xref: /openbmc/linux/drivers/net/ethernet/dlink/dl2k.c (revision d0b73b48)
1 /*  D-Link DL2000-based Gigabit Ethernet Adapter Linux driver */
2 /*
3     Copyright (c) 2001, 2002 by D-Link Corporation
4     Written by Edward Peng.<edward_peng@dlink.com.tw>
5     Created 03-May-2001, base on Linux' sundance.c.
6 
7     This program is free software; you can redistribute it and/or modify
8     it under the terms of the GNU General Public License as published by
9     the Free Software Foundation; either version 2 of the License, or
10     (at your option) any later version.
11 */
12 
13 #define DRV_NAME	"DL2000/TC902x-based linux driver"
14 #define DRV_VERSION	"v1.19"
15 #define DRV_RELDATE	"2007/08/12"
16 #include "dl2k.h"
17 #include <linux/dma-mapping.h>
18 
19 #define dw32(reg, val)	iowrite32(val, ioaddr + (reg))
20 #define dw16(reg, val)	iowrite16(val, ioaddr + (reg))
21 #define dw8(reg, val)	iowrite8(val, ioaddr + (reg))
22 #define dr32(reg)	ioread32(ioaddr + (reg))
23 #define dr16(reg)	ioread16(ioaddr + (reg))
24 #define dr8(reg)	ioread8(ioaddr + (reg))
25 
26 static char version[] =
27       KERN_INFO DRV_NAME " " DRV_VERSION " " DRV_RELDATE "\n";
28 #define MAX_UNITS 8
29 static int mtu[MAX_UNITS];
30 static int vlan[MAX_UNITS];
31 static int jumbo[MAX_UNITS];
32 static char *media[MAX_UNITS];
33 static int tx_flow=-1;
34 static int rx_flow=-1;
35 static int copy_thresh;
36 static int rx_coalesce=10;	/* Rx frame count each interrupt */
37 static int rx_timeout=200;	/* Rx DMA wait time in 640ns increments */
38 static int tx_coalesce=16;	/* HW xmit count each TxDMAComplete */
39 
40 
41 MODULE_AUTHOR ("Edward Peng");
42 MODULE_DESCRIPTION ("D-Link DL2000-based Gigabit Ethernet Adapter");
43 MODULE_LICENSE("GPL");
44 module_param_array(mtu, int, NULL, 0);
45 module_param_array(media, charp, NULL, 0);
46 module_param_array(vlan, int, NULL, 0);
47 module_param_array(jumbo, int, NULL, 0);
48 module_param(tx_flow, int, 0);
49 module_param(rx_flow, int, 0);
50 module_param(copy_thresh, int, 0);
51 module_param(rx_coalesce, int, 0);	/* Rx frame count each interrupt */
52 module_param(rx_timeout, int, 0);	/* Rx DMA wait time in 64ns increments */
53 module_param(tx_coalesce, int, 0); /* HW xmit count each TxDMAComplete */
54 
55 
56 /* Enable the default interrupts */
57 #define DEFAULT_INTR (RxDMAComplete | HostError | IntRequested | TxDMAComplete| \
58        UpdateStats | LinkEvent)
59 
60 static void dl2k_enable_int(struct netdev_private *np)
61 {
62 	void __iomem *ioaddr = np->ioaddr;
63 
64 	dw16(IntEnable, DEFAULT_INTR);
65 }
66 
67 static const int max_intrloop = 50;
68 static const int multicast_filter_limit = 0x40;
69 
70 static int rio_open (struct net_device *dev);
71 static void rio_timer (unsigned long data);
72 static void rio_tx_timeout (struct net_device *dev);
73 static void alloc_list (struct net_device *dev);
74 static netdev_tx_t start_xmit (struct sk_buff *skb, struct net_device *dev);
75 static irqreturn_t rio_interrupt (int irq, void *dev_instance);
76 static void rio_free_tx (struct net_device *dev, int irq);
77 static void tx_error (struct net_device *dev, int tx_status);
78 static int receive_packet (struct net_device *dev);
79 static void rio_error (struct net_device *dev, int int_status);
80 static int change_mtu (struct net_device *dev, int new_mtu);
81 static void set_multicast (struct net_device *dev);
82 static struct net_device_stats *get_stats (struct net_device *dev);
83 static int clear_stats (struct net_device *dev);
84 static int rio_ioctl (struct net_device *dev, struct ifreq *rq, int cmd);
85 static int rio_close (struct net_device *dev);
86 static int find_miiphy (struct net_device *dev);
87 static int parse_eeprom (struct net_device *dev);
88 static int read_eeprom (struct netdev_private *, int eep_addr);
89 static int mii_wait_link (struct net_device *dev, int wait);
90 static int mii_set_media (struct net_device *dev);
91 static int mii_get_media (struct net_device *dev);
92 static int mii_set_media_pcs (struct net_device *dev);
93 static int mii_get_media_pcs (struct net_device *dev);
94 static int mii_read (struct net_device *dev, int phy_addr, int reg_num);
95 static int mii_write (struct net_device *dev, int phy_addr, int reg_num,
96 		      u16 data);
97 
98 static const struct ethtool_ops ethtool_ops;
99 
100 static const struct net_device_ops netdev_ops = {
101 	.ndo_open		= rio_open,
102 	.ndo_start_xmit	= start_xmit,
103 	.ndo_stop		= rio_close,
104 	.ndo_get_stats		= get_stats,
105 	.ndo_validate_addr	= eth_validate_addr,
106 	.ndo_set_mac_address 	= eth_mac_addr,
107 	.ndo_set_rx_mode	= set_multicast,
108 	.ndo_do_ioctl		= rio_ioctl,
109 	.ndo_tx_timeout		= rio_tx_timeout,
110 	.ndo_change_mtu		= change_mtu,
111 };
112 
113 static int
114 rio_probe1 (struct pci_dev *pdev, const struct pci_device_id *ent)
115 {
116 	struct net_device *dev;
117 	struct netdev_private *np;
118 	static int card_idx;
119 	int chip_idx = ent->driver_data;
120 	int err, irq;
121 	void __iomem *ioaddr;
122 	static int version_printed;
123 	void *ring_space;
124 	dma_addr_t ring_dma;
125 
126 	if (!version_printed++)
127 		printk ("%s", version);
128 
129 	err = pci_enable_device (pdev);
130 	if (err)
131 		return err;
132 
133 	irq = pdev->irq;
134 	err = pci_request_regions (pdev, "dl2k");
135 	if (err)
136 		goto err_out_disable;
137 
138 	pci_set_master (pdev);
139 
140 	err = -ENOMEM;
141 
142 	dev = alloc_etherdev (sizeof (*np));
143 	if (!dev)
144 		goto err_out_res;
145 	SET_NETDEV_DEV(dev, &pdev->dev);
146 
147 	np = netdev_priv(dev);
148 
149 	/* IO registers range. */
150 	ioaddr = pci_iomap(pdev, 0, 0);
151 	if (!ioaddr)
152 		goto err_out_dev;
153 	np->eeprom_addr = ioaddr;
154 
155 #ifdef MEM_MAPPING
156 	/* MM registers range. */
157 	ioaddr = pci_iomap(pdev, 1, 0);
158 	if (!ioaddr)
159 		goto err_out_iounmap;
160 #endif
161 	np->ioaddr = ioaddr;
162 	np->chip_id = chip_idx;
163 	np->pdev = pdev;
164 	spin_lock_init (&np->tx_lock);
165 	spin_lock_init (&np->rx_lock);
166 
167 	/* Parse manual configuration */
168 	np->an_enable = 1;
169 	np->tx_coalesce = 1;
170 	if (card_idx < MAX_UNITS) {
171 		if (media[card_idx] != NULL) {
172 			np->an_enable = 0;
173 			if (strcmp (media[card_idx], "auto") == 0 ||
174 			    strcmp (media[card_idx], "autosense") == 0 ||
175 			    strcmp (media[card_idx], "0") == 0 ) {
176 				np->an_enable = 2;
177 			} else if (strcmp (media[card_idx], "100mbps_fd") == 0 ||
178 			    strcmp (media[card_idx], "4") == 0) {
179 				np->speed = 100;
180 				np->full_duplex = 1;
181 			} else if (strcmp (media[card_idx], "100mbps_hd") == 0 ||
182 				   strcmp (media[card_idx], "3") == 0) {
183 				np->speed = 100;
184 				np->full_duplex = 0;
185 			} else if (strcmp (media[card_idx], "10mbps_fd") == 0 ||
186 				   strcmp (media[card_idx], "2") == 0) {
187 				np->speed = 10;
188 				np->full_duplex = 1;
189 			} else if (strcmp (media[card_idx], "10mbps_hd") == 0 ||
190 				   strcmp (media[card_idx], "1") == 0) {
191 				np->speed = 10;
192 				np->full_duplex = 0;
193 			} else if (strcmp (media[card_idx], "1000mbps_fd") == 0 ||
194 				 strcmp (media[card_idx], "6") == 0) {
195 				np->speed=1000;
196 				np->full_duplex=1;
197 			} else if (strcmp (media[card_idx], "1000mbps_hd") == 0 ||
198 				 strcmp (media[card_idx], "5") == 0) {
199 				np->speed = 1000;
200 				np->full_duplex = 0;
201 			} else {
202 				np->an_enable = 1;
203 			}
204 		}
205 		if (jumbo[card_idx] != 0) {
206 			np->jumbo = 1;
207 			dev->mtu = MAX_JUMBO;
208 		} else {
209 			np->jumbo = 0;
210 			if (mtu[card_idx] > 0 && mtu[card_idx] < PACKET_SIZE)
211 				dev->mtu = mtu[card_idx];
212 		}
213 		np->vlan = (vlan[card_idx] > 0 && vlan[card_idx] < 4096) ?
214 		    vlan[card_idx] : 0;
215 		if (rx_coalesce > 0 && rx_timeout > 0) {
216 			np->rx_coalesce = rx_coalesce;
217 			np->rx_timeout = rx_timeout;
218 			np->coalesce = 1;
219 		}
220 		np->tx_flow = (tx_flow == 0) ? 0 : 1;
221 		np->rx_flow = (rx_flow == 0) ? 0 : 1;
222 
223 		if (tx_coalesce < 1)
224 			tx_coalesce = 1;
225 		else if (tx_coalesce > TX_RING_SIZE-1)
226 			tx_coalesce = TX_RING_SIZE - 1;
227 	}
228 	dev->netdev_ops = &netdev_ops;
229 	dev->watchdog_timeo = TX_TIMEOUT;
230 	SET_ETHTOOL_OPS(dev, &ethtool_ops);
231 #if 0
232 	dev->features = NETIF_F_IP_CSUM;
233 #endif
234 	pci_set_drvdata (pdev, dev);
235 
236 	ring_space = pci_alloc_consistent (pdev, TX_TOTAL_SIZE, &ring_dma);
237 	if (!ring_space)
238 		goto err_out_iounmap;
239 	np->tx_ring = ring_space;
240 	np->tx_ring_dma = ring_dma;
241 
242 	ring_space = pci_alloc_consistent (pdev, RX_TOTAL_SIZE, &ring_dma);
243 	if (!ring_space)
244 		goto err_out_unmap_tx;
245 	np->rx_ring = ring_space;
246 	np->rx_ring_dma = ring_dma;
247 
248 	/* Parse eeprom data */
249 	parse_eeprom (dev);
250 
251 	/* Find PHY address */
252 	err = find_miiphy (dev);
253 	if (err)
254 		goto err_out_unmap_rx;
255 
256 	/* Fiber device? */
257 	np->phy_media = (dr16(ASICCtrl) & PhyMedia) ? 1 : 0;
258 	np->link_status = 0;
259 	/* Set media and reset PHY */
260 	if (np->phy_media) {
261 		/* default Auto-Negotiation for fiber deivices */
262 	 	if (np->an_enable == 2) {
263 			np->an_enable = 1;
264 		}
265 		mii_set_media_pcs (dev);
266 	} else {
267 		/* Auto-Negotiation is mandatory for 1000BASE-T,
268 		   IEEE 802.3ab Annex 28D page 14 */
269 		if (np->speed == 1000)
270 			np->an_enable = 1;
271 		mii_set_media (dev);
272 	}
273 
274 	err = register_netdev (dev);
275 	if (err)
276 		goto err_out_unmap_rx;
277 
278 	card_idx++;
279 
280 	printk (KERN_INFO "%s: %s, %pM, IRQ %d\n",
281 		dev->name, np->name, dev->dev_addr, irq);
282 	if (tx_coalesce > 1)
283 		printk(KERN_INFO "tx_coalesce:\t%d packets\n",
284 				tx_coalesce);
285 	if (np->coalesce)
286 		printk(KERN_INFO
287 		       "rx_coalesce:\t%d packets\n"
288 		       "rx_timeout: \t%d ns\n",
289 				np->rx_coalesce, np->rx_timeout*640);
290 	if (np->vlan)
291 		printk(KERN_INFO "vlan(id):\t%d\n", np->vlan);
292 	return 0;
293 
294 err_out_unmap_rx:
295 	pci_free_consistent (pdev, RX_TOTAL_SIZE, np->rx_ring, np->rx_ring_dma);
296 err_out_unmap_tx:
297 	pci_free_consistent (pdev, TX_TOTAL_SIZE, np->tx_ring, np->tx_ring_dma);
298 err_out_iounmap:
299 #ifdef MEM_MAPPING
300 	pci_iounmap(pdev, np->ioaddr);
301 #endif
302 	pci_iounmap(pdev, np->eeprom_addr);
303 err_out_dev:
304 	free_netdev (dev);
305 err_out_res:
306 	pci_release_regions (pdev);
307 err_out_disable:
308 	pci_disable_device (pdev);
309 	return err;
310 }
311 
312 static int
313 find_miiphy (struct net_device *dev)
314 {
315 	struct netdev_private *np = netdev_priv(dev);
316 	int i, phy_found = 0;
317 	np = netdev_priv(dev);
318 	np->phy_addr = 1;
319 
320 	for (i = 31; i >= 0; i--) {
321 		int mii_status = mii_read (dev, i, 1);
322 		if (mii_status != 0xffff && mii_status != 0x0000) {
323 			np->phy_addr = i;
324 			phy_found++;
325 		}
326 	}
327 	if (!phy_found) {
328 		printk (KERN_ERR "%s: No MII PHY found!\n", dev->name);
329 		return -ENODEV;
330 	}
331 	return 0;
332 }
333 
334 static int
335 parse_eeprom (struct net_device *dev)
336 {
337 	struct netdev_private *np = netdev_priv(dev);
338 	void __iomem *ioaddr = np->ioaddr;
339 	int i, j;
340 	u8 sromdata[256];
341 	u8 *psib;
342 	u32 crc;
343 	PSROM_t psrom = (PSROM_t) sromdata;
344 
345 	int cid, next;
346 
347 	for (i = 0; i < 128; i++)
348 		((__le16 *) sromdata)[i] = cpu_to_le16(read_eeprom(np, i));
349 
350 	if (np->pdev->vendor == PCI_VENDOR_ID_DLINK) {	/* D-Link Only */
351 		/* Check CRC */
352 		crc = ~ether_crc_le (256 - 4, sromdata);
353 		if (psrom->crc != cpu_to_le32(crc)) {
354 			printk (KERN_ERR "%s: EEPROM data CRC error.\n",
355 					dev->name);
356 			return -1;
357 		}
358 	}
359 
360 	/* Set MAC address */
361 	for (i = 0; i < 6; i++)
362 		dev->dev_addr[i] = psrom->mac_addr[i];
363 
364 	if (np->pdev->vendor != PCI_VENDOR_ID_DLINK) {
365 		return 0;
366 	}
367 
368 	/* Parse Software Information Block */
369 	i = 0x30;
370 	psib = (u8 *) sromdata;
371 	do {
372 		cid = psib[i++];
373 		next = psib[i++];
374 		if ((cid == 0 && next == 0) || (cid == 0xff && next == 0xff)) {
375 			printk (KERN_ERR "Cell data error\n");
376 			return -1;
377 		}
378 		switch (cid) {
379 		case 0:	/* Format version */
380 			break;
381 		case 1:	/* End of cell */
382 			return 0;
383 		case 2:	/* Duplex Polarity */
384 			np->duplex_polarity = psib[i];
385 			dw8(PhyCtrl, dr8(PhyCtrl) | psib[i]);
386 			break;
387 		case 3:	/* Wake Polarity */
388 			np->wake_polarity = psib[i];
389 			break;
390 		case 9:	/* Adapter description */
391 			j = (next - i > 255) ? 255 : next - i;
392 			memcpy (np->name, &(psib[i]), j);
393 			break;
394 		case 4:
395 		case 5:
396 		case 6:
397 		case 7:
398 		case 8:	/* Reversed */
399 			break;
400 		default:	/* Unknown cell */
401 			return -1;
402 		}
403 		i = next;
404 	} while (1);
405 
406 	return 0;
407 }
408 
409 static int
410 rio_open (struct net_device *dev)
411 {
412 	struct netdev_private *np = netdev_priv(dev);
413 	void __iomem *ioaddr = np->ioaddr;
414 	const int irq = np->pdev->irq;
415 	int i;
416 	u16 macctrl;
417 
418 	i = request_irq(irq, rio_interrupt, IRQF_SHARED, dev->name, dev);
419 	if (i)
420 		return i;
421 
422 	/* Reset all logic functions */
423 	dw16(ASICCtrl + 2,
424 	     GlobalReset | DMAReset | FIFOReset | NetworkReset | HostReset);
425 	mdelay(10);
426 
427 	/* DebugCtrl bit 4, 5, 9 must set */
428 	dw32(DebugCtrl, dr32(DebugCtrl) | 0x0230);
429 
430 	/* Jumbo frame */
431 	if (np->jumbo != 0)
432 		dw16(MaxFrameSize, MAX_JUMBO+14);
433 
434 	alloc_list (dev);
435 
436 	/* Get station address */
437 	for (i = 0; i < 6; i++)
438 		dw8(StationAddr0 + i, dev->dev_addr[i]);
439 
440 	set_multicast (dev);
441 	if (np->coalesce) {
442 		dw32(RxDMAIntCtrl, np->rx_coalesce | np->rx_timeout << 16);
443 	}
444 	/* Set RIO to poll every N*320nsec. */
445 	dw8(RxDMAPollPeriod, 0x20);
446 	dw8(TxDMAPollPeriod, 0xff);
447 	dw8(RxDMABurstThresh, 0x30);
448 	dw8(RxDMAUrgentThresh, 0x30);
449 	dw32(RmonStatMask, 0x0007ffff);
450 	/* clear statistics */
451 	clear_stats (dev);
452 
453 	/* VLAN supported */
454 	if (np->vlan) {
455 		/* priority field in RxDMAIntCtrl  */
456 		dw32(RxDMAIntCtrl, dr32(RxDMAIntCtrl) | 0x7 << 10);
457 		/* VLANId */
458 		dw16(VLANId, np->vlan);
459 		/* Length/Type should be 0x8100 */
460 		dw32(VLANTag, 0x8100 << 16 | np->vlan);
461 		/* Enable AutoVLANuntagging, but disable AutoVLANtagging.
462 		   VLAN information tagged by TFC' VID, CFI fields. */
463 		dw32(MACCtrl, dr32(MACCtrl) | AutoVLANuntagging);
464 	}
465 
466 	init_timer (&np->timer);
467 	np->timer.expires = jiffies + 1*HZ;
468 	np->timer.data = (unsigned long) dev;
469 	np->timer.function = rio_timer;
470 	add_timer (&np->timer);
471 
472 	/* Start Tx/Rx */
473 	dw32(MACCtrl, dr32(MACCtrl) | StatsEnable | RxEnable | TxEnable);
474 
475 	macctrl = 0;
476 	macctrl |= (np->vlan) ? AutoVLANuntagging : 0;
477 	macctrl |= (np->full_duplex) ? DuplexSelect : 0;
478 	macctrl |= (np->tx_flow) ? TxFlowControlEnable : 0;
479 	macctrl |= (np->rx_flow) ? RxFlowControlEnable : 0;
480 	dw16(MACCtrl, macctrl);
481 
482 	netif_start_queue (dev);
483 
484 	dl2k_enable_int(np);
485 	return 0;
486 }
487 
488 static void
489 rio_timer (unsigned long data)
490 {
491 	struct net_device *dev = (struct net_device *)data;
492 	struct netdev_private *np = netdev_priv(dev);
493 	unsigned int entry;
494 	int next_tick = 1*HZ;
495 	unsigned long flags;
496 
497 	spin_lock_irqsave(&np->rx_lock, flags);
498 	/* Recover rx ring exhausted error */
499 	if (np->cur_rx - np->old_rx >= RX_RING_SIZE) {
500 		printk(KERN_INFO "Try to recover rx ring exhausted...\n");
501 		/* Re-allocate skbuffs to fill the descriptor ring */
502 		for (; np->cur_rx - np->old_rx > 0; np->old_rx++) {
503 			struct sk_buff *skb;
504 			entry = np->old_rx % RX_RING_SIZE;
505 			/* Dropped packets don't need to re-allocate */
506 			if (np->rx_skbuff[entry] == NULL) {
507 				skb = netdev_alloc_skb_ip_align(dev,
508 								np->rx_buf_sz);
509 				if (skb == NULL) {
510 					np->rx_ring[entry].fraginfo = 0;
511 					printk (KERN_INFO
512 						"%s: Still unable to re-allocate Rx skbuff.#%d\n",
513 						dev->name, entry);
514 					break;
515 				}
516 				np->rx_skbuff[entry] = skb;
517 				np->rx_ring[entry].fraginfo =
518 				    cpu_to_le64 (pci_map_single
519 					 (np->pdev, skb->data, np->rx_buf_sz,
520 					  PCI_DMA_FROMDEVICE));
521 			}
522 			np->rx_ring[entry].fraginfo |=
523 			    cpu_to_le64((u64)np->rx_buf_sz << 48);
524 			np->rx_ring[entry].status = 0;
525 		} /* end for */
526 	} /* end if */
527 	spin_unlock_irqrestore (&np->rx_lock, flags);
528 	np->timer.expires = jiffies + next_tick;
529 	add_timer(&np->timer);
530 }
531 
532 static void
533 rio_tx_timeout (struct net_device *dev)
534 {
535 	struct netdev_private *np = netdev_priv(dev);
536 	void __iomem *ioaddr = np->ioaddr;
537 
538 	printk (KERN_INFO "%s: Tx timed out (%4.4x), is buffer full?\n",
539 		dev->name, dr32(TxStatus));
540 	rio_free_tx(dev, 0);
541 	dev->if_port = 0;
542 	dev->trans_start = jiffies; /* prevent tx timeout */
543 }
544 
545  /* allocate and initialize Tx and Rx descriptors */
546 static void
547 alloc_list (struct net_device *dev)
548 {
549 	struct netdev_private *np = netdev_priv(dev);
550 	void __iomem *ioaddr = np->ioaddr;
551 	int i;
552 
553 	np->cur_rx = np->cur_tx = 0;
554 	np->old_rx = np->old_tx = 0;
555 	np->rx_buf_sz = (dev->mtu <= 1500 ? PACKET_SIZE : dev->mtu + 32);
556 
557 	/* Initialize Tx descriptors, TFDListPtr leaves in start_xmit(). */
558 	for (i = 0; i < TX_RING_SIZE; i++) {
559 		np->tx_skbuff[i] = NULL;
560 		np->tx_ring[i].status = cpu_to_le64 (TFDDone);
561 		np->tx_ring[i].next_desc = cpu_to_le64 (np->tx_ring_dma +
562 					      ((i+1)%TX_RING_SIZE) *
563 					      sizeof (struct netdev_desc));
564 	}
565 
566 	/* Initialize Rx descriptors */
567 	for (i = 0; i < RX_RING_SIZE; i++) {
568 		np->rx_ring[i].next_desc = cpu_to_le64 (np->rx_ring_dma +
569 						((i + 1) % RX_RING_SIZE) *
570 						sizeof (struct netdev_desc));
571 		np->rx_ring[i].status = 0;
572 		np->rx_ring[i].fraginfo = 0;
573 		np->rx_skbuff[i] = NULL;
574 	}
575 
576 	/* Allocate the rx buffers */
577 	for (i = 0; i < RX_RING_SIZE; i++) {
578 		/* Allocated fixed size of skbuff */
579 		struct sk_buff *skb;
580 
581 		skb = netdev_alloc_skb_ip_align(dev, np->rx_buf_sz);
582 		np->rx_skbuff[i] = skb;
583 		if (skb == NULL) {
584 			printk (KERN_ERR
585 				"%s: alloc_list: allocate Rx buffer error! ",
586 				dev->name);
587 			break;
588 		}
589 		/* Rubicon now supports 40 bits of addressing space. */
590 		np->rx_ring[i].fraginfo =
591 		    cpu_to_le64 ( pci_map_single (
592 			 	  np->pdev, skb->data, np->rx_buf_sz,
593 				  PCI_DMA_FROMDEVICE));
594 		np->rx_ring[i].fraginfo |= cpu_to_le64((u64)np->rx_buf_sz << 48);
595 	}
596 
597 	/* Set RFDListPtr */
598 	dw32(RFDListPtr0, np->rx_ring_dma);
599 	dw32(RFDListPtr1, 0);
600 }
601 
602 static netdev_tx_t
603 start_xmit (struct sk_buff *skb, struct net_device *dev)
604 {
605 	struct netdev_private *np = netdev_priv(dev);
606 	void __iomem *ioaddr = np->ioaddr;
607 	struct netdev_desc *txdesc;
608 	unsigned entry;
609 	u64 tfc_vlan_tag = 0;
610 
611 	if (np->link_status == 0) {	/* Link Down */
612 		dev_kfree_skb(skb);
613 		return NETDEV_TX_OK;
614 	}
615 	entry = np->cur_tx % TX_RING_SIZE;
616 	np->tx_skbuff[entry] = skb;
617 	txdesc = &np->tx_ring[entry];
618 
619 #if 0
620 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
621 		txdesc->status |=
622 		    cpu_to_le64 (TCPChecksumEnable | UDPChecksumEnable |
623 				 IPChecksumEnable);
624 	}
625 #endif
626 	if (np->vlan) {
627 		tfc_vlan_tag = VLANTagInsert |
628 		    ((u64)np->vlan << 32) |
629 		    ((u64)skb->priority << 45);
630 	}
631 	txdesc->fraginfo = cpu_to_le64 (pci_map_single (np->pdev, skb->data,
632 							skb->len,
633 							PCI_DMA_TODEVICE));
634 	txdesc->fraginfo |= cpu_to_le64((u64)skb->len << 48);
635 
636 	/* DL2K bug: DMA fails to get next descriptor ptr in 10Mbps mode
637 	 * Work around: Always use 1 descriptor in 10Mbps mode */
638 	if (entry % np->tx_coalesce == 0 || np->speed == 10)
639 		txdesc->status = cpu_to_le64 (entry | tfc_vlan_tag |
640 					      WordAlignDisable |
641 					      TxDMAIndicate |
642 					      (1 << FragCountShift));
643 	else
644 		txdesc->status = cpu_to_le64 (entry | tfc_vlan_tag |
645 					      WordAlignDisable |
646 					      (1 << FragCountShift));
647 
648 	/* TxDMAPollNow */
649 	dw32(DMACtrl, dr32(DMACtrl) | 0x00001000);
650 	/* Schedule ISR */
651 	dw32(CountDown, 10000);
652 	np->cur_tx = (np->cur_tx + 1) % TX_RING_SIZE;
653 	if ((np->cur_tx - np->old_tx + TX_RING_SIZE) % TX_RING_SIZE
654 			< TX_QUEUE_LEN - 1 && np->speed != 10) {
655 		/* do nothing */
656 	} else if (!netif_queue_stopped(dev)) {
657 		netif_stop_queue (dev);
658 	}
659 
660 	/* The first TFDListPtr */
661 	if (!dr32(TFDListPtr0)) {
662 		dw32(TFDListPtr0, np->tx_ring_dma +
663 		     entry * sizeof (struct netdev_desc));
664 		dw32(TFDListPtr1, 0);
665 	}
666 
667 	return NETDEV_TX_OK;
668 }
669 
670 static irqreturn_t
671 rio_interrupt (int irq, void *dev_instance)
672 {
673 	struct net_device *dev = dev_instance;
674 	struct netdev_private *np = netdev_priv(dev);
675 	void __iomem *ioaddr = np->ioaddr;
676 	unsigned int_status;
677 	int cnt = max_intrloop;
678 	int handled = 0;
679 
680 	while (1) {
681 		int_status = dr16(IntStatus);
682 		dw16(IntStatus, int_status);
683 		int_status &= DEFAULT_INTR;
684 		if (int_status == 0 || --cnt < 0)
685 			break;
686 		handled = 1;
687 		/* Processing received packets */
688 		if (int_status & RxDMAComplete)
689 			receive_packet (dev);
690 		/* TxDMAComplete interrupt */
691 		if ((int_status & (TxDMAComplete|IntRequested))) {
692 			int tx_status;
693 			tx_status = dr32(TxStatus);
694 			if (tx_status & 0x01)
695 				tx_error (dev, tx_status);
696 			/* Free used tx skbuffs */
697 			rio_free_tx (dev, 1);
698 		}
699 
700 		/* Handle uncommon events */
701 		if (int_status &
702 		    (HostError | LinkEvent | UpdateStats))
703 			rio_error (dev, int_status);
704 	}
705 	if (np->cur_tx != np->old_tx)
706 		dw32(CountDown, 100);
707 	return IRQ_RETVAL(handled);
708 }
709 
710 static inline dma_addr_t desc_to_dma(struct netdev_desc *desc)
711 {
712 	return le64_to_cpu(desc->fraginfo) & DMA_BIT_MASK(48);
713 }
714 
715 static void
716 rio_free_tx (struct net_device *dev, int irq)
717 {
718 	struct netdev_private *np = netdev_priv(dev);
719 	int entry = np->old_tx % TX_RING_SIZE;
720 	int tx_use = 0;
721 	unsigned long flag = 0;
722 
723 	if (irq)
724 		spin_lock(&np->tx_lock);
725 	else
726 		spin_lock_irqsave(&np->tx_lock, flag);
727 
728 	/* Free used tx skbuffs */
729 	while (entry != np->cur_tx) {
730 		struct sk_buff *skb;
731 
732 		if (!(np->tx_ring[entry].status & cpu_to_le64(TFDDone)))
733 			break;
734 		skb = np->tx_skbuff[entry];
735 		pci_unmap_single (np->pdev,
736 				  desc_to_dma(&np->tx_ring[entry]),
737 				  skb->len, PCI_DMA_TODEVICE);
738 		if (irq)
739 			dev_kfree_skb_irq (skb);
740 		else
741 			dev_kfree_skb (skb);
742 
743 		np->tx_skbuff[entry] = NULL;
744 		entry = (entry + 1) % TX_RING_SIZE;
745 		tx_use++;
746 	}
747 	if (irq)
748 		spin_unlock(&np->tx_lock);
749 	else
750 		spin_unlock_irqrestore(&np->tx_lock, flag);
751 	np->old_tx = entry;
752 
753 	/* If the ring is no longer full, clear tx_full and
754 	   call netif_wake_queue() */
755 
756 	if (netif_queue_stopped(dev) &&
757 	    ((np->cur_tx - np->old_tx + TX_RING_SIZE) % TX_RING_SIZE
758 	    < TX_QUEUE_LEN - 1 || np->speed == 10)) {
759 		netif_wake_queue (dev);
760 	}
761 }
762 
763 static void
764 tx_error (struct net_device *dev, int tx_status)
765 {
766 	struct netdev_private *np = netdev_priv(dev);
767 	void __iomem *ioaddr = np->ioaddr;
768 	int frame_id;
769 	int i;
770 
771 	frame_id = (tx_status & 0xffff0000);
772 	printk (KERN_ERR "%s: Transmit error, TxStatus %4.4x, FrameId %d.\n",
773 		dev->name, tx_status, frame_id);
774 	np->stats.tx_errors++;
775 	/* Ttransmit Underrun */
776 	if (tx_status & 0x10) {
777 		np->stats.tx_fifo_errors++;
778 		dw16(TxStartThresh, dr16(TxStartThresh) + 0x10);
779 		/* Transmit Underrun need to set TxReset, DMARest, FIFOReset */
780 		dw16(ASICCtrl + 2,
781 		     TxReset | DMAReset | FIFOReset | NetworkReset);
782 		/* Wait for ResetBusy bit clear */
783 		for (i = 50; i > 0; i--) {
784 			if (!(dr16(ASICCtrl + 2) & ResetBusy))
785 				break;
786 			mdelay (1);
787 		}
788 		rio_free_tx (dev, 1);
789 		/* Reset TFDListPtr */
790 		dw32(TFDListPtr0, np->tx_ring_dma +
791 		     np->old_tx * sizeof (struct netdev_desc));
792 		dw32(TFDListPtr1, 0);
793 
794 		/* Let TxStartThresh stay default value */
795 	}
796 	/* Late Collision */
797 	if (tx_status & 0x04) {
798 		np->stats.tx_fifo_errors++;
799 		/* TxReset and clear FIFO */
800 		dw16(ASICCtrl + 2, TxReset | FIFOReset);
801 		/* Wait reset done */
802 		for (i = 50; i > 0; i--) {
803 			if (!(dr16(ASICCtrl + 2) & ResetBusy))
804 				break;
805 			mdelay (1);
806 		}
807 		/* Let TxStartThresh stay default value */
808 	}
809 	/* Maximum Collisions */
810 #ifdef ETHER_STATS
811 	if (tx_status & 0x08)
812 		np->stats.collisions16++;
813 #else
814 	if (tx_status & 0x08)
815 		np->stats.collisions++;
816 #endif
817 	/* Restart the Tx */
818 	dw32(MACCtrl, dr16(MACCtrl) | TxEnable);
819 }
820 
821 static int
822 receive_packet (struct net_device *dev)
823 {
824 	struct netdev_private *np = netdev_priv(dev);
825 	int entry = np->cur_rx % RX_RING_SIZE;
826 	int cnt = 30;
827 
828 	/* If RFDDone, FrameStart and FrameEnd set, there is a new packet in. */
829 	while (1) {
830 		struct netdev_desc *desc = &np->rx_ring[entry];
831 		int pkt_len;
832 		u64 frame_status;
833 
834 		if (!(desc->status & cpu_to_le64(RFDDone)) ||
835 		    !(desc->status & cpu_to_le64(FrameStart)) ||
836 		    !(desc->status & cpu_to_le64(FrameEnd)))
837 			break;
838 
839 		/* Chip omits the CRC. */
840 		frame_status = le64_to_cpu(desc->status);
841 		pkt_len = frame_status & 0xffff;
842 		if (--cnt < 0)
843 			break;
844 		/* Update rx error statistics, drop packet. */
845 		if (frame_status & RFS_Errors) {
846 			np->stats.rx_errors++;
847 			if (frame_status & (RxRuntFrame | RxLengthError))
848 				np->stats.rx_length_errors++;
849 			if (frame_status & RxFCSError)
850 				np->stats.rx_crc_errors++;
851 			if (frame_status & RxAlignmentError && np->speed != 1000)
852 				np->stats.rx_frame_errors++;
853 			if (frame_status & RxFIFOOverrun)
854 	 			np->stats.rx_fifo_errors++;
855 		} else {
856 			struct sk_buff *skb;
857 
858 			/* Small skbuffs for short packets */
859 			if (pkt_len > copy_thresh) {
860 				pci_unmap_single (np->pdev,
861 						  desc_to_dma(desc),
862 						  np->rx_buf_sz,
863 						  PCI_DMA_FROMDEVICE);
864 				skb_put (skb = np->rx_skbuff[entry], pkt_len);
865 				np->rx_skbuff[entry] = NULL;
866 			} else if ((skb = netdev_alloc_skb_ip_align(dev, pkt_len))) {
867 				pci_dma_sync_single_for_cpu(np->pdev,
868 							    desc_to_dma(desc),
869 							    np->rx_buf_sz,
870 							    PCI_DMA_FROMDEVICE);
871 				skb_copy_to_linear_data (skb,
872 						  np->rx_skbuff[entry]->data,
873 						  pkt_len);
874 				skb_put (skb, pkt_len);
875 				pci_dma_sync_single_for_device(np->pdev,
876 							       desc_to_dma(desc),
877 							       np->rx_buf_sz,
878 							       PCI_DMA_FROMDEVICE);
879 			}
880 			skb->protocol = eth_type_trans (skb, dev);
881 #if 0
882 			/* Checksum done by hw, but csum value unavailable. */
883 			if (np->pdev->pci_rev_id >= 0x0c &&
884 				!(frame_status & (TCPError | UDPError | IPError))) {
885 				skb->ip_summed = CHECKSUM_UNNECESSARY;
886 			}
887 #endif
888 			netif_rx (skb);
889 		}
890 		entry = (entry + 1) % RX_RING_SIZE;
891 	}
892 	spin_lock(&np->rx_lock);
893 	np->cur_rx = entry;
894 	/* Re-allocate skbuffs to fill the descriptor ring */
895 	entry = np->old_rx;
896 	while (entry != np->cur_rx) {
897 		struct sk_buff *skb;
898 		/* Dropped packets don't need to re-allocate */
899 		if (np->rx_skbuff[entry] == NULL) {
900 			skb = netdev_alloc_skb_ip_align(dev, np->rx_buf_sz);
901 			if (skb == NULL) {
902 				np->rx_ring[entry].fraginfo = 0;
903 				printk (KERN_INFO
904 					"%s: receive_packet: "
905 					"Unable to re-allocate Rx skbuff.#%d\n",
906 					dev->name, entry);
907 				break;
908 			}
909 			np->rx_skbuff[entry] = skb;
910 			np->rx_ring[entry].fraginfo =
911 			    cpu_to_le64 (pci_map_single
912 					 (np->pdev, skb->data, np->rx_buf_sz,
913 					  PCI_DMA_FROMDEVICE));
914 		}
915 		np->rx_ring[entry].fraginfo |=
916 		    cpu_to_le64((u64)np->rx_buf_sz << 48);
917 		np->rx_ring[entry].status = 0;
918 		entry = (entry + 1) % RX_RING_SIZE;
919 	}
920 	np->old_rx = entry;
921 	spin_unlock(&np->rx_lock);
922 	return 0;
923 }
924 
925 static void
926 rio_error (struct net_device *dev, int int_status)
927 {
928 	struct netdev_private *np = netdev_priv(dev);
929 	void __iomem *ioaddr = np->ioaddr;
930 	u16 macctrl;
931 
932 	/* Link change event */
933 	if (int_status & LinkEvent) {
934 		if (mii_wait_link (dev, 10) == 0) {
935 			printk (KERN_INFO "%s: Link up\n", dev->name);
936 			if (np->phy_media)
937 				mii_get_media_pcs (dev);
938 			else
939 				mii_get_media (dev);
940 			if (np->speed == 1000)
941 				np->tx_coalesce = tx_coalesce;
942 			else
943 				np->tx_coalesce = 1;
944 			macctrl = 0;
945 			macctrl |= (np->vlan) ? AutoVLANuntagging : 0;
946 			macctrl |= (np->full_duplex) ? DuplexSelect : 0;
947 			macctrl |= (np->tx_flow) ?
948 				TxFlowControlEnable : 0;
949 			macctrl |= (np->rx_flow) ?
950 				RxFlowControlEnable : 0;
951 			dw16(MACCtrl, macctrl);
952 			np->link_status = 1;
953 			netif_carrier_on(dev);
954 		} else {
955 			printk (KERN_INFO "%s: Link off\n", dev->name);
956 			np->link_status = 0;
957 			netif_carrier_off(dev);
958 		}
959 	}
960 
961 	/* UpdateStats statistics registers */
962 	if (int_status & UpdateStats) {
963 		get_stats (dev);
964 	}
965 
966 	/* PCI Error, a catastronphic error related to the bus interface
967 	   occurs, set GlobalReset and HostReset to reset. */
968 	if (int_status & HostError) {
969 		printk (KERN_ERR "%s: HostError! IntStatus %4.4x.\n",
970 			dev->name, int_status);
971 		dw16(ASICCtrl + 2, GlobalReset | HostReset);
972 		mdelay (500);
973 	}
974 }
975 
976 static struct net_device_stats *
977 get_stats (struct net_device *dev)
978 {
979 	struct netdev_private *np = netdev_priv(dev);
980 	void __iomem *ioaddr = np->ioaddr;
981 #ifdef MEM_MAPPING
982 	int i;
983 #endif
984 	unsigned int stat_reg;
985 
986 	/* All statistics registers need to be acknowledged,
987 	   else statistic overflow could cause problems */
988 
989 	np->stats.rx_packets += dr32(FramesRcvOk);
990 	np->stats.tx_packets += dr32(FramesXmtOk);
991 	np->stats.rx_bytes += dr32(OctetRcvOk);
992 	np->stats.tx_bytes += dr32(OctetXmtOk);
993 
994 	np->stats.multicast = dr32(McstFramesRcvdOk);
995 	np->stats.collisions += dr32(SingleColFrames)
996 			     +  dr32(MultiColFrames);
997 
998 	/* detailed tx errors */
999 	stat_reg = dr16(FramesAbortXSColls);
1000 	np->stats.tx_aborted_errors += stat_reg;
1001 	np->stats.tx_errors += stat_reg;
1002 
1003 	stat_reg = dr16(CarrierSenseErrors);
1004 	np->stats.tx_carrier_errors += stat_reg;
1005 	np->stats.tx_errors += stat_reg;
1006 
1007 	/* Clear all other statistic register. */
1008 	dr32(McstOctetXmtOk);
1009 	dr16(BcstFramesXmtdOk);
1010 	dr32(McstFramesXmtdOk);
1011 	dr16(BcstFramesRcvdOk);
1012 	dr16(MacControlFramesRcvd);
1013 	dr16(FrameTooLongErrors);
1014 	dr16(InRangeLengthErrors);
1015 	dr16(FramesCheckSeqErrors);
1016 	dr16(FramesLostRxErrors);
1017 	dr32(McstOctetXmtOk);
1018 	dr32(BcstOctetXmtOk);
1019 	dr32(McstFramesXmtdOk);
1020 	dr32(FramesWDeferredXmt);
1021 	dr32(LateCollisions);
1022 	dr16(BcstFramesXmtdOk);
1023 	dr16(MacControlFramesXmtd);
1024 	dr16(FramesWEXDeferal);
1025 
1026 #ifdef MEM_MAPPING
1027 	for (i = 0x100; i <= 0x150; i += 4)
1028 		dr32(i);
1029 #endif
1030 	dr16(TxJumboFrames);
1031 	dr16(RxJumboFrames);
1032 	dr16(TCPCheckSumErrors);
1033 	dr16(UDPCheckSumErrors);
1034 	dr16(IPCheckSumErrors);
1035 	return &np->stats;
1036 }
1037 
1038 static int
1039 clear_stats (struct net_device *dev)
1040 {
1041 	struct netdev_private *np = netdev_priv(dev);
1042 	void __iomem *ioaddr = np->ioaddr;
1043 #ifdef MEM_MAPPING
1044 	int i;
1045 #endif
1046 
1047 	/* All statistics registers need to be acknowledged,
1048 	   else statistic overflow could cause problems */
1049 	dr32(FramesRcvOk);
1050 	dr32(FramesXmtOk);
1051 	dr32(OctetRcvOk);
1052 	dr32(OctetXmtOk);
1053 
1054 	dr32(McstFramesRcvdOk);
1055 	dr32(SingleColFrames);
1056 	dr32(MultiColFrames);
1057 	dr32(LateCollisions);
1058 	/* detailed rx errors */
1059 	dr16(FrameTooLongErrors);
1060 	dr16(InRangeLengthErrors);
1061 	dr16(FramesCheckSeqErrors);
1062 	dr16(FramesLostRxErrors);
1063 
1064 	/* detailed tx errors */
1065 	dr16(FramesAbortXSColls);
1066 	dr16(CarrierSenseErrors);
1067 
1068 	/* Clear all other statistic register. */
1069 	dr32(McstOctetXmtOk);
1070 	dr16(BcstFramesXmtdOk);
1071 	dr32(McstFramesXmtdOk);
1072 	dr16(BcstFramesRcvdOk);
1073 	dr16(MacControlFramesRcvd);
1074 	dr32(McstOctetXmtOk);
1075 	dr32(BcstOctetXmtOk);
1076 	dr32(McstFramesXmtdOk);
1077 	dr32(FramesWDeferredXmt);
1078 	dr16(BcstFramesXmtdOk);
1079 	dr16(MacControlFramesXmtd);
1080 	dr16(FramesWEXDeferal);
1081 #ifdef MEM_MAPPING
1082 	for (i = 0x100; i <= 0x150; i += 4)
1083 		dr32(i);
1084 #endif
1085 	dr16(TxJumboFrames);
1086 	dr16(RxJumboFrames);
1087 	dr16(TCPCheckSumErrors);
1088 	dr16(UDPCheckSumErrors);
1089 	dr16(IPCheckSumErrors);
1090 	return 0;
1091 }
1092 
1093 
1094 static int
1095 change_mtu (struct net_device *dev, int new_mtu)
1096 {
1097 	struct netdev_private *np = netdev_priv(dev);
1098 	int max = (np->jumbo) ? MAX_JUMBO : 1536;
1099 
1100 	if ((new_mtu < 68) || (new_mtu > max)) {
1101 		return -EINVAL;
1102 	}
1103 
1104 	dev->mtu = new_mtu;
1105 
1106 	return 0;
1107 }
1108 
1109 static void
1110 set_multicast (struct net_device *dev)
1111 {
1112 	struct netdev_private *np = netdev_priv(dev);
1113 	void __iomem *ioaddr = np->ioaddr;
1114 	u32 hash_table[2];
1115 	u16 rx_mode = 0;
1116 
1117 	hash_table[0] = hash_table[1] = 0;
1118 	/* RxFlowcontrol DA: 01-80-C2-00-00-01. Hash index=0x39 */
1119 	hash_table[1] |= 0x02000000;
1120 	if (dev->flags & IFF_PROMISC) {
1121 		/* Receive all frames promiscuously. */
1122 		rx_mode = ReceiveAllFrames;
1123 	} else if ((dev->flags & IFF_ALLMULTI) ||
1124 			(netdev_mc_count(dev) > multicast_filter_limit)) {
1125 		/* Receive broadcast and multicast frames */
1126 		rx_mode = ReceiveBroadcast | ReceiveMulticast | ReceiveUnicast;
1127 	} else if (!netdev_mc_empty(dev)) {
1128 		struct netdev_hw_addr *ha;
1129 		/* Receive broadcast frames and multicast frames filtering
1130 		   by Hashtable */
1131 		rx_mode =
1132 		    ReceiveBroadcast | ReceiveMulticastHash | ReceiveUnicast;
1133 		netdev_for_each_mc_addr(ha, dev) {
1134 			int bit, index = 0;
1135 			int crc = ether_crc_le(ETH_ALEN, ha->addr);
1136 			/* The inverted high significant 6 bits of CRC are
1137 			   used as an index to hashtable */
1138 			for (bit = 0; bit < 6; bit++)
1139 				if (crc & (1 << (31 - bit)))
1140 					index |= (1 << bit);
1141 			hash_table[index / 32] |= (1 << (index % 32));
1142 		}
1143 	} else {
1144 		rx_mode = ReceiveBroadcast | ReceiveUnicast;
1145 	}
1146 	if (np->vlan) {
1147 		/* ReceiveVLANMatch field in ReceiveMode */
1148 		rx_mode |= ReceiveVLANMatch;
1149 	}
1150 
1151 	dw32(HashTable0, hash_table[0]);
1152 	dw32(HashTable1, hash_table[1]);
1153 	dw16(ReceiveMode, rx_mode);
1154 }
1155 
1156 static void rio_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1157 {
1158 	struct netdev_private *np = netdev_priv(dev);
1159 	strcpy(info->driver, "dl2k");
1160 	strcpy(info->version, DRV_VERSION);
1161 	strcpy(info->bus_info, pci_name(np->pdev));
1162 }
1163 
1164 static int rio_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1165 {
1166 	struct netdev_private *np = netdev_priv(dev);
1167 	if (np->phy_media) {
1168 		/* fiber device */
1169 		cmd->supported = SUPPORTED_Autoneg | SUPPORTED_FIBRE;
1170 		cmd->advertising= ADVERTISED_Autoneg | ADVERTISED_FIBRE;
1171 		cmd->port = PORT_FIBRE;
1172 		cmd->transceiver = XCVR_INTERNAL;
1173 	} else {
1174 		/* copper device */
1175 		cmd->supported = SUPPORTED_10baseT_Half |
1176 			SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Half
1177 			| SUPPORTED_100baseT_Full | SUPPORTED_1000baseT_Full |
1178 			SUPPORTED_Autoneg | SUPPORTED_MII;
1179 		cmd->advertising = ADVERTISED_10baseT_Half |
1180 			ADVERTISED_10baseT_Full | ADVERTISED_100baseT_Half |
1181 			ADVERTISED_100baseT_Full | ADVERTISED_1000baseT_Full|
1182 			ADVERTISED_Autoneg | ADVERTISED_MII;
1183 		cmd->port = PORT_MII;
1184 		cmd->transceiver = XCVR_INTERNAL;
1185 	}
1186 	if ( np->link_status ) {
1187 		ethtool_cmd_speed_set(cmd, np->speed);
1188 		cmd->duplex = np->full_duplex ? DUPLEX_FULL : DUPLEX_HALF;
1189 	} else {
1190 		ethtool_cmd_speed_set(cmd, -1);
1191 		cmd->duplex = -1;
1192 	}
1193 	if ( np->an_enable)
1194 		cmd->autoneg = AUTONEG_ENABLE;
1195 	else
1196 		cmd->autoneg = AUTONEG_DISABLE;
1197 
1198 	cmd->phy_address = np->phy_addr;
1199 	return 0;
1200 }
1201 
1202 static int rio_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1203 {
1204 	struct netdev_private *np = netdev_priv(dev);
1205 	netif_carrier_off(dev);
1206 	if (cmd->autoneg == AUTONEG_ENABLE) {
1207 		if (np->an_enable)
1208 			return 0;
1209 		else {
1210 			np->an_enable = 1;
1211 			mii_set_media(dev);
1212 			return 0;
1213 		}
1214 	} else {
1215 		np->an_enable = 0;
1216 		if (np->speed == 1000) {
1217 			ethtool_cmd_speed_set(cmd, SPEED_100);
1218 			cmd->duplex = DUPLEX_FULL;
1219 			printk("Warning!! Can't disable Auto negotiation in 1000Mbps, change to Manual 100Mbps, Full duplex.\n");
1220 		}
1221 		switch (ethtool_cmd_speed(cmd)) {
1222 		case SPEED_10:
1223 			np->speed = 10;
1224 			np->full_duplex = (cmd->duplex == DUPLEX_FULL);
1225 			break;
1226 		case SPEED_100:
1227 			np->speed = 100;
1228 			np->full_duplex = (cmd->duplex == DUPLEX_FULL);
1229 			break;
1230 		case SPEED_1000: /* not supported */
1231 		default:
1232 			return -EINVAL;
1233 		}
1234 		mii_set_media(dev);
1235 	}
1236 	return 0;
1237 }
1238 
1239 static u32 rio_get_link(struct net_device *dev)
1240 {
1241 	struct netdev_private *np = netdev_priv(dev);
1242 	return np->link_status;
1243 }
1244 
1245 static const struct ethtool_ops ethtool_ops = {
1246 	.get_drvinfo = rio_get_drvinfo,
1247 	.get_settings = rio_get_settings,
1248 	.set_settings = rio_set_settings,
1249 	.get_link = rio_get_link,
1250 };
1251 
1252 static int
1253 rio_ioctl (struct net_device *dev, struct ifreq *rq, int cmd)
1254 {
1255 	int phy_addr;
1256 	struct netdev_private *np = netdev_priv(dev);
1257 	struct mii_ioctl_data *miidata = if_mii(rq);
1258 
1259 	phy_addr = np->phy_addr;
1260 	switch (cmd) {
1261 	case SIOCGMIIPHY:
1262 		miidata->phy_id = phy_addr;
1263 		break;
1264 	case SIOCGMIIREG:
1265 		miidata->val_out = mii_read (dev, phy_addr, miidata->reg_num);
1266 		break;
1267 	case SIOCSMIIREG:
1268 		if (!capable(CAP_NET_ADMIN))
1269 			return -EPERM;
1270 		mii_write (dev, phy_addr, miidata->reg_num, miidata->val_in);
1271 		break;
1272 	default:
1273 		return -EOPNOTSUPP;
1274 	}
1275 	return 0;
1276 }
1277 
1278 #define EEP_READ 0x0200
1279 #define EEP_BUSY 0x8000
1280 /* Read the EEPROM word */
1281 /* We use I/O instruction to read/write eeprom to avoid fail on some machines */
1282 static int read_eeprom(struct netdev_private *np, int eep_addr)
1283 {
1284 	void __iomem *ioaddr = np->eeprom_addr;
1285 	int i = 1000;
1286 
1287 	dw16(EepromCtrl, EEP_READ | (eep_addr & 0xff));
1288 	while (i-- > 0) {
1289 		if (!(dr16(EepromCtrl) & EEP_BUSY))
1290 			return dr16(EepromData);
1291 	}
1292 	return 0;
1293 }
1294 
1295 enum phy_ctrl_bits {
1296 	MII_READ = 0x00, MII_CLK = 0x01, MII_DATA1 = 0x02, MII_WRITE = 0x04,
1297 	MII_DUPLEX = 0x08,
1298 };
1299 
1300 #define mii_delay() dr8(PhyCtrl)
1301 static void
1302 mii_sendbit (struct net_device *dev, u32 data)
1303 {
1304 	struct netdev_private *np = netdev_priv(dev);
1305 	void __iomem *ioaddr = np->ioaddr;
1306 
1307 	data = ((data) ? MII_DATA1 : 0) | (dr8(PhyCtrl) & 0xf8) | MII_WRITE;
1308 	dw8(PhyCtrl, data);
1309 	mii_delay ();
1310 	dw8(PhyCtrl, data | MII_CLK);
1311 	mii_delay ();
1312 }
1313 
1314 static int
1315 mii_getbit (struct net_device *dev)
1316 {
1317 	struct netdev_private *np = netdev_priv(dev);
1318 	void __iomem *ioaddr = np->ioaddr;
1319 	u8 data;
1320 
1321 	data = (dr8(PhyCtrl) & 0xf8) | MII_READ;
1322 	dw8(PhyCtrl, data);
1323 	mii_delay ();
1324 	dw8(PhyCtrl, data | MII_CLK);
1325 	mii_delay ();
1326 	return (dr8(PhyCtrl) >> 1) & 1;
1327 }
1328 
1329 static void
1330 mii_send_bits (struct net_device *dev, u32 data, int len)
1331 {
1332 	int i;
1333 
1334 	for (i = len - 1; i >= 0; i--) {
1335 		mii_sendbit (dev, data & (1 << i));
1336 	}
1337 }
1338 
1339 static int
1340 mii_read (struct net_device *dev, int phy_addr, int reg_num)
1341 {
1342 	u32 cmd;
1343 	int i;
1344 	u32 retval = 0;
1345 
1346 	/* Preamble */
1347 	mii_send_bits (dev, 0xffffffff, 32);
1348 	/* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1349 	/* ST,OP = 0110'b for read operation */
1350 	cmd = (0x06 << 10 | phy_addr << 5 | reg_num);
1351 	mii_send_bits (dev, cmd, 14);
1352 	/* Turnaround */
1353 	if (mii_getbit (dev))
1354 		goto err_out;
1355 	/* Read data */
1356 	for (i = 0; i < 16; i++) {
1357 		retval |= mii_getbit (dev);
1358 		retval <<= 1;
1359 	}
1360 	/* End cycle */
1361 	mii_getbit (dev);
1362 	return (retval >> 1) & 0xffff;
1363 
1364       err_out:
1365 	return 0;
1366 }
1367 static int
1368 mii_write (struct net_device *dev, int phy_addr, int reg_num, u16 data)
1369 {
1370 	u32 cmd;
1371 
1372 	/* Preamble */
1373 	mii_send_bits (dev, 0xffffffff, 32);
1374 	/* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1375 	/* ST,OP,AAAAA,RRRRR,TA = 0101xxxxxxxxxx10'b = 0x5002 for write */
1376 	cmd = (0x5002 << 16) | (phy_addr << 23) | (reg_num << 18) | data;
1377 	mii_send_bits (dev, cmd, 32);
1378 	/* End cycle */
1379 	mii_getbit (dev);
1380 	return 0;
1381 }
1382 static int
1383 mii_wait_link (struct net_device *dev, int wait)
1384 {
1385 	__u16 bmsr;
1386 	int phy_addr;
1387 	struct netdev_private *np;
1388 
1389 	np = netdev_priv(dev);
1390 	phy_addr = np->phy_addr;
1391 
1392 	do {
1393 		bmsr = mii_read (dev, phy_addr, MII_BMSR);
1394 		if (bmsr & BMSR_LSTATUS)
1395 			return 0;
1396 		mdelay (1);
1397 	} while (--wait > 0);
1398 	return -1;
1399 }
1400 static int
1401 mii_get_media (struct net_device *dev)
1402 {
1403 	__u16 negotiate;
1404 	__u16 bmsr;
1405 	__u16 mscr;
1406 	__u16 mssr;
1407 	int phy_addr;
1408 	struct netdev_private *np;
1409 
1410 	np = netdev_priv(dev);
1411 	phy_addr = np->phy_addr;
1412 
1413 	bmsr = mii_read (dev, phy_addr, MII_BMSR);
1414 	if (np->an_enable) {
1415 		if (!(bmsr & BMSR_ANEGCOMPLETE)) {
1416 			/* Auto-Negotiation not completed */
1417 			return -1;
1418 		}
1419 		negotiate = mii_read (dev, phy_addr, MII_ADVERTISE) &
1420 			mii_read (dev, phy_addr, MII_LPA);
1421 		mscr = mii_read (dev, phy_addr, MII_CTRL1000);
1422 		mssr = mii_read (dev, phy_addr, MII_STAT1000);
1423 		if (mscr & ADVERTISE_1000FULL && mssr & LPA_1000FULL) {
1424 			np->speed = 1000;
1425 			np->full_duplex = 1;
1426 			printk (KERN_INFO "Auto 1000 Mbps, Full duplex\n");
1427 		} else if (mscr & ADVERTISE_1000HALF && mssr & LPA_1000HALF) {
1428 			np->speed = 1000;
1429 			np->full_duplex = 0;
1430 			printk (KERN_INFO "Auto 1000 Mbps, Half duplex\n");
1431 		} else if (negotiate & ADVERTISE_100FULL) {
1432 			np->speed = 100;
1433 			np->full_duplex = 1;
1434 			printk (KERN_INFO "Auto 100 Mbps, Full duplex\n");
1435 		} else if (negotiate & ADVERTISE_100HALF) {
1436 			np->speed = 100;
1437 			np->full_duplex = 0;
1438 			printk (KERN_INFO "Auto 100 Mbps, Half duplex\n");
1439 		} else if (negotiate & ADVERTISE_10FULL) {
1440 			np->speed = 10;
1441 			np->full_duplex = 1;
1442 			printk (KERN_INFO "Auto 10 Mbps, Full duplex\n");
1443 		} else if (negotiate & ADVERTISE_10HALF) {
1444 			np->speed = 10;
1445 			np->full_duplex = 0;
1446 			printk (KERN_INFO "Auto 10 Mbps, Half duplex\n");
1447 		}
1448 		if (negotiate & ADVERTISE_PAUSE_CAP) {
1449 			np->tx_flow &= 1;
1450 			np->rx_flow &= 1;
1451 		} else if (negotiate & ADVERTISE_PAUSE_ASYM) {
1452 			np->tx_flow = 0;
1453 			np->rx_flow &= 1;
1454 		}
1455 		/* else tx_flow, rx_flow = user select  */
1456 	} else {
1457 		__u16 bmcr = mii_read (dev, phy_addr, MII_BMCR);
1458 		switch (bmcr & (BMCR_SPEED100 | BMCR_SPEED1000)) {
1459 		case BMCR_SPEED1000:
1460 			printk (KERN_INFO "Operating at 1000 Mbps, ");
1461 			break;
1462 		case BMCR_SPEED100:
1463 			printk (KERN_INFO "Operating at 100 Mbps, ");
1464 			break;
1465 		case 0:
1466 			printk (KERN_INFO "Operating at 10 Mbps, ");
1467 		}
1468 		if (bmcr & BMCR_FULLDPLX) {
1469 			printk (KERN_CONT "Full duplex\n");
1470 		} else {
1471 			printk (KERN_CONT "Half duplex\n");
1472 		}
1473 	}
1474 	if (np->tx_flow)
1475 		printk(KERN_INFO "Enable Tx Flow Control\n");
1476 	else
1477 		printk(KERN_INFO "Disable Tx Flow Control\n");
1478 	if (np->rx_flow)
1479 		printk(KERN_INFO "Enable Rx Flow Control\n");
1480 	else
1481 		printk(KERN_INFO "Disable Rx Flow Control\n");
1482 
1483 	return 0;
1484 }
1485 
1486 static int
1487 mii_set_media (struct net_device *dev)
1488 {
1489 	__u16 pscr;
1490 	__u16 bmcr;
1491 	__u16 bmsr;
1492 	__u16 anar;
1493 	int phy_addr;
1494 	struct netdev_private *np;
1495 	np = netdev_priv(dev);
1496 	phy_addr = np->phy_addr;
1497 
1498 	/* Does user set speed? */
1499 	if (np->an_enable) {
1500 		/* Advertise capabilities */
1501 		bmsr = mii_read (dev, phy_addr, MII_BMSR);
1502 		anar = mii_read (dev, phy_addr, MII_ADVERTISE) &
1503 			~(ADVERTISE_100FULL | ADVERTISE_10FULL |
1504 			  ADVERTISE_100HALF | ADVERTISE_10HALF |
1505 			  ADVERTISE_100BASE4);
1506 		if (bmsr & BMSR_100FULL)
1507 			anar |= ADVERTISE_100FULL;
1508 		if (bmsr & BMSR_100HALF)
1509 			anar |= ADVERTISE_100HALF;
1510 		if (bmsr & BMSR_100BASE4)
1511 			anar |= ADVERTISE_100BASE4;
1512 		if (bmsr & BMSR_10FULL)
1513 			anar |= ADVERTISE_10FULL;
1514 		if (bmsr & BMSR_10HALF)
1515 			anar |= ADVERTISE_10HALF;
1516 		anar |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
1517 		mii_write (dev, phy_addr, MII_ADVERTISE, anar);
1518 
1519 		/* Enable Auto crossover */
1520 		pscr = mii_read (dev, phy_addr, MII_PHY_SCR);
1521 		pscr |= 3 << 5;	/* 11'b */
1522 		mii_write (dev, phy_addr, MII_PHY_SCR, pscr);
1523 
1524 		/* Soft reset PHY */
1525 		mii_write (dev, phy_addr, MII_BMCR, BMCR_RESET);
1526 		bmcr = BMCR_ANENABLE | BMCR_ANRESTART | BMCR_RESET;
1527 		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1528 		mdelay(1);
1529 	} else {
1530 		/* Force speed setting */
1531 		/* 1) Disable Auto crossover */
1532 		pscr = mii_read (dev, phy_addr, MII_PHY_SCR);
1533 		pscr &= ~(3 << 5);
1534 		mii_write (dev, phy_addr, MII_PHY_SCR, pscr);
1535 
1536 		/* 2) PHY Reset */
1537 		bmcr = mii_read (dev, phy_addr, MII_BMCR);
1538 		bmcr |= BMCR_RESET;
1539 		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1540 
1541 		/* 3) Power Down */
1542 		bmcr = 0x1940;	/* must be 0x1940 */
1543 		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1544 		mdelay (100);	/* wait a certain time */
1545 
1546 		/* 4) Advertise nothing */
1547 		mii_write (dev, phy_addr, MII_ADVERTISE, 0);
1548 
1549 		/* 5) Set media and Power Up */
1550 		bmcr = BMCR_PDOWN;
1551 		if (np->speed == 100) {
1552 			bmcr |= BMCR_SPEED100;
1553 			printk (KERN_INFO "Manual 100 Mbps, ");
1554 		} else if (np->speed == 10) {
1555 			printk (KERN_INFO "Manual 10 Mbps, ");
1556 		}
1557 		if (np->full_duplex) {
1558 			bmcr |= BMCR_FULLDPLX;
1559 			printk (KERN_CONT "Full duplex\n");
1560 		} else {
1561 			printk (KERN_CONT "Half duplex\n");
1562 		}
1563 #if 0
1564 		/* Set 1000BaseT Master/Slave setting */
1565 		mscr = mii_read (dev, phy_addr, MII_CTRL1000);
1566 		mscr |= MII_MSCR_CFG_ENABLE;
1567 		mscr &= ~MII_MSCR_CFG_VALUE = 0;
1568 #endif
1569 		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1570 		mdelay(10);
1571 	}
1572 	return 0;
1573 }
1574 
1575 static int
1576 mii_get_media_pcs (struct net_device *dev)
1577 {
1578 	__u16 negotiate;
1579 	__u16 bmsr;
1580 	int phy_addr;
1581 	struct netdev_private *np;
1582 
1583 	np = netdev_priv(dev);
1584 	phy_addr = np->phy_addr;
1585 
1586 	bmsr = mii_read (dev, phy_addr, PCS_BMSR);
1587 	if (np->an_enable) {
1588 		if (!(bmsr & BMSR_ANEGCOMPLETE)) {
1589 			/* Auto-Negotiation not completed */
1590 			return -1;
1591 		}
1592 		negotiate = mii_read (dev, phy_addr, PCS_ANAR) &
1593 			mii_read (dev, phy_addr, PCS_ANLPAR);
1594 		np->speed = 1000;
1595 		if (negotiate & PCS_ANAR_FULL_DUPLEX) {
1596 			printk (KERN_INFO "Auto 1000 Mbps, Full duplex\n");
1597 			np->full_duplex = 1;
1598 		} else {
1599 			printk (KERN_INFO "Auto 1000 Mbps, half duplex\n");
1600 			np->full_duplex = 0;
1601 		}
1602 		if (negotiate & PCS_ANAR_PAUSE) {
1603 			np->tx_flow &= 1;
1604 			np->rx_flow &= 1;
1605 		} else if (negotiate & PCS_ANAR_ASYMMETRIC) {
1606 			np->tx_flow = 0;
1607 			np->rx_flow &= 1;
1608 		}
1609 		/* else tx_flow, rx_flow = user select  */
1610 	} else {
1611 		__u16 bmcr = mii_read (dev, phy_addr, PCS_BMCR);
1612 		printk (KERN_INFO "Operating at 1000 Mbps, ");
1613 		if (bmcr & BMCR_FULLDPLX) {
1614 			printk (KERN_CONT "Full duplex\n");
1615 		} else {
1616 			printk (KERN_CONT "Half duplex\n");
1617 		}
1618 	}
1619 	if (np->tx_flow)
1620 		printk(KERN_INFO "Enable Tx Flow Control\n");
1621 	else
1622 		printk(KERN_INFO "Disable Tx Flow Control\n");
1623 	if (np->rx_flow)
1624 		printk(KERN_INFO "Enable Rx Flow Control\n");
1625 	else
1626 		printk(KERN_INFO "Disable Rx Flow Control\n");
1627 
1628 	return 0;
1629 }
1630 
1631 static int
1632 mii_set_media_pcs (struct net_device *dev)
1633 {
1634 	__u16 bmcr;
1635 	__u16 esr;
1636 	__u16 anar;
1637 	int phy_addr;
1638 	struct netdev_private *np;
1639 	np = netdev_priv(dev);
1640 	phy_addr = np->phy_addr;
1641 
1642 	/* Auto-Negotiation? */
1643 	if (np->an_enable) {
1644 		/* Advertise capabilities */
1645 		esr = mii_read (dev, phy_addr, PCS_ESR);
1646 		anar = mii_read (dev, phy_addr, MII_ADVERTISE) &
1647 			~PCS_ANAR_HALF_DUPLEX &
1648 			~PCS_ANAR_FULL_DUPLEX;
1649 		if (esr & (MII_ESR_1000BT_HD | MII_ESR_1000BX_HD))
1650 			anar |= PCS_ANAR_HALF_DUPLEX;
1651 		if (esr & (MII_ESR_1000BT_FD | MII_ESR_1000BX_FD))
1652 			anar |= PCS_ANAR_FULL_DUPLEX;
1653 		anar |= PCS_ANAR_PAUSE | PCS_ANAR_ASYMMETRIC;
1654 		mii_write (dev, phy_addr, MII_ADVERTISE, anar);
1655 
1656 		/* Soft reset PHY */
1657 		mii_write (dev, phy_addr, MII_BMCR, BMCR_RESET);
1658 		bmcr = BMCR_ANENABLE | BMCR_ANRESTART | BMCR_RESET;
1659 		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1660 		mdelay(1);
1661 	} else {
1662 		/* Force speed setting */
1663 		/* PHY Reset */
1664 		bmcr = BMCR_RESET;
1665 		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1666 		mdelay(10);
1667 		if (np->full_duplex) {
1668 			bmcr = BMCR_FULLDPLX;
1669 			printk (KERN_INFO "Manual full duplex\n");
1670 		} else {
1671 			bmcr = 0;
1672 			printk (KERN_INFO "Manual half duplex\n");
1673 		}
1674 		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1675 		mdelay(10);
1676 
1677 		/*  Advertise nothing */
1678 		mii_write (dev, phy_addr, MII_ADVERTISE, 0);
1679 	}
1680 	return 0;
1681 }
1682 
1683 
1684 static int
1685 rio_close (struct net_device *dev)
1686 {
1687 	struct netdev_private *np = netdev_priv(dev);
1688 	void __iomem *ioaddr = np->ioaddr;
1689 
1690 	struct pci_dev *pdev = np->pdev;
1691 	struct sk_buff *skb;
1692 	int i;
1693 
1694 	netif_stop_queue (dev);
1695 
1696 	/* Disable interrupts */
1697 	dw16(IntEnable, 0);
1698 
1699 	/* Stop Tx and Rx logics */
1700 	dw32(MACCtrl, TxDisable | RxDisable | StatsDisable);
1701 
1702 	free_irq(pdev->irq, dev);
1703 	del_timer_sync (&np->timer);
1704 
1705 	/* Free all the skbuffs in the queue. */
1706 	for (i = 0; i < RX_RING_SIZE; i++) {
1707 		skb = np->rx_skbuff[i];
1708 		if (skb) {
1709 			pci_unmap_single(pdev, desc_to_dma(&np->rx_ring[i]),
1710 					 skb->len, PCI_DMA_FROMDEVICE);
1711 			dev_kfree_skb (skb);
1712 			np->rx_skbuff[i] = NULL;
1713 		}
1714 		np->rx_ring[i].status = 0;
1715 		np->rx_ring[i].fraginfo = 0;
1716 	}
1717 	for (i = 0; i < TX_RING_SIZE; i++) {
1718 		skb = np->tx_skbuff[i];
1719 		if (skb) {
1720 			pci_unmap_single(pdev, desc_to_dma(&np->tx_ring[i]),
1721 					 skb->len, PCI_DMA_TODEVICE);
1722 			dev_kfree_skb (skb);
1723 			np->tx_skbuff[i] = NULL;
1724 		}
1725 	}
1726 
1727 	return 0;
1728 }
1729 
1730 static void
1731 rio_remove1 (struct pci_dev *pdev)
1732 {
1733 	struct net_device *dev = pci_get_drvdata (pdev);
1734 
1735 	if (dev) {
1736 		struct netdev_private *np = netdev_priv(dev);
1737 
1738 		unregister_netdev (dev);
1739 		pci_free_consistent (pdev, RX_TOTAL_SIZE, np->rx_ring,
1740 				     np->rx_ring_dma);
1741 		pci_free_consistent (pdev, TX_TOTAL_SIZE, np->tx_ring,
1742 				     np->tx_ring_dma);
1743 #ifdef MEM_MAPPING
1744 		pci_iounmap(pdev, np->ioaddr);
1745 #endif
1746 		pci_iounmap(pdev, np->eeprom_addr);
1747 		free_netdev (dev);
1748 		pci_release_regions (pdev);
1749 		pci_disable_device (pdev);
1750 	}
1751 	pci_set_drvdata (pdev, NULL);
1752 }
1753 
1754 static struct pci_driver rio_driver = {
1755 	.name		= "dl2k",
1756 	.id_table	= rio_pci_tbl,
1757 	.probe		= rio_probe1,
1758 	.remove		= rio_remove1,
1759 };
1760 
1761 module_pci_driver(rio_driver);
1762 /*
1763 
1764 Compile command:
1765 
1766 gcc -D__KERNEL__ -DMODULE -I/usr/src/linux/include -Wall -Wstrict-prototypes -O2 -c dl2k.c
1767 
1768 Read Documentation/networking/dl2k.txt for details.
1769 
1770 */
1771 
1772