1 /* D-Link DL2000-based Gigabit Ethernet Adapter Linux driver */ 2 /* 3 Copyright (c) 2001, 2002 by D-Link Corporation 4 Written by Edward Peng.<edward_peng@dlink.com.tw> 5 Created 03-May-2001, base on Linux' sundance.c. 6 7 This program is free software; you can redistribute it and/or modify 8 it under the terms of the GNU General Public License as published by 9 the Free Software Foundation; either version 2 of the License, or 10 (at your option) any later version. 11 */ 12 13 #define DRV_NAME "DL2000/TC902x-based linux driver" 14 #define DRV_VERSION "v1.19" 15 #define DRV_RELDATE "2007/08/12" 16 #include "dl2k.h" 17 #include <linux/dma-mapping.h> 18 19 static char version[] __devinitdata = 20 KERN_INFO DRV_NAME " " DRV_VERSION " " DRV_RELDATE "\n"; 21 #define MAX_UNITS 8 22 static int mtu[MAX_UNITS]; 23 static int vlan[MAX_UNITS]; 24 static int jumbo[MAX_UNITS]; 25 static char *media[MAX_UNITS]; 26 static int tx_flow=-1; 27 static int rx_flow=-1; 28 static int copy_thresh; 29 static int rx_coalesce=10; /* Rx frame count each interrupt */ 30 static int rx_timeout=200; /* Rx DMA wait time in 640ns increments */ 31 static int tx_coalesce=16; /* HW xmit count each TxDMAComplete */ 32 33 34 MODULE_AUTHOR ("Edward Peng"); 35 MODULE_DESCRIPTION ("D-Link DL2000-based Gigabit Ethernet Adapter"); 36 MODULE_LICENSE("GPL"); 37 module_param_array(mtu, int, NULL, 0); 38 module_param_array(media, charp, NULL, 0); 39 module_param_array(vlan, int, NULL, 0); 40 module_param_array(jumbo, int, NULL, 0); 41 module_param(tx_flow, int, 0); 42 module_param(rx_flow, int, 0); 43 module_param(copy_thresh, int, 0); 44 module_param(rx_coalesce, int, 0); /* Rx frame count each interrupt */ 45 module_param(rx_timeout, int, 0); /* Rx DMA wait time in 64ns increments */ 46 module_param(tx_coalesce, int, 0); /* HW xmit count each TxDMAComplete */ 47 48 49 /* Enable the default interrupts */ 50 #define DEFAULT_INTR (RxDMAComplete | HostError | IntRequested | TxDMAComplete| \ 51 UpdateStats | LinkEvent) 52 #define EnableInt() \ 53 writew(DEFAULT_INTR, ioaddr + IntEnable) 54 55 static const int max_intrloop = 50; 56 static const int multicast_filter_limit = 0x40; 57 58 static int rio_open (struct net_device *dev); 59 static void rio_timer (unsigned long data); 60 static void rio_tx_timeout (struct net_device *dev); 61 static void alloc_list (struct net_device *dev); 62 static netdev_tx_t start_xmit (struct sk_buff *skb, struct net_device *dev); 63 static irqreturn_t rio_interrupt (int irq, void *dev_instance); 64 static void rio_free_tx (struct net_device *dev, int irq); 65 static void tx_error (struct net_device *dev, int tx_status); 66 static int receive_packet (struct net_device *dev); 67 static void rio_error (struct net_device *dev, int int_status); 68 static int change_mtu (struct net_device *dev, int new_mtu); 69 static void set_multicast (struct net_device *dev); 70 static struct net_device_stats *get_stats (struct net_device *dev); 71 static int clear_stats (struct net_device *dev); 72 static int rio_ioctl (struct net_device *dev, struct ifreq *rq, int cmd); 73 static int rio_close (struct net_device *dev); 74 static int find_miiphy (struct net_device *dev); 75 static int parse_eeprom (struct net_device *dev); 76 static int read_eeprom (long ioaddr, int eep_addr); 77 static int mii_wait_link (struct net_device *dev, int wait); 78 static int mii_set_media (struct net_device *dev); 79 static int mii_get_media (struct net_device *dev); 80 static int mii_set_media_pcs (struct net_device *dev); 81 static int mii_get_media_pcs (struct net_device *dev); 82 static int mii_read (struct net_device *dev, int phy_addr, int reg_num); 83 static int mii_write (struct net_device *dev, int phy_addr, int reg_num, 84 u16 data); 85 86 static const struct ethtool_ops ethtool_ops; 87 88 static const struct net_device_ops netdev_ops = { 89 .ndo_open = rio_open, 90 .ndo_start_xmit = start_xmit, 91 .ndo_stop = rio_close, 92 .ndo_get_stats = get_stats, 93 .ndo_validate_addr = eth_validate_addr, 94 .ndo_set_mac_address = eth_mac_addr, 95 .ndo_set_rx_mode = set_multicast, 96 .ndo_do_ioctl = rio_ioctl, 97 .ndo_tx_timeout = rio_tx_timeout, 98 .ndo_change_mtu = change_mtu, 99 }; 100 101 static int __devinit 102 rio_probe1 (struct pci_dev *pdev, const struct pci_device_id *ent) 103 { 104 struct net_device *dev; 105 struct netdev_private *np; 106 static int card_idx; 107 int chip_idx = ent->driver_data; 108 int err, irq; 109 long ioaddr; 110 static int version_printed; 111 void *ring_space; 112 dma_addr_t ring_dma; 113 114 if (!version_printed++) 115 printk ("%s", version); 116 117 err = pci_enable_device (pdev); 118 if (err) 119 return err; 120 121 irq = pdev->irq; 122 err = pci_request_regions (pdev, "dl2k"); 123 if (err) 124 goto err_out_disable; 125 126 pci_set_master (pdev); 127 dev = alloc_etherdev (sizeof (*np)); 128 if (!dev) { 129 err = -ENOMEM; 130 goto err_out_res; 131 } 132 SET_NETDEV_DEV(dev, &pdev->dev); 133 134 #ifdef MEM_MAPPING 135 ioaddr = pci_resource_start (pdev, 1); 136 ioaddr = (long) ioremap (ioaddr, RIO_IO_SIZE); 137 if (!ioaddr) { 138 err = -ENOMEM; 139 goto err_out_dev; 140 } 141 #else 142 ioaddr = pci_resource_start (pdev, 0); 143 #endif 144 dev->base_addr = ioaddr; 145 dev->irq = irq; 146 np = netdev_priv(dev); 147 np->chip_id = chip_idx; 148 np->pdev = pdev; 149 spin_lock_init (&np->tx_lock); 150 spin_lock_init (&np->rx_lock); 151 152 /* Parse manual configuration */ 153 np->an_enable = 1; 154 np->tx_coalesce = 1; 155 if (card_idx < MAX_UNITS) { 156 if (media[card_idx] != NULL) { 157 np->an_enable = 0; 158 if (strcmp (media[card_idx], "auto") == 0 || 159 strcmp (media[card_idx], "autosense") == 0 || 160 strcmp (media[card_idx], "0") == 0 ) { 161 np->an_enable = 2; 162 } else if (strcmp (media[card_idx], "100mbps_fd") == 0 || 163 strcmp (media[card_idx], "4") == 0) { 164 np->speed = 100; 165 np->full_duplex = 1; 166 } else if (strcmp (media[card_idx], "100mbps_hd") == 0 || 167 strcmp (media[card_idx], "3") == 0) { 168 np->speed = 100; 169 np->full_duplex = 0; 170 } else if (strcmp (media[card_idx], "10mbps_fd") == 0 || 171 strcmp (media[card_idx], "2") == 0) { 172 np->speed = 10; 173 np->full_duplex = 1; 174 } else if (strcmp (media[card_idx], "10mbps_hd") == 0 || 175 strcmp (media[card_idx], "1") == 0) { 176 np->speed = 10; 177 np->full_duplex = 0; 178 } else if (strcmp (media[card_idx], "1000mbps_fd") == 0 || 179 strcmp (media[card_idx], "6") == 0) { 180 np->speed=1000; 181 np->full_duplex=1; 182 } else if (strcmp (media[card_idx], "1000mbps_hd") == 0 || 183 strcmp (media[card_idx], "5") == 0) { 184 np->speed = 1000; 185 np->full_duplex = 0; 186 } else { 187 np->an_enable = 1; 188 } 189 } 190 if (jumbo[card_idx] != 0) { 191 np->jumbo = 1; 192 dev->mtu = MAX_JUMBO; 193 } else { 194 np->jumbo = 0; 195 if (mtu[card_idx] > 0 && mtu[card_idx] < PACKET_SIZE) 196 dev->mtu = mtu[card_idx]; 197 } 198 np->vlan = (vlan[card_idx] > 0 && vlan[card_idx] < 4096) ? 199 vlan[card_idx] : 0; 200 if (rx_coalesce > 0 && rx_timeout > 0) { 201 np->rx_coalesce = rx_coalesce; 202 np->rx_timeout = rx_timeout; 203 np->coalesce = 1; 204 } 205 np->tx_flow = (tx_flow == 0) ? 0 : 1; 206 np->rx_flow = (rx_flow == 0) ? 0 : 1; 207 208 if (tx_coalesce < 1) 209 tx_coalesce = 1; 210 else if (tx_coalesce > TX_RING_SIZE-1) 211 tx_coalesce = TX_RING_SIZE - 1; 212 } 213 dev->netdev_ops = &netdev_ops; 214 dev->watchdog_timeo = TX_TIMEOUT; 215 SET_ETHTOOL_OPS(dev, ðtool_ops); 216 #if 0 217 dev->features = NETIF_F_IP_CSUM; 218 #endif 219 pci_set_drvdata (pdev, dev); 220 221 ring_space = pci_alloc_consistent (pdev, TX_TOTAL_SIZE, &ring_dma); 222 if (!ring_space) 223 goto err_out_iounmap; 224 np->tx_ring = ring_space; 225 np->tx_ring_dma = ring_dma; 226 227 ring_space = pci_alloc_consistent (pdev, RX_TOTAL_SIZE, &ring_dma); 228 if (!ring_space) 229 goto err_out_unmap_tx; 230 np->rx_ring = ring_space; 231 np->rx_ring_dma = ring_dma; 232 233 /* Parse eeprom data */ 234 parse_eeprom (dev); 235 236 /* Find PHY address */ 237 err = find_miiphy (dev); 238 if (err) 239 goto err_out_unmap_rx; 240 241 /* Fiber device? */ 242 np->phy_media = (readw(ioaddr + ASICCtrl) & PhyMedia) ? 1 : 0; 243 np->link_status = 0; 244 /* Set media and reset PHY */ 245 if (np->phy_media) { 246 /* default Auto-Negotiation for fiber deivices */ 247 if (np->an_enable == 2) { 248 np->an_enable = 1; 249 } 250 mii_set_media_pcs (dev); 251 } else { 252 /* Auto-Negotiation is mandatory for 1000BASE-T, 253 IEEE 802.3ab Annex 28D page 14 */ 254 if (np->speed == 1000) 255 np->an_enable = 1; 256 mii_set_media (dev); 257 } 258 259 err = register_netdev (dev); 260 if (err) 261 goto err_out_unmap_rx; 262 263 card_idx++; 264 265 printk (KERN_INFO "%s: %s, %pM, IRQ %d\n", 266 dev->name, np->name, dev->dev_addr, irq); 267 if (tx_coalesce > 1) 268 printk(KERN_INFO "tx_coalesce:\t%d packets\n", 269 tx_coalesce); 270 if (np->coalesce) 271 printk(KERN_INFO 272 "rx_coalesce:\t%d packets\n" 273 "rx_timeout: \t%d ns\n", 274 np->rx_coalesce, np->rx_timeout*640); 275 if (np->vlan) 276 printk(KERN_INFO "vlan(id):\t%d\n", np->vlan); 277 return 0; 278 279 err_out_unmap_rx: 280 pci_free_consistent (pdev, RX_TOTAL_SIZE, np->rx_ring, np->rx_ring_dma); 281 err_out_unmap_tx: 282 pci_free_consistent (pdev, TX_TOTAL_SIZE, np->tx_ring, np->tx_ring_dma); 283 err_out_iounmap: 284 #ifdef MEM_MAPPING 285 iounmap ((void *) ioaddr); 286 287 err_out_dev: 288 #endif 289 free_netdev (dev); 290 291 err_out_res: 292 pci_release_regions (pdev); 293 294 err_out_disable: 295 pci_disable_device (pdev); 296 return err; 297 } 298 299 static int 300 find_miiphy (struct net_device *dev) 301 { 302 int i, phy_found = 0; 303 struct netdev_private *np; 304 long ioaddr; 305 np = netdev_priv(dev); 306 ioaddr = dev->base_addr; 307 np->phy_addr = 1; 308 309 for (i = 31; i >= 0; i--) { 310 int mii_status = mii_read (dev, i, 1); 311 if (mii_status != 0xffff && mii_status != 0x0000) { 312 np->phy_addr = i; 313 phy_found++; 314 } 315 } 316 if (!phy_found) { 317 printk (KERN_ERR "%s: No MII PHY found!\n", dev->name); 318 return -ENODEV; 319 } 320 return 0; 321 } 322 323 static int 324 parse_eeprom (struct net_device *dev) 325 { 326 int i, j; 327 long ioaddr = dev->base_addr; 328 u8 sromdata[256]; 329 u8 *psib; 330 u32 crc; 331 PSROM_t psrom = (PSROM_t) sromdata; 332 struct netdev_private *np = netdev_priv(dev); 333 334 int cid, next; 335 336 #ifdef MEM_MAPPING 337 ioaddr = pci_resource_start (np->pdev, 0); 338 #endif 339 /* Read eeprom */ 340 for (i = 0; i < 128; i++) { 341 ((__le16 *) sromdata)[i] = cpu_to_le16(read_eeprom (ioaddr, i)); 342 } 343 #ifdef MEM_MAPPING 344 ioaddr = dev->base_addr; 345 #endif 346 if (np->pdev->vendor == PCI_VENDOR_ID_DLINK) { /* D-Link Only */ 347 /* Check CRC */ 348 crc = ~ether_crc_le (256 - 4, sromdata); 349 if (psrom->crc != cpu_to_le32(crc)) { 350 printk (KERN_ERR "%s: EEPROM data CRC error.\n", 351 dev->name); 352 return -1; 353 } 354 } 355 356 /* Set MAC address */ 357 for (i = 0; i < 6; i++) 358 dev->dev_addr[i] = psrom->mac_addr[i]; 359 360 if (np->pdev->vendor != PCI_VENDOR_ID_DLINK) { 361 return 0; 362 } 363 364 /* Parse Software Information Block */ 365 i = 0x30; 366 psib = (u8 *) sromdata; 367 do { 368 cid = psib[i++]; 369 next = psib[i++]; 370 if ((cid == 0 && next == 0) || (cid == 0xff && next == 0xff)) { 371 printk (KERN_ERR "Cell data error\n"); 372 return -1; 373 } 374 switch (cid) { 375 case 0: /* Format version */ 376 break; 377 case 1: /* End of cell */ 378 return 0; 379 case 2: /* Duplex Polarity */ 380 np->duplex_polarity = psib[i]; 381 writeb (readb (ioaddr + PhyCtrl) | psib[i], 382 ioaddr + PhyCtrl); 383 break; 384 case 3: /* Wake Polarity */ 385 np->wake_polarity = psib[i]; 386 break; 387 case 9: /* Adapter description */ 388 j = (next - i > 255) ? 255 : next - i; 389 memcpy (np->name, &(psib[i]), j); 390 break; 391 case 4: 392 case 5: 393 case 6: 394 case 7: 395 case 8: /* Reversed */ 396 break; 397 default: /* Unknown cell */ 398 return -1; 399 } 400 i = next; 401 } while (1); 402 403 return 0; 404 } 405 406 static int 407 rio_open (struct net_device *dev) 408 { 409 struct netdev_private *np = netdev_priv(dev); 410 long ioaddr = dev->base_addr; 411 int i; 412 u16 macctrl; 413 414 i = request_irq (dev->irq, rio_interrupt, IRQF_SHARED, dev->name, dev); 415 if (i) 416 return i; 417 418 /* Reset all logic functions */ 419 writew (GlobalReset | DMAReset | FIFOReset | NetworkReset | HostReset, 420 ioaddr + ASICCtrl + 2); 421 mdelay(10); 422 423 /* DebugCtrl bit 4, 5, 9 must set */ 424 writel (readl (ioaddr + DebugCtrl) | 0x0230, ioaddr + DebugCtrl); 425 426 /* Jumbo frame */ 427 if (np->jumbo != 0) 428 writew (MAX_JUMBO+14, ioaddr + MaxFrameSize); 429 430 alloc_list (dev); 431 432 /* Get station address */ 433 for (i = 0; i < 6; i++) 434 writeb (dev->dev_addr[i], ioaddr + StationAddr0 + i); 435 436 set_multicast (dev); 437 if (np->coalesce) { 438 writel (np->rx_coalesce | np->rx_timeout << 16, 439 ioaddr + RxDMAIntCtrl); 440 } 441 /* Set RIO to poll every N*320nsec. */ 442 writeb (0x20, ioaddr + RxDMAPollPeriod); 443 writeb (0xff, ioaddr + TxDMAPollPeriod); 444 writeb (0x30, ioaddr + RxDMABurstThresh); 445 writeb (0x30, ioaddr + RxDMAUrgentThresh); 446 writel (0x0007ffff, ioaddr + RmonStatMask); 447 /* clear statistics */ 448 clear_stats (dev); 449 450 /* VLAN supported */ 451 if (np->vlan) { 452 /* priority field in RxDMAIntCtrl */ 453 writel (readl(ioaddr + RxDMAIntCtrl) | 0x7 << 10, 454 ioaddr + RxDMAIntCtrl); 455 /* VLANId */ 456 writew (np->vlan, ioaddr + VLANId); 457 /* Length/Type should be 0x8100 */ 458 writel (0x8100 << 16 | np->vlan, ioaddr + VLANTag); 459 /* Enable AutoVLANuntagging, but disable AutoVLANtagging. 460 VLAN information tagged by TFC' VID, CFI fields. */ 461 writel (readl (ioaddr + MACCtrl) | AutoVLANuntagging, 462 ioaddr + MACCtrl); 463 } 464 465 init_timer (&np->timer); 466 np->timer.expires = jiffies + 1*HZ; 467 np->timer.data = (unsigned long) dev; 468 np->timer.function = rio_timer; 469 add_timer (&np->timer); 470 471 /* Start Tx/Rx */ 472 writel (readl (ioaddr + MACCtrl) | StatsEnable | RxEnable | TxEnable, 473 ioaddr + MACCtrl); 474 475 macctrl = 0; 476 macctrl |= (np->vlan) ? AutoVLANuntagging : 0; 477 macctrl |= (np->full_duplex) ? DuplexSelect : 0; 478 macctrl |= (np->tx_flow) ? TxFlowControlEnable : 0; 479 macctrl |= (np->rx_flow) ? RxFlowControlEnable : 0; 480 writew(macctrl, ioaddr + MACCtrl); 481 482 netif_start_queue (dev); 483 484 /* Enable default interrupts */ 485 EnableInt (); 486 return 0; 487 } 488 489 static void 490 rio_timer (unsigned long data) 491 { 492 struct net_device *dev = (struct net_device *)data; 493 struct netdev_private *np = netdev_priv(dev); 494 unsigned int entry; 495 int next_tick = 1*HZ; 496 unsigned long flags; 497 498 spin_lock_irqsave(&np->rx_lock, flags); 499 /* Recover rx ring exhausted error */ 500 if (np->cur_rx - np->old_rx >= RX_RING_SIZE) { 501 printk(KERN_INFO "Try to recover rx ring exhausted...\n"); 502 /* Re-allocate skbuffs to fill the descriptor ring */ 503 for (; np->cur_rx - np->old_rx > 0; np->old_rx++) { 504 struct sk_buff *skb; 505 entry = np->old_rx % RX_RING_SIZE; 506 /* Dropped packets don't need to re-allocate */ 507 if (np->rx_skbuff[entry] == NULL) { 508 skb = netdev_alloc_skb_ip_align(dev, 509 np->rx_buf_sz); 510 if (skb == NULL) { 511 np->rx_ring[entry].fraginfo = 0; 512 printk (KERN_INFO 513 "%s: Still unable to re-allocate Rx skbuff.#%d\n", 514 dev->name, entry); 515 break; 516 } 517 np->rx_skbuff[entry] = skb; 518 np->rx_ring[entry].fraginfo = 519 cpu_to_le64 (pci_map_single 520 (np->pdev, skb->data, np->rx_buf_sz, 521 PCI_DMA_FROMDEVICE)); 522 } 523 np->rx_ring[entry].fraginfo |= 524 cpu_to_le64((u64)np->rx_buf_sz << 48); 525 np->rx_ring[entry].status = 0; 526 } /* end for */ 527 } /* end if */ 528 spin_unlock_irqrestore (&np->rx_lock, flags); 529 np->timer.expires = jiffies + next_tick; 530 add_timer(&np->timer); 531 } 532 533 static void 534 rio_tx_timeout (struct net_device *dev) 535 { 536 long ioaddr = dev->base_addr; 537 538 printk (KERN_INFO "%s: Tx timed out (%4.4x), is buffer full?\n", 539 dev->name, readl (ioaddr + TxStatus)); 540 rio_free_tx(dev, 0); 541 dev->if_port = 0; 542 dev->trans_start = jiffies; /* prevent tx timeout */ 543 } 544 545 /* allocate and initialize Tx and Rx descriptors */ 546 static void 547 alloc_list (struct net_device *dev) 548 { 549 struct netdev_private *np = netdev_priv(dev); 550 int i; 551 552 np->cur_rx = np->cur_tx = 0; 553 np->old_rx = np->old_tx = 0; 554 np->rx_buf_sz = (dev->mtu <= 1500 ? PACKET_SIZE : dev->mtu + 32); 555 556 /* Initialize Tx descriptors, TFDListPtr leaves in start_xmit(). */ 557 for (i = 0; i < TX_RING_SIZE; i++) { 558 np->tx_skbuff[i] = NULL; 559 np->tx_ring[i].status = cpu_to_le64 (TFDDone); 560 np->tx_ring[i].next_desc = cpu_to_le64 (np->tx_ring_dma + 561 ((i+1)%TX_RING_SIZE) * 562 sizeof (struct netdev_desc)); 563 } 564 565 /* Initialize Rx descriptors */ 566 for (i = 0; i < RX_RING_SIZE; i++) { 567 np->rx_ring[i].next_desc = cpu_to_le64 (np->rx_ring_dma + 568 ((i + 1) % RX_RING_SIZE) * 569 sizeof (struct netdev_desc)); 570 np->rx_ring[i].status = 0; 571 np->rx_ring[i].fraginfo = 0; 572 np->rx_skbuff[i] = NULL; 573 } 574 575 /* Allocate the rx buffers */ 576 for (i = 0; i < RX_RING_SIZE; i++) { 577 /* Allocated fixed size of skbuff */ 578 struct sk_buff *skb; 579 580 skb = netdev_alloc_skb_ip_align(dev, np->rx_buf_sz); 581 np->rx_skbuff[i] = skb; 582 if (skb == NULL) { 583 printk (KERN_ERR 584 "%s: alloc_list: allocate Rx buffer error! ", 585 dev->name); 586 break; 587 } 588 /* Rubicon now supports 40 bits of addressing space. */ 589 np->rx_ring[i].fraginfo = 590 cpu_to_le64 ( pci_map_single ( 591 np->pdev, skb->data, np->rx_buf_sz, 592 PCI_DMA_FROMDEVICE)); 593 np->rx_ring[i].fraginfo |= cpu_to_le64((u64)np->rx_buf_sz << 48); 594 } 595 596 /* Set RFDListPtr */ 597 writel (np->rx_ring_dma, dev->base_addr + RFDListPtr0); 598 writel (0, dev->base_addr + RFDListPtr1); 599 } 600 601 static netdev_tx_t 602 start_xmit (struct sk_buff *skb, struct net_device *dev) 603 { 604 struct netdev_private *np = netdev_priv(dev); 605 struct netdev_desc *txdesc; 606 unsigned entry; 607 u32 ioaddr; 608 u64 tfc_vlan_tag = 0; 609 610 if (np->link_status == 0) { /* Link Down */ 611 dev_kfree_skb(skb); 612 return NETDEV_TX_OK; 613 } 614 ioaddr = dev->base_addr; 615 entry = np->cur_tx % TX_RING_SIZE; 616 np->tx_skbuff[entry] = skb; 617 txdesc = &np->tx_ring[entry]; 618 619 #if 0 620 if (skb->ip_summed == CHECKSUM_PARTIAL) { 621 txdesc->status |= 622 cpu_to_le64 (TCPChecksumEnable | UDPChecksumEnable | 623 IPChecksumEnable); 624 } 625 #endif 626 if (np->vlan) { 627 tfc_vlan_tag = VLANTagInsert | 628 ((u64)np->vlan << 32) | 629 ((u64)skb->priority << 45); 630 } 631 txdesc->fraginfo = cpu_to_le64 (pci_map_single (np->pdev, skb->data, 632 skb->len, 633 PCI_DMA_TODEVICE)); 634 txdesc->fraginfo |= cpu_to_le64((u64)skb->len << 48); 635 636 /* DL2K bug: DMA fails to get next descriptor ptr in 10Mbps mode 637 * Work around: Always use 1 descriptor in 10Mbps mode */ 638 if (entry % np->tx_coalesce == 0 || np->speed == 10) 639 txdesc->status = cpu_to_le64 (entry | tfc_vlan_tag | 640 WordAlignDisable | 641 TxDMAIndicate | 642 (1 << FragCountShift)); 643 else 644 txdesc->status = cpu_to_le64 (entry | tfc_vlan_tag | 645 WordAlignDisable | 646 (1 << FragCountShift)); 647 648 /* TxDMAPollNow */ 649 writel (readl (ioaddr + DMACtrl) | 0x00001000, ioaddr + DMACtrl); 650 /* Schedule ISR */ 651 writel(10000, ioaddr + CountDown); 652 np->cur_tx = (np->cur_tx + 1) % TX_RING_SIZE; 653 if ((np->cur_tx - np->old_tx + TX_RING_SIZE) % TX_RING_SIZE 654 < TX_QUEUE_LEN - 1 && np->speed != 10) { 655 /* do nothing */ 656 } else if (!netif_queue_stopped(dev)) { 657 netif_stop_queue (dev); 658 } 659 660 /* The first TFDListPtr */ 661 if (readl (dev->base_addr + TFDListPtr0) == 0) { 662 writel (np->tx_ring_dma + entry * sizeof (struct netdev_desc), 663 dev->base_addr + TFDListPtr0); 664 writel (0, dev->base_addr + TFDListPtr1); 665 } 666 667 return NETDEV_TX_OK; 668 } 669 670 static irqreturn_t 671 rio_interrupt (int irq, void *dev_instance) 672 { 673 struct net_device *dev = dev_instance; 674 struct netdev_private *np; 675 unsigned int_status; 676 long ioaddr; 677 int cnt = max_intrloop; 678 int handled = 0; 679 680 ioaddr = dev->base_addr; 681 np = netdev_priv(dev); 682 while (1) { 683 int_status = readw (ioaddr + IntStatus); 684 writew (int_status, ioaddr + IntStatus); 685 int_status &= DEFAULT_INTR; 686 if (int_status == 0 || --cnt < 0) 687 break; 688 handled = 1; 689 /* Processing received packets */ 690 if (int_status & RxDMAComplete) 691 receive_packet (dev); 692 /* TxDMAComplete interrupt */ 693 if ((int_status & (TxDMAComplete|IntRequested))) { 694 int tx_status; 695 tx_status = readl (ioaddr + TxStatus); 696 if (tx_status & 0x01) 697 tx_error (dev, tx_status); 698 /* Free used tx skbuffs */ 699 rio_free_tx (dev, 1); 700 } 701 702 /* Handle uncommon events */ 703 if (int_status & 704 (HostError | LinkEvent | UpdateStats)) 705 rio_error (dev, int_status); 706 } 707 if (np->cur_tx != np->old_tx) 708 writel (100, ioaddr + CountDown); 709 return IRQ_RETVAL(handled); 710 } 711 712 static inline dma_addr_t desc_to_dma(struct netdev_desc *desc) 713 { 714 return le64_to_cpu(desc->fraginfo) & DMA_BIT_MASK(48); 715 } 716 717 static void 718 rio_free_tx (struct net_device *dev, int irq) 719 { 720 struct netdev_private *np = netdev_priv(dev); 721 int entry = np->old_tx % TX_RING_SIZE; 722 int tx_use = 0; 723 unsigned long flag = 0; 724 725 if (irq) 726 spin_lock(&np->tx_lock); 727 else 728 spin_lock_irqsave(&np->tx_lock, flag); 729 730 /* Free used tx skbuffs */ 731 while (entry != np->cur_tx) { 732 struct sk_buff *skb; 733 734 if (!(np->tx_ring[entry].status & cpu_to_le64(TFDDone))) 735 break; 736 skb = np->tx_skbuff[entry]; 737 pci_unmap_single (np->pdev, 738 desc_to_dma(&np->tx_ring[entry]), 739 skb->len, PCI_DMA_TODEVICE); 740 if (irq) 741 dev_kfree_skb_irq (skb); 742 else 743 dev_kfree_skb (skb); 744 745 np->tx_skbuff[entry] = NULL; 746 entry = (entry + 1) % TX_RING_SIZE; 747 tx_use++; 748 } 749 if (irq) 750 spin_unlock(&np->tx_lock); 751 else 752 spin_unlock_irqrestore(&np->tx_lock, flag); 753 np->old_tx = entry; 754 755 /* If the ring is no longer full, clear tx_full and 756 call netif_wake_queue() */ 757 758 if (netif_queue_stopped(dev) && 759 ((np->cur_tx - np->old_tx + TX_RING_SIZE) % TX_RING_SIZE 760 < TX_QUEUE_LEN - 1 || np->speed == 10)) { 761 netif_wake_queue (dev); 762 } 763 } 764 765 static void 766 tx_error (struct net_device *dev, int tx_status) 767 { 768 struct netdev_private *np; 769 long ioaddr = dev->base_addr; 770 int frame_id; 771 int i; 772 773 np = netdev_priv(dev); 774 775 frame_id = (tx_status & 0xffff0000); 776 printk (KERN_ERR "%s: Transmit error, TxStatus %4.4x, FrameId %d.\n", 777 dev->name, tx_status, frame_id); 778 np->stats.tx_errors++; 779 /* Ttransmit Underrun */ 780 if (tx_status & 0x10) { 781 np->stats.tx_fifo_errors++; 782 writew (readw (ioaddr + TxStartThresh) + 0x10, 783 ioaddr + TxStartThresh); 784 /* Transmit Underrun need to set TxReset, DMARest, FIFOReset */ 785 writew (TxReset | DMAReset | FIFOReset | NetworkReset, 786 ioaddr + ASICCtrl + 2); 787 /* Wait for ResetBusy bit clear */ 788 for (i = 50; i > 0; i--) { 789 if ((readw (ioaddr + ASICCtrl + 2) & ResetBusy) == 0) 790 break; 791 mdelay (1); 792 } 793 rio_free_tx (dev, 1); 794 /* Reset TFDListPtr */ 795 writel (np->tx_ring_dma + 796 np->old_tx * sizeof (struct netdev_desc), 797 dev->base_addr + TFDListPtr0); 798 writel (0, dev->base_addr + TFDListPtr1); 799 800 /* Let TxStartThresh stay default value */ 801 } 802 /* Late Collision */ 803 if (tx_status & 0x04) { 804 np->stats.tx_fifo_errors++; 805 /* TxReset and clear FIFO */ 806 writew (TxReset | FIFOReset, ioaddr + ASICCtrl + 2); 807 /* Wait reset done */ 808 for (i = 50; i > 0; i--) { 809 if ((readw (ioaddr + ASICCtrl + 2) & ResetBusy) == 0) 810 break; 811 mdelay (1); 812 } 813 /* Let TxStartThresh stay default value */ 814 } 815 /* Maximum Collisions */ 816 #ifdef ETHER_STATS 817 if (tx_status & 0x08) 818 np->stats.collisions16++; 819 #else 820 if (tx_status & 0x08) 821 np->stats.collisions++; 822 #endif 823 /* Restart the Tx */ 824 writel (readw (dev->base_addr + MACCtrl) | TxEnable, ioaddr + MACCtrl); 825 } 826 827 static int 828 receive_packet (struct net_device *dev) 829 { 830 struct netdev_private *np = netdev_priv(dev); 831 int entry = np->cur_rx % RX_RING_SIZE; 832 int cnt = 30; 833 834 /* If RFDDone, FrameStart and FrameEnd set, there is a new packet in. */ 835 while (1) { 836 struct netdev_desc *desc = &np->rx_ring[entry]; 837 int pkt_len; 838 u64 frame_status; 839 840 if (!(desc->status & cpu_to_le64(RFDDone)) || 841 !(desc->status & cpu_to_le64(FrameStart)) || 842 !(desc->status & cpu_to_le64(FrameEnd))) 843 break; 844 845 /* Chip omits the CRC. */ 846 frame_status = le64_to_cpu(desc->status); 847 pkt_len = frame_status & 0xffff; 848 if (--cnt < 0) 849 break; 850 /* Update rx error statistics, drop packet. */ 851 if (frame_status & RFS_Errors) { 852 np->stats.rx_errors++; 853 if (frame_status & (RxRuntFrame | RxLengthError)) 854 np->stats.rx_length_errors++; 855 if (frame_status & RxFCSError) 856 np->stats.rx_crc_errors++; 857 if (frame_status & RxAlignmentError && np->speed != 1000) 858 np->stats.rx_frame_errors++; 859 if (frame_status & RxFIFOOverrun) 860 np->stats.rx_fifo_errors++; 861 } else { 862 struct sk_buff *skb; 863 864 /* Small skbuffs for short packets */ 865 if (pkt_len > copy_thresh) { 866 pci_unmap_single (np->pdev, 867 desc_to_dma(desc), 868 np->rx_buf_sz, 869 PCI_DMA_FROMDEVICE); 870 skb_put (skb = np->rx_skbuff[entry], pkt_len); 871 np->rx_skbuff[entry] = NULL; 872 } else if ((skb = netdev_alloc_skb_ip_align(dev, pkt_len))) { 873 pci_dma_sync_single_for_cpu(np->pdev, 874 desc_to_dma(desc), 875 np->rx_buf_sz, 876 PCI_DMA_FROMDEVICE); 877 skb_copy_to_linear_data (skb, 878 np->rx_skbuff[entry]->data, 879 pkt_len); 880 skb_put (skb, pkt_len); 881 pci_dma_sync_single_for_device(np->pdev, 882 desc_to_dma(desc), 883 np->rx_buf_sz, 884 PCI_DMA_FROMDEVICE); 885 } 886 skb->protocol = eth_type_trans (skb, dev); 887 #if 0 888 /* Checksum done by hw, but csum value unavailable. */ 889 if (np->pdev->pci_rev_id >= 0x0c && 890 !(frame_status & (TCPError | UDPError | IPError))) { 891 skb->ip_summed = CHECKSUM_UNNECESSARY; 892 } 893 #endif 894 netif_rx (skb); 895 } 896 entry = (entry + 1) % RX_RING_SIZE; 897 } 898 spin_lock(&np->rx_lock); 899 np->cur_rx = entry; 900 /* Re-allocate skbuffs to fill the descriptor ring */ 901 entry = np->old_rx; 902 while (entry != np->cur_rx) { 903 struct sk_buff *skb; 904 /* Dropped packets don't need to re-allocate */ 905 if (np->rx_skbuff[entry] == NULL) { 906 skb = netdev_alloc_skb_ip_align(dev, np->rx_buf_sz); 907 if (skb == NULL) { 908 np->rx_ring[entry].fraginfo = 0; 909 printk (KERN_INFO 910 "%s: receive_packet: " 911 "Unable to re-allocate Rx skbuff.#%d\n", 912 dev->name, entry); 913 break; 914 } 915 np->rx_skbuff[entry] = skb; 916 np->rx_ring[entry].fraginfo = 917 cpu_to_le64 (pci_map_single 918 (np->pdev, skb->data, np->rx_buf_sz, 919 PCI_DMA_FROMDEVICE)); 920 } 921 np->rx_ring[entry].fraginfo |= 922 cpu_to_le64((u64)np->rx_buf_sz << 48); 923 np->rx_ring[entry].status = 0; 924 entry = (entry + 1) % RX_RING_SIZE; 925 } 926 np->old_rx = entry; 927 spin_unlock(&np->rx_lock); 928 return 0; 929 } 930 931 static void 932 rio_error (struct net_device *dev, int int_status) 933 { 934 long ioaddr = dev->base_addr; 935 struct netdev_private *np = netdev_priv(dev); 936 u16 macctrl; 937 938 /* Link change event */ 939 if (int_status & LinkEvent) { 940 if (mii_wait_link (dev, 10) == 0) { 941 printk (KERN_INFO "%s: Link up\n", dev->name); 942 if (np->phy_media) 943 mii_get_media_pcs (dev); 944 else 945 mii_get_media (dev); 946 if (np->speed == 1000) 947 np->tx_coalesce = tx_coalesce; 948 else 949 np->tx_coalesce = 1; 950 macctrl = 0; 951 macctrl |= (np->vlan) ? AutoVLANuntagging : 0; 952 macctrl |= (np->full_duplex) ? DuplexSelect : 0; 953 macctrl |= (np->tx_flow) ? 954 TxFlowControlEnable : 0; 955 macctrl |= (np->rx_flow) ? 956 RxFlowControlEnable : 0; 957 writew(macctrl, ioaddr + MACCtrl); 958 np->link_status = 1; 959 netif_carrier_on(dev); 960 } else { 961 printk (KERN_INFO "%s: Link off\n", dev->name); 962 np->link_status = 0; 963 netif_carrier_off(dev); 964 } 965 } 966 967 /* UpdateStats statistics registers */ 968 if (int_status & UpdateStats) { 969 get_stats (dev); 970 } 971 972 /* PCI Error, a catastronphic error related to the bus interface 973 occurs, set GlobalReset and HostReset to reset. */ 974 if (int_status & HostError) { 975 printk (KERN_ERR "%s: HostError! IntStatus %4.4x.\n", 976 dev->name, int_status); 977 writew (GlobalReset | HostReset, ioaddr + ASICCtrl + 2); 978 mdelay (500); 979 } 980 } 981 982 static struct net_device_stats * 983 get_stats (struct net_device *dev) 984 { 985 long ioaddr = dev->base_addr; 986 struct netdev_private *np = netdev_priv(dev); 987 #ifdef MEM_MAPPING 988 int i; 989 #endif 990 unsigned int stat_reg; 991 992 /* All statistics registers need to be acknowledged, 993 else statistic overflow could cause problems */ 994 995 np->stats.rx_packets += readl (ioaddr + FramesRcvOk); 996 np->stats.tx_packets += readl (ioaddr + FramesXmtOk); 997 np->stats.rx_bytes += readl (ioaddr + OctetRcvOk); 998 np->stats.tx_bytes += readl (ioaddr + OctetXmtOk); 999 1000 np->stats.multicast = readl (ioaddr + McstFramesRcvdOk); 1001 np->stats.collisions += readl (ioaddr + SingleColFrames) 1002 + readl (ioaddr + MultiColFrames); 1003 1004 /* detailed tx errors */ 1005 stat_reg = readw (ioaddr + FramesAbortXSColls); 1006 np->stats.tx_aborted_errors += stat_reg; 1007 np->stats.tx_errors += stat_reg; 1008 1009 stat_reg = readw (ioaddr + CarrierSenseErrors); 1010 np->stats.tx_carrier_errors += stat_reg; 1011 np->stats.tx_errors += stat_reg; 1012 1013 /* Clear all other statistic register. */ 1014 readl (ioaddr + McstOctetXmtOk); 1015 readw (ioaddr + BcstFramesXmtdOk); 1016 readl (ioaddr + McstFramesXmtdOk); 1017 readw (ioaddr + BcstFramesRcvdOk); 1018 readw (ioaddr + MacControlFramesRcvd); 1019 readw (ioaddr + FrameTooLongErrors); 1020 readw (ioaddr + InRangeLengthErrors); 1021 readw (ioaddr + FramesCheckSeqErrors); 1022 readw (ioaddr + FramesLostRxErrors); 1023 readl (ioaddr + McstOctetXmtOk); 1024 readl (ioaddr + BcstOctetXmtOk); 1025 readl (ioaddr + McstFramesXmtdOk); 1026 readl (ioaddr + FramesWDeferredXmt); 1027 readl (ioaddr + LateCollisions); 1028 readw (ioaddr + BcstFramesXmtdOk); 1029 readw (ioaddr + MacControlFramesXmtd); 1030 readw (ioaddr + FramesWEXDeferal); 1031 1032 #ifdef MEM_MAPPING 1033 for (i = 0x100; i <= 0x150; i += 4) 1034 readl (ioaddr + i); 1035 #endif 1036 readw (ioaddr + TxJumboFrames); 1037 readw (ioaddr + RxJumboFrames); 1038 readw (ioaddr + TCPCheckSumErrors); 1039 readw (ioaddr + UDPCheckSumErrors); 1040 readw (ioaddr + IPCheckSumErrors); 1041 return &np->stats; 1042 } 1043 1044 static int 1045 clear_stats (struct net_device *dev) 1046 { 1047 long ioaddr = dev->base_addr; 1048 #ifdef MEM_MAPPING 1049 int i; 1050 #endif 1051 1052 /* All statistics registers need to be acknowledged, 1053 else statistic overflow could cause problems */ 1054 readl (ioaddr + FramesRcvOk); 1055 readl (ioaddr + FramesXmtOk); 1056 readl (ioaddr + OctetRcvOk); 1057 readl (ioaddr + OctetXmtOk); 1058 1059 readl (ioaddr + McstFramesRcvdOk); 1060 readl (ioaddr + SingleColFrames); 1061 readl (ioaddr + MultiColFrames); 1062 readl (ioaddr + LateCollisions); 1063 /* detailed rx errors */ 1064 readw (ioaddr + FrameTooLongErrors); 1065 readw (ioaddr + InRangeLengthErrors); 1066 readw (ioaddr + FramesCheckSeqErrors); 1067 readw (ioaddr + FramesLostRxErrors); 1068 1069 /* detailed tx errors */ 1070 readw (ioaddr + FramesAbortXSColls); 1071 readw (ioaddr + CarrierSenseErrors); 1072 1073 /* Clear all other statistic register. */ 1074 readl (ioaddr + McstOctetXmtOk); 1075 readw (ioaddr + BcstFramesXmtdOk); 1076 readl (ioaddr + McstFramesXmtdOk); 1077 readw (ioaddr + BcstFramesRcvdOk); 1078 readw (ioaddr + MacControlFramesRcvd); 1079 readl (ioaddr + McstOctetXmtOk); 1080 readl (ioaddr + BcstOctetXmtOk); 1081 readl (ioaddr + McstFramesXmtdOk); 1082 readl (ioaddr + FramesWDeferredXmt); 1083 readw (ioaddr + BcstFramesXmtdOk); 1084 readw (ioaddr + MacControlFramesXmtd); 1085 readw (ioaddr + FramesWEXDeferal); 1086 #ifdef MEM_MAPPING 1087 for (i = 0x100; i <= 0x150; i += 4) 1088 readl (ioaddr + i); 1089 #endif 1090 readw (ioaddr + TxJumboFrames); 1091 readw (ioaddr + RxJumboFrames); 1092 readw (ioaddr + TCPCheckSumErrors); 1093 readw (ioaddr + UDPCheckSumErrors); 1094 readw (ioaddr + IPCheckSumErrors); 1095 return 0; 1096 } 1097 1098 1099 static int 1100 change_mtu (struct net_device *dev, int new_mtu) 1101 { 1102 struct netdev_private *np = netdev_priv(dev); 1103 int max = (np->jumbo) ? MAX_JUMBO : 1536; 1104 1105 if ((new_mtu < 68) || (new_mtu > max)) { 1106 return -EINVAL; 1107 } 1108 1109 dev->mtu = new_mtu; 1110 1111 return 0; 1112 } 1113 1114 static void 1115 set_multicast (struct net_device *dev) 1116 { 1117 long ioaddr = dev->base_addr; 1118 u32 hash_table[2]; 1119 u16 rx_mode = 0; 1120 struct netdev_private *np = netdev_priv(dev); 1121 1122 hash_table[0] = hash_table[1] = 0; 1123 /* RxFlowcontrol DA: 01-80-C2-00-00-01. Hash index=0x39 */ 1124 hash_table[1] |= 0x02000000; 1125 if (dev->flags & IFF_PROMISC) { 1126 /* Receive all frames promiscuously. */ 1127 rx_mode = ReceiveAllFrames; 1128 } else if ((dev->flags & IFF_ALLMULTI) || 1129 (netdev_mc_count(dev) > multicast_filter_limit)) { 1130 /* Receive broadcast and multicast frames */ 1131 rx_mode = ReceiveBroadcast | ReceiveMulticast | ReceiveUnicast; 1132 } else if (!netdev_mc_empty(dev)) { 1133 struct netdev_hw_addr *ha; 1134 /* Receive broadcast frames and multicast frames filtering 1135 by Hashtable */ 1136 rx_mode = 1137 ReceiveBroadcast | ReceiveMulticastHash | ReceiveUnicast; 1138 netdev_for_each_mc_addr(ha, dev) { 1139 int bit, index = 0; 1140 int crc = ether_crc_le(ETH_ALEN, ha->addr); 1141 /* The inverted high significant 6 bits of CRC are 1142 used as an index to hashtable */ 1143 for (bit = 0; bit < 6; bit++) 1144 if (crc & (1 << (31 - bit))) 1145 index |= (1 << bit); 1146 hash_table[index / 32] |= (1 << (index % 32)); 1147 } 1148 } else { 1149 rx_mode = ReceiveBroadcast | ReceiveUnicast; 1150 } 1151 if (np->vlan) { 1152 /* ReceiveVLANMatch field in ReceiveMode */ 1153 rx_mode |= ReceiveVLANMatch; 1154 } 1155 1156 writel (hash_table[0], ioaddr + HashTable0); 1157 writel (hash_table[1], ioaddr + HashTable1); 1158 writew (rx_mode, ioaddr + ReceiveMode); 1159 } 1160 1161 static void rio_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) 1162 { 1163 struct netdev_private *np = netdev_priv(dev); 1164 strcpy(info->driver, "dl2k"); 1165 strcpy(info->version, DRV_VERSION); 1166 strcpy(info->bus_info, pci_name(np->pdev)); 1167 } 1168 1169 static int rio_get_settings(struct net_device *dev, struct ethtool_cmd *cmd) 1170 { 1171 struct netdev_private *np = netdev_priv(dev); 1172 if (np->phy_media) { 1173 /* fiber device */ 1174 cmd->supported = SUPPORTED_Autoneg | SUPPORTED_FIBRE; 1175 cmd->advertising= ADVERTISED_Autoneg | ADVERTISED_FIBRE; 1176 cmd->port = PORT_FIBRE; 1177 cmd->transceiver = XCVR_INTERNAL; 1178 } else { 1179 /* copper device */ 1180 cmd->supported = SUPPORTED_10baseT_Half | 1181 SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Half 1182 | SUPPORTED_100baseT_Full | SUPPORTED_1000baseT_Full | 1183 SUPPORTED_Autoneg | SUPPORTED_MII; 1184 cmd->advertising = ADVERTISED_10baseT_Half | 1185 ADVERTISED_10baseT_Full | ADVERTISED_100baseT_Half | 1186 ADVERTISED_100baseT_Full | ADVERTISED_1000baseT_Full| 1187 ADVERTISED_Autoneg | ADVERTISED_MII; 1188 cmd->port = PORT_MII; 1189 cmd->transceiver = XCVR_INTERNAL; 1190 } 1191 if ( np->link_status ) { 1192 ethtool_cmd_speed_set(cmd, np->speed); 1193 cmd->duplex = np->full_duplex ? DUPLEX_FULL : DUPLEX_HALF; 1194 } else { 1195 ethtool_cmd_speed_set(cmd, -1); 1196 cmd->duplex = -1; 1197 } 1198 if ( np->an_enable) 1199 cmd->autoneg = AUTONEG_ENABLE; 1200 else 1201 cmd->autoneg = AUTONEG_DISABLE; 1202 1203 cmd->phy_address = np->phy_addr; 1204 return 0; 1205 } 1206 1207 static int rio_set_settings(struct net_device *dev, struct ethtool_cmd *cmd) 1208 { 1209 struct netdev_private *np = netdev_priv(dev); 1210 netif_carrier_off(dev); 1211 if (cmd->autoneg == AUTONEG_ENABLE) { 1212 if (np->an_enable) 1213 return 0; 1214 else { 1215 np->an_enable = 1; 1216 mii_set_media(dev); 1217 return 0; 1218 } 1219 } else { 1220 np->an_enable = 0; 1221 if (np->speed == 1000) { 1222 ethtool_cmd_speed_set(cmd, SPEED_100); 1223 cmd->duplex = DUPLEX_FULL; 1224 printk("Warning!! Can't disable Auto negotiation in 1000Mbps, change to Manual 100Mbps, Full duplex.\n"); 1225 } 1226 switch (ethtool_cmd_speed(cmd)) { 1227 case SPEED_10: 1228 np->speed = 10; 1229 np->full_duplex = (cmd->duplex == DUPLEX_FULL); 1230 break; 1231 case SPEED_100: 1232 np->speed = 100; 1233 np->full_duplex = (cmd->duplex == DUPLEX_FULL); 1234 break; 1235 case SPEED_1000: /* not supported */ 1236 default: 1237 return -EINVAL; 1238 } 1239 mii_set_media(dev); 1240 } 1241 return 0; 1242 } 1243 1244 static u32 rio_get_link(struct net_device *dev) 1245 { 1246 struct netdev_private *np = netdev_priv(dev); 1247 return np->link_status; 1248 } 1249 1250 static const struct ethtool_ops ethtool_ops = { 1251 .get_drvinfo = rio_get_drvinfo, 1252 .get_settings = rio_get_settings, 1253 .set_settings = rio_set_settings, 1254 .get_link = rio_get_link, 1255 }; 1256 1257 static int 1258 rio_ioctl (struct net_device *dev, struct ifreq *rq, int cmd) 1259 { 1260 int phy_addr; 1261 struct netdev_private *np = netdev_priv(dev); 1262 struct mii_ioctl_data *miidata = if_mii(rq); 1263 1264 phy_addr = np->phy_addr; 1265 switch (cmd) { 1266 case SIOCGMIIPHY: 1267 miidata->phy_id = phy_addr; 1268 break; 1269 case SIOCGMIIREG: 1270 miidata->val_out = mii_read (dev, phy_addr, miidata->reg_num); 1271 break; 1272 case SIOCSMIIREG: 1273 if (!capable(CAP_NET_ADMIN)) 1274 return -EPERM; 1275 mii_write (dev, phy_addr, miidata->reg_num, miidata->val_in); 1276 break; 1277 default: 1278 return -EOPNOTSUPP; 1279 } 1280 return 0; 1281 } 1282 1283 #define EEP_READ 0x0200 1284 #define EEP_BUSY 0x8000 1285 /* Read the EEPROM word */ 1286 /* We use I/O instruction to read/write eeprom to avoid fail on some machines */ 1287 static int 1288 read_eeprom (long ioaddr, int eep_addr) 1289 { 1290 int i = 1000; 1291 outw (EEP_READ | (eep_addr & 0xff), ioaddr + EepromCtrl); 1292 while (i-- > 0) { 1293 if (!(inw (ioaddr + EepromCtrl) & EEP_BUSY)) { 1294 return inw (ioaddr + EepromData); 1295 } 1296 } 1297 return 0; 1298 } 1299 1300 enum phy_ctrl_bits { 1301 MII_READ = 0x00, MII_CLK = 0x01, MII_DATA1 = 0x02, MII_WRITE = 0x04, 1302 MII_DUPLEX = 0x08, 1303 }; 1304 1305 #define mii_delay() readb(ioaddr) 1306 static void 1307 mii_sendbit (struct net_device *dev, u32 data) 1308 { 1309 long ioaddr = dev->base_addr + PhyCtrl; 1310 data = (data) ? MII_DATA1 : 0; 1311 data |= MII_WRITE; 1312 data |= (readb (ioaddr) & 0xf8) | MII_WRITE; 1313 writeb (data, ioaddr); 1314 mii_delay (); 1315 writeb (data | MII_CLK, ioaddr); 1316 mii_delay (); 1317 } 1318 1319 static int 1320 mii_getbit (struct net_device *dev) 1321 { 1322 long ioaddr = dev->base_addr + PhyCtrl; 1323 u8 data; 1324 1325 data = (readb (ioaddr) & 0xf8) | MII_READ; 1326 writeb (data, ioaddr); 1327 mii_delay (); 1328 writeb (data | MII_CLK, ioaddr); 1329 mii_delay (); 1330 return ((readb (ioaddr) >> 1) & 1); 1331 } 1332 1333 static void 1334 mii_send_bits (struct net_device *dev, u32 data, int len) 1335 { 1336 int i; 1337 for (i = len - 1; i >= 0; i--) { 1338 mii_sendbit (dev, data & (1 << i)); 1339 } 1340 } 1341 1342 static int 1343 mii_read (struct net_device *dev, int phy_addr, int reg_num) 1344 { 1345 u32 cmd; 1346 int i; 1347 u32 retval = 0; 1348 1349 /* Preamble */ 1350 mii_send_bits (dev, 0xffffffff, 32); 1351 /* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */ 1352 /* ST,OP = 0110'b for read operation */ 1353 cmd = (0x06 << 10 | phy_addr << 5 | reg_num); 1354 mii_send_bits (dev, cmd, 14); 1355 /* Turnaround */ 1356 if (mii_getbit (dev)) 1357 goto err_out; 1358 /* Read data */ 1359 for (i = 0; i < 16; i++) { 1360 retval |= mii_getbit (dev); 1361 retval <<= 1; 1362 } 1363 /* End cycle */ 1364 mii_getbit (dev); 1365 return (retval >> 1) & 0xffff; 1366 1367 err_out: 1368 return 0; 1369 } 1370 static int 1371 mii_write (struct net_device *dev, int phy_addr, int reg_num, u16 data) 1372 { 1373 u32 cmd; 1374 1375 /* Preamble */ 1376 mii_send_bits (dev, 0xffffffff, 32); 1377 /* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */ 1378 /* ST,OP,AAAAA,RRRRR,TA = 0101xxxxxxxxxx10'b = 0x5002 for write */ 1379 cmd = (0x5002 << 16) | (phy_addr << 23) | (reg_num << 18) | data; 1380 mii_send_bits (dev, cmd, 32); 1381 /* End cycle */ 1382 mii_getbit (dev); 1383 return 0; 1384 } 1385 static int 1386 mii_wait_link (struct net_device *dev, int wait) 1387 { 1388 __u16 bmsr; 1389 int phy_addr; 1390 struct netdev_private *np; 1391 1392 np = netdev_priv(dev); 1393 phy_addr = np->phy_addr; 1394 1395 do { 1396 bmsr = mii_read (dev, phy_addr, MII_BMSR); 1397 if (bmsr & BMSR_LSTATUS) 1398 return 0; 1399 mdelay (1); 1400 } while (--wait > 0); 1401 return -1; 1402 } 1403 static int 1404 mii_get_media (struct net_device *dev) 1405 { 1406 __u16 negotiate; 1407 __u16 bmsr; 1408 __u16 mscr; 1409 __u16 mssr; 1410 int phy_addr; 1411 struct netdev_private *np; 1412 1413 np = netdev_priv(dev); 1414 phy_addr = np->phy_addr; 1415 1416 bmsr = mii_read (dev, phy_addr, MII_BMSR); 1417 if (np->an_enable) { 1418 if (!(bmsr & BMSR_ANEGCOMPLETE)) { 1419 /* Auto-Negotiation not completed */ 1420 return -1; 1421 } 1422 negotiate = mii_read (dev, phy_addr, MII_ADVERTISE) & 1423 mii_read (dev, phy_addr, MII_LPA); 1424 mscr = mii_read (dev, phy_addr, MII_CTRL1000); 1425 mssr = mii_read (dev, phy_addr, MII_STAT1000); 1426 if (mscr & ADVERTISE_1000FULL && mssr & LPA_1000FULL) { 1427 np->speed = 1000; 1428 np->full_duplex = 1; 1429 printk (KERN_INFO "Auto 1000 Mbps, Full duplex\n"); 1430 } else if (mscr & ADVERTISE_1000HALF && mssr & LPA_1000HALF) { 1431 np->speed = 1000; 1432 np->full_duplex = 0; 1433 printk (KERN_INFO "Auto 1000 Mbps, Half duplex\n"); 1434 } else if (negotiate & ADVERTISE_100FULL) { 1435 np->speed = 100; 1436 np->full_duplex = 1; 1437 printk (KERN_INFO "Auto 100 Mbps, Full duplex\n"); 1438 } else if (negotiate & ADVERTISE_100HALF) { 1439 np->speed = 100; 1440 np->full_duplex = 0; 1441 printk (KERN_INFO "Auto 100 Mbps, Half duplex\n"); 1442 } else if (negotiate & ADVERTISE_10FULL) { 1443 np->speed = 10; 1444 np->full_duplex = 1; 1445 printk (KERN_INFO "Auto 10 Mbps, Full duplex\n"); 1446 } else if (negotiate & ADVERTISE_10HALF) { 1447 np->speed = 10; 1448 np->full_duplex = 0; 1449 printk (KERN_INFO "Auto 10 Mbps, Half duplex\n"); 1450 } 1451 if (negotiate & ADVERTISE_PAUSE_CAP) { 1452 np->tx_flow &= 1; 1453 np->rx_flow &= 1; 1454 } else if (negotiate & ADVERTISE_PAUSE_ASYM) { 1455 np->tx_flow = 0; 1456 np->rx_flow &= 1; 1457 } 1458 /* else tx_flow, rx_flow = user select */ 1459 } else { 1460 __u16 bmcr = mii_read (dev, phy_addr, MII_BMCR); 1461 switch (bmcr & (BMCR_SPEED100 | BMCR_SPEED1000)) { 1462 case BMCR_SPEED1000: 1463 printk (KERN_INFO "Operating at 1000 Mbps, "); 1464 break; 1465 case BMCR_SPEED100: 1466 printk (KERN_INFO "Operating at 100 Mbps, "); 1467 break; 1468 case 0: 1469 printk (KERN_INFO "Operating at 10 Mbps, "); 1470 } 1471 if (bmcr & BMCR_FULLDPLX) { 1472 printk (KERN_CONT "Full duplex\n"); 1473 } else { 1474 printk (KERN_CONT "Half duplex\n"); 1475 } 1476 } 1477 if (np->tx_flow) 1478 printk(KERN_INFO "Enable Tx Flow Control\n"); 1479 else 1480 printk(KERN_INFO "Disable Tx Flow Control\n"); 1481 if (np->rx_flow) 1482 printk(KERN_INFO "Enable Rx Flow Control\n"); 1483 else 1484 printk(KERN_INFO "Disable Rx Flow Control\n"); 1485 1486 return 0; 1487 } 1488 1489 static int 1490 mii_set_media (struct net_device *dev) 1491 { 1492 __u16 pscr; 1493 __u16 bmcr; 1494 __u16 bmsr; 1495 __u16 anar; 1496 int phy_addr; 1497 struct netdev_private *np; 1498 np = netdev_priv(dev); 1499 phy_addr = np->phy_addr; 1500 1501 /* Does user set speed? */ 1502 if (np->an_enable) { 1503 /* Advertise capabilities */ 1504 bmsr = mii_read (dev, phy_addr, MII_BMSR); 1505 anar = mii_read (dev, phy_addr, MII_ADVERTISE) & 1506 ~(ADVERTISE_100FULL | ADVERTISE_10FULL | 1507 ADVERTISE_100HALF | ADVERTISE_10HALF | 1508 ADVERTISE_100BASE4); 1509 if (bmsr & BMSR_100FULL) 1510 anar |= ADVERTISE_100FULL; 1511 if (bmsr & BMSR_100HALF) 1512 anar |= ADVERTISE_100HALF; 1513 if (bmsr & BMSR_100BASE4) 1514 anar |= ADVERTISE_100BASE4; 1515 if (bmsr & BMSR_10FULL) 1516 anar |= ADVERTISE_10FULL; 1517 if (bmsr & BMSR_10HALF) 1518 anar |= ADVERTISE_10HALF; 1519 anar |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM; 1520 mii_write (dev, phy_addr, MII_ADVERTISE, anar); 1521 1522 /* Enable Auto crossover */ 1523 pscr = mii_read (dev, phy_addr, MII_PHY_SCR); 1524 pscr |= 3 << 5; /* 11'b */ 1525 mii_write (dev, phy_addr, MII_PHY_SCR, pscr); 1526 1527 /* Soft reset PHY */ 1528 mii_write (dev, phy_addr, MII_BMCR, BMCR_RESET); 1529 bmcr = BMCR_ANENABLE | BMCR_ANRESTART | BMCR_RESET; 1530 mii_write (dev, phy_addr, MII_BMCR, bmcr); 1531 mdelay(1); 1532 } else { 1533 /* Force speed setting */ 1534 /* 1) Disable Auto crossover */ 1535 pscr = mii_read (dev, phy_addr, MII_PHY_SCR); 1536 pscr &= ~(3 << 5); 1537 mii_write (dev, phy_addr, MII_PHY_SCR, pscr); 1538 1539 /* 2) PHY Reset */ 1540 bmcr = mii_read (dev, phy_addr, MII_BMCR); 1541 bmcr |= BMCR_RESET; 1542 mii_write (dev, phy_addr, MII_BMCR, bmcr); 1543 1544 /* 3) Power Down */ 1545 bmcr = 0x1940; /* must be 0x1940 */ 1546 mii_write (dev, phy_addr, MII_BMCR, bmcr); 1547 mdelay (100); /* wait a certain time */ 1548 1549 /* 4) Advertise nothing */ 1550 mii_write (dev, phy_addr, MII_ADVERTISE, 0); 1551 1552 /* 5) Set media and Power Up */ 1553 bmcr = BMCR_PDOWN; 1554 if (np->speed == 100) { 1555 bmcr |= BMCR_SPEED100; 1556 printk (KERN_INFO "Manual 100 Mbps, "); 1557 } else if (np->speed == 10) { 1558 printk (KERN_INFO "Manual 10 Mbps, "); 1559 } 1560 if (np->full_duplex) { 1561 bmcr |= BMCR_FULLDPLX; 1562 printk (KERN_CONT "Full duplex\n"); 1563 } else { 1564 printk (KERN_CONT "Half duplex\n"); 1565 } 1566 #if 0 1567 /* Set 1000BaseT Master/Slave setting */ 1568 mscr = mii_read (dev, phy_addr, MII_CTRL1000); 1569 mscr |= MII_MSCR_CFG_ENABLE; 1570 mscr &= ~MII_MSCR_CFG_VALUE = 0; 1571 #endif 1572 mii_write (dev, phy_addr, MII_BMCR, bmcr); 1573 mdelay(10); 1574 } 1575 return 0; 1576 } 1577 1578 static int 1579 mii_get_media_pcs (struct net_device *dev) 1580 { 1581 __u16 negotiate; 1582 __u16 bmsr; 1583 int phy_addr; 1584 struct netdev_private *np; 1585 1586 np = netdev_priv(dev); 1587 phy_addr = np->phy_addr; 1588 1589 bmsr = mii_read (dev, phy_addr, PCS_BMSR); 1590 if (np->an_enable) { 1591 if (!(bmsr & BMSR_ANEGCOMPLETE)) { 1592 /* Auto-Negotiation not completed */ 1593 return -1; 1594 } 1595 negotiate = mii_read (dev, phy_addr, PCS_ANAR) & 1596 mii_read (dev, phy_addr, PCS_ANLPAR); 1597 np->speed = 1000; 1598 if (negotiate & PCS_ANAR_FULL_DUPLEX) { 1599 printk (KERN_INFO "Auto 1000 Mbps, Full duplex\n"); 1600 np->full_duplex = 1; 1601 } else { 1602 printk (KERN_INFO "Auto 1000 Mbps, half duplex\n"); 1603 np->full_duplex = 0; 1604 } 1605 if (negotiate & PCS_ANAR_PAUSE) { 1606 np->tx_flow &= 1; 1607 np->rx_flow &= 1; 1608 } else if (negotiate & PCS_ANAR_ASYMMETRIC) { 1609 np->tx_flow = 0; 1610 np->rx_flow &= 1; 1611 } 1612 /* else tx_flow, rx_flow = user select */ 1613 } else { 1614 __u16 bmcr = mii_read (dev, phy_addr, PCS_BMCR); 1615 printk (KERN_INFO "Operating at 1000 Mbps, "); 1616 if (bmcr & BMCR_FULLDPLX) { 1617 printk (KERN_CONT "Full duplex\n"); 1618 } else { 1619 printk (KERN_CONT "Half duplex\n"); 1620 } 1621 } 1622 if (np->tx_flow) 1623 printk(KERN_INFO "Enable Tx Flow Control\n"); 1624 else 1625 printk(KERN_INFO "Disable Tx Flow Control\n"); 1626 if (np->rx_flow) 1627 printk(KERN_INFO "Enable Rx Flow Control\n"); 1628 else 1629 printk(KERN_INFO "Disable Rx Flow Control\n"); 1630 1631 return 0; 1632 } 1633 1634 static int 1635 mii_set_media_pcs (struct net_device *dev) 1636 { 1637 __u16 bmcr; 1638 __u16 esr; 1639 __u16 anar; 1640 int phy_addr; 1641 struct netdev_private *np; 1642 np = netdev_priv(dev); 1643 phy_addr = np->phy_addr; 1644 1645 /* Auto-Negotiation? */ 1646 if (np->an_enable) { 1647 /* Advertise capabilities */ 1648 esr = mii_read (dev, phy_addr, PCS_ESR); 1649 anar = mii_read (dev, phy_addr, MII_ADVERTISE) & 1650 ~PCS_ANAR_HALF_DUPLEX & 1651 ~PCS_ANAR_FULL_DUPLEX; 1652 if (esr & (MII_ESR_1000BT_HD | MII_ESR_1000BX_HD)) 1653 anar |= PCS_ANAR_HALF_DUPLEX; 1654 if (esr & (MII_ESR_1000BT_FD | MII_ESR_1000BX_FD)) 1655 anar |= PCS_ANAR_FULL_DUPLEX; 1656 anar |= PCS_ANAR_PAUSE | PCS_ANAR_ASYMMETRIC; 1657 mii_write (dev, phy_addr, MII_ADVERTISE, anar); 1658 1659 /* Soft reset PHY */ 1660 mii_write (dev, phy_addr, MII_BMCR, BMCR_RESET); 1661 bmcr = BMCR_ANENABLE | BMCR_ANRESTART | BMCR_RESET; 1662 mii_write (dev, phy_addr, MII_BMCR, bmcr); 1663 mdelay(1); 1664 } else { 1665 /* Force speed setting */ 1666 /* PHY Reset */ 1667 bmcr = BMCR_RESET; 1668 mii_write (dev, phy_addr, MII_BMCR, bmcr); 1669 mdelay(10); 1670 if (np->full_duplex) { 1671 bmcr = BMCR_FULLDPLX; 1672 printk (KERN_INFO "Manual full duplex\n"); 1673 } else { 1674 bmcr = 0; 1675 printk (KERN_INFO "Manual half duplex\n"); 1676 } 1677 mii_write (dev, phy_addr, MII_BMCR, bmcr); 1678 mdelay(10); 1679 1680 /* Advertise nothing */ 1681 mii_write (dev, phy_addr, MII_ADVERTISE, 0); 1682 } 1683 return 0; 1684 } 1685 1686 1687 static int 1688 rio_close (struct net_device *dev) 1689 { 1690 long ioaddr = dev->base_addr; 1691 struct netdev_private *np = netdev_priv(dev); 1692 struct sk_buff *skb; 1693 int i; 1694 1695 netif_stop_queue (dev); 1696 1697 /* Disable interrupts */ 1698 writew (0, ioaddr + IntEnable); 1699 1700 /* Stop Tx and Rx logics */ 1701 writel (TxDisable | RxDisable | StatsDisable, ioaddr + MACCtrl); 1702 1703 free_irq (dev->irq, dev); 1704 del_timer_sync (&np->timer); 1705 1706 /* Free all the skbuffs in the queue. */ 1707 for (i = 0; i < RX_RING_SIZE; i++) { 1708 skb = np->rx_skbuff[i]; 1709 if (skb) { 1710 pci_unmap_single(np->pdev, 1711 desc_to_dma(&np->rx_ring[i]), 1712 skb->len, PCI_DMA_FROMDEVICE); 1713 dev_kfree_skb (skb); 1714 np->rx_skbuff[i] = NULL; 1715 } 1716 np->rx_ring[i].status = 0; 1717 np->rx_ring[i].fraginfo = 0; 1718 } 1719 for (i = 0; i < TX_RING_SIZE; i++) { 1720 skb = np->tx_skbuff[i]; 1721 if (skb) { 1722 pci_unmap_single(np->pdev, 1723 desc_to_dma(&np->tx_ring[i]), 1724 skb->len, PCI_DMA_TODEVICE); 1725 dev_kfree_skb (skb); 1726 np->tx_skbuff[i] = NULL; 1727 } 1728 } 1729 1730 return 0; 1731 } 1732 1733 static void __devexit 1734 rio_remove1 (struct pci_dev *pdev) 1735 { 1736 struct net_device *dev = pci_get_drvdata (pdev); 1737 1738 if (dev) { 1739 struct netdev_private *np = netdev_priv(dev); 1740 1741 unregister_netdev (dev); 1742 pci_free_consistent (pdev, RX_TOTAL_SIZE, np->rx_ring, 1743 np->rx_ring_dma); 1744 pci_free_consistent (pdev, TX_TOTAL_SIZE, np->tx_ring, 1745 np->tx_ring_dma); 1746 #ifdef MEM_MAPPING 1747 iounmap ((char *) (dev->base_addr)); 1748 #endif 1749 free_netdev (dev); 1750 pci_release_regions (pdev); 1751 pci_disable_device (pdev); 1752 } 1753 pci_set_drvdata (pdev, NULL); 1754 } 1755 1756 static struct pci_driver rio_driver = { 1757 .name = "dl2k", 1758 .id_table = rio_pci_tbl, 1759 .probe = rio_probe1, 1760 .remove = __devexit_p(rio_remove1), 1761 }; 1762 1763 static int __init 1764 rio_init (void) 1765 { 1766 return pci_register_driver(&rio_driver); 1767 } 1768 1769 static void __exit 1770 rio_exit (void) 1771 { 1772 pci_unregister_driver (&rio_driver); 1773 } 1774 1775 module_init (rio_init); 1776 module_exit (rio_exit); 1777 1778 /* 1779 1780 Compile command: 1781 1782 gcc -D__KERNEL__ -DMODULE -I/usr/src/linux/include -Wall -Wstrict-prototypes -O2 -c dl2k.c 1783 1784 Read Documentation/networking/dl2k.txt for details. 1785 1786 */ 1787 1788