_len + 2)) != NULL) { 1373 skb_reserve(skb, 2); /* 16 byte align the IP header */ 1374 dma_sync_single_for_cpu(&np->pci_dev->dev, 1375 le32_to_cpu(desc->frag.addr), 1376 np->rx_buf_sz, DMA_FROM_DEVICE); 1377 skb_copy_to_linear_data(skb, np->rx_skbuff[entry]->data, pkt_len); 1378 dma_sync_single_for_device(&np->pci_dev->dev, 1379 le32_to_cpu(desc->frag.addr), 1380 np->rx_buf_sz, DMA_FROM_DEVICE); 1381 skb_put(skb, pkt_len); 1382 } else { 1383 dma_unmap_single(&np->pci_dev->dev, 1384 le32_to_cpu(desc->frag.addr), 1385 np->rx_buf_sz, DMA_FROM_DEVICE); 1386 skb_put(skb = np->rx_skbuff[entry], pkt_len); 1387 np->rx_skbuff[entry] = NULL; 1388 } 1389 skb->protocol = eth_type_trans(skb, dev); 1390 /* Note: checksum -> skb->ip_summed = CHECKSUM_UNNECESSARY; */ 1391 netif_rx(skb); 1392 } 1393 entry = (entry + 1) % RX_RING_SIZE; 1394 received++; 1395 } 1396 np->cur_rx = entry; 1397 refill_rx (dev); 1398 np->budget -= received; 1399 iowrite16(DEFAULT_INTR, ioaddr + IntrEnable); 1400 return; 1401 1402 not_done: 1403 np->cur_rx = entry; 1404 refill_rx (dev); 1405 if (!received) 1406 received = 1; 1407 np->budget -= received; 1408 if (np->budget <= 0) 1409 np->budget = RX_BUDGET; 1410 tasklet_schedule(&np->rx_tasklet); 1411 } 1412 1413 static void refill_rx (struct net_device *dev) 1414 { 1415 struct netdev_private *np = netdev_priv(dev); 1416 int entry; 1417 int cnt = 0; 1418 1419 /* Refill the Rx ring buffers. */ 1420 for (;(np->cur_rx - np->dirty_rx + RX_RING_SIZE) % RX_RING_SIZE > 0; 1421 np->dirty_rx = (np->dirty_rx + 1) % RX_RING_SIZE) { 1422 struct sk_buff *skb; 1423 entry = np->dirty_rx % RX_RING_SIZE; 1424 if (np->rx_skbuff[entry] == NULL) { 1425 skb = netdev_alloc_skb(dev, np->rx_buf_sz + 2); 1426 np->rx_skbuff[entry] = skb; 1427 if (skb == NULL) 1428 break; /* Better luck next round. */ 1429 skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */ 1430 np->rx_ring[entry].frag.addr = cpu_to_le32( 1431 dma_map_single(&np->pci_dev->dev, skb->data, 1432 np->rx_buf_sz, DMA_FROM_DEVICE)); 1433 if (dma_mapping_error(&np->pci_dev->dev, 1434 np->rx_ring[entry].frag.addr)) { 1435 dev_kfree_skb_irq(skb); 1436 np->rx_skbuff[entry] = NULL; 1437 break; 1438 } 1439 } 1440 /* Perhaps we need not reset this field. */ 1441 np->rx_ring[entry].frag.length = 1442 cpu_to_le32(np->rx_buf_sz | LastFrag); 1443 np->rx_ring[entry].status = 0; 1444 cnt++; 1445 } 1446 } 1447 static void netdev_error(struct net_device *dev, int intr_status) 1448 { 1449 struct netdev_private *np = netdev_priv(dev); 1450 void __iomem *ioaddr = np->base; 1451 u16 mii_ctl, mii_advertise, mii_lpa; 1452 int speed; 1453 1454 if (intr_status & LinkChange) { 1455 if (mdio_wait_link(dev, 10) == 0) { 1456 printk(KERN_INFO "%s: Link up\n", dev->name); 1457 if (np->an_enable) { 1458 mii_advertise = mdio_read(dev, np->phys[0], 1459 MII_ADVERTISE); 1460 mii_lpa = mdio_read(dev, np->phys[0], MII_LPA); 1461 mii_advertise &= mii_lpa; 1462 printk(KERN_INFO "%s: Link changed: ", 1463 dev->name); 1464 if (mii_advertise & ADVERTISE_100FULL) { 1465 np->speed = 100; 1466 printk("100Mbps, full duplex\n"); 1467 } else if (mii_advertise & ADVERTISE_100HALF) { 1468 np->speed = 100; 1469 printk("100Mbps, half duplex\n"); 1470 } else if (mii_advertise & ADVERTISE_10FULL) { 1471 np->speed = 10; 1472 printk("10Mbps, full duplex\n"); 1473 } else if (mii_advertise & ADVERTISE_10HALF) { 1474 np->speed = 10; 1475 printk("10Mbps, half duplex\n"); 1476 } else 1477 printk("\n"); 1478 1479 } else { 1480 mii_ctl = mdio_read(dev, np->phys[0], MII_BMCR); 1481 speed = (mii_ctl & BMCR_SPEED100) ? 100 : 10; 1482 np->speed = speed; 1483 printk(KERN_INFO "%s: Link changed: %dMbps ,", 1484 dev->name, speed); 1485 printk("%s duplex.\n", 1486 (mii_ctl & BMCR_FULLDPLX) ? 1487 "full" : "half"); 1488 } 1489 check_duplex(dev); 1490 if (np->flowctrl && np->mii_if.full_duplex) { 1491 iowrite16(ioread16(ioaddr + MulticastFilter1+2) | 0x0200, 1492 ioaddr + MulticastFilter1+2); 1493 iowrite16(ioread16(ioaddr + MACCtrl0) | EnbFlowCtrl, 1494 ioaddr + MACCtrl0); 1495 } 1496 netif_carrier_on(dev); 1497 } else { 1498 printk(KERN_INFO "%s: Link down\n", dev->name); 1499 netif_carrier_off(dev); 1500 } 1501 } 1502 if (intr_status & StatsMax) { 1503 get_stats(dev); 1504 } 1505 if (intr_status & IntrPCIErr) { 1506 printk(KERN_ERR "%s: Something Wicked happened! %4.4x.\n", 1507 dev->name, intr_status); 1508 /* We must do a global reset of DMA to continue. */ 1509 } 1510 } 1511 1512 static struct net_device_stats *get_stats(struct net_device *dev) 1513 { 1514 struct netdev_private *np = netdev_priv(dev); 1515 void __iomem *ioaddr = np->base; 1516 unsigned long flags; 1517 u8 late_coll, single_coll, mult_coll; 1518 1519 spin_lock_irqsave(&np->statlock, flags); 1520 /* The chip only need report frame silently dropped. */ 1521 dev->stats.rx_missed_errors += ioread8(ioaddr + RxMissed); 1522 dev->stats.tx_packets += ioread16(ioaddr + TxFramesOK); 1523 dev->stats.rx_packets += ioread16(ioaddr + RxFramesOK); 1524 dev->stats.tx_carrier_errors += ioread8(ioaddr + StatsCarrierError); 1525 1526 mult_coll = ioread8(ioaddr + StatsMultiColl); 1527 np->xstats.tx_multiple_collisions += mult_coll; 1528 single_coll = ioread8(ioaddr + StatsOneColl); 1529 np->xstats.tx_single_collisions += single_coll; 1530 late_coll = ioread8(ioaddr + StatsLateColl); 1531 np->xstats.tx_late_collisions += late_coll; 1532 dev->stats.collisions += mult_coll 1533 + single_coll 1534 + late_coll; 1535 1536 np->xstats.tx_deferred += ioread8(ioaddr + StatsTxDefer); 1537 np->xstats.tx_deferred_excessive += ioread8(ioaddr + StatsTxXSDefer); 1538 np->xstats.tx_aborted += ioread8(ioaddr + StatsTxAbort); 1539 np->xstats.tx_bcasts += ioread8(ioaddr + StatsBcastTx); 1540 np->xstats.rx_bcasts += ioread8(ioaddr + StatsBcastRx); 1541 np->xstats.tx_mcasts += ioread8(ioaddr + StatsMcastTx); 1542 np->xstats.rx_mcasts += ioread8(ioaddr + StatsMcastRx); 1543 1544 dev->stats.tx_bytes += ioread16(ioaddr + TxOctetsLow); 1545 dev->stats.tx_bytes += ioread16(ioaddr + TxOctetsHigh) << 16; 1546 dev->stats.rx_bytes += ioread16(ioaddr + RxOctetsLow); 1547 dev->stats.rx_bytes += ioread16(ioaddr + RxOctetsHigh) << 16; 1548 1549 spin_unlock_irqrestore(&np->statlock, flags); 1550 1551 return &dev->stats; 1552 } 1553 1554 static void set_rx_mode(struct net_device *dev) 1555 { 1556 struct netdev_private *np = netdev_priv(dev); 1557 void __iomem *ioaddr = np->base; 1558 u16 mc_filter[4]; /* Multicast hash filter */ 1559 u32 rx_mode; 1560 int i; 1561 1562 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */ 1563 memset(mc_filter, 0xff, sizeof(mc_filter)); 1564 rx_mode = AcceptBroadcast | AcceptMulticast | AcceptAll | AcceptMyPhys; 1565 } else if ((netdev_mc_count(dev) > multicast_filter_limit) || 1566 (dev->flags & IFF_ALLMULTI)) { 1567 /* Too many to match, or accept all multicasts. */ 1568 memset(mc_filter, 0xff, sizeof(mc_filter)); 1569 rx_mode = AcceptBroadcast | AcceptMulticast | AcceptMyPhys; 1570 } else if (!netdev_mc_empty(dev)) { 1571 struct netdev_hw_addr *ha; 1572 int bit; 1573 int index; 1574 int crc; 1575 memset (mc_filter, 0, sizeof (mc_filter)); 1576 netdev_for_each_mc_addr(ha, dev) { 1577 crc = ether_crc_le(ETH_ALEN, ha->addr); 1578 for (index=0, bit=0; bit < 6; bit++, crc <<= 1) 1579 if (crc & 0x80000000) index |= 1 << bit; 1580 mc_filter[index/16] |= (1 << (index % 16)); 1581 } 1582 rx_mode = AcceptBroadcast | AcceptMultiHash | AcceptMyPhys; 1583 } else { 1584 iowrite8(AcceptBroadcast | AcceptMyPhys, ioaddr + RxMode); 1585 return; 1586 } 1587 if (np->mii_if.full_duplex && np->flowctrl) 1588 mc_filter[3] |= 0x0200; 1589 1590 for (i = 0; i < 4; i++) 1591 iowrite16(mc_filter[i], ioaddr + MulticastFilter0 + i*2); 1592 iowrite8(rx_mode, ioaddr + RxMode); 1593 } 1594 1595 static int __set_mac_addr(struct net_device *dev) 1596 { 1597 struct netdev_private *np = netdev_priv(dev); 1598 u16 addr16; 1599 1600 addr16 = (dev->dev_addr[0] | (dev->dev_addr[1] << 8)); 1601 iowrite16(addr16, np->base + StationAddr); 1602 addr16 = (dev->dev_addr[2] | (dev->dev_addr[3] << 8)); 1603 iowrite16(addr16, np->base + StationAddr+2); 1604 addr16 = (dev->dev_addr[4] | (dev->dev_addr[5] << 8)); 1605 iowrite16(addr16, np->base + StationAddr+4); 1606 return 0; 1607 } 1608 1609 /* Invoked with rtnl_lock held */ 1610 static int sundance_set_mac_addr(struct net_device *dev, void *data) 1611 { 1612 const struct sockaddr *addr = data; 1613 1614 if (!is_valid_ether_addr(addr->sa_data)) 1615 return -EADDRNOTAVAIL; 1616 eth_hw_addr_set(dev, addr->sa_data); 1617 __set_mac_addr(dev); 1618 1619 return 0; 1620 } 1621 1622 static const struct { 1623 const char name[ETH_GSTRING_LEN]; 1624 } sundance_stats[] = { 1625 { "tx_multiple_collisions" }, 1626 { "tx_single_collisions" }, 1627 { "tx_late_collisions" }, 1628 { "tx_deferred" }, 1629 { "tx_deferred_excessive" }, 1630 { "tx_aborted" }, 1631 { "tx_bcasts" }, 1632 { "rx_bcasts" }, 1633 { "tx_mcasts" }, 1634 { "rx_mcasts" }, 1635 }; 1636 1637 static int check_if_running(struct net_device *dev) 1638 { 1639 if (!netif_running(dev)) 1640 return -EINVAL; 1641 return 0; 1642 } 1643 1644 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) 1645 { 1646 struct netdev_private *np = netdev_priv(dev); 1647 strscpy(info->driver, DRV_NAME, sizeof(info->driver)); 1648 strscpy(info->bus_info, pci_name(np->pci_dev), sizeof(info->bus_info)); 1649 } 1650 1651 static int get_link_ksettings(struct net_device *dev, 1652 struct ethtool_link_ksettings *cmd) 1653 { 1654 struct netdev_private *np = netdev_priv(dev); 1655 spin_lock_irq(&np->lock); 1656 mii_ethtool_get_link_ksettings(&np->mii_if, cmd); 1657 spin_unlock_irq(&np->lock); 1658 return 0; 1659 } 1660 1661 static int set_link_ksettings(struct net_device *dev, 1662 const struct ethtool_link_ksettings *cmd) 1663 { 1664 struct netdev_private *np = netdev_priv(dev); 1665 int res; 1666 spin_lock_irq(&np->lock); 1667 res = mii_ethtool_set_link_ksettings(&np->mii_if, cmd); 1668 spin_unlock_irq(&np->lock); 1669 return res; 1670 } 1671 1672 static int nway_reset(struct net_device *dev) 1673 { 1674 struct netdev_private *np = netdev_priv(dev); 1675 return mii_nway_restart(&np->mii_if); 1676 } 1677 1678 static u32 get_link(struct net_device *dev) 1679 { 1680 struct netdev_private *np = netdev_priv(dev); 1681 return mii_link_ok(&np->mii_if); 1682 } 1683 1684 static u32 get_msglevel(struct net_device *dev) 1685 { 1686 struct netdev_private *np = netdev_priv(dev); 1687 return np->msg_enable; 1688 } 1689 1690 static void set_msglevel(struct net_device *dev, u32 val) 1691 { 1692 struct netdev_private *np = netdev_priv(dev); 1693 np->msg_enable = val; 1694 } 1695 1696 static void get_strings(struct net_device *dev, u32 stringset, 1697 u8 *data) 1698 { 1699 if (stringset == ETH_SS_STATS) 1700 memcpy(data, sundance_stats, sizeof(sundance_stats)); 1701 } 1702 1703 static int get_sset_count(struct net_device *dev, int sset) 1704 { 1705 switch (sset) { 1706 case ETH_SS_STATS: 1707 return ARRAY_SIZE(sundance_stats); 1708 default: 1709 return -EOPNOTSUPP; 1710 } 1711 } 1712 1713 static void get_ethtool_stats(struct net_device *dev, 1714 struct ethtool_stats *stats, u64 *data) 1715 { 1716 struct netdev_private *np = netdev_priv(dev); 1717 int i = 0; 1718 1719 get_stats(dev); 1720 data[i++] = np->xstats.tx_multiple_collisions; 1721 data[i++] = np->xstats.tx_single_collisions; 1722 data[i++] = np->xstats.tx_late_collisions; 1723 data[i++] = np->xstats.tx_deferred; 1724 data[i++] = np->xstats.tx_deferred_excessive; 1725 data[i++] = np->xstats.tx_aborted; 1726 data[i++] = np->xstats.tx_bcasts; 1727 data[i++] = np->xstats.rx_bcasts; 1728 data[i++] = np->xstats.tx_mcasts; 1729 data[i++] = np->xstats.rx_mcasts; 1730 } 1731 1732 #ifdef CONFIG_PM 1733 1734 static void sundance_get_wol(struct net_device *dev, 1735 struct ethtool_wolinfo *wol) 1736 { 1737 struct netdev_private *np = netdev_priv(dev); 1738 void __iomem *ioaddr = np->base; 1739 u8 wol_bits; 1740 1741 wol->wolopts = 0; 1742 1743 wol->supported = (WAKE_PHY | WAKE_MAGIC); 1744 if (!np->wol_enabled) 1745 return; 1746 1747 wol_bits = ioread8(ioaddr + WakeEvent); 1748 if (wol_bits & MagicPktEnable) 1749 wol->wolopts |= WAKE_MAGIC; 1750 if (wol_bits & LinkEventEnable) 1751 wol->wolopts |= WAKE_PHY; 1752 } 1753 1754 static int sundance_set_wol(struct net_device *dev, 1755 struct ethtool_wolinfo *wol) 1756 { 1757 struct netdev_private *np = netdev_priv(dev); 1758 void __iomem *ioaddr = np->base; 1759 u8 wol_bits; 1760 1761 if (!device_can_wakeup(&np->pci_dev->dev)) 1762 return -EOPNOTSUPP; 1763 1764 np->wol_enabled = !!(wol->wolopts); 1765 wol_bits = ioread8(ioaddr + WakeEvent); 1766 wol_bits &= ~(WakePktEnable | MagicPktEnable | 1767 LinkEventEnable | WolEnable); 1768 1769 if (np->wol_enabled) { 1770 if (wol->wolopts & WAKE_MAGIC) 1771 wol_bits |= (MagicPktEnable | WolEnable); 1772 if (wol->wolopts & WAKE_PHY) 1773 wol_bits |= (LinkEventEnable | WolEnable); 1774 } 1775 iowrite8(wol_bits, ioaddr + WakeEvent); 1776 1777 device_set_wakeup_enable(&np->pci_dev->dev, np->wol_enabled); 1778 1779 return 0; 1780 } 1781 #else 1782 #define sundance_get_wol NULL 1783 #define sundance_set_wol NULL 1784 #endif /* CONFIG_PM */ 1785 1786 static const struct ethtool_ops ethtool_ops = { 1787 .begin = check_if_running, 1788 .get_drvinfo = get_drvinfo, 1789 .nway_reset = nway_reset, 1790 .get_link = get_link, 1791 .get_wol = sundance_get_wol, 1792 .set_wol = sundance_set_wol, 1793 .get_msglevel = get_msglevel, 1794 .set_msglevel = set_msglevel, 1795 .get_strings = get_strings, 1796 .get_sset_count = get_sset_count, 1797 .get_ethtool_stats = get_ethtool_stats, 1798 .get_link_ksettings = get_link_ksettings, 1799 .set_link_ksettings = set_link_ksettings, 1800 }; 1801 1802 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 1803 { 1804 struct netdev_private *np = netdev_priv(dev); 1805 int rc; 1806 1807 if (!netif_running(dev)) 1808 return -EINVAL; 1809 1810 spin_lock_irq(&np->lock); 1811 rc = generic_mii_ioctl(&np->mii_if, if_mii(rq), cmd, NULL); 1812 spin_unlock_irq(&np->lock); 1813 1814 return rc; 1815 } 1816 1817 static int netdev_close(struct net_device *dev) 1818 { 1819 struct netdev_private *np = netdev_priv(dev); 1820 void __iomem *ioaddr = np->base; 1821 struct sk_buff *skb; 1822 int i; 1823 1824 /* Wait and kill tasklet */ 1825 tasklet_kill(&np->rx_tasklet); 1826 tasklet_kill(&np->tx_tasklet); 1827 np->cur_tx = 0; 1828 np->dirty_tx = 0; 1829 np->cur_task = 0; 1830 np->last_tx = NULL; 1831 1832 netif_stop_queue(dev); 1833 1834 if (netif_msg_ifdown(np)) { 1835 printk(KERN_DEBUG "%s: Shutting down ethercard, status was Tx %2.2x " 1836 "Rx %4.4x Int %2.2x.\n", 1837 dev->name, ioread8(ioaddr + TxStatus), 1838 ioread32(ioaddr + RxStatus), ioread16(ioaddr + IntrStatus)); 1839 printk(KERN_DEBUG "%s: Queue pointers were Tx %d / %d, Rx %d / %d.\n", 1840 dev->name, np->cur_tx, np->dirty_tx, np->cur_rx, np->dirty_rx); 1841 } 1842 1843 /* Disable interrupts by clearing the interrupt mask. */ 1844 iowrite16(0x0000, ioaddr + IntrEnable); 1845 1846 /* Disable Rx and Tx DMA for safely release resource */ 1847 iowrite32(0x500, ioaddr + DMACtrl); 1848 1849 /* Stop the chip's Tx and Rx processes. */ 1850 iowrite16(TxDisable | RxDisable | StatsDisable, ioaddr + MACCtrl1); 1851 1852 for (i = 2000; i > 0; i--) { 1853 if ((ioread32(ioaddr + DMACtrl) & 0xc000) == 0) 1854 break; 1855 mdelay(1); 1856 } 1857 1858 iowrite16(GlobalReset | DMAReset | FIFOReset | NetworkReset, 1859 ioaddr + ASIC_HI_WORD(ASICCtrl)); 1860 1861 for (i = 2000; i > 0; i--) { 1862 if ((ioread16(ioaddr + ASIC_HI_WORD(ASICCtrl)) & ResetBusy) == 0) 1863 break; 1864 mdelay(1); 1865 } 1866 1867 #ifdef __i386__ 1868 if (netif_msg_hw(np)) { 1869 printk(KERN_DEBUG " Tx ring at %8.8x:\n", 1870 (int)(np->tx_ring_dma)); 1871 for (i = 0; i < TX_RING_SIZE; i++) 1872 printk(KERN_DEBUG " #%d desc. %4.4x %8.8x %8.8x.\n", 1873 i, np->tx_ring[i].status, np->tx_ring[i].frag.addr, 1874 np->tx_ring[i].frag.length); 1875 printk(KERN_DEBUG " Rx ring %8.8x:\n", 1876 (int)(np->rx_ring_dma)); 1877 for (i = 0; i < /*RX_RING_SIZE*/4 ; i++) { 1878 printk(KERN_DEBUG " #%d desc. %4.4x %4.4x %8.8x\n", 1879 i, np->rx_ring[i].status, np->rx_ring[i].frag.addr, 1880 np->rx_ring[i].frag.length); 1881 } 1882 } 1883 #endif /* __i386__ debugging only */ 1884 1885 free_irq(np->pci_dev->irq, dev); 1886 1887 del_timer_sync(&np->timer); 1888 1889 /* Free all the skbuffs in the Rx queue. */ 1890 for (i = 0; i < RX_RING_SIZE; i++) { 1891 np->rx_ring[i].status = 0; 1892 skb = np->rx_skbuff[i]; 1893 if (skb) { 1894 dma_unmap_single(&np->pci_dev->dev, 1895 le32_to_cpu(np->rx_ring[i].frag.addr), 1896 np->rx_buf_sz, DMA_FROM_DEVICE); 1897 dev_kfree_skb(skb); 1898 np->rx_skbuff[i] = NULL; 1899 } 1900 np->rx_ring[i].frag.addr = cpu_to_le32(0xBADF00D0); /* poison */ 1901 } 1902 for (i = 0; i < TX_RING_SIZE; i++) { 1903 np->tx_ring[i].next_desc = 0; 1904 skb = np->tx_skbuff[i]; 1905 if (skb) { 1906 dma_unmap_single(&np->pci_dev->dev, 1907 le32_to_cpu(np->tx_ring[i].frag.addr), 1908 skb->len, DMA_TO_DEVICE); 1909 dev_kfree_skb(skb); 1910 np->tx_skbuff[i] = NULL; 1911 } 1912 } 1913 1914 return 0; 1915 } 1916 1917 static void sundance_remove1(struct pci_dev *pdev) 1918 { 1919 struct net_device *dev = pci_get_drvdata(pdev); 1920 1921 if (dev) { 1922 struct netdev_private *np = netdev_priv(dev); 1923 unregister_netdev(dev); 1924 dma_free_coherent(&pdev->dev, RX_TOTAL_SIZE, 1925 np->rx_ring, np->rx_ring_dma); 1926 dma_free_coherent(&pdev->dev, TX_TOTAL_SIZE, 1927 np->tx_ring, np->tx_ring_dma); 1928 pci_iounmap(pdev, np->base); 1929 pci_release_regions(pdev); 1930 free_netdev(dev); 1931 } 1932 } 1933 1934 static int __maybe_unused sundance_suspend(struct device *dev_d) 1935 { 1936 struct net_device *dev = dev_get_drvdata(dev_d); 1937 struct netdev_private *np = netdev_priv(dev); 1938 void __iomem *ioaddr = np->base; 1939 1940 if (!netif_running(dev)) 1941 return 0; 1942 1943 netdev_close(dev); 1944 netif_device_detach(dev); 1945 1946 if (np->wol_enabled) { 1947 iowrite8(AcceptBroadcast | AcceptMyPhys, ioaddr + RxMode); 1948 iowrite16(RxEnable, ioaddr + MACCtrl1); 1949 } 1950 1951 device_set_wakeup_enable(dev_d, np->wol_enabled); 1952 1953 return 0; 1954 } 1955 1956 static int __maybe_unused sundance_resume(struct device *dev_d) 1957 { 1958 struct net_device *dev = dev_get_drvdata(dev_d); 1959 int err = 0; 1960 1961 if (!netif_running(dev)) 1962 return 0; 1963 1964 err = netdev_open(dev); 1965 if (err) { 1966 printk(KERN_ERR "%s: Can't resume interface!\n", 1967 dev->name); 1968 goto out; 1969 } 1970 1971 netif_device_attach(dev); 1972 1973 out: 1974 return err; 1975 } 1976 1977 static SIMPLE_DEV_PM_OPS(sundance_pm_ops, sundance_suspend, sundance_resume); 1978 1979 static struct pci_driver sundance_driver = { 1980 .name = DRV_NAME, 1981 .id_table = sundance_pci_tbl, 1982 .probe = sundance_probe1, 1983 .remove = sundance_remove1, 1984 .driver.pm = &sundance_pm_ops, 1985 }; 1986 1987 module_pci_driver(sundance_driver); 1988