xref: /openbmc/linux/drivers/net/ethernet/dlink/dl2k.c (revision a2cce7a9)
1 /*  D-Link DL2000-based Gigabit Ethernet Adapter Linux driver */
2 /*
3     Copyright (c) 2001, 2002 by D-Link Corporation
4     Written by Edward Peng.<edward_peng@dlink.com.tw>
5     Created 03-May-2001, base on Linux' sundance.c.
6 
7     This program is free software; you can redistribute it and/or modify
8     it under the terms of the GNU General Public License as published by
9     the Free Software Foundation; either version 2 of the License, or
10     (at your option) any later version.
11 */
12 
13 #define DRV_NAME	"DL2000/TC902x-based linux driver"
14 #define DRV_VERSION	"v1.19"
15 #define DRV_RELDATE	"2007/08/12"
16 #include "dl2k.h"
17 #include <linux/dma-mapping.h>
18 
19 #define dw32(reg, val)	iowrite32(val, ioaddr + (reg))
20 #define dw16(reg, val)	iowrite16(val, ioaddr + (reg))
21 #define dw8(reg, val)	iowrite8(val, ioaddr + (reg))
22 #define dr32(reg)	ioread32(ioaddr + (reg))
23 #define dr16(reg)	ioread16(ioaddr + (reg))
24 #define dr8(reg)	ioread8(ioaddr + (reg))
25 
26 static char version[] =
27       KERN_INFO DRV_NAME " " DRV_VERSION " " DRV_RELDATE "\n";
28 #define MAX_UNITS 8
29 static int mtu[MAX_UNITS];
30 static int vlan[MAX_UNITS];
31 static int jumbo[MAX_UNITS];
32 static char *media[MAX_UNITS];
33 static int tx_flow=-1;
34 static int rx_flow=-1;
35 static int copy_thresh;
36 static int rx_coalesce=10;	/* Rx frame count each interrupt */
37 static int rx_timeout=200;	/* Rx DMA wait time in 640ns increments */
38 static int tx_coalesce=16;	/* HW xmit count each TxDMAComplete */
39 
40 
41 MODULE_AUTHOR ("Edward Peng");
42 MODULE_DESCRIPTION ("D-Link DL2000-based Gigabit Ethernet Adapter");
43 MODULE_LICENSE("GPL");
44 module_param_array(mtu, int, NULL, 0);
45 module_param_array(media, charp, NULL, 0);
46 module_param_array(vlan, int, NULL, 0);
47 module_param_array(jumbo, int, NULL, 0);
48 module_param(tx_flow, int, 0);
49 module_param(rx_flow, int, 0);
50 module_param(copy_thresh, int, 0);
51 module_param(rx_coalesce, int, 0);	/* Rx frame count each interrupt */
52 module_param(rx_timeout, int, 0);	/* Rx DMA wait time in 64ns increments */
53 module_param(tx_coalesce, int, 0); /* HW xmit count each TxDMAComplete */
54 
55 
56 /* Enable the default interrupts */
57 #define DEFAULT_INTR (RxDMAComplete | HostError | IntRequested | TxDMAComplete| \
58        UpdateStats | LinkEvent)
59 
60 static void dl2k_enable_int(struct netdev_private *np)
61 {
62 	void __iomem *ioaddr = np->ioaddr;
63 
64 	dw16(IntEnable, DEFAULT_INTR);
65 }
66 
67 static const int max_intrloop = 50;
68 static const int multicast_filter_limit = 0x40;
69 
70 static int rio_open (struct net_device *dev);
71 static void rio_timer (unsigned long data);
72 static void rio_tx_timeout (struct net_device *dev);
73 static void alloc_list (struct net_device *dev);
74 static netdev_tx_t start_xmit (struct sk_buff *skb, struct net_device *dev);
75 static irqreturn_t rio_interrupt (int irq, void *dev_instance);
76 static void rio_free_tx (struct net_device *dev, int irq);
77 static void tx_error (struct net_device *dev, int tx_status);
78 static int receive_packet (struct net_device *dev);
79 static void rio_error (struct net_device *dev, int int_status);
80 static int change_mtu (struct net_device *dev, int new_mtu);
81 static void set_multicast (struct net_device *dev);
82 static struct net_device_stats *get_stats (struct net_device *dev);
83 static int clear_stats (struct net_device *dev);
84 static int rio_ioctl (struct net_device *dev, struct ifreq *rq, int cmd);
85 static int rio_close (struct net_device *dev);
86 static int find_miiphy (struct net_device *dev);
87 static int parse_eeprom (struct net_device *dev);
88 static int read_eeprom (struct netdev_private *, int eep_addr);
89 static int mii_wait_link (struct net_device *dev, int wait);
90 static int mii_set_media (struct net_device *dev);
91 static int mii_get_media (struct net_device *dev);
92 static int mii_set_media_pcs (struct net_device *dev);
93 static int mii_get_media_pcs (struct net_device *dev);
94 static int mii_read (struct net_device *dev, int phy_addr, int reg_num);
95 static int mii_write (struct net_device *dev, int phy_addr, int reg_num,
96 		      u16 data);
97 
98 static const struct ethtool_ops ethtool_ops;
99 
100 static const struct net_device_ops netdev_ops = {
101 	.ndo_open		= rio_open,
102 	.ndo_start_xmit	= start_xmit,
103 	.ndo_stop		= rio_close,
104 	.ndo_get_stats		= get_stats,
105 	.ndo_validate_addr	= eth_validate_addr,
106 	.ndo_set_mac_address 	= eth_mac_addr,
107 	.ndo_set_rx_mode	= set_multicast,
108 	.ndo_do_ioctl		= rio_ioctl,
109 	.ndo_tx_timeout		= rio_tx_timeout,
110 	.ndo_change_mtu		= change_mtu,
111 };
112 
113 static int
114 rio_probe1 (struct pci_dev *pdev, const struct pci_device_id *ent)
115 {
116 	struct net_device *dev;
117 	struct netdev_private *np;
118 	static int card_idx;
119 	int chip_idx = ent->driver_data;
120 	int err, irq;
121 	void __iomem *ioaddr;
122 	static int version_printed;
123 	void *ring_space;
124 	dma_addr_t ring_dma;
125 
126 	if (!version_printed++)
127 		printk ("%s", version);
128 
129 	err = pci_enable_device (pdev);
130 	if (err)
131 		return err;
132 
133 	irq = pdev->irq;
134 	err = pci_request_regions (pdev, "dl2k");
135 	if (err)
136 		goto err_out_disable;
137 
138 	pci_set_master (pdev);
139 
140 	err = -ENOMEM;
141 
142 	dev = alloc_etherdev (sizeof (*np));
143 	if (!dev)
144 		goto err_out_res;
145 	SET_NETDEV_DEV(dev, &pdev->dev);
146 
147 	np = netdev_priv(dev);
148 
149 	/* IO registers range. */
150 	ioaddr = pci_iomap(pdev, 0, 0);
151 	if (!ioaddr)
152 		goto err_out_dev;
153 	np->eeprom_addr = ioaddr;
154 
155 #ifdef MEM_MAPPING
156 	/* MM registers range. */
157 	ioaddr = pci_iomap(pdev, 1, 0);
158 	if (!ioaddr)
159 		goto err_out_iounmap;
160 #endif
161 	np->ioaddr = ioaddr;
162 	np->chip_id = chip_idx;
163 	np->pdev = pdev;
164 	spin_lock_init (&np->tx_lock);
165 	spin_lock_init (&np->rx_lock);
166 
167 	/* Parse manual configuration */
168 	np->an_enable = 1;
169 	np->tx_coalesce = 1;
170 	if (card_idx < MAX_UNITS) {
171 		if (media[card_idx] != NULL) {
172 			np->an_enable = 0;
173 			if (strcmp (media[card_idx], "auto") == 0 ||
174 			    strcmp (media[card_idx], "autosense") == 0 ||
175 			    strcmp (media[card_idx], "0") == 0 ) {
176 				np->an_enable = 2;
177 			} else if (strcmp (media[card_idx], "100mbps_fd") == 0 ||
178 			    strcmp (media[card_idx], "4") == 0) {
179 				np->speed = 100;
180 				np->full_duplex = 1;
181 			} else if (strcmp (media[card_idx], "100mbps_hd") == 0 ||
182 				   strcmp (media[card_idx], "3") == 0) {
183 				np->speed = 100;
184 				np->full_duplex = 0;
185 			} else if (strcmp (media[card_idx], "10mbps_fd") == 0 ||
186 				   strcmp (media[card_idx], "2") == 0) {
187 				np->speed = 10;
188 				np->full_duplex = 1;
189 			} else if (strcmp (media[card_idx], "10mbps_hd") == 0 ||
190 				   strcmp (media[card_idx], "1") == 0) {
191 				np->speed = 10;
192 				np->full_duplex = 0;
193 			} else if (strcmp (media[card_idx], "1000mbps_fd") == 0 ||
194 				 strcmp (media[card_idx], "6") == 0) {
195 				np->speed=1000;
196 				np->full_duplex=1;
197 			} else if (strcmp (media[card_idx], "1000mbps_hd") == 0 ||
198 				 strcmp (media[card_idx], "5") == 0) {
199 				np->speed = 1000;
200 				np->full_duplex = 0;
201 			} else {
202 				np->an_enable = 1;
203 			}
204 		}
205 		if (jumbo[card_idx] != 0) {
206 			np->jumbo = 1;
207 			dev->mtu = MAX_JUMBO;
208 		} else {
209 			np->jumbo = 0;
210 			if (mtu[card_idx] > 0 && mtu[card_idx] < PACKET_SIZE)
211 				dev->mtu = mtu[card_idx];
212 		}
213 		np->vlan = (vlan[card_idx] > 0 && vlan[card_idx] < 4096) ?
214 		    vlan[card_idx] : 0;
215 		if (rx_coalesce > 0 && rx_timeout > 0) {
216 			np->rx_coalesce = rx_coalesce;
217 			np->rx_timeout = rx_timeout;
218 			np->coalesce = 1;
219 		}
220 		np->tx_flow = (tx_flow == 0) ? 0 : 1;
221 		np->rx_flow = (rx_flow == 0) ? 0 : 1;
222 
223 		if (tx_coalesce < 1)
224 			tx_coalesce = 1;
225 		else if (tx_coalesce > TX_RING_SIZE-1)
226 			tx_coalesce = TX_RING_SIZE - 1;
227 	}
228 	dev->netdev_ops = &netdev_ops;
229 	dev->watchdog_timeo = TX_TIMEOUT;
230 	dev->ethtool_ops = &ethtool_ops;
231 #if 0
232 	dev->features = NETIF_F_IP_CSUM;
233 #endif
234 	pci_set_drvdata (pdev, dev);
235 
236 	ring_space = pci_alloc_consistent (pdev, TX_TOTAL_SIZE, &ring_dma);
237 	if (!ring_space)
238 		goto err_out_iounmap;
239 	np->tx_ring = ring_space;
240 	np->tx_ring_dma = ring_dma;
241 
242 	ring_space = pci_alloc_consistent (pdev, RX_TOTAL_SIZE, &ring_dma);
243 	if (!ring_space)
244 		goto err_out_unmap_tx;
245 	np->rx_ring = ring_space;
246 	np->rx_ring_dma = ring_dma;
247 
248 	/* Parse eeprom data */
249 	parse_eeprom (dev);
250 
251 	/* Find PHY address */
252 	err = find_miiphy (dev);
253 	if (err)
254 		goto err_out_unmap_rx;
255 
256 	/* Fiber device? */
257 	np->phy_media = (dr16(ASICCtrl) & PhyMedia) ? 1 : 0;
258 	np->link_status = 0;
259 	/* Set media and reset PHY */
260 	if (np->phy_media) {
261 		/* default Auto-Negotiation for fiber deivices */
262 	 	if (np->an_enable == 2) {
263 			np->an_enable = 1;
264 		}
265 		mii_set_media_pcs (dev);
266 	} else {
267 		/* Auto-Negotiation is mandatory for 1000BASE-T,
268 		   IEEE 802.3ab Annex 28D page 14 */
269 		if (np->speed == 1000)
270 			np->an_enable = 1;
271 		mii_set_media (dev);
272 	}
273 
274 	err = register_netdev (dev);
275 	if (err)
276 		goto err_out_unmap_rx;
277 
278 	card_idx++;
279 
280 	printk (KERN_INFO "%s: %s, %pM, IRQ %d\n",
281 		dev->name, np->name, dev->dev_addr, irq);
282 	if (tx_coalesce > 1)
283 		printk(KERN_INFO "tx_coalesce:\t%d packets\n",
284 				tx_coalesce);
285 	if (np->coalesce)
286 		printk(KERN_INFO
287 		       "rx_coalesce:\t%d packets\n"
288 		       "rx_timeout: \t%d ns\n",
289 				np->rx_coalesce, np->rx_timeout*640);
290 	if (np->vlan)
291 		printk(KERN_INFO "vlan(id):\t%d\n", np->vlan);
292 	return 0;
293 
294 err_out_unmap_rx:
295 	pci_free_consistent (pdev, RX_TOTAL_SIZE, np->rx_ring, np->rx_ring_dma);
296 err_out_unmap_tx:
297 	pci_free_consistent (pdev, TX_TOTAL_SIZE, np->tx_ring, np->tx_ring_dma);
298 err_out_iounmap:
299 #ifdef MEM_MAPPING
300 	pci_iounmap(pdev, np->ioaddr);
301 #endif
302 	pci_iounmap(pdev, np->eeprom_addr);
303 err_out_dev:
304 	free_netdev (dev);
305 err_out_res:
306 	pci_release_regions (pdev);
307 err_out_disable:
308 	pci_disable_device (pdev);
309 	return err;
310 }
311 
312 static int
313 find_miiphy (struct net_device *dev)
314 {
315 	struct netdev_private *np = netdev_priv(dev);
316 	int i, phy_found = 0;
317 	np = netdev_priv(dev);
318 	np->phy_addr = 1;
319 
320 	for (i = 31; i >= 0; i--) {
321 		int mii_status = mii_read (dev, i, 1);
322 		if (mii_status != 0xffff && mii_status != 0x0000) {
323 			np->phy_addr = i;
324 			phy_found++;
325 		}
326 	}
327 	if (!phy_found) {
328 		printk (KERN_ERR "%s: No MII PHY found!\n", dev->name);
329 		return -ENODEV;
330 	}
331 	return 0;
332 }
333 
334 static int
335 parse_eeprom (struct net_device *dev)
336 {
337 	struct netdev_private *np = netdev_priv(dev);
338 	void __iomem *ioaddr = np->ioaddr;
339 	int i, j;
340 	u8 sromdata[256];
341 	u8 *psib;
342 	u32 crc;
343 	PSROM_t psrom = (PSROM_t) sromdata;
344 
345 	int cid, next;
346 
347 	for (i = 0; i < 128; i++)
348 		((__le16 *) sromdata)[i] = cpu_to_le16(read_eeprom(np, i));
349 
350 	if (np->pdev->vendor == PCI_VENDOR_ID_DLINK) {	/* D-Link Only */
351 		/* Check CRC */
352 		crc = ~ether_crc_le (256 - 4, sromdata);
353 		if (psrom->crc != cpu_to_le32(crc)) {
354 			printk (KERN_ERR "%s: EEPROM data CRC error.\n",
355 					dev->name);
356 			return -1;
357 		}
358 	}
359 
360 	/* Set MAC address */
361 	for (i = 0; i < 6; i++)
362 		dev->dev_addr[i] = psrom->mac_addr[i];
363 
364 	if (np->pdev->vendor != PCI_VENDOR_ID_DLINK) {
365 		return 0;
366 	}
367 
368 	/* Parse Software Information Block */
369 	i = 0x30;
370 	psib = (u8 *) sromdata;
371 	do {
372 		cid = psib[i++];
373 		next = psib[i++];
374 		if ((cid == 0 && next == 0) || (cid == 0xff && next == 0xff)) {
375 			printk (KERN_ERR "Cell data error\n");
376 			return -1;
377 		}
378 		switch (cid) {
379 		case 0:	/* Format version */
380 			break;
381 		case 1:	/* End of cell */
382 			return 0;
383 		case 2:	/* Duplex Polarity */
384 			np->duplex_polarity = psib[i];
385 			dw8(PhyCtrl, dr8(PhyCtrl) | psib[i]);
386 			break;
387 		case 3:	/* Wake Polarity */
388 			np->wake_polarity = psib[i];
389 			break;
390 		case 9:	/* Adapter description */
391 			j = (next - i > 255) ? 255 : next - i;
392 			memcpy (np->name, &(psib[i]), j);
393 			break;
394 		case 4:
395 		case 5:
396 		case 6:
397 		case 7:
398 		case 8:	/* Reversed */
399 			break;
400 		default:	/* Unknown cell */
401 			return -1;
402 		}
403 		i = next;
404 	} while (1);
405 
406 	return 0;
407 }
408 
409 static int
410 rio_open (struct net_device *dev)
411 {
412 	struct netdev_private *np = netdev_priv(dev);
413 	void __iomem *ioaddr = np->ioaddr;
414 	const int irq = np->pdev->irq;
415 	int i;
416 	u16 macctrl;
417 
418 	i = request_irq(irq, rio_interrupt, IRQF_SHARED, dev->name, dev);
419 	if (i)
420 		return i;
421 
422 	/* Reset all logic functions */
423 	dw16(ASICCtrl + 2,
424 	     GlobalReset | DMAReset | FIFOReset | NetworkReset | HostReset);
425 	mdelay(10);
426 
427 	/* DebugCtrl bit 4, 5, 9 must set */
428 	dw32(DebugCtrl, dr32(DebugCtrl) | 0x0230);
429 
430 	/* Jumbo frame */
431 	if (np->jumbo != 0)
432 		dw16(MaxFrameSize, MAX_JUMBO+14);
433 
434 	alloc_list (dev);
435 
436 	/* Get station address */
437 	for (i = 0; i < 6; i++)
438 		dw8(StationAddr0 + i, dev->dev_addr[i]);
439 
440 	set_multicast (dev);
441 	if (np->coalesce) {
442 		dw32(RxDMAIntCtrl, np->rx_coalesce | np->rx_timeout << 16);
443 	}
444 	/* Set RIO to poll every N*320nsec. */
445 	dw8(RxDMAPollPeriod, 0x20);
446 	dw8(TxDMAPollPeriod, 0xff);
447 	dw8(RxDMABurstThresh, 0x30);
448 	dw8(RxDMAUrgentThresh, 0x30);
449 	dw32(RmonStatMask, 0x0007ffff);
450 	/* clear statistics */
451 	clear_stats (dev);
452 
453 	/* VLAN supported */
454 	if (np->vlan) {
455 		/* priority field in RxDMAIntCtrl  */
456 		dw32(RxDMAIntCtrl, dr32(RxDMAIntCtrl) | 0x7 << 10);
457 		/* VLANId */
458 		dw16(VLANId, np->vlan);
459 		/* Length/Type should be 0x8100 */
460 		dw32(VLANTag, 0x8100 << 16 | np->vlan);
461 		/* Enable AutoVLANuntagging, but disable AutoVLANtagging.
462 		   VLAN information tagged by TFC' VID, CFI fields. */
463 		dw32(MACCtrl, dr32(MACCtrl) | AutoVLANuntagging);
464 	}
465 
466 	setup_timer(&np->timer, rio_timer, (unsigned long)dev);
467 	np->timer.expires = jiffies + 1*HZ;
468 	add_timer (&np->timer);
469 
470 	/* Start Tx/Rx */
471 	dw32(MACCtrl, dr32(MACCtrl) | StatsEnable | RxEnable | TxEnable);
472 
473 	macctrl = 0;
474 	macctrl |= (np->vlan) ? AutoVLANuntagging : 0;
475 	macctrl |= (np->full_duplex) ? DuplexSelect : 0;
476 	macctrl |= (np->tx_flow) ? TxFlowControlEnable : 0;
477 	macctrl |= (np->rx_flow) ? RxFlowControlEnable : 0;
478 	dw16(MACCtrl, macctrl);
479 
480 	netif_start_queue (dev);
481 
482 	dl2k_enable_int(np);
483 	return 0;
484 }
485 
486 static void
487 rio_timer (unsigned long data)
488 {
489 	struct net_device *dev = (struct net_device *)data;
490 	struct netdev_private *np = netdev_priv(dev);
491 	unsigned int entry;
492 	int next_tick = 1*HZ;
493 	unsigned long flags;
494 
495 	spin_lock_irqsave(&np->rx_lock, flags);
496 	/* Recover rx ring exhausted error */
497 	if (np->cur_rx - np->old_rx >= RX_RING_SIZE) {
498 		printk(KERN_INFO "Try to recover rx ring exhausted...\n");
499 		/* Re-allocate skbuffs to fill the descriptor ring */
500 		for (; np->cur_rx - np->old_rx > 0; np->old_rx++) {
501 			struct sk_buff *skb;
502 			entry = np->old_rx % RX_RING_SIZE;
503 			/* Dropped packets don't need to re-allocate */
504 			if (np->rx_skbuff[entry] == NULL) {
505 				skb = netdev_alloc_skb_ip_align(dev,
506 								np->rx_buf_sz);
507 				if (skb == NULL) {
508 					np->rx_ring[entry].fraginfo = 0;
509 					printk (KERN_INFO
510 						"%s: Still unable to re-allocate Rx skbuff.#%d\n",
511 						dev->name, entry);
512 					break;
513 				}
514 				np->rx_skbuff[entry] = skb;
515 				np->rx_ring[entry].fraginfo =
516 				    cpu_to_le64 (pci_map_single
517 					 (np->pdev, skb->data, np->rx_buf_sz,
518 					  PCI_DMA_FROMDEVICE));
519 			}
520 			np->rx_ring[entry].fraginfo |=
521 			    cpu_to_le64((u64)np->rx_buf_sz << 48);
522 			np->rx_ring[entry].status = 0;
523 		} /* end for */
524 	} /* end if */
525 	spin_unlock_irqrestore (&np->rx_lock, flags);
526 	np->timer.expires = jiffies + next_tick;
527 	add_timer(&np->timer);
528 }
529 
530 static void
531 rio_tx_timeout (struct net_device *dev)
532 {
533 	struct netdev_private *np = netdev_priv(dev);
534 	void __iomem *ioaddr = np->ioaddr;
535 
536 	printk (KERN_INFO "%s: Tx timed out (%4.4x), is buffer full?\n",
537 		dev->name, dr32(TxStatus));
538 	rio_free_tx(dev, 0);
539 	dev->if_port = 0;
540 	dev->trans_start = jiffies; /* prevent tx timeout */
541 }
542 
543  /* allocate and initialize Tx and Rx descriptors */
544 static void
545 alloc_list (struct net_device *dev)
546 {
547 	struct netdev_private *np = netdev_priv(dev);
548 	void __iomem *ioaddr = np->ioaddr;
549 	int i;
550 
551 	np->cur_rx = np->cur_tx = 0;
552 	np->old_rx = np->old_tx = 0;
553 	np->rx_buf_sz = (dev->mtu <= 1500 ? PACKET_SIZE : dev->mtu + 32);
554 
555 	/* Initialize Tx descriptors, TFDListPtr leaves in start_xmit(). */
556 	for (i = 0; i < TX_RING_SIZE; i++) {
557 		np->tx_skbuff[i] = NULL;
558 		np->tx_ring[i].status = cpu_to_le64 (TFDDone);
559 		np->tx_ring[i].next_desc = cpu_to_le64 (np->tx_ring_dma +
560 					      ((i+1)%TX_RING_SIZE) *
561 					      sizeof (struct netdev_desc));
562 	}
563 
564 	/* Initialize Rx descriptors */
565 	for (i = 0; i < RX_RING_SIZE; i++) {
566 		np->rx_ring[i].next_desc = cpu_to_le64 (np->rx_ring_dma +
567 						((i + 1) % RX_RING_SIZE) *
568 						sizeof (struct netdev_desc));
569 		np->rx_ring[i].status = 0;
570 		np->rx_ring[i].fraginfo = 0;
571 		np->rx_skbuff[i] = NULL;
572 	}
573 
574 	/* Allocate the rx buffers */
575 	for (i = 0; i < RX_RING_SIZE; i++) {
576 		/* Allocated fixed size of skbuff */
577 		struct sk_buff *skb;
578 
579 		skb = netdev_alloc_skb_ip_align(dev, np->rx_buf_sz);
580 		np->rx_skbuff[i] = skb;
581 		if (skb == NULL)
582 			break;
583 
584 		/* Rubicon now supports 40 bits of addressing space. */
585 		np->rx_ring[i].fraginfo =
586 		    cpu_to_le64 ( pci_map_single (
587 			 	  np->pdev, skb->data, np->rx_buf_sz,
588 				  PCI_DMA_FROMDEVICE));
589 		np->rx_ring[i].fraginfo |= cpu_to_le64((u64)np->rx_buf_sz << 48);
590 	}
591 
592 	/* Set RFDListPtr */
593 	dw32(RFDListPtr0, np->rx_ring_dma);
594 	dw32(RFDListPtr1, 0);
595 }
596 
597 static netdev_tx_t
598 start_xmit (struct sk_buff *skb, struct net_device *dev)
599 {
600 	struct netdev_private *np = netdev_priv(dev);
601 	void __iomem *ioaddr = np->ioaddr;
602 	struct netdev_desc *txdesc;
603 	unsigned entry;
604 	u64 tfc_vlan_tag = 0;
605 
606 	if (np->link_status == 0) {	/* Link Down */
607 		dev_kfree_skb(skb);
608 		return NETDEV_TX_OK;
609 	}
610 	entry = np->cur_tx % TX_RING_SIZE;
611 	np->tx_skbuff[entry] = skb;
612 	txdesc = &np->tx_ring[entry];
613 
614 #if 0
615 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
616 		txdesc->status |=
617 		    cpu_to_le64 (TCPChecksumEnable | UDPChecksumEnable |
618 				 IPChecksumEnable);
619 	}
620 #endif
621 	if (np->vlan) {
622 		tfc_vlan_tag = VLANTagInsert |
623 		    ((u64)np->vlan << 32) |
624 		    ((u64)skb->priority << 45);
625 	}
626 	txdesc->fraginfo = cpu_to_le64 (pci_map_single (np->pdev, skb->data,
627 							skb->len,
628 							PCI_DMA_TODEVICE));
629 	txdesc->fraginfo |= cpu_to_le64((u64)skb->len << 48);
630 
631 	/* DL2K bug: DMA fails to get next descriptor ptr in 10Mbps mode
632 	 * Work around: Always use 1 descriptor in 10Mbps mode */
633 	if (entry % np->tx_coalesce == 0 || np->speed == 10)
634 		txdesc->status = cpu_to_le64 (entry | tfc_vlan_tag |
635 					      WordAlignDisable |
636 					      TxDMAIndicate |
637 					      (1 << FragCountShift));
638 	else
639 		txdesc->status = cpu_to_le64 (entry | tfc_vlan_tag |
640 					      WordAlignDisable |
641 					      (1 << FragCountShift));
642 
643 	/* TxDMAPollNow */
644 	dw32(DMACtrl, dr32(DMACtrl) | 0x00001000);
645 	/* Schedule ISR */
646 	dw32(CountDown, 10000);
647 	np->cur_tx = (np->cur_tx + 1) % TX_RING_SIZE;
648 	if ((np->cur_tx - np->old_tx + TX_RING_SIZE) % TX_RING_SIZE
649 			< TX_QUEUE_LEN - 1 && np->speed != 10) {
650 		/* do nothing */
651 	} else if (!netif_queue_stopped(dev)) {
652 		netif_stop_queue (dev);
653 	}
654 
655 	/* The first TFDListPtr */
656 	if (!dr32(TFDListPtr0)) {
657 		dw32(TFDListPtr0, np->tx_ring_dma +
658 		     entry * sizeof (struct netdev_desc));
659 		dw32(TFDListPtr1, 0);
660 	}
661 
662 	return NETDEV_TX_OK;
663 }
664 
665 static irqreturn_t
666 rio_interrupt (int irq, void *dev_instance)
667 {
668 	struct net_device *dev = dev_instance;
669 	struct netdev_private *np = netdev_priv(dev);
670 	void __iomem *ioaddr = np->ioaddr;
671 	unsigned int_status;
672 	int cnt = max_intrloop;
673 	int handled = 0;
674 
675 	while (1) {
676 		int_status = dr16(IntStatus);
677 		dw16(IntStatus, int_status);
678 		int_status &= DEFAULT_INTR;
679 		if (int_status == 0 || --cnt < 0)
680 			break;
681 		handled = 1;
682 		/* Processing received packets */
683 		if (int_status & RxDMAComplete)
684 			receive_packet (dev);
685 		/* TxDMAComplete interrupt */
686 		if ((int_status & (TxDMAComplete|IntRequested))) {
687 			int tx_status;
688 			tx_status = dr32(TxStatus);
689 			if (tx_status & 0x01)
690 				tx_error (dev, tx_status);
691 			/* Free used tx skbuffs */
692 			rio_free_tx (dev, 1);
693 		}
694 
695 		/* Handle uncommon events */
696 		if (int_status &
697 		    (HostError | LinkEvent | UpdateStats))
698 			rio_error (dev, int_status);
699 	}
700 	if (np->cur_tx != np->old_tx)
701 		dw32(CountDown, 100);
702 	return IRQ_RETVAL(handled);
703 }
704 
705 static inline dma_addr_t desc_to_dma(struct netdev_desc *desc)
706 {
707 	return le64_to_cpu(desc->fraginfo) & DMA_BIT_MASK(48);
708 }
709 
710 static void
711 rio_free_tx (struct net_device *dev, int irq)
712 {
713 	struct netdev_private *np = netdev_priv(dev);
714 	int entry = np->old_tx % TX_RING_SIZE;
715 	int tx_use = 0;
716 	unsigned long flag = 0;
717 
718 	if (irq)
719 		spin_lock(&np->tx_lock);
720 	else
721 		spin_lock_irqsave(&np->tx_lock, flag);
722 
723 	/* Free used tx skbuffs */
724 	while (entry != np->cur_tx) {
725 		struct sk_buff *skb;
726 
727 		if (!(np->tx_ring[entry].status & cpu_to_le64(TFDDone)))
728 			break;
729 		skb = np->tx_skbuff[entry];
730 		pci_unmap_single (np->pdev,
731 				  desc_to_dma(&np->tx_ring[entry]),
732 				  skb->len, PCI_DMA_TODEVICE);
733 		if (irq)
734 			dev_kfree_skb_irq (skb);
735 		else
736 			dev_kfree_skb (skb);
737 
738 		np->tx_skbuff[entry] = NULL;
739 		entry = (entry + 1) % TX_RING_SIZE;
740 		tx_use++;
741 	}
742 	if (irq)
743 		spin_unlock(&np->tx_lock);
744 	else
745 		spin_unlock_irqrestore(&np->tx_lock, flag);
746 	np->old_tx = entry;
747 
748 	/* If the ring is no longer full, clear tx_full and
749 	   call netif_wake_queue() */
750 
751 	if (netif_queue_stopped(dev) &&
752 	    ((np->cur_tx - np->old_tx + TX_RING_SIZE) % TX_RING_SIZE
753 	    < TX_QUEUE_LEN - 1 || np->speed == 10)) {
754 		netif_wake_queue (dev);
755 	}
756 }
757 
758 static void
759 tx_error (struct net_device *dev, int tx_status)
760 {
761 	struct netdev_private *np = netdev_priv(dev);
762 	void __iomem *ioaddr = np->ioaddr;
763 	int frame_id;
764 	int i;
765 
766 	frame_id = (tx_status & 0xffff0000);
767 	printk (KERN_ERR "%s: Transmit error, TxStatus %4.4x, FrameId %d.\n",
768 		dev->name, tx_status, frame_id);
769 	np->stats.tx_errors++;
770 	/* Ttransmit Underrun */
771 	if (tx_status & 0x10) {
772 		np->stats.tx_fifo_errors++;
773 		dw16(TxStartThresh, dr16(TxStartThresh) + 0x10);
774 		/* Transmit Underrun need to set TxReset, DMARest, FIFOReset */
775 		dw16(ASICCtrl + 2,
776 		     TxReset | DMAReset | FIFOReset | NetworkReset);
777 		/* Wait for ResetBusy bit clear */
778 		for (i = 50; i > 0; i--) {
779 			if (!(dr16(ASICCtrl + 2) & ResetBusy))
780 				break;
781 			mdelay (1);
782 		}
783 		rio_free_tx (dev, 1);
784 		/* Reset TFDListPtr */
785 		dw32(TFDListPtr0, np->tx_ring_dma +
786 		     np->old_tx * sizeof (struct netdev_desc));
787 		dw32(TFDListPtr1, 0);
788 
789 		/* Let TxStartThresh stay default value */
790 	}
791 	/* Late Collision */
792 	if (tx_status & 0x04) {
793 		np->stats.tx_fifo_errors++;
794 		/* TxReset and clear FIFO */
795 		dw16(ASICCtrl + 2, TxReset | FIFOReset);
796 		/* Wait reset done */
797 		for (i = 50; i > 0; i--) {
798 			if (!(dr16(ASICCtrl + 2) & ResetBusy))
799 				break;
800 			mdelay (1);
801 		}
802 		/* Let TxStartThresh stay default value */
803 	}
804 	/* Maximum Collisions */
805 #ifdef ETHER_STATS
806 	if (tx_status & 0x08)
807 		np->stats.collisions16++;
808 #else
809 	if (tx_status & 0x08)
810 		np->stats.collisions++;
811 #endif
812 	/* Restart the Tx */
813 	dw32(MACCtrl, dr16(MACCtrl) | TxEnable);
814 }
815 
816 static int
817 receive_packet (struct net_device *dev)
818 {
819 	struct netdev_private *np = netdev_priv(dev);
820 	int entry = np->cur_rx % RX_RING_SIZE;
821 	int cnt = 30;
822 
823 	/* If RFDDone, FrameStart and FrameEnd set, there is a new packet in. */
824 	while (1) {
825 		struct netdev_desc *desc = &np->rx_ring[entry];
826 		int pkt_len;
827 		u64 frame_status;
828 
829 		if (!(desc->status & cpu_to_le64(RFDDone)) ||
830 		    !(desc->status & cpu_to_le64(FrameStart)) ||
831 		    !(desc->status & cpu_to_le64(FrameEnd)))
832 			break;
833 
834 		/* Chip omits the CRC. */
835 		frame_status = le64_to_cpu(desc->status);
836 		pkt_len = frame_status & 0xffff;
837 		if (--cnt < 0)
838 			break;
839 		/* Update rx error statistics, drop packet. */
840 		if (frame_status & RFS_Errors) {
841 			np->stats.rx_errors++;
842 			if (frame_status & (RxRuntFrame | RxLengthError))
843 				np->stats.rx_length_errors++;
844 			if (frame_status & RxFCSError)
845 				np->stats.rx_crc_errors++;
846 			if (frame_status & RxAlignmentError && np->speed != 1000)
847 				np->stats.rx_frame_errors++;
848 			if (frame_status & RxFIFOOverrun)
849 	 			np->stats.rx_fifo_errors++;
850 		} else {
851 			struct sk_buff *skb;
852 
853 			/* Small skbuffs for short packets */
854 			if (pkt_len > copy_thresh) {
855 				pci_unmap_single (np->pdev,
856 						  desc_to_dma(desc),
857 						  np->rx_buf_sz,
858 						  PCI_DMA_FROMDEVICE);
859 				skb_put (skb = np->rx_skbuff[entry], pkt_len);
860 				np->rx_skbuff[entry] = NULL;
861 			} else if ((skb = netdev_alloc_skb_ip_align(dev, pkt_len))) {
862 				pci_dma_sync_single_for_cpu(np->pdev,
863 							    desc_to_dma(desc),
864 							    np->rx_buf_sz,
865 							    PCI_DMA_FROMDEVICE);
866 				skb_copy_to_linear_data (skb,
867 						  np->rx_skbuff[entry]->data,
868 						  pkt_len);
869 				skb_put (skb, pkt_len);
870 				pci_dma_sync_single_for_device(np->pdev,
871 							       desc_to_dma(desc),
872 							       np->rx_buf_sz,
873 							       PCI_DMA_FROMDEVICE);
874 			}
875 			skb->protocol = eth_type_trans (skb, dev);
876 #if 0
877 			/* Checksum done by hw, but csum value unavailable. */
878 			if (np->pdev->pci_rev_id >= 0x0c &&
879 				!(frame_status & (TCPError | UDPError | IPError))) {
880 				skb->ip_summed = CHECKSUM_UNNECESSARY;
881 			}
882 #endif
883 			netif_rx (skb);
884 		}
885 		entry = (entry + 1) % RX_RING_SIZE;
886 	}
887 	spin_lock(&np->rx_lock);
888 	np->cur_rx = entry;
889 	/* Re-allocate skbuffs to fill the descriptor ring */
890 	entry = np->old_rx;
891 	while (entry != np->cur_rx) {
892 		struct sk_buff *skb;
893 		/* Dropped packets don't need to re-allocate */
894 		if (np->rx_skbuff[entry] == NULL) {
895 			skb = netdev_alloc_skb_ip_align(dev, np->rx_buf_sz);
896 			if (skb == NULL) {
897 				np->rx_ring[entry].fraginfo = 0;
898 				printk (KERN_INFO
899 					"%s: receive_packet: "
900 					"Unable to re-allocate Rx skbuff.#%d\n",
901 					dev->name, entry);
902 				break;
903 			}
904 			np->rx_skbuff[entry] = skb;
905 			np->rx_ring[entry].fraginfo =
906 			    cpu_to_le64 (pci_map_single
907 					 (np->pdev, skb->data, np->rx_buf_sz,
908 					  PCI_DMA_FROMDEVICE));
909 		}
910 		np->rx_ring[entry].fraginfo |=
911 		    cpu_to_le64((u64)np->rx_buf_sz << 48);
912 		np->rx_ring[entry].status = 0;
913 		entry = (entry + 1) % RX_RING_SIZE;
914 	}
915 	np->old_rx = entry;
916 	spin_unlock(&np->rx_lock);
917 	return 0;
918 }
919 
920 static void
921 rio_error (struct net_device *dev, int int_status)
922 {
923 	struct netdev_private *np = netdev_priv(dev);
924 	void __iomem *ioaddr = np->ioaddr;
925 	u16 macctrl;
926 
927 	/* Link change event */
928 	if (int_status & LinkEvent) {
929 		if (mii_wait_link (dev, 10) == 0) {
930 			printk (KERN_INFO "%s: Link up\n", dev->name);
931 			if (np->phy_media)
932 				mii_get_media_pcs (dev);
933 			else
934 				mii_get_media (dev);
935 			if (np->speed == 1000)
936 				np->tx_coalesce = tx_coalesce;
937 			else
938 				np->tx_coalesce = 1;
939 			macctrl = 0;
940 			macctrl |= (np->vlan) ? AutoVLANuntagging : 0;
941 			macctrl |= (np->full_duplex) ? DuplexSelect : 0;
942 			macctrl |= (np->tx_flow) ?
943 				TxFlowControlEnable : 0;
944 			macctrl |= (np->rx_flow) ?
945 				RxFlowControlEnable : 0;
946 			dw16(MACCtrl, macctrl);
947 			np->link_status = 1;
948 			netif_carrier_on(dev);
949 		} else {
950 			printk (KERN_INFO "%s: Link off\n", dev->name);
951 			np->link_status = 0;
952 			netif_carrier_off(dev);
953 		}
954 	}
955 
956 	/* UpdateStats statistics registers */
957 	if (int_status & UpdateStats) {
958 		get_stats (dev);
959 	}
960 
961 	/* PCI Error, a catastronphic error related to the bus interface
962 	   occurs, set GlobalReset and HostReset to reset. */
963 	if (int_status & HostError) {
964 		printk (KERN_ERR "%s: HostError! IntStatus %4.4x.\n",
965 			dev->name, int_status);
966 		dw16(ASICCtrl + 2, GlobalReset | HostReset);
967 		mdelay (500);
968 	}
969 }
970 
971 static struct net_device_stats *
972 get_stats (struct net_device *dev)
973 {
974 	struct netdev_private *np = netdev_priv(dev);
975 	void __iomem *ioaddr = np->ioaddr;
976 #ifdef MEM_MAPPING
977 	int i;
978 #endif
979 	unsigned int stat_reg;
980 
981 	/* All statistics registers need to be acknowledged,
982 	   else statistic overflow could cause problems */
983 
984 	np->stats.rx_packets += dr32(FramesRcvOk);
985 	np->stats.tx_packets += dr32(FramesXmtOk);
986 	np->stats.rx_bytes += dr32(OctetRcvOk);
987 	np->stats.tx_bytes += dr32(OctetXmtOk);
988 
989 	np->stats.multicast = dr32(McstFramesRcvdOk);
990 	np->stats.collisions += dr32(SingleColFrames)
991 			     +  dr32(MultiColFrames);
992 
993 	/* detailed tx errors */
994 	stat_reg = dr16(FramesAbortXSColls);
995 	np->stats.tx_aborted_errors += stat_reg;
996 	np->stats.tx_errors += stat_reg;
997 
998 	stat_reg = dr16(CarrierSenseErrors);
999 	np->stats.tx_carrier_errors += stat_reg;
1000 	np->stats.tx_errors += stat_reg;
1001 
1002 	/* Clear all other statistic register. */
1003 	dr32(McstOctetXmtOk);
1004 	dr16(BcstFramesXmtdOk);
1005 	dr32(McstFramesXmtdOk);
1006 	dr16(BcstFramesRcvdOk);
1007 	dr16(MacControlFramesRcvd);
1008 	dr16(FrameTooLongErrors);
1009 	dr16(InRangeLengthErrors);
1010 	dr16(FramesCheckSeqErrors);
1011 	dr16(FramesLostRxErrors);
1012 	dr32(McstOctetXmtOk);
1013 	dr32(BcstOctetXmtOk);
1014 	dr32(McstFramesXmtdOk);
1015 	dr32(FramesWDeferredXmt);
1016 	dr32(LateCollisions);
1017 	dr16(BcstFramesXmtdOk);
1018 	dr16(MacControlFramesXmtd);
1019 	dr16(FramesWEXDeferal);
1020 
1021 #ifdef MEM_MAPPING
1022 	for (i = 0x100; i <= 0x150; i += 4)
1023 		dr32(i);
1024 #endif
1025 	dr16(TxJumboFrames);
1026 	dr16(RxJumboFrames);
1027 	dr16(TCPCheckSumErrors);
1028 	dr16(UDPCheckSumErrors);
1029 	dr16(IPCheckSumErrors);
1030 	return &np->stats;
1031 }
1032 
1033 static int
1034 clear_stats (struct net_device *dev)
1035 {
1036 	struct netdev_private *np = netdev_priv(dev);
1037 	void __iomem *ioaddr = np->ioaddr;
1038 #ifdef MEM_MAPPING
1039 	int i;
1040 #endif
1041 
1042 	/* All statistics registers need to be acknowledged,
1043 	   else statistic overflow could cause problems */
1044 	dr32(FramesRcvOk);
1045 	dr32(FramesXmtOk);
1046 	dr32(OctetRcvOk);
1047 	dr32(OctetXmtOk);
1048 
1049 	dr32(McstFramesRcvdOk);
1050 	dr32(SingleColFrames);
1051 	dr32(MultiColFrames);
1052 	dr32(LateCollisions);
1053 	/* detailed rx errors */
1054 	dr16(FrameTooLongErrors);
1055 	dr16(InRangeLengthErrors);
1056 	dr16(FramesCheckSeqErrors);
1057 	dr16(FramesLostRxErrors);
1058 
1059 	/* detailed tx errors */
1060 	dr16(FramesAbortXSColls);
1061 	dr16(CarrierSenseErrors);
1062 
1063 	/* Clear all other statistic register. */
1064 	dr32(McstOctetXmtOk);
1065 	dr16(BcstFramesXmtdOk);
1066 	dr32(McstFramesXmtdOk);
1067 	dr16(BcstFramesRcvdOk);
1068 	dr16(MacControlFramesRcvd);
1069 	dr32(McstOctetXmtOk);
1070 	dr32(BcstOctetXmtOk);
1071 	dr32(McstFramesXmtdOk);
1072 	dr32(FramesWDeferredXmt);
1073 	dr16(BcstFramesXmtdOk);
1074 	dr16(MacControlFramesXmtd);
1075 	dr16(FramesWEXDeferal);
1076 #ifdef MEM_MAPPING
1077 	for (i = 0x100; i <= 0x150; i += 4)
1078 		dr32(i);
1079 #endif
1080 	dr16(TxJumboFrames);
1081 	dr16(RxJumboFrames);
1082 	dr16(TCPCheckSumErrors);
1083 	dr16(UDPCheckSumErrors);
1084 	dr16(IPCheckSumErrors);
1085 	return 0;
1086 }
1087 
1088 
1089 static int
1090 change_mtu (struct net_device *dev, int new_mtu)
1091 {
1092 	struct netdev_private *np = netdev_priv(dev);
1093 	int max = (np->jumbo) ? MAX_JUMBO : 1536;
1094 
1095 	if ((new_mtu < 68) || (new_mtu > max)) {
1096 		return -EINVAL;
1097 	}
1098 
1099 	dev->mtu = new_mtu;
1100 
1101 	return 0;
1102 }
1103 
1104 static void
1105 set_multicast (struct net_device *dev)
1106 {
1107 	struct netdev_private *np = netdev_priv(dev);
1108 	void __iomem *ioaddr = np->ioaddr;
1109 	u32 hash_table[2];
1110 	u16 rx_mode = 0;
1111 
1112 	hash_table[0] = hash_table[1] = 0;
1113 	/* RxFlowcontrol DA: 01-80-C2-00-00-01. Hash index=0x39 */
1114 	hash_table[1] |= 0x02000000;
1115 	if (dev->flags & IFF_PROMISC) {
1116 		/* Receive all frames promiscuously. */
1117 		rx_mode = ReceiveAllFrames;
1118 	} else if ((dev->flags & IFF_ALLMULTI) ||
1119 			(netdev_mc_count(dev) > multicast_filter_limit)) {
1120 		/* Receive broadcast and multicast frames */
1121 		rx_mode = ReceiveBroadcast | ReceiveMulticast | ReceiveUnicast;
1122 	} else if (!netdev_mc_empty(dev)) {
1123 		struct netdev_hw_addr *ha;
1124 		/* Receive broadcast frames and multicast frames filtering
1125 		   by Hashtable */
1126 		rx_mode =
1127 		    ReceiveBroadcast | ReceiveMulticastHash | ReceiveUnicast;
1128 		netdev_for_each_mc_addr(ha, dev) {
1129 			int bit, index = 0;
1130 			int crc = ether_crc_le(ETH_ALEN, ha->addr);
1131 			/* The inverted high significant 6 bits of CRC are
1132 			   used as an index to hashtable */
1133 			for (bit = 0; bit < 6; bit++)
1134 				if (crc & (1 << (31 - bit)))
1135 					index |= (1 << bit);
1136 			hash_table[index / 32] |= (1 << (index % 32));
1137 		}
1138 	} else {
1139 		rx_mode = ReceiveBroadcast | ReceiveUnicast;
1140 	}
1141 	if (np->vlan) {
1142 		/* ReceiveVLANMatch field in ReceiveMode */
1143 		rx_mode |= ReceiveVLANMatch;
1144 	}
1145 
1146 	dw32(HashTable0, hash_table[0]);
1147 	dw32(HashTable1, hash_table[1]);
1148 	dw16(ReceiveMode, rx_mode);
1149 }
1150 
1151 static void rio_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1152 {
1153 	struct netdev_private *np = netdev_priv(dev);
1154 
1155 	strlcpy(info->driver, "dl2k", sizeof(info->driver));
1156 	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1157 	strlcpy(info->bus_info, pci_name(np->pdev), sizeof(info->bus_info));
1158 }
1159 
1160 static int rio_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1161 {
1162 	struct netdev_private *np = netdev_priv(dev);
1163 	if (np->phy_media) {
1164 		/* fiber device */
1165 		cmd->supported = SUPPORTED_Autoneg | SUPPORTED_FIBRE;
1166 		cmd->advertising= ADVERTISED_Autoneg | ADVERTISED_FIBRE;
1167 		cmd->port = PORT_FIBRE;
1168 		cmd->transceiver = XCVR_INTERNAL;
1169 	} else {
1170 		/* copper device */
1171 		cmd->supported = SUPPORTED_10baseT_Half |
1172 			SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Half
1173 			| SUPPORTED_100baseT_Full | SUPPORTED_1000baseT_Full |
1174 			SUPPORTED_Autoneg | SUPPORTED_MII;
1175 		cmd->advertising = ADVERTISED_10baseT_Half |
1176 			ADVERTISED_10baseT_Full | ADVERTISED_100baseT_Half |
1177 			ADVERTISED_100baseT_Full | ADVERTISED_1000baseT_Full|
1178 			ADVERTISED_Autoneg | ADVERTISED_MII;
1179 		cmd->port = PORT_MII;
1180 		cmd->transceiver = XCVR_INTERNAL;
1181 	}
1182 	if ( np->link_status ) {
1183 		ethtool_cmd_speed_set(cmd, np->speed);
1184 		cmd->duplex = np->full_duplex ? DUPLEX_FULL : DUPLEX_HALF;
1185 	} else {
1186 		ethtool_cmd_speed_set(cmd, SPEED_UNKNOWN);
1187 		cmd->duplex = DUPLEX_UNKNOWN;
1188 	}
1189 	if ( np->an_enable)
1190 		cmd->autoneg = AUTONEG_ENABLE;
1191 	else
1192 		cmd->autoneg = AUTONEG_DISABLE;
1193 
1194 	cmd->phy_address = np->phy_addr;
1195 	return 0;
1196 }
1197 
1198 static int rio_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1199 {
1200 	struct netdev_private *np = netdev_priv(dev);
1201 	netif_carrier_off(dev);
1202 	if (cmd->autoneg == AUTONEG_ENABLE) {
1203 		if (np->an_enable)
1204 			return 0;
1205 		else {
1206 			np->an_enable = 1;
1207 			mii_set_media(dev);
1208 			return 0;
1209 		}
1210 	} else {
1211 		np->an_enable = 0;
1212 		if (np->speed == 1000) {
1213 			ethtool_cmd_speed_set(cmd, SPEED_100);
1214 			cmd->duplex = DUPLEX_FULL;
1215 			printk("Warning!! Can't disable Auto negotiation in 1000Mbps, change to Manual 100Mbps, Full duplex.\n");
1216 		}
1217 		switch (ethtool_cmd_speed(cmd)) {
1218 		case SPEED_10:
1219 			np->speed = 10;
1220 			np->full_duplex = (cmd->duplex == DUPLEX_FULL);
1221 			break;
1222 		case SPEED_100:
1223 			np->speed = 100;
1224 			np->full_duplex = (cmd->duplex == DUPLEX_FULL);
1225 			break;
1226 		case SPEED_1000: /* not supported */
1227 		default:
1228 			return -EINVAL;
1229 		}
1230 		mii_set_media(dev);
1231 	}
1232 	return 0;
1233 }
1234 
1235 static u32 rio_get_link(struct net_device *dev)
1236 {
1237 	struct netdev_private *np = netdev_priv(dev);
1238 	return np->link_status;
1239 }
1240 
1241 static const struct ethtool_ops ethtool_ops = {
1242 	.get_drvinfo = rio_get_drvinfo,
1243 	.get_settings = rio_get_settings,
1244 	.set_settings = rio_set_settings,
1245 	.get_link = rio_get_link,
1246 };
1247 
1248 static int
1249 rio_ioctl (struct net_device *dev, struct ifreq *rq, int cmd)
1250 {
1251 	int phy_addr;
1252 	struct netdev_private *np = netdev_priv(dev);
1253 	struct mii_ioctl_data *miidata = if_mii(rq);
1254 
1255 	phy_addr = np->phy_addr;
1256 	switch (cmd) {
1257 	case SIOCGMIIPHY:
1258 		miidata->phy_id = phy_addr;
1259 		break;
1260 	case SIOCGMIIREG:
1261 		miidata->val_out = mii_read (dev, phy_addr, miidata->reg_num);
1262 		break;
1263 	case SIOCSMIIREG:
1264 		if (!capable(CAP_NET_ADMIN))
1265 			return -EPERM;
1266 		mii_write (dev, phy_addr, miidata->reg_num, miidata->val_in);
1267 		break;
1268 	default:
1269 		return -EOPNOTSUPP;
1270 	}
1271 	return 0;
1272 }
1273 
1274 #define EEP_READ 0x0200
1275 #define EEP_BUSY 0x8000
1276 /* Read the EEPROM word */
1277 /* We use I/O instruction to read/write eeprom to avoid fail on some machines */
1278 static int read_eeprom(struct netdev_private *np, int eep_addr)
1279 {
1280 	void __iomem *ioaddr = np->eeprom_addr;
1281 	int i = 1000;
1282 
1283 	dw16(EepromCtrl, EEP_READ | (eep_addr & 0xff));
1284 	while (i-- > 0) {
1285 		if (!(dr16(EepromCtrl) & EEP_BUSY))
1286 			return dr16(EepromData);
1287 	}
1288 	return 0;
1289 }
1290 
1291 enum phy_ctrl_bits {
1292 	MII_READ = 0x00, MII_CLK = 0x01, MII_DATA1 = 0x02, MII_WRITE = 0x04,
1293 	MII_DUPLEX = 0x08,
1294 };
1295 
1296 #define mii_delay() dr8(PhyCtrl)
1297 static void
1298 mii_sendbit (struct net_device *dev, u32 data)
1299 {
1300 	struct netdev_private *np = netdev_priv(dev);
1301 	void __iomem *ioaddr = np->ioaddr;
1302 
1303 	data = ((data) ? MII_DATA1 : 0) | (dr8(PhyCtrl) & 0xf8) | MII_WRITE;
1304 	dw8(PhyCtrl, data);
1305 	mii_delay ();
1306 	dw8(PhyCtrl, data | MII_CLK);
1307 	mii_delay ();
1308 }
1309 
1310 static int
1311 mii_getbit (struct net_device *dev)
1312 {
1313 	struct netdev_private *np = netdev_priv(dev);
1314 	void __iomem *ioaddr = np->ioaddr;
1315 	u8 data;
1316 
1317 	data = (dr8(PhyCtrl) & 0xf8) | MII_READ;
1318 	dw8(PhyCtrl, data);
1319 	mii_delay ();
1320 	dw8(PhyCtrl, data | MII_CLK);
1321 	mii_delay ();
1322 	return (dr8(PhyCtrl) >> 1) & 1;
1323 }
1324 
1325 static void
1326 mii_send_bits (struct net_device *dev, u32 data, int len)
1327 {
1328 	int i;
1329 
1330 	for (i = len - 1; i >= 0; i--) {
1331 		mii_sendbit (dev, data & (1 << i));
1332 	}
1333 }
1334 
1335 static int
1336 mii_read (struct net_device *dev, int phy_addr, int reg_num)
1337 {
1338 	u32 cmd;
1339 	int i;
1340 	u32 retval = 0;
1341 
1342 	/* Preamble */
1343 	mii_send_bits (dev, 0xffffffff, 32);
1344 	/* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1345 	/* ST,OP = 0110'b for read operation */
1346 	cmd = (0x06 << 10 | phy_addr << 5 | reg_num);
1347 	mii_send_bits (dev, cmd, 14);
1348 	/* Turnaround */
1349 	if (mii_getbit (dev))
1350 		goto err_out;
1351 	/* Read data */
1352 	for (i = 0; i < 16; i++) {
1353 		retval |= mii_getbit (dev);
1354 		retval <<= 1;
1355 	}
1356 	/* End cycle */
1357 	mii_getbit (dev);
1358 	return (retval >> 1) & 0xffff;
1359 
1360       err_out:
1361 	return 0;
1362 }
1363 static int
1364 mii_write (struct net_device *dev, int phy_addr, int reg_num, u16 data)
1365 {
1366 	u32 cmd;
1367 
1368 	/* Preamble */
1369 	mii_send_bits (dev, 0xffffffff, 32);
1370 	/* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1371 	/* ST,OP,AAAAA,RRRRR,TA = 0101xxxxxxxxxx10'b = 0x5002 for write */
1372 	cmd = (0x5002 << 16) | (phy_addr << 23) | (reg_num << 18) | data;
1373 	mii_send_bits (dev, cmd, 32);
1374 	/* End cycle */
1375 	mii_getbit (dev);
1376 	return 0;
1377 }
1378 static int
1379 mii_wait_link (struct net_device *dev, int wait)
1380 {
1381 	__u16 bmsr;
1382 	int phy_addr;
1383 	struct netdev_private *np;
1384 
1385 	np = netdev_priv(dev);
1386 	phy_addr = np->phy_addr;
1387 
1388 	do {
1389 		bmsr = mii_read (dev, phy_addr, MII_BMSR);
1390 		if (bmsr & BMSR_LSTATUS)
1391 			return 0;
1392 		mdelay (1);
1393 	} while (--wait > 0);
1394 	return -1;
1395 }
1396 static int
1397 mii_get_media (struct net_device *dev)
1398 {
1399 	__u16 negotiate;
1400 	__u16 bmsr;
1401 	__u16 mscr;
1402 	__u16 mssr;
1403 	int phy_addr;
1404 	struct netdev_private *np;
1405 
1406 	np = netdev_priv(dev);
1407 	phy_addr = np->phy_addr;
1408 
1409 	bmsr = mii_read (dev, phy_addr, MII_BMSR);
1410 	if (np->an_enable) {
1411 		if (!(bmsr & BMSR_ANEGCOMPLETE)) {
1412 			/* Auto-Negotiation not completed */
1413 			return -1;
1414 		}
1415 		negotiate = mii_read (dev, phy_addr, MII_ADVERTISE) &
1416 			mii_read (dev, phy_addr, MII_LPA);
1417 		mscr = mii_read (dev, phy_addr, MII_CTRL1000);
1418 		mssr = mii_read (dev, phy_addr, MII_STAT1000);
1419 		if (mscr & ADVERTISE_1000FULL && mssr & LPA_1000FULL) {
1420 			np->speed = 1000;
1421 			np->full_duplex = 1;
1422 			printk (KERN_INFO "Auto 1000 Mbps, Full duplex\n");
1423 		} else if (mscr & ADVERTISE_1000HALF && mssr & LPA_1000HALF) {
1424 			np->speed = 1000;
1425 			np->full_duplex = 0;
1426 			printk (KERN_INFO "Auto 1000 Mbps, Half duplex\n");
1427 		} else if (negotiate & ADVERTISE_100FULL) {
1428 			np->speed = 100;
1429 			np->full_duplex = 1;
1430 			printk (KERN_INFO "Auto 100 Mbps, Full duplex\n");
1431 		} else if (negotiate & ADVERTISE_100HALF) {
1432 			np->speed = 100;
1433 			np->full_duplex = 0;
1434 			printk (KERN_INFO "Auto 100 Mbps, Half duplex\n");
1435 		} else if (negotiate & ADVERTISE_10FULL) {
1436 			np->speed = 10;
1437 			np->full_duplex = 1;
1438 			printk (KERN_INFO "Auto 10 Mbps, Full duplex\n");
1439 		} else if (negotiate & ADVERTISE_10HALF) {
1440 			np->speed = 10;
1441 			np->full_duplex = 0;
1442 			printk (KERN_INFO "Auto 10 Mbps, Half duplex\n");
1443 		}
1444 		if (negotiate & ADVERTISE_PAUSE_CAP) {
1445 			np->tx_flow &= 1;
1446 			np->rx_flow &= 1;
1447 		} else if (negotiate & ADVERTISE_PAUSE_ASYM) {
1448 			np->tx_flow = 0;
1449 			np->rx_flow &= 1;
1450 		}
1451 		/* else tx_flow, rx_flow = user select  */
1452 	} else {
1453 		__u16 bmcr = mii_read (dev, phy_addr, MII_BMCR);
1454 		switch (bmcr & (BMCR_SPEED100 | BMCR_SPEED1000)) {
1455 		case BMCR_SPEED1000:
1456 			printk (KERN_INFO "Operating at 1000 Mbps, ");
1457 			break;
1458 		case BMCR_SPEED100:
1459 			printk (KERN_INFO "Operating at 100 Mbps, ");
1460 			break;
1461 		case 0:
1462 			printk (KERN_INFO "Operating at 10 Mbps, ");
1463 		}
1464 		if (bmcr & BMCR_FULLDPLX) {
1465 			printk (KERN_CONT "Full duplex\n");
1466 		} else {
1467 			printk (KERN_CONT "Half duplex\n");
1468 		}
1469 	}
1470 	if (np->tx_flow)
1471 		printk(KERN_INFO "Enable Tx Flow Control\n");
1472 	else
1473 		printk(KERN_INFO "Disable Tx Flow Control\n");
1474 	if (np->rx_flow)
1475 		printk(KERN_INFO "Enable Rx Flow Control\n");
1476 	else
1477 		printk(KERN_INFO "Disable Rx Flow Control\n");
1478 
1479 	return 0;
1480 }
1481 
1482 static int
1483 mii_set_media (struct net_device *dev)
1484 {
1485 	__u16 pscr;
1486 	__u16 bmcr;
1487 	__u16 bmsr;
1488 	__u16 anar;
1489 	int phy_addr;
1490 	struct netdev_private *np;
1491 	np = netdev_priv(dev);
1492 	phy_addr = np->phy_addr;
1493 
1494 	/* Does user set speed? */
1495 	if (np->an_enable) {
1496 		/* Advertise capabilities */
1497 		bmsr = mii_read (dev, phy_addr, MII_BMSR);
1498 		anar = mii_read (dev, phy_addr, MII_ADVERTISE) &
1499 			~(ADVERTISE_100FULL | ADVERTISE_10FULL |
1500 			  ADVERTISE_100HALF | ADVERTISE_10HALF |
1501 			  ADVERTISE_100BASE4);
1502 		if (bmsr & BMSR_100FULL)
1503 			anar |= ADVERTISE_100FULL;
1504 		if (bmsr & BMSR_100HALF)
1505 			anar |= ADVERTISE_100HALF;
1506 		if (bmsr & BMSR_100BASE4)
1507 			anar |= ADVERTISE_100BASE4;
1508 		if (bmsr & BMSR_10FULL)
1509 			anar |= ADVERTISE_10FULL;
1510 		if (bmsr & BMSR_10HALF)
1511 			anar |= ADVERTISE_10HALF;
1512 		anar |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
1513 		mii_write (dev, phy_addr, MII_ADVERTISE, anar);
1514 
1515 		/* Enable Auto crossover */
1516 		pscr = mii_read (dev, phy_addr, MII_PHY_SCR);
1517 		pscr |= 3 << 5;	/* 11'b */
1518 		mii_write (dev, phy_addr, MII_PHY_SCR, pscr);
1519 
1520 		/* Soft reset PHY */
1521 		mii_write (dev, phy_addr, MII_BMCR, BMCR_RESET);
1522 		bmcr = BMCR_ANENABLE | BMCR_ANRESTART | BMCR_RESET;
1523 		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1524 		mdelay(1);
1525 	} else {
1526 		/* Force speed setting */
1527 		/* 1) Disable Auto crossover */
1528 		pscr = mii_read (dev, phy_addr, MII_PHY_SCR);
1529 		pscr &= ~(3 << 5);
1530 		mii_write (dev, phy_addr, MII_PHY_SCR, pscr);
1531 
1532 		/* 2) PHY Reset */
1533 		bmcr = mii_read (dev, phy_addr, MII_BMCR);
1534 		bmcr |= BMCR_RESET;
1535 		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1536 
1537 		/* 3) Power Down */
1538 		bmcr = 0x1940;	/* must be 0x1940 */
1539 		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1540 		mdelay (100);	/* wait a certain time */
1541 
1542 		/* 4) Advertise nothing */
1543 		mii_write (dev, phy_addr, MII_ADVERTISE, 0);
1544 
1545 		/* 5) Set media and Power Up */
1546 		bmcr = BMCR_PDOWN;
1547 		if (np->speed == 100) {
1548 			bmcr |= BMCR_SPEED100;
1549 			printk (KERN_INFO "Manual 100 Mbps, ");
1550 		} else if (np->speed == 10) {
1551 			printk (KERN_INFO "Manual 10 Mbps, ");
1552 		}
1553 		if (np->full_duplex) {
1554 			bmcr |= BMCR_FULLDPLX;
1555 			printk (KERN_CONT "Full duplex\n");
1556 		} else {
1557 			printk (KERN_CONT "Half duplex\n");
1558 		}
1559 #if 0
1560 		/* Set 1000BaseT Master/Slave setting */
1561 		mscr = mii_read (dev, phy_addr, MII_CTRL1000);
1562 		mscr |= MII_MSCR_CFG_ENABLE;
1563 		mscr &= ~MII_MSCR_CFG_VALUE = 0;
1564 #endif
1565 		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1566 		mdelay(10);
1567 	}
1568 	return 0;
1569 }
1570 
1571 static int
1572 mii_get_media_pcs (struct net_device *dev)
1573 {
1574 	__u16 negotiate;
1575 	__u16 bmsr;
1576 	int phy_addr;
1577 	struct netdev_private *np;
1578 
1579 	np = netdev_priv(dev);
1580 	phy_addr = np->phy_addr;
1581 
1582 	bmsr = mii_read (dev, phy_addr, PCS_BMSR);
1583 	if (np->an_enable) {
1584 		if (!(bmsr & BMSR_ANEGCOMPLETE)) {
1585 			/* Auto-Negotiation not completed */
1586 			return -1;
1587 		}
1588 		negotiate = mii_read (dev, phy_addr, PCS_ANAR) &
1589 			mii_read (dev, phy_addr, PCS_ANLPAR);
1590 		np->speed = 1000;
1591 		if (negotiate & PCS_ANAR_FULL_DUPLEX) {
1592 			printk (KERN_INFO "Auto 1000 Mbps, Full duplex\n");
1593 			np->full_duplex = 1;
1594 		} else {
1595 			printk (KERN_INFO "Auto 1000 Mbps, half duplex\n");
1596 			np->full_duplex = 0;
1597 		}
1598 		if (negotiate & PCS_ANAR_PAUSE) {
1599 			np->tx_flow &= 1;
1600 			np->rx_flow &= 1;
1601 		} else if (negotiate & PCS_ANAR_ASYMMETRIC) {
1602 			np->tx_flow = 0;
1603 			np->rx_flow &= 1;
1604 		}
1605 		/* else tx_flow, rx_flow = user select  */
1606 	} else {
1607 		__u16 bmcr = mii_read (dev, phy_addr, PCS_BMCR);
1608 		printk (KERN_INFO "Operating at 1000 Mbps, ");
1609 		if (bmcr & BMCR_FULLDPLX) {
1610 			printk (KERN_CONT "Full duplex\n");
1611 		} else {
1612 			printk (KERN_CONT "Half duplex\n");
1613 		}
1614 	}
1615 	if (np->tx_flow)
1616 		printk(KERN_INFO "Enable Tx Flow Control\n");
1617 	else
1618 		printk(KERN_INFO "Disable Tx Flow Control\n");
1619 	if (np->rx_flow)
1620 		printk(KERN_INFO "Enable Rx Flow Control\n");
1621 	else
1622 		printk(KERN_INFO "Disable Rx Flow Control\n");
1623 
1624 	return 0;
1625 }
1626 
1627 static int
1628 mii_set_media_pcs (struct net_device *dev)
1629 {
1630 	__u16 bmcr;
1631 	__u16 esr;
1632 	__u16 anar;
1633 	int phy_addr;
1634 	struct netdev_private *np;
1635 	np = netdev_priv(dev);
1636 	phy_addr = np->phy_addr;
1637 
1638 	/* Auto-Negotiation? */
1639 	if (np->an_enable) {
1640 		/* Advertise capabilities */
1641 		esr = mii_read (dev, phy_addr, PCS_ESR);
1642 		anar = mii_read (dev, phy_addr, MII_ADVERTISE) &
1643 			~PCS_ANAR_HALF_DUPLEX &
1644 			~PCS_ANAR_FULL_DUPLEX;
1645 		if (esr & (MII_ESR_1000BT_HD | MII_ESR_1000BX_HD))
1646 			anar |= PCS_ANAR_HALF_DUPLEX;
1647 		if (esr & (MII_ESR_1000BT_FD | MII_ESR_1000BX_FD))
1648 			anar |= PCS_ANAR_FULL_DUPLEX;
1649 		anar |= PCS_ANAR_PAUSE | PCS_ANAR_ASYMMETRIC;
1650 		mii_write (dev, phy_addr, MII_ADVERTISE, anar);
1651 
1652 		/* Soft reset PHY */
1653 		mii_write (dev, phy_addr, MII_BMCR, BMCR_RESET);
1654 		bmcr = BMCR_ANENABLE | BMCR_ANRESTART | BMCR_RESET;
1655 		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1656 		mdelay(1);
1657 	} else {
1658 		/* Force speed setting */
1659 		/* PHY Reset */
1660 		bmcr = BMCR_RESET;
1661 		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1662 		mdelay(10);
1663 		if (np->full_duplex) {
1664 			bmcr = BMCR_FULLDPLX;
1665 			printk (KERN_INFO "Manual full duplex\n");
1666 		} else {
1667 			bmcr = 0;
1668 			printk (KERN_INFO "Manual half duplex\n");
1669 		}
1670 		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1671 		mdelay(10);
1672 
1673 		/*  Advertise nothing */
1674 		mii_write (dev, phy_addr, MII_ADVERTISE, 0);
1675 	}
1676 	return 0;
1677 }
1678 
1679 
1680 static int
1681 rio_close (struct net_device *dev)
1682 {
1683 	struct netdev_private *np = netdev_priv(dev);
1684 	void __iomem *ioaddr = np->ioaddr;
1685 
1686 	struct pci_dev *pdev = np->pdev;
1687 	struct sk_buff *skb;
1688 	int i;
1689 
1690 	netif_stop_queue (dev);
1691 
1692 	/* Disable interrupts */
1693 	dw16(IntEnable, 0);
1694 
1695 	/* Stop Tx and Rx logics */
1696 	dw32(MACCtrl, TxDisable | RxDisable | StatsDisable);
1697 
1698 	free_irq(pdev->irq, dev);
1699 	del_timer_sync (&np->timer);
1700 
1701 	/* Free all the skbuffs in the queue. */
1702 	for (i = 0; i < RX_RING_SIZE; i++) {
1703 		skb = np->rx_skbuff[i];
1704 		if (skb) {
1705 			pci_unmap_single(pdev, desc_to_dma(&np->rx_ring[i]),
1706 					 skb->len, PCI_DMA_FROMDEVICE);
1707 			dev_kfree_skb (skb);
1708 			np->rx_skbuff[i] = NULL;
1709 		}
1710 		np->rx_ring[i].status = 0;
1711 		np->rx_ring[i].fraginfo = 0;
1712 	}
1713 	for (i = 0; i < TX_RING_SIZE; i++) {
1714 		skb = np->tx_skbuff[i];
1715 		if (skb) {
1716 			pci_unmap_single(pdev, desc_to_dma(&np->tx_ring[i]),
1717 					 skb->len, PCI_DMA_TODEVICE);
1718 			dev_kfree_skb (skb);
1719 			np->tx_skbuff[i] = NULL;
1720 		}
1721 	}
1722 
1723 	return 0;
1724 }
1725 
1726 static void
1727 rio_remove1 (struct pci_dev *pdev)
1728 {
1729 	struct net_device *dev = pci_get_drvdata (pdev);
1730 
1731 	if (dev) {
1732 		struct netdev_private *np = netdev_priv(dev);
1733 
1734 		unregister_netdev (dev);
1735 		pci_free_consistent (pdev, RX_TOTAL_SIZE, np->rx_ring,
1736 				     np->rx_ring_dma);
1737 		pci_free_consistent (pdev, TX_TOTAL_SIZE, np->tx_ring,
1738 				     np->tx_ring_dma);
1739 #ifdef MEM_MAPPING
1740 		pci_iounmap(pdev, np->ioaddr);
1741 #endif
1742 		pci_iounmap(pdev, np->eeprom_addr);
1743 		free_netdev (dev);
1744 		pci_release_regions (pdev);
1745 		pci_disable_device (pdev);
1746 	}
1747 }
1748 
1749 static struct pci_driver rio_driver = {
1750 	.name		= "dl2k",
1751 	.id_table	= rio_pci_tbl,
1752 	.probe		= rio_probe1,
1753 	.remove		= rio_remove1,
1754 };
1755 
1756 module_pci_driver(rio_driver);
1757 /*
1758 
1759 Compile command:
1760 
1761 gcc -D__KERNEL__ -DMODULE -I/usr/src/linux/include -Wall -Wstrict-prototypes -O2 -c dl2k.c
1762 
1763 Read Documentation/networking/dl2k.txt for details.
1764 
1765 */
1766 
1767