xref: /openbmc/linux/drivers/net/ethernet/dlink/dl2k.c (revision 9b9c2cd4)
1 /*  D-Link DL2000-based Gigabit Ethernet Adapter Linux driver */
2 /*
3     Copyright (c) 2001, 2002 by D-Link Corporation
4     Written by Edward Peng.<edward_peng@dlink.com.tw>
5     Created 03-May-2001, base on Linux' sundance.c.
6 
7     This program is free software; you can redistribute it and/or modify
8     it under the terms of the GNU General Public License as published by
9     the Free Software Foundation; either version 2 of the License, or
10     (at your option) any later version.
11 */
12 
13 #define DRV_NAME	"DL2000/TC902x-based linux driver"
14 #define DRV_VERSION	"v1.19"
15 #define DRV_RELDATE	"2007/08/12"
16 #include "dl2k.h"
17 #include <linux/dma-mapping.h>
18 
19 #define dw32(reg, val)	iowrite32(val, ioaddr + (reg))
20 #define dw16(reg, val)	iowrite16(val, ioaddr + (reg))
21 #define dw8(reg, val)	iowrite8(val, ioaddr + (reg))
22 #define dr32(reg)	ioread32(ioaddr + (reg))
23 #define dr16(reg)	ioread16(ioaddr + (reg))
24 #define dr8(reg)	ioread8(ioaddr + (reg))
25 
26 static char version[] =
27       KERN_INFO DRV_NAME " " DRV_VERSION " " DRV_RELDATE "\n";
28 #define MAX_UNITS 8
29 static int mtu[MAX_UNITS];
30 static int vlan[MAX_UNITS];
31 static int jumbo[MAX_UNITS];
32 static char *media[MAX_UNITS];
33 static int tx_flow=-1;
34 static int rx_flow=-1;
35 static int copy_thresh;
36 static int rx_coalesce=10;	/* Rx frame count each interrupt */
37 static int rx_timeout=200;	/* Rx DMA wait time in 640ns increments */
38 static int tx_coalesce=16;	/* HW xmit count each TxDMAComplete */
39 
40 
41 MODULE_AUTHOR ("Edward Peng");
42 MODULE_DESCRIPTION ("D-Link DL2000-based Gigabit Ethernet Adapter");
43 MODULE_LICENSE("GPL");
44 module_param_array(mtu, int, NULL, 0);
45 module_param_array(media, charp, NULL, 0);
46 module_param_array(vlan, int, NULL, 0);
47 module_param_array(jumbo, int, NULL, 0);
48 module_param(tx_flow, int, 0);
49 module_param(rx_flow, int, 0);
50 module_param(copy_thresh, int, 0);
51 module_param(rx_coalesce, int, 0);	/* Rx frame count each interrupt */
52 module_param(rx_timeout, int, 0);	/* Rx DMA wait time in 64ns increments */
53 module_param(tx_coalesce, int, 0); /* HW xmit count each TxDMAComplete */
54 
55 
56 /* Enable the default interrupts */
57 #define DEFAULT_INTR (RxDMAComplete | HostError | IntRequested | TxDMAComplete| \
58        UpdateStats | LinkEvent)
59 
60 static void dl2k_enable_int(struct netdev_private *np)
61 {
62 	void __iomem *ioaddr = np->ioaddr;
63 
64 	dw16(IntEnable, DEFAULT_INTR);
65 }
66 
67 static const int max_intrloop = 50;
68 static const int multicast_filter_limit = 0x40;
69 
70 static int rio_open (struct net_device *dev);
71 static void rio_timer (unsigned long data);
72 static void rio_tx_timeout (struct net_device *dev);
73 static void alloc_list (struct net_device *dev);
74 static netdev_tx_t start_xmit (struct sk_buff *skb, struct net_device *dev);
75 static irqreturn_t rio_interrupt (int irq, void *dev_instance);
76 static void rio_free_tx (struct net_device *dev, int irq);
77 static void tx_error (struct net_device *dev, int tx_status);
78 static int receive_packet (struct net_device *dev);
79 static void rio_error (struct net_device *dev, int int_status);
80 static int change_mtu (struct net_device *dev, int new_mtu);
81 static void set_multicast (struct net_device *dev);
82 static struct net_device_stats *get_stats (struct net_device *dev);
83 static int clear_stats (struct net_device *dev);
84 static int rio_ioctl (struct net_device *dev, struct ifreq *rq, int cmd);
85 static int rio_close (struct net_device *dev);
86 static int find_miiphy (struct net_device *dev);
87 static int parse_eeprom (struct net_device *dev);
88 static int read_eeprom (struct netdev_private *, int eep_addr);
89 static int mii_wait_link (struct net_device *dev, int wait);
90 static int mii_set_media (struct net_device *dev);
91 static int mii_get_media (struct net_device *dev);
92 static int mii_set_media_pcs (struct net_device *dev);
93 static int mii_get_media_pcs (struct net_device *dev);
94 static int mii_read (struct net_device *dev, int phy_addr, int reg_num);
95 static int mii_write (struct net_device *dev, int phy_addr, int reg_num,
96 		      u16 data);
97 
98 static const struct ethtool_ops ethtool_ops;
99 
100 static const struct net_device_ops netdev_ops = {
101 	.ndo_open		= rio_open,
102 	.ndo_start_xmit	= start_xmit,
103 	.ndo_stop		= rio_close,
104 	.ndo_get_stats		= get_stats,
105 	.ndo_validate_addr	= eth_validate_addr,
106 	.ndo_set_mac_address 	= eth_mac_addr,
107 	.ndo_set_rx_mode	= set_multicast,
108 	.ndo_do_ioctl		= rio_ioctl,
109 	.ndo_tx_timeout		= rio_tx_timeout,
110 	.ndo_change_mtu		= change_mtu,
111 };
112 
113 static int
114 rio_probe1 (struct pci_dev *pdev, const struct pci_device_id *ent)
115 {
116 	struct net_device *dev;
117 	struct netdev_private *np;
118 	static int card_idx;
119 	int chip_idx = ent->driver_data;
120 	int err, irq;
121 	void __iomem *ioaddr;
122 	static int version_printed;
123 	void *ring_space;
124 	dma_addr_t ring_dma;
125 
126 	if (!version_printed++)
127 		printk ("%s", version);
128 
129 	err = pci_enable_device (pdev);
130 	if (err)
131 		return err;
132 
133 	irq = pdev->irq;
134 	err = pci_request_regions (pdev, "dl2k");
135 	if (err)
136 		goto err_out_disable;
137 
138 	pci_set_master (pdev);
139 
140 	err = -ENOMEM;
141 
142 	dev = alloc_etherdev (sizeof (*np));
143 	if (!dev)
144 		goto err_out_res;
145 	SET_NETDEV_DEV(dev, &pdev->dev);
146 
147 	np = netdev_priv(dev);
148 
149 	/* IO registers range. */
150 	ioaddr = pci_iomap(pdev, 0, 0);
151 	if (!ioaddr)
152 		goto err_out_dev;
153 	np->eeprom_addr = ioaddr;
154 
155 #ifdef MEM_MAPPING
156 	/* MM registers range. */
157 	ioaddr = pci_iomap(pdev, 1, 0);
158 	if (!ioaddr)
159 		goto err_out_iounmap;
160 #endif
161 	np->ioaddr = ioaddr;
162 	np->chip_id = chip_idx;
163 	np->pdev = pdev;
164 	spin_lock_init (&np->tx_lock);
165 	spin_lock_init (&np->rx_lock);
166 
167 	/* Parse manual configuration */
168 	np->an_enable = 1;
169 	np->tx_coalesce = 1;
170 	if (card_idx < MAX_UNITS) {
171 		if (media[card_idx] != NULL) {
172 			np->an_enable = 0;
173 			if (strcmp (media[card_idx], "auto") == 0 ||
174 			    strcmp (media[card_idx], "autosense") == 0 ||
175 			    strcmp (media[card_idx], "0") == 0 ) {
176 				np->an_enable = 2;
177 			} else if (strcmp (media[card_idx], "100mbps_fd") == 0 ||
178 			    strcmp (media[card_idx], "4") == 0) {
179 				np->speed = 100;
180 				np->full_duplex = 1;
181 			} else if (strcmp (media[card_idx], "100mbps_hd") == 0 ||
182 				   strcmp (media[card_idx], "3") == 0) {
183 				np->speed = 100;
184 				np->full_duplex = 0;
185 			} else if (strcmp (media[card_idx], "10mbps_fd") == 0 ||
186 				   strcmp (media[card_idx], "2") == 0) {
187 				np->speed = 10;
188 				np->full_duplex = 1;
189 			} else if (strcmp (media[card_idx], "10mbps_hd") == 0 ||
190 				   strcmp (media[card_idx], "1") == 0) {
191 				np->speed = 10;
192 				np->full_duplex = 0;
193 			} else if (strcmp (media[card_idx], "1000mbps_fd") == 0 ||
194 				 strcmp (media[card_idx], "6") == 0) {
195 				np->speed=1000;
196 				np->full_duplex=1;
197 			} else if (strcmp (media[card_idx], "1000mbps_hd") == 0 ||
198 				 strcmp (media[card_idx], "5") == 0) {
199 				np->speed = 1000;
200 				np->full_duplex = 0;
201 			} else {
202 				np->an_enable = 1;
203 			}
204 		}
205 		if (jumbo[card_idx] != 0) {
206 			np->jumbo = 1;
207 			dev->mtu = MAX_JUMBO;
208 		} else {
209 			np->jumbo = 0;
210 			if (mtu[card_idx] > 0 && mtu[card_idx] < PACKET_SIZE)
211 				dev->mtu = mtu[card_idx];
212 		}
213 		np->vlan = (vlan[card_idx] > 0 && vlan[card_idx] < 4096) ?
214 		    vlan[card_idx] : 0;
215 		if (rx_coalesce > 0 && rx_timeout > 0) {
216 			np->rx_coalesce = rx_coalesce;
217 			np->rx_timeout = rx_timeout;
218 			np->coalesce = 1;
219 		}
220 		np->tx_flow = (tx_flow == 0) ? 0 : 1;
221 		np->rx_flow = (rx_flow == 0) ? 0 : 1;
222 
223 		if (tx_coalesce < 1)
224 			tx_coalesce = 1;
225 		else if (tx_coalesce > TX_RING_SIZE-1)
226 			tx_coalesce = TX_RING_SIZE - 1;
227 	}
228 	dev->netdev_ops = &netdev_ops;
229 	dev->watchdog_timeo = TX_TIMEOUT;
230 	dev->ethtool_ops = &ethtool_ops;
231 #if 0
232 	dev->features = NETIF_F_IP_CSUM;
233 #endif
234 	pci_set_drvdata (pdev, dev);
235 
236 	ring_space = pci_alloc_consistent (pdev, TX_TOTAL_SIZE, &ring_dma);
237 	if (!ring_space)
238 		goto err_out_iounmap;
239 	np->tx_ring = ring_space;
240 	np->tx_ring_dma = ring_dma;
241 
242 	ring_space = pci_alloc_consistent (pdev, RX_TOTAL_SIZE, &ring_dma);
243 	if (!ring_space)
244 		goto err_out_unmap_tx;
245 	np->rx_ring = ring_space;
246 	np->rx_ring_dma = ring_dma;
247 
248 	/* Parse eeprom data */
249 	parse_eeprom (dev);
250 
251 	/* Find PHY address */
252 	err = find_miiphy (dev);
253 	if (err)
254 		goto err_out_unmap_rx;
255 
256 	if (np->chip_id == CHIP_IP1000A &&
257 	    (np->pdev->revision == 0x40 || np->pdev->revision == 0x41)) {
258 		/* PHY magic taken from ipg driver, undocumented registers */
259 		mii_write(dev, np->phy_addr, 31, 0x0001);
260 		mii_write(dev, np->phy_addr, 27, 0x01e0);
261 		mii_write(dev, np->phy_addr, 31, 0x0002);
262 		mii_write(dev, np->phy_addr, 27, 0xeb8e);
263 		mii_write(dev, np->phy_addr, 31, 0x0000);
264 		mii_write(dev, np->phy_addr, 30, 0x005e);
265 		/* advertise 1000BASE-T half & full duplex, prefer MASTER */
266 		mii_write(dev, np->phy_addr, MII_CTRL1000, 0x0700);
267 	}
268 
269 	/* Fiber device? */
270 	np->phy_media = (dr16(ASICCtrl) & PhyMedia) ? 1 : 0;
271 	np->link_status = 0;
272 	/* Set media and reset PHY */
273 	if (np->phy_media) {
274 		/* default Auto-Negotiation for fiber deivices */
275 	 	if (np->an_enable == 2) {
276 			np->an_enable = 1;
277 		}
278 		mii_set_media_pcs (dev);
279 	} else {
280 		/* Auto-Negotiation is mandatory for 1000BASE-T,
281 		   IEEE 802.3ab Annex 28D page 14 */
282 		if (np->speed == 1000)
283 			np->an_enable = 1;
284 		mii_set_media (dev);
285 	}
286 
287 	err = register_netdev (dev);
288 	if (err)
289 		goto err_out_unmap_rx;
290 
291 	card_idx++;
292 
293 	printk (KERN_INFO "%s: %s, %pM, IRQ %d\n",
294 		dev->name, np->name, dev->dev_addr, irq);
295 	if (tx_coalesce > 1)
296 		printk(KERN_INFO "tx_coalesce:\t%d packets\n",
297 				tx_coalesce);
298 	if (np->coalesce)
299 		printk(KERN_INFO
300 		       "rx_coalesce:\t%d packets\n"
301 		       "rx_timeout: \t%d ns\n",
302 				np->rx_coalesce, np->rx_timeout*640);
303 	if (np->vlan)
304 		printk(KERN_INFO "vlan(id):\t%d\n", np->vlan);
305 	return 0;
306 
307 err_out_unmap_rx:
308 	pci_free_consistent (pdev, RX_TOTAL_SIZE, np->rx_ring, np->rx_ring_dma);
309 err_out_unmap_tx:
310 	pci_free_consistent (pdev, TX_TOTAL_SIZE, np->tx_ring, np->tx_ring_dma);
311 err_out_iounmap:
312 #ifdef MEM_MAPPING
313 	pci_iounmap(pdev, np->ioaddr);
314 #endif
315 	pci_iounmap(pdev, np->eeprom_addr);
316 err_out_dev:
317 	free_netdev (dev);
318 err_out_res:
319 	pci_release_regions (pdev);
320 err_out_disable:
321 	pci_disable_device (pdev);
322 	return err;
323 }
324 
325 static int
326 find_miiphy (struct net_device *dev)
327 {
328 	struct netdev_private *np = netdev_priv(dev);
329 	int i, phy_found = 0;
330 	np = netdev_priv(dev);
331 	np->phy_addr = 1;
332 
333 	for (i = 31; i >= 0; i--) {
334 		int mii_status = mii_read (dev, i, 1);
335 		if (mii_status != 0xffff && mii_status != 0x0000) {
336 			np->phy_addr = i;
337 			phy_found++;
338 		}
339 	}
340 	if (!phy_found) {
341 		printk (KERN_ERR "%s: No MII PHY found!\n", dev->name);
342 		return -ENODEV;
343 	}
344 	return 0;
345 }
346 
347 static int
348 parse_eeprom (struct net_device *dev)
349 {
350 	struct netdev_private *np = netdev_priv(dev);
351 	void __iomem *ioaddr = np->ioaddr;
352 	int i, j;
353 	u8 sromdata[256];
354 	u8 *psib;
355 	u32 crc;
356 	PSROM_t psrom = (PSROM_t) sromdata;
357 
358 	int cid, next;
359 
360 	for (i = 0; i < 128; i++)
361 		((__le16 *) sromdata)[i] = cpu_to_le16(read_eeprom(np, i));
362 
363 	if (np->pdev->vendor == PCI_VENDOR_ID_DLINK) {	/* D-Link Only */
364 		/* Check CRC */
365 		crc = ~ether_crc_le (256 - 4, sromdata);
366 		if (psrom->crc != cpu_to_le32(crc)) {
367 			printk (KERN_ERR "%s: EEPROM data CRC error.\n",
368 					dev->name);
369 			return -1;
370 		}
371 	}
372 
373 	/* Set MAC address */
374 	for (i = 0; i < 6; i++)
375 		dev->dev_addr[i] = psrom->mac_addr[i];
376 
377 	if (np->chip_id == CHIP_IP1000A) {
378 		np->led_mode = psrom->led_mode;
379 		return 0;
380 	}
381 
382 	if (np->pdev->vendor != PCI_VENDOR_ID_DLINK) {
383 		return 0;
384 	}
385 
386 	/* Parse Software Information Block */
387 	i = 0x30;
388 	psib = (u8 *) sromdata;
389 	do {
390 		cid = psib[i++];
391 		next = psib[i++];
392 		if ((cid == 0 && next == 0) || (cid == 0xff && next == 0xff)) {
393 			printk (KERN_ERR "Cell data error\n");
394 			return -1;
395 		}
396 		switch (cid) {
397 		case 0:	/* Format version */
398 			break;
399 		case 1:	/* End of cell */
400 			return 0;
401 		case 2:	/* Duplex Polarity */
402 			np->duplex_polarity = psib[i];
403 			dw8(PhyCtrl, dr8(PhyCtrl) | psib[i]);
404 			break;
405 		case 3:	/* Wake Polarity */
406 			np->wake_polarity = psib[i];
407 			break;
408 		case 9:	/* Adapter description */
409 			j = (next - i > 255) ? 255 : next - i;
410 			memcpy (np->name, &(psib[i]), j);
411 			break;
412 		case 4:
413 		case 5:
414 		case 6:
415 		case 7:
416 		case 8:	/* Reversed */
417 			break;
418 		default:	/* Unknown cell */
419 			return -1;
420 		}
421 		i = next;
422 	} while (1);
423 
424 	return 0;
425 }
426 
427 static void rio_set_led_mode(struct net_device *dev)
428 {
429 	struct netdev_private *np = netdev_priv(dev);
430 	void __iomem *ioaddr = np->ioaddr;
431 	u32 mode;
432 
433 	if (np->chip_id != CHIP_IP1000A)
434 		return;
435 
436 	mode = dr32(ASICCtrl);
437 	mode &= ~(IPG_AC_LED_MODE_BIT_1 | IPG_AC_LED_MODE | IPG_AC_LED_SPEED);
438 
439 	if (np->led_mode & 0x01)
440 		mode |= IPG_AC_LED_MODE;
441 	if (np->led_mode & 0x02)
442 		mode |= IPG_AC_LED_MODE_BIT_1;
443 	if (np->led_mode & 0x08)
444 		mode |= IPG_AC_LED_SPEED;
445 
446 	dw32(ASICCtrl, mode);
447 }
448 
449 static int
450 rio_open (struct net_device *dev)
451 {
452 	struct netdev_private *np = netdev_priv(dev);
453 	void __iomem *ioaddr = np->ioaddr;
454 	const int irq = np->pdev->irq;
455 	int i;
456 	u16 macctrl;
457 
458 	i = request_irq(irq, rio_interrupt, IRQF_SHARED, dev->name, dev);
459 	if (i)
460 		return i;
461 
462 	/* Reset all logic functions */
463 	dw16(ASICCtrl + 2,
464 	     GlobalReset | DMAReset | FIFOReset | NetworkReset | HostReset);
465 	mdelay(10);
466 
467 	rio_set_led_mode(dev);
468 
469 	/* DebugCtrl bit 4, 5, 9 must set */
470 	dw32(DebugCtrl, dr32(DebugCtrl) | 0x0230);
471 
472 	/* Jumbo frame */
473 	if (np->jumbo != 0)
474 		dw16(MaxFrameSize, MAX_JUMBO+14);
475 
476 	alloc_list (dev);
477 
478 	/* Set station address */
479 	/* 16 or 32-bit access is required by TC9020 datasheet but 8-bit works
480 	 * too. However, it doesn't work on IP1000A so we use 16-bit access.
481 	 */
482 	for (i = 0; i < 3; i++)
483 		dw16(StationAddr0 + 2 * i,
484 		     cpu_to_le16(((u16 *)dev->dev_addr)[i]));
485 
486 	set_multicast (dev);
487 	if (np->coalesce) {
488 		dw32(RxDMAIntCtrl, np->rx_coalesce | np->rx_timeout << 16);
489 	}
490 	/* Set RIO to poll every N*320nsec. */
491 	dw8(RxDMAPollPeriod, 0x20);
492 	dw8(TxDMAPollPeriod, 0xff);
493 	dw8(RxDMABurstThresh, 0x30);
494 	dw8(RxDMAUrgentThresh, 0x30);
495 	dw32(RmonStatMask, 0x0007ffff);
496 	/* clear statistics */
497 	clear_stats (dev);
498 
499 	/* VLAN supported */
500 	if (np->vlan) {
501 		/* priority field in RxDMAIntCtrl  */
502 		dw32(RxDMAIntCtrl, dr32(RxDMAIntCtrl) | 0x7 << 10);
503 		/* VLANId */
504 		dw16(VLANId, np->vlan);
505 		/* Length/Type should be 0x8100 */
506 		dw32(VLANTag, 0x8100 << 16 | np->vlan);
507 		/* Enable AutoVLANuntagging, but disable AutoVLANtagging.
508 		   VLAN information tagged by TFC' VID, CFI fields. */
509 		dw32(MACCtrl, dr32(MACCtrl) | AutoVLANuntagging);
510 	}
511 
512 	setup_timer(&np->timer, rio_timer, (unsigned long)dev);
513 	np->timer.expires = jiffies + 1*HZ;
514 	add_timer (&np->timer);
515 
516 	/* Start Tx/Rx */
517 	dw32(MACCtrl, dr32(MACCtrl) | StatsEnable | RxEnable | TxEnable);
518 
519 	macctrl = 0;
520 	macctrl |= (np->vlan) ? AutoVLANuntagging : 0;
521 	macctrl |= (np->full_duplex) ? DuplexSelect : 0;
522 	macctrl |= (np->tx_flow) ? TxFlowControlEnable : 0;
523 	macctrl |= (np->rx_flow) ? RxFlowControlEnable : 0;
524 	dw16(MACCtrl, macctrl);
525 
526 	netif_start_queue (dev);
527 
528 	dl2k_enable_int(np);
529 	return 0;
530 }
531 
532 static void
533 rio_timer (unsigned long data)
534 {
535 	struct net_device *dev = (struct net_device *)data;
536 	struct netdev_private *np = netdev_priv(dev);
537 	unsigned int entry;
538 	int next_tick = 1*HZ;
539 	unsigned long flags;
540 
541 	spin_lock_irqsave(&np->rx_lock, flags);
542 	/* Recover rx ring exhausted error */
543 	if (np->cur_rx - np->old_rx >= RX_RING_SIZE) {
544 		printk(KERN_INFO "Try to recover rx ring exhausted...\n");
545 		/* Re-allocate skbuffs to fill the descriptor ring */
546 		for (; np->cur_rx - np->old_rx > 0; np->old_rx++) {
547 			struct sk_buff *skb;
548 			entry = np->old_rx % RX_RING_SIZE;
549 			/* Dropped packets don't need to re-allocate */
550 			if (np->rx_skbuff[entry] == NULL) {
551 				skb = netdev_alloc_skb_ip_align(dev,
552 								np->rx_buf_sz);
553 				if (skb == NULL) {
554 					np->rx_ring[entry].fraginfo = 0;
555 					printk (KERN_INFO
556 						"%s: Still unable to re-allocate Rx skbuff.#%d\n",
557 						dev->name, entry);
558 					break;
559 				}
560 				np->rx_skbuff[entry] = skb;
561 				np->rx_ring[entry].fraginfo =
562 				    cpu_to_le64 (pci_map_single
563 					 (np->pdev, skb->data, np->rx_buf_sz,
564 					  PCI_DMA_FROMDEVICE));
565 			}
566 			np->rx_ring[entry].fraginfo |=
567 			    cpu_to_le64((u64)np->rx_buf_sz << 48);
568 			np->rx_ring[entry].status = 0;
569 		} /* end for */
570 	} /* end if */
571 	spin_unlock_irqrestore (&np->rx_lock, flags);
572 	np->timer.expires = jiffies + next_tick;
573 	add_timer(&np->timer);
574 }
575 
576 static void
577 rio_tx_timeout (struct net_device *dev)
578 {
579 	struct netdev_private *np = netdev_priv(dev);
580 	void __iomem *ioaddr = np->ioaddr;
581 
582 	printk (KERN_INFO "%s: Tx timed out (%4.4x), is buffer full?\n",
583 		dev->name, dr32(TxStatus));
584 	rio_free_tx(dev, 0);
585 	dev->if_port = 0;
586 	dev->trans_start = jiffies; /* prevent tx timeout */
587 }
588 
589  /* allocate and initialize Tx and Rx descriptors */
590 static void
591 alloc_list (struct net_device *dev)
592 {
593 	struct netdev_private *np = netdev_priv(dev);
594 	void __iomem *ioaddr = np->ioaddr;
595 	int i;
596 
597 	np->cur_rx = np->cur_tx = 0;
598 	np->old_rx = np->old_tx = 0;
599 	np->rx_buf_sz = (dev->mtu <= 1500 ? PACKET_SIZE : dev->mtu + 32);
600 
601 	/* Initialize Tx descriptors, TFDListPtr leaves in start_xmit(). */
602 	for (i = 0; i < TX_RING_SIZE; i++) {
603 		np->tx_skbuff[i] = NULL;
604 		np->tx_ring[i].status = cpu_to_le64 (TFDDone);
605 		np->tx_ring[i].next_desc = cpu_to_le64 (np->tx_ring_dma +
606 					      ((i+1)%TX_RING_SIZE) *
607 					      sizeof (struct netdev_desc));
608 	}
609 
610 	/* Initialize Rx descriptors */
611 	for (i = 0; i < RX_RING_SIZE; i++) {
612 		np->rx_ring[i].next_desc = cpu_to_le64 (np->rx_ring_dma +
613 						((i + 1) % RX_RING_SIZE) *
614 						sizeof (struct netdev_desc));
615 		np->rx_ring[i].status = 0;
616 		np->rx_ring[i].fraginfo = 0;
617 		np->rx_skbuff[i] = NULL;
618 	}
619 
620 	/* Allocate the rx buffers */
621 	for (i = 0; i < RX_RING_SIZE; i++) {
622 		/* Allocated fixed size of skbuff */
623 		struct sk_buff *skb;
624 
625 		skb = netdev_alloc_skb_ip_align(dev, np->rx_buf_sz);
626 		np->rx_skbuff[i] = skb;
627 		if (skb == NULL)
628 			break;
629 
630 		/* Rubicon now supports 40 bits of addressing space. */
631 		np->rx_ring[i].fraginfo =
632 		    cpu_to_le64 ( pci_map_single (
633 			 	  np->pdev, skb->data, np->rx_buf_sz,
634 				  PCI_DMA_FROMDEVICE));
635 		np->rx_ring[i].fraginfo |= cpu_to_le64((u64)np->rx_buf_sz << 48);
636 	}
637 
638 	/* Set RFDListPtr */
639 	dw32(RFDListPtr0, np->rx_ring_dma);
640 	dw32(RFDListPtr1, 0);
641 }
642 
643 static netdev_tx_t
644 start_xmit (struct sk_buff *skb, struct net_device *dev)
645 {
646 	struct netdev_private *np = netdev_priv(dev);
647 	void __iomem *ioaddr = np->ioaddr;
648 	struct netdev_desc *txdesc;
649 	unsigned entry;
650 	u64 tfc_vlan_tag = 0;
651 
652 	if (np->link_status == 0) {	/* Link Down */
653 		dev_kfree_skb(skb);
654 		return NETDEV_TX_OK;
655 	}
656 	entry = np->cur_tx % TX_RING_SIZE;
657 	np->tx_skbuff[entry] = skb;
658 	txdesc = &np->tx_ring[entry];
659 
660 #if 0
661 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
662 		txdesc->status |=
663 		    cpu_to_le64 (TCPChecksumEnable | UDPChecksumEnable |
664 				 IPChecksumEnable);
665 	}
666 #endif
667 	if (np->vlan) {
668 		tfc_vlan_tag = VLANTagInsert |
669 		    ((u64)np->vlan << 32) |
670 		    ((u64)skb->priority << 45);
671 	}
672 	txdesc->fraginfo = cpu_to_le64 (pci_map_single (np->pdev, skb->data,
673 							skb->len,
674 							PCI_DMA_TODEVICE));
675 	txdesc->fraginfo |= cpu_to_le64((u64)skb->len << 48);
676 
677 	/* DL2K bug: DMA fails to get next descriptor ptr in 10Mbps mode
678 	 * Work around: Always use 1 descriptor in 10Mbps mode */
679 	if (entry % np->tx_coalesce == 0 || np->speed == 10)
680 		txdesc->status = cpu_to_le64 (entry | tfc_vlan_tag |
681 					      WordAlignDisable |
682 					      TxDMAIndicate |
683 					      (1 << FragCountShift));
684 	else
685 		txdesc->status = cpu_to_le64 (entry | tfc_vlan_tag |
686 					      WordAlignDisable |
687 					      (1 << FragCountShift));
688 
689 	/* TxDMAPollNow */
690 	dw32(DMACtrl, dr32(DMACtrl) | 0x00001000);
691 	/* Schedule ISR */
692 	dw32(CountDown, 10000);
693 	np->cur_tx = (np->cur_tx + 1) % TX_RING_SIZE;
694 	if ((np->cur_tx - np->old_tx + TX_RING_SIZE) % TX_RING_SIZE
695 			< TX_QUEUE_LEN - 1 && np->speed != 10) {
696 		/* do nothing */
697 	} else if (!netif_queue_stopped(dev)) {
698 		netif_stop_queue (dev);
699 	}
700 
701 	/* The first TFDListPtr */
702 	if (!dr32(TFDListPtr0)) {
703 		dw32(TFDListPtr0, np->tx_ring_dma +
704 		     entry * sizeof (struct netdev_desc));
705 		dw32(TFDListPtr1, 0);
706 	}
707 
708 	return NETDEV_TX_OK;
709 }
710 
711 static irqreturn_t
712 rio_interrupt (int irq, void *dev_instance)
713 {
714 	struct net_device *dev = dev_instance;
715 	struct netdev_private *np = netdev_priv(dev);
716 	void __iomem *ioaddr = np->ioaddr;
717 	unsigned int_status;
718 	int cnt = max_intrloop;
719 	int handled = 0;
720 
721 	while (1) {
722 		int_status = dr16(IntStatus);
723 		dw16(IntStatus, int_status);
724 		int_status &= DEFAULT_INTR;
725 		if (int_status == 0 || --cnt < 0)
726 			break;
727 		handled = 1;
728 		/* Processing received packets */
729 		if (int_status & RxDMAComplete)
730 			receive_packet (dev);
731 		/* TxDMAComplete interrupt */
732 		if ((int_status & (TxDMAComplete|IntRequested))) {
733 			int tx_status;
734 			tx_status = dr32(TxStatus);
735 			if (tx_status & 0x01)
736 				tx_error (dev, tx_status);
737 			/* Free used tx skbuffs */
738 			rio_free_tx (dev, 1);
739 		}
740 
741 		/* Handle uncommon events */
742 		if (int_status &
743 		    (HostError | LinkEvent | UpdateStats))
744 			rio_error (dev, int_status);
745 	}
746 	if (np->cur_tx != np->old_tx)
747 		dw32(CountDown, 100);
748 	return IRQ_RETVAL(handled);
749 }
750 
751 static inline dma_addr_t desc_to_dma(struct netdev_desc *desc)
752 {
753 	return le64_to_cpu(desc->fraginfo) & DMA_BIT_MASK(48);
754 }
755 
756 static void
757 rio_free_tx (struct net_device *dev, int irq)
758 {
759 	struct netdev_private *np = netdev_priv(dev);
760 	int entry = np->old_tx % TX_RING_SIZE;
761 	int tx_use = 0;
762 	unsigned long flag = 0;
763 
764 	if (irq)
765 		spin_lock(&np->tx_lock);
766 	else
767 		spin_lock_irqsave(&np->tx_lock, flag);
768 
769 	/* Free used tx skbuffs */
770 	while (entry != np->cur_tx) {
771 		struct sk_buff *skb;
772 
773 		if (!(np->tx_ring[entry].status & cpu_to_le64(TFDDone)))
774 			break;
775 		skb = np->tx_skbuff[entry];
776 		pci_unmap_single (np->pdev,
777 				  desc_to_dma(&np->tx_ring[entry]),
778 				  skb->len, PCI_DMA_TODEVICE);
779 		if (irq)
780 			dev_kfree_skb_irq (skb);
781 		else
782 			dev_kfree_skb (skb);
783 
784 		np->tx_skbuff[entry] = NULL;
785 		entry = (entry + 1) % TX_RING_SIZE;
786 		tx_use++;
787 	}
788 	if (irq)
789 		spin_unlock(&np->tx_lock);
790 	else
791 		spin_unlock_irqrestore(&np->tx_lock, flag);
792 	np->old_tx = entry;
793 
794 	/* If the ring is no longer full, clear tx_full and
795 	   call netif_wake_queue() */
796 
797 	if (netif_queue_stopped(dev) &&
798 	    ((np->cur_tx - np->old_tx + TX_RING_SIZE) % TX_RING_SIZE
799 	    < TX_QUEUE_LEN - 1 || np->speed == 10)) {
800 		netif_wake_queue (dev);
801 	}
802 }
803 
804 static void
805 tx_error (struct net_device *dev, int tx_status)
806 {
807 	struct netdev_private *np = netdev_priv(dev);
808 	void __iomem *ioaddr = np->ioaddr;
809 	int frame_id;
810 	int i;
811 
812 	frame_id = (tx_status & 0xffff0000);
813 	printk (KERN_ERR "%s: Transmit error, TxStatus %4.4x, FrameId %d.\n",
814 		dev->name, tx_status, frame_id);
815 	np->stats.tx_errors++;
816 	/* Ttransmit Underrun */
817 	if (tx_status & 0x10) {
818 		np->stats.tx_fifo_errors++;
819 		dw16(TxStartThresh, dr16(TxStartThresh) + 0x10);
820 		/* Transmit Underrun need to set TxReset, DMARest, FIFOReset */
821 		dw16(ASICCtrl + 2,
822 		     TxReset | DMAReset | FIFOReset | NetworkReset);
823 		/* Wait for ResetBusy bit clear */
824 		for (i = 50; i > 0; i--) {
825 			if (!(dr16(ASICCtrl + 2) & ResetBusy))
826 				break;
827 			mdelay (1);
828 		}
829 		rio_set_led_mode(dev);
830 		rio_free_tx (dev, 1);
831 		/* Reset TFDListPtr */
832 		dw32(TFDListPtr0, np->tx_ring_dma +
833 		     np->old_tx * sizeof (struct netdev_desc));
834 		dw32(TFDListPtr1, 0);
835 
836 		/* Let TxStartThresh stay default value */
837 	}
838 	/* Late Collision */
839 	if (tx_status & 0x04) {
840 		np->stats.tx_fifo_errors++;
841 		/* TxReset and clear FIFO */
842 		dw16(ASICCtrl + 2, TxReset | FIFOReset);
843 		/* Wait reset done */
844 		for (i = 50; i > 0; i--) {
845 			if (!(dr16(ASICCtrl + 2) & ResetBusy))
846 				break;
847 			mdelay (1);
848 		}
849 		rio_set_led_mode(dev);
850 		/* Let TxStartThresh stay default value */
851 	}
852 	/* Maximum Collisions */
853 #ifdef ETHER_STATS
854 	if (tx_status & 0x08)
855 		np->stats.collisions16++;
856 #else
857 	if (tx_status & 0x08)
858 		np->stats.collisions++;
859 #endif
860 	/* Restart the Tx */
861 	dw32(MACCtrl, dr16(MACCtrl) | TxEnable);
862 }
863 
864 static int
865 receive_packet (struct net_device *dev)
866 {
867 	struct netdev_private *np = netdev_priv(dev);
868 	int entry = np->cur_rx % RX_RING_SIZE;
869 	int cnt = 30;
870 
871 	/* If RFDDone, FrameStart and FrameEnd set, there is a new packet in. */
872 	while (1) {
873 		struct netdev_desc *desc = &np->rx_ring[entry];
874 		int pkt_len;
875 		u64 frame_status;
876 
877 		if (!(desc->status & cpu_to_le64(RFDDone)) ||
878 		    !(desc->status & cpu_to_le64(FrameStart)) ||
879 		    !(desc->status & cpu_to_le64(FrameEnd)))
880 			break;
881 
882 		/* Chip omits the CRC. */
883 		frame_status = le64_to_cpu(desc->status);
884 		pkt_len = frame_status & 0xffff;
885 		if (--cnt < 0)
886 			break;
887 		/* Update rx error statistics, drop packet. */
888 		if (frame_status & RFS_Errors) {
889 			np->stats.rx_errors++;
890 			if (frame_status & (RxRuntFrame | RxLengthError))
891 				np->stats.rx_length_errors++;
892 			if (frame_status & RxFCSError)
893 				np->stats.rx_crc_errors++;
894 			if (frame_status & RxAlignmentError && np->speed != 1000)
895 				np->stats.rx_frame_errors++;
896 			if (frame_status & RxFIFOOverrun)
897 	 			np->stats.rx_fifo_errors++;
898 		} else {
899 			struct sk_buff *skb;
900 
901 			/* Small skbuffs for short packets */
902 			if (pkt_len > copy_thresh) {
903 				pci_unmap_single (np->pdev,
904 						  desc_to_dma(desc),
905 						  np->rx_buf_sz,
906 						  PCI_DMA_FROMDEVICE);
907 				skb_put (skb = np->rx_skbuff[entry], pkt_len);
908 				np->rx_skbuff[entry] = NULL;
909 			} else if ((skb = netdev_alloc_skb_ip_align(dev, pkt_len))) {
910 				pci_dma_sync_single_for_cpu(np->pdev,
911 							    desc_to_dma(desc),
912 							    np->rx_buf_sz,
913 							    PCI_DMA_FROMDEVICE);
914 				skb_copy_to_linear_data (skb,
915 						  np->rx_skbuff[entry]->data,
916 						  pkt_len);
917 				skb_put (skb, pkt_len);
918 				pci_dma_sync_single_for_device(np->pdev,
919 							       desc_to_dma(desc),
920 							       np->rx_buf_sz,
921 							       PCI_DMA_FROMDEVICE);
922 			}
923 			skb->protocol = eth_type_trans (skb, dev);
924 #if 0
925 			/* Checksum done by hw, but csum value unavailable. */
926 			if (np->pdev->pci_rev_id >= 0x0c &&
927 				!(frame_status & (TCPError | UDPError | IPError))) {
928 				skb->ip_summed = CHECKSUM_UNNECESSARY;
929 			}
930 #endif
931 			netif_rx (skb);
932 		}
933 		entry = (entry + 1) % RX_RING_SIZE;
934 	}
935 	spin_lock(&np->rx_lock);
936 	np->cur_rx = entry;
937 	/* Re-allocate skbuffs to fill the descriptor ring */
938 	entry = np->old_rx;
939 	while (entry != np->cur_rx) {
940 		struct sk_buff *skb;
941 		/* Dropped packets don't need to re-allocate */
942 		if (np->rx_skbuff[entry] == NULL) {
943 			skb = netdev_alloc_skb_ip_align(dev, np->rx_buf_sz);
944 			if (skb == NULL) {
945 				np->rx_ring[entry].fraginfo = 0;
946 				printk (KERN_INFO
947 					"%s: receive_packet: "
948 					"Unable to re-allocate Rx skbuff.#%d\n",
949 					dev->name, entry);
950 				break;
951 			}
952 			np->rx_skbuff[entry] = skb;
953 			np->rx_ring[entry].fraginfo =
954 			    cpu_to_le64 (pci_map_single
955 					 (np->pdev, skb->data, np->rx_buf_sz,
956 					  PCI_DMA_FROMDEVICE));
957 		}
958 		np->rx_ring[entry].fraginfo |=
959 		    cpu_to_le64((u64)np->rx_buf_sz << 48);
960 		np->rx_ring[entry].status = 0;
961 		entry = (entry + 1) % RX_RING_SIZE;
962 	}
963 	np->old_rx = entry;
964 	spin_unlock(&np->rx_lock);
965 	return 0;
966 }
967 
968 static void
969 rio_error (struct net_device *dev, int int_status)
970 {
971 	struct netdev_private *np = netdev_priv(dev);
972 	void __iomem *ioaddr = np->ioaddr;
973 	u16 macctrl;
974 
975 	/* Link change event */
976 	if (int_status & LinkEvent) {
977 		if (mii_wait_link (dev, 10) == 0) {
978 			printk (KERN_INFO "%s: Link up\n", dev->name);
979 			if (np->phy_media)
980 				mii_get_media_pcs (dev);
981 			else
982 				mii_get_media (dev);
983 			if (np->speed == 1000)
984 				np->tx_coalesce = tx_coalesce;
985 			else
986 				np->tx_coalesce = 1;
987 			macctrl = 0;
988 			macctrl |= (np->vlan) ? AutoVLANuntagging : 0;
989 			macctrl |= (np->full_duplex) ? DuplexSelect : 0;
990 			macctrl |= (np->tx_flow) ?
991 				TxFlowControlEnable : 0;
992 			macctrl |= (np->rx_flow) ?
993 				RxFlowControlEnable : 0;
994 			dw16(MACCtrl, macctrl);
995 			np->link_status = 1;
996 			netif_carrier_on(dev);
997 		} else {
998 			printk (KERN_INFO "%s: Link off\n", dev->name);
999 			np->link_status = 0;
1000 			netif_carrier_off(dev);
1001 		}
1002 	}
1003 
1004 	/* UpdateStats statistics registers */
1005 	if (int_status & UpdateStats) {
1006 		get_stats (dev);
1007 	}
1008 
1009 	/* PCI Error, a catastronphic error related to the bus interface
1010 	   occurs, set GlobalReset and HostReset to reset. */
1011 	if (int_status & HostError) {
1012 		printk (KERN_ERR "%s: HostError! IntStatus %4.4x.\n",
1013 			dev->name, int_status);
1014 		dw16(ASICCtrl + 2, GlobalReset | HostReset);
1015 		mdelay (500);
1016 		rio_set_led_mode(dev);
1017 	}
1018 }
1019 
1020 static struct net_device_stats *
1021 get_stats (struct net_device *dev)
1022 {
1023 	struct netdev_private *np = netdev_priv(dev);
1024 	void __iomem *ioaddr = np->ioaddr;
1025 #ifdef MEM_MAPPING
1026 	int i;
1027 #endif
1028 	unsigned int stat_reg;
1029 
1030 	/* All statistics registers need to be acknowledged,
1031 	   else statistic overflow could cause problems */
1032 
1033 	np->stats.rx_packets += dr32(FramesRcvOk);
1034 	np->stats.tx_packets += dr32(FramesXmtOk);
1035 	np->stats.rx_bytes += dr32(OctetRcvOk);
1036 	np->stats.tx_bytes += dr32(OctetXmtOk);
1037 
1038 	np->stats.multicast = dr32(McstFramesRcvdOk);
1039 	np->stats.collisions += dr32(SingleColFrames)
1040 			     +  dr32(MultiColFrames);
1041 
1042 	/* detailed tx errors */
1043 	stat_reg = dr16(FramesAbortXSColls);
1044 	np->stats.tx_aborted_errors += stat_reg;
1045 	np->stats.tx_errors += stat_reg;
1046 
1047 	stat_reg = dr16(CarrierSenseErrors);
1048 	np->stats.tx_carrier_errors += stat_reg;
1049 	np->stats.tx_errors += stat_reg;
1050 
1051 	/* Clear all other statistic register. */
1052 	dr32(McstOctetXmtOk);
1053 	dr16(BcstFramesXmtdOk);
1054 	dr32(McstFramesXmtdOk);
1055 	dr16(BcstFramesRcvdOk);
1056 	dr16(MacControlFramesRcvd);
1057 	dr16(FrameTooLongErrors);
1058 	dr16(InRangeLengthErrors);
1059 	dr16(FramesCheckSeqErrors);
1060 	dr16(FramesLostRxErrors);
1061 	dr32(McstOctetXmtOk);
1062 	dr32(BcstOctetXmtOk);
1063 	dr32(McstFramesXmtdOk);
1064 	dr32(FramesWDeferredXmt);
1065 	dr32(LateCollisions);
1066 	dr16(BcstFramesXmtdOk);
1067 	dr16(MacControlFramesXmtd);
1068 	dr16(FramesWEXDeferal);
1069 
1070 #ifdef MEM_MAPPING
1071 	for (i = 0x100; i <= 0x150; i += 4)
1072 		dr32(i);
1073 #endif
1074 	dr16(TxJumboFrames);
1075 	dr16(RxJumboFrames);
1076 	dr16(TCPCheckSumErrors);
1077 	dr16(UDPCheckSumErrors);
1078 	dr16(IPCheckSumErrors);
1079 	return &np->stats;
1080 }
1081 
1082 static int
1083 clear_stats (struct net_device *dev)
1084 {
1085 	struct netdev_private *np = netdev_priv(dev);
1086 	void __iomem *ioaddr = np->ioaddr;
1087 #ifdef MEM_MAPPING
1088 	int i;
1089 #endif
1090 
1091 	/* All statistics registers need to be acknowledged,
1092 	   else statistic overflow could cause problems */
1093 	dr32(FramesRcvOk);
1094 	dr32(FramesXmtOk);
1095 	dr32(OctetRcvOk);
1096 	dr32(OctetXmtOk);
1097 
1098 	dr32(McstFramesRcvdOk);
1099 	dr32(SingleColFrames);
1100 	dr32(MultiColFrames);
1101 	dr32(LateCollisions);
1102 	/* detailed rx errors */
1103 	dr16(FrameTooLongErrors);
1104 	dr16(InRangeLengthErrors);
1105 	dr16(FramesCheckSeqErrors);
1106 	dr16(FramesLostRxErrors);
1107 
1108 	/* detailed tx errors */
1109 	dr16(FramesAbortXSColls);
1110 	dr16(CarrierSenseErrors);
1111 
1112 	/* Clear all other statistic register. */
1113 	dr32(McstOctetXmtOk);
1114 	dr16(BcstFramesXmtdOk);
1115 	dr32(McstFramesXmtdOk);
1116 	dr16(BcstFramesRcvdOk);
1117 	dr16(MacControlFramesRcvd);
1118 	dr32(McstOctetXmtOk);
1119 	dr32(BcstOctetXmtOk);
1120 	dr32(McstFramesXmtdOk);
1121 	dr32(FramesWDeferredXmt);
1122 	dr16(BcstFramesXmtdOk);
1123 	dr16(MacControlFramesXmtd);
1124 	dr16(FramesWEXDeferal);
1125 #ifdef MEM_MAPPING
1126 	for (i = 0x100; i <= 0x150; i += 4)
1127 		dr32(i);
1128 #endif
1129 	dr16(TxJumboFrames);
1130 	dr16(RxJumboFrames);
1131 	dr16(TCPCheckSumErrors);
1132 	dr16(UDPCheckSumErrors);
1133 	dr16(IPCheckSumErrors);
1134 	return 0;
1135 }
1136 
1137 
1138 static int
1139 change_mtu (struct net_device *dev, int new_mtu)
1140 {
1141 	struct netdev_private *np = netdev_priv(dev);
1142 	int max = (np->jumbo) ? MAX_JUMBO : 1536;
1143 
1144 	if ((new_mtu < 68) || (new_mtu > max)) {
1145 		return -EINVAL;
1146 	}
1147 
1148 	dev->mtu = new_mtu;
1149 
1150 	return 0;
1151 }
1152 
1153 static void
1154 set_multicast (struct net_device *dev)
1155 {
1156 	struct netdev_private *np = netdev_priv(dev);
1157 	void __iomem *ioaddr = np->ioaddr;
1158 	u32 hash_table[2];
1159 	u16 rx_mode = 0;
1160 
1161 	hash_table[0] = hash_table[1] = 0;
1162 	/* RxFlowcontrol DA: 01-80-C2-00-00-01. Hash index=0x39 */
1163 	hash_table[1] |= 0x02000000;
1164 	if (dev->flags & IFF_PROMISC) {
1165 		/* Receive all frames promiscuously. */
1166 		rx_mode = ReceiveAllFrames;
1167 	} else if ((dev->flags & IFF_ALLMULTI) ||
1168 			(netdev_mc_count(dev) > multicast_filter_limit)) {
1169 		/* Receive broadcast and multicast frames */
1170 		rx_mode = ReceiveBroadcast | ReceiveMulticast | ReceiveUnicast;
1171 	} else if (!netdev_mc_empty(dev)) {
1172 		struct netdev_hw_addr *ha;
1173 		/* Receive broadcast frames and multicast frames filtering
1174 		   by Hashtable */
1175 		rx_mode =
1176 		    ReceiveBroadcast | ReceiveMulticastHash | ReceiveUnicast;
1177 		netdev_for_each_mc_addr(ha, dev) {
1178 			int bit, index = 0;
1179 			int crc = ether_crc_le(ETH_ALEN, ha->addr);
1180 			/* The inverted high significant 6 bits of CRC are
1181 			   used as an index to hashtable */
1182 			for (bit = 0; bit < 6; bit++)
1183 				if (crc & (1 << (31 - bit)))
1184 					index |= (1 << bit);
1185 			hash_table[index / 32] |= (1 << (index % 32));
1186 		}
1187 	} else {
1188 		rx_mode = ReceiveBroadcast | ReceiveUnicast;
1189 	}
1190 	if (np->vlan) {
1191 		/* ReceiveVLANMatch field in ReceiveMode */
1192 		rx_mode |= ReceiveVLANMatch;
1193 	}
1194 
1195 	dw32(HashTable0, hash_table[0]);
1196 	dw32(HashTable1, hash_table[1]);
1197 	dw16(ReceiveMode, rx_mode);
1198 }
1199 
1200 static void rio_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1201 {
1202 	struct netdev_private *np = netdev_priv(dev);
1203 
1204 	strlcpy(info->driver, "dl2k", sizeof(info->driver));
1205 	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1206 	strlcpy(info->bus_info, pci_name(np->pdev), sizeof(info->bus_info));
1207 }
1208 
1209 static int rio_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1210 {
1211 	struct netdev_private *np = netdev_priv(dev);
1212 	if (np->phy_media) {
1213 		/* fiber device */
1214 		cmd->supported = SUPPORTED_Autoneg | SUPPORTED_FIBRE;
1215 		cmd->advertising= ADVERTISED_Autoneg | ADVERTISED_FIBRE;
1216 		cmd->port = PORT_FIBRE;
1217 		cmd->transceiver = XCVR_INTERNAL;
1218 	} else {
1219 		/* copper device */
1220 		cmd->supported = SUPPORTED_10baseT_Half |
1221 			SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Half
1222 			| SUPPORTED_100baseT_Full | SUPPORTED_1000baseT_Full |
1223 			SUPPORTED_Autoneg | SUPPORTED_MII;
1224 		cmd->advertising = ADVERTISED_10baseT_Half |
1225 			ADVERTISED_10baseT_Full | ADVERTISED_100baseT_Half |
1226 			ADVERTISED_100baseT_Full | ADVERTISED_1000baseT_Full|
1227 			ADVERTISED_Autoneg | ADVERTISED_MII;
1228 		cmd->port = PORT_MII;
1229 		cmd->transceiver = XCVR_INTERNAL;
1230 	}
1231 	if ( np->link_status ) {
1232 		ethtool_cmd_speed_set(cmd, np->speed);
1233 		cmd->duplex = np->full_duplex ? DUPLEX_FULL : DUPLEX_HALF;
1234 	} else {
1235 		ethtool_cmd_speed_set(cmd, SPEED_UNKNOWN);
1236 		cmd->duplex = DUPLEX_UNKNOWN;
1237 	}
1238 	if ( np->an_enable)
1239 		cmd->autoneg = AUTONEG_ENABLE;
1240 	else
1241 		cmd->autoneg = AUTONEG_DISABLE;
1242 
1243 	cmd->phy_address = np->phy_addr;
1244 	return 0;
1245 }
1246 
1247 static int rio_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1248 {
1249 	struct netdev_private *np = netdev_priv(dev);
1250 	netif_carrier_off(dev);
1251 	if (cmd->autoneg == AUTONEG_ENABLE) {
1252 		if (np->an_enable)
1253 			return 0;
1254 		else {
1255 			np->an_enable = 1;
1256 			mii_set_media(dev);
1257 			return 0;
1258 		}
1259 	} else {
1260 		np->an_enable = 0;
1261 		if (np->speed == 1000) {
1262 			ethtool_cmd_speed_set(cmd, SPEED_100);
1263 			cmd->duplex = DUPLEX_FULL;
1264 			printk("Warning!! Can't disable Auto negotiation in 1000Mbps, change to Manual 100Mbps, Full duplex.\n");
1265 		}
1266 		switch (ethtool_cmd_speed(cmd)) {
1267 		case SPEED_10:
1268 			np->speed = 10;
1269 			np->full_duplex = (cmd->duplex == DUPLEX_FULL);
1270 			break;
1271 		case SPEED_100:
1272 			np->speed = 100;
1273 			np->full_duplex = (cmd->duplex == DUPLEX_FULL);
1274 			break;
1275 		case SPEED_1000: /* not supported */
1276 		default:
1277 			return -EINVAL;
1278 		}
1279 		mii_set_media(dev);
1280 	}
1281 	return 0;
1282 }
1283 
1284 static u32 rio_get_link(struct net_device *dev)
1285 {
1286 	struct netdev_private *np = netdev_priv(dev);
1287 	return np->link_status;
1288 }
1289 
1290 static const struct ethtool_ops ethtool_ops = {
1291 	.get_drvinfo = rio_get_drvinfo,
1292 	.get_settings = rio_get_settings,
1293 	.set_settings = rio_set_settings,
1294 	.get_link = rio_get_link,
1295 };
1296 
1297 static int
1298 rio_ioctl (struct net_device *dev, struct ifreq *rq, int cmd)
1299 {
1300 	int phy_addr;
1301 	struct netdev_private *np = netdev_priv(dev);
1302 	struct mii_ioctl_data *miidata = if_mii(rq);
1303 
1304 	phy_addr = np->phy_addr;
1305 	switch (cmd) {
1306 	case SIOCGMIIPHY:
1307 		miidata->phy_id = phy_addr;
1308 		break;
1309 	case SIOCGMIIREG:
1310 		miidata->val_out = mii_read (dev, phy_addr, miidata->reg_num);
1311 		break;
1312 	case SIOCSMIIREG:
1313 		if (!capable(CAP_NET_ADMIN))
1314 			return -EPERM;
1315 		mii_write (dev, phy_addr, miidata->reg_num, miidata->val_in);
1316 		break;
1317 	default:
1318 		return -EOPNOTSUPP;
1319 	}
1320 	return 0;
1321 }
1322 
1323 #define EEP_READ 0x0200
1324 #define EEP_BUSY 0x8000
1325 /* Read the EEPROM word */
1326 /* We use I/O instruction to read/write eeprom to avoid fail on some machines */
1327 static int read_eeprom(struct netdev_private *np, int eep_addr)
1328 {
1329 	void __iomem *ioaddr = np->eeprom_addr;
1330 	int i = 1000;
1331 
1332 	dw16(EepromCtrl, EEP_READ | (eep_addr & 0xff));
1333 	while (i-- > 0) {
1334 		if (!(dr16(EepromCtrl) & EEP_BUSY))
1335 			return dr16(EepromData);
1336 	}
1337 	return 0;
1338 }
1339 
1340 enum phy_ctrl_bits {
1341 	MII_READ = 0x00, MII_CLK = 0x01, MII_DATA1 = 0x02, MII_WRITE = 0x04,
1342 	MII_DUPLEX = 0x08,
1343 };
1344 
1345 #define mii_delay() dr8(PhyCtrl)
1346 static void
1347 mii_sendbit (struct net_device *dev, u32 data)
1348 {
1349 	struct netdev_private *np = netdev_priv(dev);
1350 	void __iomem *ioaddr = np->ioaddr;
1351 
1352 	data = ((data) ? MII_DATA1 : 0) | (dr8(PhyCtrl) & 0xf8) | MII_WRITE;
1353 	dw8(PhyCtrl, data);
1354 	mii_delay ();
1355 	dw8(PhyCtrl, data | MII_CLK);
1356 	mii_delay ();
1357 }
1358 
1359 static int
1360 mii_getbit (struct net_device *dev)
1361 {
1362 	struct netdev_private *np = netdev_priv(dev);
1363 	void __iomem *ioaddr = np->ioaddr;
1364 	u8 data;
1365 
1366 	data = (dr8(PhyCtrl) & 0xf8) | MII_READ;
1367 	dw8(PhyCtrl, data);
1368 	mii_delay ();
1369 	dw8(PhyCtrl, data | MII_CLK);
1370 	mii_delay ();
1371 	return (dr8(PhyCtrl) >> 1) & 1;
1372 }
1373 
1374 static void
1375 mii_send_bits (struct net_device *dev, u32 data, int len)
1376 {
1377 	int i;
1378 
1379 	for (i = len - 1; i >= 0; i--) {
1380 		mii_sendbit (dev, data & (1 << i));
1381 	}
1382 }
1383 
1384 static int
1385 mii_read (struct net_device *dev, int phy_addr, int reg_num)
1386 {
1387 	u32 cmd;
1388 	int i;
1389 	u32 retval = 0;
1390 
1391 	/* Preamble */
1392 	mii_send_bits (dev, 0xffffffff, 32);
1393 	/* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1394 	/* ST,OP = 0110'b for read operation */
1395 	cmd = (0x06 << 10 | phy_addr << 5 | reg_num);
1396 	mii_send_bits (dev, cmd, 14);
1397 	/* Turnaround */
1398 	if (mii_getbit (dev))
1399 		goto err_out;
1400 	/* Read data */
1401 	for (i = 0; i < 16; i++) {
1402 		retval |= mii_getbit (dev);
1403 		retval <<= 1;
1404 	}
1405 	/* End cycle */
1406 	mii_getbit (dev);
1407 	return (retval >> 1) & 0xffff;
1408 
1409       err_out:
1410 	return 0;
1411 }
1412 static int
1413 mii_write (struct net_device *dev, int phy_addr, int reg_num, u16 data)
1414 {
1415 	u32 cmd;
1416 
1417 	/* Preamble */
1418 	mii_send_bits (dev, 0xffffffff, 32);
1419 	/* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1420 	/* ST,OP,AAAAA,RRRRR,TA = 0101xxxxxxxxxx10'b = 0x5002 for write */
1421 	cmd = (0x5002 << 16) | (phy_addr << 23) | (reg_num << 18) | data;
1422 	mii_send_bits (dev, cmd, 32);
1423 	/* End cycle */
1424 	mii_getbit (dev);
1425 	return 0;
1426 }
1427 static int
1428 mii_wait_link (struct net_device *dev, int wait)
1429 {
1430 	__u16 bmsr;
1431 	int phy_addr;
1432 	struct netdev_private *np;
1433 
1434 	np = netdev_priv(dev);
1435 	phy_addr = np->phy_addr;
1436 
1437 	do {
1438 		bmsr = mii_read (dev, phy_addr, MII_BMSR);
1439 		if (bmsr & BMSR_LSTATUS)
1440 			return 0;
1441 		mdelay (1);
1442 	} while (--wait > 0);
1443 	return -1;
1444 }
1445 static int
1446 mii_get_media (struct net_device *dev)
1447 {
1448 	__u16 negotiate;
1449 	__u16 bmsr;
1450 	__u16 mscr;
1451 	__u16 mssr;
1452 	int phy_addr;
1453 	struct netdev_private *np;
1454 
1455 	np = netdev_priv(dev);
1456 	phy_addr = np->phy_addr;
1457 
1458 	bmsr = mii_read (dev, phy_addr, MII_BMSR);
1459 	if (np->an_enable) {
1460 		if (!(bmsr & BMSR_ANEGCOMPLETE)) {
1461 			/* Auto-Negotiation not completed */
1462 			return -1;
1463 		}
1464 		negotiate = mii_read (dev, phy_addr, MII_ADVERTISE) &
1465 			mii_read (dev, phy_addr, MII_LPA);
1466 		mscr = mii_read (dev, phy_addr, MII_CTRL1000);
1467 		mssr = mii_read (dev, phy_addr, MII_STAT1000);
1468 		if (mscr & ADVERTISE_1000FULL && mssr & LPA_1000FULL) {
1469 			np->speed = 1000;
1470 			np->full_duplex = 1;
1471 			printk (KERN_INFO "Auto 1000 Mbps, Full duplex\n");
1472 		} else if (mscr & ADVERTISE_1000HALF && mssr & LPA_1000HALF) {
1473 			np->speed = 1000;
1474 			np->full_duplex = 0;
1475 			printk (KERN_INFO "Auto 1000 Mbps, Half duplex\n");
1476 		} else if (negotiate & ADVERTISE_100FULL) {
1477 			np->speed = 100;
1478 			np->full_duplex = 1;
1479 			printk (KERN_INFO "Auto 100 Mbps, Full duplex\n");
1480 		} else if (negotiate & ADVERTISE_100HALF) {
1481 			np->speed = 100;
1482 			np->full_duplex = 0;
1483 			printk (KERN_INFO "Auto 100 Mbps, Half duplex\n");
1484 		} else if (negotiate & ADVERTISE_10FULL) {
1485 			np->speed = 10;
1486 			np->full_duplex = 1;
1487 			printk (KERN_INFO "Auto 10 Mbps, Full duplex\n");
1488 		} else if (negotiate & ADVERTISE_10HALF) {
1489 			np->speed = 10;
1490 			np->full_duplex = 0;
1491 			printk (KERN_INFO "Auto 10 Mbps, Half duplex\n");
1492 		}
1493 		if (negotiate & ADVERTISE_PAUSE_CAP) {
1494 			np->tx_flow &= 1;
1495 			np->rx_flow &= 1;
1496 		} else if (negotiate & ADVERTISE_PAUSE_ASYM) {
1497 			np->tx_flow = 0;
1498 			np->rx_flow &= 1;
1499 		}
1500 		/* else tx_flow, rx_flow = user select  */
1501 	} else {
1502 		__u16 bmcr = mii_read (dev, phy_addr, MII_BMCR);
1503 		switch (bmcr & (BMCR_SPEED100 | BMCR_SPEED1000)) {
1504 		case BMCR_SPEED1000:
1505 			printk (KERN_INFO "Operating at 1000 Mbps, ");
1506 			break;
1507 		case BMCR_SPEED100:
1508 			printk (KERN_INFO "Operating at 100 Mbps, ");
1509 			break;
1510 		case 0:
1511 			printk (KERN_INFO "Operating at 10 Mbps, ");
1512 		}
1513 		if (bmcr & BMCR_FULLDPLX) {
1514 			printk (KERN_CONT "Full duplex\n");
1515 		} else {
1516 			printk (KERN_CONT "Half duplex\n");
1517 		}
1518 	}
1519 	if (np->tx_flow)
1520 		printk(KERN_INFO "Enable Tx Flow Control\n");
1521 	else
1522 		printk(KERN_INFO "Disable Tx Flow Control\n");
1523 	if (np->rx_flow)
1524 		printk(KERN_INFO "Enable Rx Flow Control\n");
1525 	else
1526 		printk(KERN_INFO "Disable Rx Flow Control\n");
1527 
1528 	return 0;
1529 }
1530 
1531 static int
1532 mii_set_media (struct net_device *dev)
1533 {
1534 	__u16 pscr;
1535 	__u16 bmcr;
1536 	__u16 bmsr;
1537 	__u16 anar;
1538 	int phy_addr;
1539 	struct netdev_private *np;
1540 	np = netdev_priv(dev);
1541 	phy_addr = np->phy_addr;
1542 
1543 	/* Does user set speed? */
1544 	if (np->an_enable) {
1545 		/* Advertise capabilities */
1546 		bmsr = mii_read (dev, phy_addr, MII_BMSR);
1547 		anar = mii_read (dev, phy_addr, MII_ADVERTISE) &
1548 			~(ADVERTISE_100FULL | ADVERTISE_10FULL |
1549 			  ADVERTISE_100HALF | ADVERTISE_10HALF |
1550 			  ADVERTISE_100BASE4);
1551 		if (bmsr & BMSR_100FULL)
1552 			anar |= ADVERTISE_100FULL;
1553 		if (bmsr & BMSR_100HALF)
1554 			anar |= ADVERTISE_100HALF;
1555 		if (bmsr & BMSR_100BASE4)
1556 			anar |= ADVERTISE_100BASE4;
1557 		if (bmsr & BMSR_10FULL)
1558 			anar |= ADVERTISE_10FULL;
1559 		if (bmsr & BMSR_10HALF)
1560 			anar |= ADVERTISE_10HALF;
1561 		anar |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
1562 		mii_write (dev, phy_addr, MII_ADVERTISE, anar);
1563 
1564 		/* Enable Auto crossover */
1565 		pscr = mii_read (dev, phy_addr, MII_PHY_SCR);
1566 		pscr |= 3 << 5;	/* 11'b */
1567 		mii_write (dev, phy_addr, MII_PHY_SCR, pscr);
1568 
1569 		/* Soft reset PHY */
1570 		mii_write (dev, phy_addr, MII_BMCR, BMCR_RESET);
1571 		bmcr = BMCR_ANENABLE | BMCR_ANRESTART | BMCR_RESET;
1572 		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1573 		mdelay(1);
1574 	} else {
1575 		/* Force speed setting */
1576 		/* 1) Disable Auto crossover */
1577 		pscr = mii_read (dev, phy_addr, MII_PHY_SCR);
1578 		pscr &= ~(3 << 5);
1579 		mii_write (dev, phy_addr, MII_PHY_SCR, pscr);
1580 
1581 		/* 2) PHY Reset */
1582 		bmcr = mii_read (dev, phy_addr, MII_BMCR);
1583 		bmcr |= BMCR_RESET;
1584 		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1585 
1586 		/* 3) Power Down */
1587 		bmcr = 0x1940;	/* must be 0x1940 */
1588 		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1589 		mdelay (100);	/* wait a certain time */
1590 
1591 		/* 4) Advertise nothing */
1592 		mii_write (dev, phy_addr, MII_ADVERTISE, 0);
1593 
1594 		/* 5) Set media and Power Up */
1595 		bmcr = BMCR_PDOWN;
1596 		if (np->speed == 100) {
1597 			bmcr |= BMCR_SPEED100;
1598 			printk (KERN_INFO "Manual 100 Mbps, ");
1599 		} else if (np->speed == 10) {
1600 			printk (KERN_INFO "Manual 10 Mbps, ");
1601 		}
1602 		if (np->full_duplex) {
1603 			bmcr |= BMCR_FULLDPLX;
1604 			printk (KERN_CONT "Full duplex\n");
1605 		} else {
1606 			printk (KERN_CONT "Half duplex\n");
1607 		}
1608 #if 0
1609 		/* Set 1000BaseT Master/Slave setting */
1610 		mscr = mii_read (dev, phy_addr, MII_CTRL1000);
1611 		mscr |= MII_MSCR_CFG_ENABLE;
1612 		mscr &= ~MII_MSCR_CFG_VALUE = 0;
1613 #endif
1614 		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1615 		mdelay(10);
1616 	}
1617 	return 0;
1618 }
1619 
1620 static int
1621 mii_get_media_pcs (struct net_device *dev)
1622 {
1623 	__u16 negotiate;
1624 	__u16 bmsr;
1625 	int phy_addr;
1626 	struct netdev_private *np;
1627 
1628 	np = netdev_priv(dev);
1629 	phy_addr = np->phy_addr;
1630 
1631 	bmsr = mii_read (dev, phy_addr, PCS_BMSR);
1632 	if (np->an_enable) {
1633 		if (!(bmsr & BMSR_ANEGCOMPLETE)) {
1634 			/* Auto-Negotiation not completed */
1635 			return -1;
1636 		}
1637 		negotiate = mii_read (dev, phy_addr, PCS_ANAR) &
1638 			mii_read (dev, phy_addr, PCS_ANLPAR);
1639 		np->speed = 1000;
1640 		if (negotiate & PCS_ANAR_FULL_DUPLEX) {
1641 			printk (KERN_INFO "Auto 1000 Mbps, Full duplex\n");
1642 			np->full_duplex = 1;
1643 		} else {
1644 			printk (KERN_INFO "Auto 1000 Mbps, half duplex\n");
1645 			np->full_duplex = 0;
1646 		}
1647 		if (negotiate & PCS_ANAR_PAUSE) {
1648 			np->tx_flow &= 1;
1649 			np->rx_flow &= 1;
1650 		} else if (negotiate & PCS_ANAR_ASYMMETRIC) {
1651 			np->tx_flow = 0;
1652 			np->rx_flow &= 1;
1653 		}
1654 		/* else tx_flow, rx_flow = user select  */
1655 	} else {
1656 		__u16 bmcr = mii_read (dev, phy_addr, PCS_BMCR);
1657 		printk (KERN_INFO "Operating at 1000 Mbps, ");
1658 		if (bmcr & BMCR_FULLDPLX) {
1659 			printk (KERN_CONT "Full duplex\n");
1660 		} else {
1661 			printk (KERN_CONT "Half duplex\n");
1662 		}
1663 	}
1664 	if (np->tx_flow)
1665 		printk(KERN_INFO "Enable Tx Flow Control\n");
1666 	else
1667 		printk(KERN_INFO "Disable Tx Flow Control\n");
1668 	if (np->rx_flow)
1669 		printk(KERN_INFO "Enable Rx Flow Control\n");
1670 	else
1671 		printk(KERN_INFO "Disable Rx Flow Control\n");
1672 
1673 	return 0;
1674 }
1675 
1676 static int
1677 mii_set_media_pcs (struct net_device *dev)
1678 {
1679 	__u16 bmcr;
1680 	__u16 esr;
1681 	__u16 anar;
1682 	int phy_addr;
1683 	struct netdev_private *np;
1684 	np = netdev_priv(dev);
1685 	phy_addr = np->phy_addr;
1686 
1687 	/* Auto-Negotiation? */
1688 	if (np->an_enable) {
1689 		/* Advertise capabilities */
1690 		esr = mii_read (dev, phy_addr, PCS_ESR);
1691 		anar = mii_read (dev, phy_addr, MII_ADVERTISE) &
1692 			~PCS_ANAR_HALF_DUPLEX &
1693 			~PCS_ANAR_FULL_DUPLEX;
1694 		if (esr & (MII_ESR_1000BT_HD | MII_ESR_1000BX_HD))
1695 			anar |= PCS_ANAR_HALF_DUPLEX;
1696 		if (esr & (MII_ESR_1000BT_FD | MII_ESR_1000BX_FD))
1697 			anar |= PCS_ANAR_FULL_DUPLEX;
1698 		anar |= PCS_ANAR_PAUSE | PCS_ANAR_ASYMMETRIC;
1699 		mii_write (dev, phy_addr, MII_ADVERTISE, anar);
1700 
1701 		/* Soft reset PHY */
1702 		mii_write (dev, phy_addr, MII_BMCR, BMCR_RESET);
1703 		bmcr = BMCR_ANENABLE | BMCR_ANRESTART | BMCR_RESET;
1704 		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1705 		mdelay(1);
1706 	} else {
1707 		/* Force speed setting */
1708 		/* PHY Reset */
1709 		bmcr = BMCR_RESET;
1710 		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1711 		mdelay(10);
1712 		if (np->full_duplex) {
1713 			bmcr = BMCR_FULLDPLX;
1714 			printk (KERN_INFO "Manual full duplex\n");
1715 		} else {
1716 			bmcr = 0;
1717 			printk (KERN_INFO "Manual half duplex\n");
1718 		}
1719 		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1720 		mdelay(10);
1721 
1722 		/*  Advertise nothing */
1723 		mii_write (dev, phy_addr, MII_ADVERTISE, 0);
1724 	}
1725 	return 0;
1726 }
1727 
1728 
1729 static int
1730 rio_close (struct net_device *dev)
1731 {
1732 	struct netdev_private *np = netdev_priv(dev);
1733 	void __iomem *ioaddr = np->ioaddr;
1734 
1735 	struct pci_dev *pdev = np->pdev;
1736 	struct sk_buff *skb;
1737 	int i;
1738 
1739 	netif_stop_queue (dev);
1740 
1741 	/* Disable interrupts */
1742 	dw16(IntEnable, 0);
1743 
1744 	/* Stop Tx and Rx logics */
1745 	dw32(MACCtrl, TxDisable | RxDisable | StatsDisable);
1746 
1747 	free_irq(pdev->irq, dev);
1748 	del_timer_sync (&np->timer);
1749 
1750 	/* Free all the skbuffs in the queue. */
1751 	for (i = 0; i < RX_RING_SIZE; i++) {
1752 		skb = np->rx_skbuff[i];
1753 		if (skb) {
1754 			pci_unmap_single(pdev, desc_to_dma(&np->rx_ring[i]),
1755 					 skb->len, PCI_DMA_FROMDEVICE);
1756 			dev_kfree_skb (skb);
1757 			np->rx_skbuff[i] = NULL;
1758 		}
1759 		np->rx_ring[i].status = 0;
1760 		np->rx_ring[i].fraginfo = 0;
1761 	}
1762 	for (i = 0; i < TX_RING_SIZE; i++) {
1763 		skb = np->tx_skbuff[i];
1764 		if (skb) {
1765 			pci_unmap_single(pdev, desc_to_dma(&np->tx_ring[i]),
1766 					 skb->len, PCI_DMA_TODEVICE);
1767 			dev_kfree_skb (skb);
1768 			np->tx_skbuff[i] = NULL;
1769 		}
1770 	}
1771 
1772 	return 0;
1773 }
1774 
1775 static void
1776 rio_remove1 (struct pci_dev *pdev)
1777 {
1778 	struct net_device *dev = pci_get_drvdata (pdev);
1779 
1780 	if (dev) {
1781 		struct netdev_private *np = netdev_priv(dev);
1782 
1783 		unregister_netdev (dev);
1784 		pci_free_consistent (pdev, RX_TOTAL_SIZE, np->rx_ring,
1785 				     np->rx_ring_dma);
1786 		pci_free_consistent (pdev, TX_TOTAL_SIZE, np->tx_ring,
1787 				     np->tx_ring_dma);
1788 #ifdef MEM_MAPPING
1789 		pci_iounmap(pdev, np->ioaddr);
1790 #endif
1791 		pci_iounmap(pdev, np->eeprom_addr);
1792 		free_netdev (dev);
1793 		pci_release_regions (pdev);
1794 		pci_disable_device (pdev);
1795 	}
1796 }
1797 
1798 static struct pci_driver rio_driver = {
1799 	.name		= "dl2k",
1800 	.id_table	= rio_pci_tbl,
1801 	.probe		= rio_probe1,
1802 	.remove		= rio_remove1,
1803 };
1804 
1805 module_pci_driver(rio_driver);
1806 /*
1807 
1808 Compile command:
1809 
1810 gcc -D__KERNEL__ -DMODULE -I/usr/src/linux/include -Wall -Wstrict-prototypes -O2 -c dl2k.c
1811 
1812 Read Documentation/networking/dl2k.txt for details.
1813 
1814 */
1815 
1816