xref: /openbmc/linux/drivers/net/ethernet/dlink/dl2k.c (revision 23c2b932)
1 /*  D-Link DL2000-based Gigabit Ethernet Adapter Linux driver */
2 /*
3     Copyright (c) 2001, 2002 by D-Link Corporation
4     Written by Edward Peng.<edward_peng@dlink.com.tw>
5     Created 03-May-2001, base on Linux' sundance.c.
6 
7     This program is free software; you can redistribute it and/or modify
8     it under the terms of the GNU General Public License as published by
9     the Free Software Foundation; either version 2 of the License, or
10     (at your option) any later version.
11 */
12 
13 #define DRV_NAME	"DL2000/TC902x-based linux driver"
14 #define DRV_VERSION	"v1.19"
15 #define DRV_RELDATE	"2007/08/12"
16 #include "dl2k.h"
17 #include <linux/dma-mapping.h>
18 
19 #define dw32(reg, val)	iowrite32(val, ioaddr + (reg))
20 #define dw16(reg, val)	iowrite16(val, ioaddr + (reg))
21 #define dw8(reg, val)	iowrite8(val, ioaddr + (reg))
22 #define dr32(reg)	ioread32(ioaddr + (reg))
23 #define dr16(reg)	ioread16(ioaddr + (reg))
24 #define dr8(reg)	ioread8(ioaddr + (reg))
25 
26 static char version[] =
27       KERN_INFO DRV_NAME " " DRV_VERSION " " DRV_RELDATE "\n";
28 #define MAX_UNITS 8
29 static int mtu[MAX_UNITS];
30 static int vlan[MAX_UNITS];
31 static int jumbo[MAX_UNITS];
32 static char *media[MAX_UNITS];
33 static int tx_flow=-1;
34 static int rx_flow=-1;
35 static int copy_thresh;
36 static int rx_coalesce=10;	/* Rx frame count each interrupt */
37 static int rx_timeout=200;	/* Rx DMA wait time in 640ns increments */
38 static int tx_coalesce=16;	/* HW xmit count each TxDMAComplete */
39 
40 
41 MODULE_AUTHOR ("Edward Peng");
42 MODULE_DESCRIPTION ("D-Link DL2000-based Gigabit Ethernet Adapter");
43 MODULE_LICENSE("GPL");
44 module_param_array(mtu, int, NULL, 0);
45 module_param_array(media, charp, NULL, 0);
46 module_param_array(vlan, int, NULL, 0);
47 module_param_array(jumbo, int, NULL, 0);
48 module_param(tx_flow, int, 0);
49 module_param(rx_flow, int, 0);
50 module_param(copy_thresh, int, 0);
51 module_param(rx_coalesce, int, 0);	/* Rx frame count each interrupt */
52 module_param(rx_timeout, int, 0);	/* Rx DMA wait time in 64ns increments */
53 module_param(tx_coalesce, int, 0); /* HW xmit count each TxDMAComplete */
54 
55 
56 /* Enable the default interrupts */
57 #define DEFAULT_INTR (RxDMAComplete | HostError | IntRequested | TxDMAComplete| \
58        UpdateStats | LinkEvent)
59 
60 static void dl2k_enable_int(struct netdev_private *np)
61 {
62 	void __iomem *ioaddr = np->ioaddr;
63 
64 	dw16(IntEnable, DEFAULT_INTR);
65 }
66 
67 static const int max_intrloop = 50;
68 static const int multicast_filter_limit = 0x40;
69 
70 static int rio_open (struct net_device *dev);
71 static void rio_timer (unsigned long data);
72 static void rio_tx_timeout (struct net_device *dev);
73 static netdev_tx_t start_xmit (struct sk_buff *skb, struct net_device *dev);
74 static irqreturn_t rio_interrupt (int irq, void *dev_instance);
75 static void rio_free_tx (struct net_device *dev, int irq);
76 static void tx_error (struct net_device *dev, int tx_status);
77 static int receive_packet (struct net_device *dev);
78 static void rio_error (struct net_device *dev, int int_status);
79 static int change_mtu (struct net_device *dev, int new_mtu);
80 static void set_multicast (struct net_device *dev);
81 static struct net_device_stats *get_stats (struct net_device *dev);
82 static int clear_stats (struct net_device *dev);
83 static int rio_ioctl (struct net_device *dev, struct ifreq *rq, int cmd);
84 static int rio_close (struct net_device *dev);
85 static int find_miiphy (struct net_device *dev);
86 static int parse_eeprom (struct net_device *dev);
87 static int read_eeprom (struct netdev_private *, int eep_addr);
88 static int mii_wait_link (struct net_device *dev, int wait);
89 static int mii_set_media (struct net_device *dev);
90 static int mii_get_media (struct net_device *dev);
91 static int mii_set_media_pcs (struct net_device *dev);
92 static int mii_get_media_pcs (struct net_device *dev);
93 static int mii_read (struct net_device *dev, int phy_addr, int reg_num);
94 static int mii_write (struct net_device *dev, int phy_addr, int reg_num,
95 		      u16 data);
96 
97 static const struct ethtool_ops ethtool_ops;
98 
99 static const struct net_device_ops netdev_ops = {
100 	.ndo_open		= rio_open,
101 	.ndo_start_xmit	= start_xmit,
102 	.ndo_stop		= rio_close,
103 	.ndo_get_stats		= get_stats,
104 	.ndo_validate_addr	= eth_validate_addr,
105 	.ndo_set_mac_address 	= eth_mac_addr,
106 	.ndo_set_rx_mode	= set_multicast,
107 	.ndo_do_ioctl		= rio_ioctl,
108 	.ndo_tx_timeout		= rio_tx_timeout,
109 	.ndo_change_mtu		= change_mtu,
110 };
111 
112 static int
113 rio_probe1 (struct pci_dev *pdev, const struct pci_device_id *ent)
114 {
115 	struct net_device *dev;
116 	struct netdev_private *np;
117 	static int card_idx;
118 	int chip_idx = ent->driver_data;
119 	int err, irq;
120 	void __iomem *ioaddr;
121 	static int version_printed;
122 	void *ring_space;
123 	dma_addr_t ring_dma;
124 
125 	if (!version_printed++)
126 		printk ("%s", version);
127 
128 	err = pci_enable_device (pdev);
129 	if (err)
130 		return err;
131 
132 	irq = pdev->irq;
133 	err = pci_request_regions (pdev, "dl2k");
134 	if (err)
135 		goto err_out_disable;
136 
137 	pci_set_master (pdev);
138 
139 	err = -ENOMEM;
140 
141 	dev = alloc_etherdev (sizeof (*np));
142 	if (!dev)
143 		goto err_out_res;
144 	SET_NETDEV_DEV(dev, &pdev->dev);
145 
146 	np = netdev_priv(dev);
147 
148 	/* IO registers range. */
149 	ioaddr = pci_iomap(pdev, 0, 0);
150 	if (!ioaddr)
151 		goto err_out_dev;
152 	np->eeprom_addr = ioaddr;
153 
154 #ifdef MEM_MAPPING
155 	/* MM registers range. */
156 	ioaddr = pci_iomap(pdev, 1, 0);
157 	if (!ioaddr)
158 		goto err_out_iounmap;
159 #endif
160 	np->ioaddr = ioaddr;
161 	np->chip_id = chip_idx;
162 	np->pdev = pdev;
163 	spin_lock_init (&np->tx_lock);
164 	spin_lock_init (&np->rx_lock);
165 
166 	/* Parse manual configuration */
167 	np->an_enable = 1;
168 	np->tx_coalesce = 1;
169 	if (card_idx < MAX_UNITS) {
170 		if (media[card_idx] != NULL) {
171 			np->an_enable = 0;
172 			if (strcmp (media[card_idx], "auto") == 0 ||
173 			    strcmp (media[card_idx], "autosense") == 0 ||
174 			    strcmp (media[card_idx], "0") == 0 ) {
175 				np->an_enable = 2;
176 			} else if (strcmp (media[card_idx], "100mbps_fd") == 0 ||
177 			    strcmp (media[card_idx], "4") == 0) {
178 				np->speed = 100;
179 				np->full_duplex = 1;
180 			} else if (strcmp (media[card_idx], "100mbps_hd") == 0 ||
181 				   strcmp (media[card_idx], "3") == 0) {
182 				np->speed = 100;
183 				np->full_duplex = 0;
184 			} else if (strcmp (media[card_idx], "10mbps_fd") == 0 ||
185 				   strcmp (media[card_idx], "2") == 0) {
186 				np->speed = 10;
187 				np->full_duplex = 1;
188 			} else if (strcmp (media[card_idx], "10mbps_hd") == 0 ||
189 				   strcmp (media[card_idx], "1") == 0) {
190 				np->speed = 10;
191 				np->full_duplex = 0;
192 			} else if (strcmp (media[card_idx], "1000mbps_fd") == 0 ||
193 				 strcmp (media[card_idx], "6") == 0) {
194 				np->speed=1000;
195 				np->full_duplex=1;
196 			} else if (strcmp (media[card_idx], "1000mbps_hd") == 0 ||
197 				 strcmp (media[card_idx], "5") == 0) {
198 				np->speed = 1000;
199 				np->full_duplex = 0;
200 			} else {
201 				np->an_enable = 1;
202 			}
203 		}
204 		if (jumbo[card_idx] != 0) {
205 			np->jumbo = 1;
206 			dev->mtu = MAX_JUMBO;
207 		} else {
208 			np->jumbo = 0;
209 			if (mtu[card_idx] > 0 && mtu[card_idx] < PACKET_SIZE)
210 				dev->mtu = mtu[card_idx];
211 		}
212 		np->vlan = (vlan[card_idx] > 0 && vlan[card_idx] < 4096) ?
213 		    vlan[card_idx] : 0;
214 		if (rx_coalesce > 0 && rx_timeout > 0) {
215 			np->rx_coalesce = rx_coalesce;
216 			np->rx_timeout = rx_timeout;
217 			np->coalesce = 1;
218 		}
219 		np->tx_flow = (tx_flow == 0) ? 0 : 1;
220 		np->rx_flow = (rx_flow == 0) ? 0 : 1;
221 
222 		if (tx_coalesce < 1)
223 			tx_coalesce = 1;
224 		else if (tx_coalesce > TX_RING_SIZE-1)
225 			tx_coalesce = TX_RING_SIZE - 1;
226 	}
227 	dev->netdev_ops = &netdev_ops;
228 	dev->watchdog_timeo = TX_TIMEOUT;
229 	dev->ethtool_ops = &ethtool_ops;
230 #if 0
231 	dev->features = NETIF_F_IP_CSUM;
232 #endif
233 	pci_set_drvdata (pdev, dev);
234 
235 	ring_space = pci_alloc_consistent (pdev, TX_TOTAL_SIZE, &ring_dma);
236 	if (!ring_space)
237 		goto err_out_iounmap;
238 	np->tx_ring = ring_space;
239 	np->tx_ring_dma = ring_dma;
240 
241 	ring_space = pci_alloc_consistent (pdev, RX_TOTAL_SIZE, &ring_dma);
242 	if (!ring_space)
243 		goto err_out_unmap_tx;
244 	np->rx_ring = ring_space;
245 	np->rx_ring_dma = ring_dma;
246 
247 	/* Parse eeprom data */
248 	parse_eeprom (dev);
249 
250 	/* Find PHY address */
251 	err = find_miiphy (dev);
252 	if (err)
253 		goto err_out_unmap_rx;
254 
255 	/* Fiber device? */
256 	np->phy_media = (dr16(ASICCtrl) & PhyMedia) ? 1 : 0;
257 	np->link_status = 0;
258 	/* Set media and reset PHY */
259 	if (np->phy_media) {
260 		/* default Auto-Negotiation for fiber deivices */
261 	 	if (np->an_enable == 2) {
262 			np->an_enable = 1;
263 		}
264 	} else {
265 		/* Auto-Negotiation is mandatory for 1000BASE-T,
266 		   IEEE 802.3ab Annex 28D page 14 */
267 		if (np->speed == 1000)
268 			np->an_enable = 1;
269 	}
270 
271 	err = register_netdev (dev);
272 	if (err)
273 		goto err_out_unmap_rx;
274 
275 	card_idx++;
276 
277 	printk (KERN_INFO "%s: %s, %pM, IRQ %d\n",
278 		dev->name, np->name, dev->dev_addr, irq);
279 	if (tx_coalesce > 1)
280 		printk(KERN_INFO "tx_coalesce:\t%d packets\n",
281 				tx_coalesce);
282 	if (np->coalesce)
283 		printk(KERN_INFO
284 		       "rx_coalesce:\t%d packets\n"
285 		       "rx_timeout: \t%d ns\n",
286 				np->rx_coalesce, np->rx_timeout*640);
287 	if (np->vlan)
288 		printk(KERN_INFO "vlan(id):\t%d\n", np->vlan);
289 	return 0;
290 
291 err_out_unmap_rx:
292 	pci_free_consistent (pdev, RX_TOTAL_SIZE, np->rx_ring, np->rx_ring_dma);
293 err_out_unmap_tx:
294 	pci_free_consistent (pdev, TX_TOTAL_SIZE, np->tx_ring, np->tx_ring_dma);
295 err_out_iounmap:
296 #ifdef MEM_MAPPING
297 	pci_iounmap(pdev, np->ioaddr);
298 #endif
299 	pci_iounmap(pdev, np->eeprom_addr);
300 err_out_dev:
301 	free_netdev (dev);
302 err_out_res:
303 	pci_release_regions (pdev);
304 err_out_disable:
305 	pci_disable_device (pdev);
306 	return err;
307 }
308 
309 static int
310 find_miiphy (struct net_device *dev)
311 {
312 	struct netdev_private *np = netdev_priv(dev);
313 	int i, phy_found = 0;
314 	np = netdev_priv(dev);
315 	np->phy_addr = 1;
316 
317 	for (i = 31; i >= 0; i--) {
318 		int mii_status = mii_read (dev, i, 1);
319 		if (mii_status != 0xffff && mii_status != 0x0000) {
320 			np->phy_addr = i;
321 			phy_found++;
322 		}
323 	}
324 	if (!phy_found) {
325 		printk (KERN_ERR "%s: No MII PHY found!\n", dev->name);
326 		return -ENODEV;
327 	}
328 	return 0;
329 }
330 
331 static int
332 parse_eeprom (struct net_device *dev)
333 {
334 	struct netdev_private *np = netdev_priv(dev);
335 	void __iomem *ioaddr = np->ioaddr;
336 	int i, j;
337 	u8 sromdata[256];
338 	u8 *psib;
339 	u32 crc;
340 	PSROM_t psrom = (PSROM_t) sromdata;
341 
342 	int cid, next;
343 
344 	for (i = 0; i < 128; i++)
345 		((__le16 *) sromdata)[i] = cpu_to_le16(read_eeprom(np, i));
346 
347 	if (np->pdev->vendor == PCI_VENDOR_ID_DLINK) {	/* D-Link Only */
348 		/* Check CRC */
349 		crc = ~ether_crc_le (256 - 4, sromdata);
350 		if (psrom->crc != cpu_to_le32(crc)) {
351 			printk (KERN_ERR "%s: EEPROM data CRC error.\n",
352 					dev->name);
353 			return -1;
354 		}
355 	}
356 
357 	/* Set MAC address */
358 	for (i = 0; i < 6; i++)
359 		dev->dev_addr[i] = psrom->mac_addr[i];
360 
361 	if (np->chip_id == CHIP_IP1000A) {
362 		np->led_mode = psrom->led_mode;
363 		return 0;
364 	}
365 
366 	if (np->pdev->vendor != PCI_VENDOR_ID_DLINK) {
367 		return 0;
368 	}
369 
370 	/* Parse Software Information Block */
371 	i = 0x30;
372 	psib = (u8 *) sromdata;
373 	do {
374 		cid = psib[i++];
375 		next = psib[i++];
376 		if ((cid == 0 && next == 0) || (cid == 0xff && next == 0xff)) {
377 			printk (KERN_ERR "Cell data error\n");
378 			return -1;
379 		}
380 		switch (cid) {
381 		case 0:	/* Format version */
382 			break;
383 		case 1:	/* End of cell */
384 			return 0;
385 		case 2:	/* Duplex Polarity */
386 			np->duplex_polarity = psib[i];
387 			dw8(PhyCtrl, dr8(PhyCtrl) | psib[i]);
388 			break;
389 		case 3:	/* Wake Polarity */
390 			np->wake_polarity = psib[i];
391 			break;
392 		case 9:	/* Adapter description */
393 			j = (next - i > 255) ? 255 : next - i;
394 			memcpy (np->name, &(psib[i]), j);
395 			break;
396 		case 4:
397 		case 5:
398 		case 6:
399 		case 7:
400 		case 8:	/* Reversed */
401 			break;
402 		default:	/* Unknown cell */
403 			return -1;
404 		}
405 		i = next;
406 	} while (1);
407 
408 	return 0;
409 }
410 
411 static void rio_set_led_mode(struct net_device *dev)
412 {
413 	struct netdev_private *np = netdev_priv(dev);
414 	void __iomem *ioaddr = np->ioaddr;
415 	u32 mode;
416 
417 	if (np->chip_id != CHIP_IP1000A)
418 		return;
419 
420 	mode = dr32(ASICCtrl);
421 	mode &= ~(IPG_AC_LED_MODE_BIT_1 | IPG_AC_LED_MODE | IPG_AC_LED_SPEED);
422 
423 	if (np->led_mode & 0x01)
424 		mode |= IPG_AC_LED_MODE;
425 	if (np->led_mode & 0x02)
426 		mode |= IPG_AC_LED_MODE_BIT_1;
427 	if (np->led_mode & 0x08)
428 		mode |= IPG_AC_LED_SPEED;
429 
430 	dw32(ASICCtrl, mode);
431 }
432 
433 static inline dma_addr_t desc_to_dma(struct netdev_desc *desc)
434 {
435 	return le64_to_cpu(desc->fraginfo) & DMA_BIT_MASK(48);
436 }
437 
438 static void free_list(struct net_device *dev)
439 {
440 	struct netdev_private *np = netdev_priv(dev);
441 	struct sk_buff *skb;
442 	int i;
443 
444 	/* Free all the skbuffs in the queue. */
445 	for (i = 0; i < RX_RING_SIZE; i++) {
446 		skb = np->rx_skbuff[i];
447 		if (skb) {
448 			pci_unmap_single(np->pdev, desc_to_dma(&np->rx_ring[i]),
449 					 skb->len, PCI_DMA_FROMDEVICE);
450 			dev_kfree_skb(skb);
451 			np->rx_skbuff[i] = NULL;
452 		}
453 		np->rx_ring[i].status = 0;
454 		np->rx_ring[i].fraginfo = 0;
455 	}
456 	for (i = 0; i < TX_RING_SIZE; i++) {
457 		skb = np->tx_skbuff[i];
458 		if (skb) {
459 			pci_unmap_single(np->pdev, desc_to_dma(&np->tx_ring[i]),
460 					 skb->len, PCI_DMA_TODEVICE);
461 			dev_kfree_skb(skb);
462 			np->tx_skbuff[i] = NULL;
463 		}
464 	}
465 }
466 
467 static void rio_reset_ring(struct netdev_private *np)
468 {
469 	int i;
470 
471 	np->cur_rx = 0;
472 	np->cur_tx = 0;
473 	np->old_rx = 0;
474 	np->old_tx = 0;
475 
476 	for (i = 0; i < TX_RING_SIZE; i++)
477 		np->tx_ring[i].status = cpu_to_le64(TFDDone);
478 
479 	for (i = 0; i < RX_RING_SIZE; i++)
480 		np->rx_ring[i].status = 0;
481 }
482 
483  /* allocate and initialize Tx and Rx descriptors */
484 static int alloc_list(struct net_device *dev)
485 {
486 	struct netdev_private *np = netdev_priv(dev);
487 	int i;
488 
489 	rio_reset_ring(np);
490 	np->rx_buf_sz = (dev->mtu <= 1500 ? PACKET_SIZE : dev->mtu + 32);
491 
492 	/* Initialize Tx descriptors, TFDListPtr leaves in start_xmit(). */
493 	for (i = 0; i < TX_RING_SIZE; i++) {
494 		np->tx_skbuff[i] = NULL;
495 		np->tx_ring[i].next_desc = cpu_to_le64(np->tx_ring_dma +
496 					      ((i + 1) % TX_RING_SIZE) *
497 					      sizeof(struct netdev_desc));
498 	}
499 
500 	/* Initialize Rx descriptors & allocate buffers */
501 	for (i = 0; i < RX_RING_SIZE; i++) {
502 		/* Allocated fixed size of skbuff */
503 		struct sk_buff *skb;
504 
505 		skb = netdev_alloc_skb_ip_align(dev, np->rx_buf_sz);
506 		np->rx_skbuff[i] = skb;
507 		if (!skb) {
508 			free_list(dev);
509 			return -ENOMEM;
510 		}
511 
512 		np->rx_ring[i].next_desc = cpu_to_le64(np->rx_ring_dma +
513 						((i + 1) % RX_RING_SIZE) *
514 						sizeof(struct netdev_desc));
515 		/* Rubicon now supports 40 bits of addressing space. */
516 		np->rx_ring[i].fraginfo =
517 		    cpu_to_le64(pci_map_single(
518 				  np->pdev, skb->data, np->rx_buf_sz,
519 				  PCI_DMA_FROMDEVICE));
520 		np->rx_ring[i].fraginfo |= cpu_to_le64((u64)np->rx_buf_sz << 48);
521 	}
522 
523 	return 0;
524 }
525 
526 static void rio_hw_init(struct net_device *dev)
527 {
528 	struct netdev_private *np = netdev_priv(dev);
529 	void __iomem *ioaddr = np->ioaddr;
530 	int i;
531 	u16 macctrl;
532 
533 	/* Reset all logic functions */
534 	dw16(ASICCtrl + 2,
535 	     GlobalReset | DMAReset | FIFOReset | NetworkReset | HostReset);
536 	mdelay(10);
537 
538 	rio_set_led_mode(dev);
539 
540 	/* DebugCtrl bit 4, 5, 9 must set */
541 	dw32(DebugCtrl, dr32(DebugCtrl) | 0x0230);
542 
543 	if (np->chip_id == CHIP_IP1000A &&
544 	    (np->pdev->revision == 0x40 || np->pdev->revision == 0x41)) {
545 		/* PHY magic taken from ipg driver, undocumented registers */
546 		mii_write(dev, np->phy_addr, 31, 0x0001);
547 		mii_write(dev, np->phy_addr, 27, 0x01e0);
548 		mii_write(dev, np->phy_addr, 31, 0x0002);
549 		mii_write(dev, np->phy_addr, 27, 0xeb8e);
550 		mii_write(dev, np->phy_addr, 31, 0x0000);
551 		mii_write(dev, np->phy_addr, 30, 0x005e);
552 		/* advertise 1000BASE-T half & full duplex, prefer MASTER */
553 		mii_write(dev, np->phy_addr, MII_CTRL1000, 0x0700);
554 	}
555 
556 	if (np->phy_media)
557 		mii_set_media_pcs(dev);
558 	else
559 		mii_set_media(dev);
560 
561 	/* Jumbo frame */
562 	if (np->jumbo != 0)
563 		dw16(MaxFrameSize, MAX_JUMBO+14);
564 
565 	/* Set RFDListPtr */
566 	dw32(RFDListPtr0, np->rx_ring_dma);
567 	dw32(RFDListPtr1, 0);
568 
569 	/* Set station address */
570 	/* 16 or 32-bit access is required by TC9020 datasheet but 8-bit works
571 	 * too. However, it doesn't work on IP1000A so we use 16-bit access.
572 	 */
573 	for (i = 0; i < 3; i++)
574 		dw16(StationAddr0 + 2 * i,
575 		     cpu_to_le16(((u16 *)dev->dev_addr)[i]));
576 
577 	set_multicast (dev);
578 	if (np->coalesce) {
579 		dw32(RxDMAIntCtrl, np->rx_coalesce | np->rx_timeout << 16);
580 	}
581 	/* Set RIO to poll every N*320nsec. */
582 	dw8(RxDMAPollPeriod, 0x20);
583 	dw8(TxDMAPollPeriod, 0xff);
584 	dw8(RxDMABurstThresh, 0x30);
585 	dw8(RxDMAUrgentThresh, 0x30);
586 	dw32(RmonStatMask, 0x0007ffff);
587 	/* clear statistics */
588 	clear_stats (dev);
589 
590 	/* VLAN supported */
591 	if (np->vlan) {
592 		/* priority field in RxDMAIntCtrl  */
593 		dw32(RxDMAIntCtrl, dr32(RxDMAIntCtrl) | 0x7 << 10);
594 		/* VLANId */
595 		dw16(VLANId, np->vlan);
596 		/* Length/Type should be 0x8100 */
597 		dw32(VLANTag, 0x8100 << 16 | np->vlan);
598 		/* Enable AutoVLANuntagging, but disable AutoVLANtagging.
599 		   VLAN information tagged by TFC' VID, CFI fields. */
600 		dw32(MACCtrl, dr32(MACCtrl) | AutoVLANuntagging);
601 	}
602 
603 	/* Start Tx/Rx */
604 	dw32(MACCtrl, dr32(MACCtrl) | StatsEnable | RxEnable | TxEnable);
605 
606 	macctrl = 0;
607 	macctrl |= (np->vlan) ? AutoVLANuntagging : 0;
608 	macctrl |= (np->full_duplex) ? DuplexSelect : 0;
609 	macctrl |= (np->tx_flow) ? TxFlowControlEnable : 0;
610 	macctrl |= (np->rx_flow) ? RxFlowControlEnable : 0;
611 	dw16(MACCtrl, macctrl);
612 }
613 
614 static void rio_hw_stop(struct net_device *dev)
615 {
616 	struct netdev_private *np = netdev_priv(dev);
617 	void __iomem *ioaddr = np->ioaddr;
618 
619 	/* Disable interrupts */
620 	dw16(IntEnable, 0);
621 
622 	/* Stop Tx and Rx logics */
623 	dw32(MACCtrl, TxDisable | RxDisable | StatsDisable);
624 }
625 
626 static int rio_open(struct net_device *dev)
627 {
628 	struct netdev_private *np = netdev_priv(dev);
629 	const int irq = np->pdev->irq;
630 	int i;
631 
632 	i = alloc_list(dev);
633 	if (i)
634 		return i;
635 
636 	rio_hw_init(dev);
637 
638 	i = request_irq(irq, rio_interrupt, IRQF_SHARED, dev->name, dev);
639 	if (i) {
640 		rio_hw_stop(dev);
641 		free_list(dev);
642 		return i;
643 	}
644 
645 	setup_timer(&np->timer, rio_timer, (unsigned long)dev);
646 	np->timer.expires = jiffies + 1 * HZ;
647 	add_timer(&np->timer);
648 
649 	netif_start_queue (dev);
650 
651 	dl2k_enable_int(np);
652 	return 0;
653 }
654 
655 static void
656 rio_timer (unsigned long data)
657 {
658 	struct net_device *dev = (struct net_device *)data;
659 	struct netdev_private *np = netdev_priv(dev);
660 	unsigned int entry;
661 	int next_tick = 1*HZ;
662 	unsigned long flags;
663 
664 	spin_lock_irqsave(&np->rx_lock, flags);
665 	/* Recover rx ring exhausted error */
666 	if (np->cur_rx - np->old_rx >= RX_RING_SIZE) {
667 		printk(KERN_INFO "Try to recover rx ring exhausted...\n");
668 		/* Re-allocate skbuffs to fill the descriptor ring */
669 		for (; np->cur_rx - np->old_rx > 0; np->old_rx++) {
670 			struct sk_buff *skb;
671 			entry = np->old_rx % RX_RING_SIZE;
672 			/* Dropped packets don't need to re-allocate */
673 			if (np->rx_skbuff[entry] == NULL) {
674 				skb = netdev_alloc_skb_ip_align(dev,
675 								np->rx_buf_sz);
676 				if (skb == NULL) {
677 					np->rx_ring[entry].fraginfo = 0;
678 					printk (KERN_INFO
679 						"%s: Still unable to re-allocate Rx skbuff.#%d\n",
680 						dev->name, entry);
681 					break;
682 				}
683 				np->rx_skbuff[entry] = skb;
684 				np->rx_ring[entry].fraginfo =
685 				    cpu_to_le64 (pci_map_single
686 					 (np->pdev, skb->data, np->rx_buf_sz,
687 					  PCI_DMA_FROMDEVICE));
688 			}
689 			np->rx_ring[entry].fraginfo |=
690 			    cpu_to_le64((u64)np->rx_buf_sz << 48);
691 			np->rx_ring[entry].status = 0;
692 		} /* end for */
693 	} /* end if */
694 	spin_unlock_irqrestore (&np->rx_lock, flags);
695 	np->timer.expires = jiffies + next_tick;
696 	add_timer(&np->timer);
697 }
698 
699 static void
700 rio_tx_timeout (struct net_device *dev)
701 {
702 	struct netdev_private *np = netdev_priv(dev);
703 	void __iomem *ioaddr = np->ioaddr;
704 
705 	printk (KERN_INFO "%s: Tx timed out (%4.4x), is buffer full?\n",
706 		dev->name, dr32(TxStatus));
707 	rio_free_tx(dev, 0);
708 	dev->if_port = 0;
709 	netif_trans_update(dev); /* prevent tx timeout */
710 }
711 
712 static netdev_tx_t
713 start_xmit (struct sk_buff *skb, struct net_device *dev)
714 {
715 	struct netdev_private *np = netdev_priv(dev);
716 	void __iomem *ioaddr = np->ioaddr;
717 	struct netdev_desc *txdesc;
718 	unsigned entry;
719 	u64 tfc_vlan_tag = 0;
720 
721 	if (np->link_status == 0) {	/* Link Down */
722 		dev_kfree_skb(skb);
723 		return NETDEV_TX_OK;
724 	}
725 	entry = np->cur_tx % TX_RING_SIZE;
726 	np->tx_skbuff[entry] = skb;
727 	txdesc = &np->tx_ring[entry];
728 
729 #if 0
730 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
731 		txdesc->status |=
732 		    cpu_to_le64 (TCPChecksumEnable | UDPChecksumEnable |
733 				 IPChecksumEnable);
734 	}
735 #endif
736 	if (np->vlan) {
737 		tfc_vlan_tag = VLANTagInsert |
738 		    ((u64)np->vlan << 32) |
739 		    ((u64)skb->priority << 45);
740 	}
741 	txdesc->fraginfo = cpu_to_le64 (pci_map_single (np->pdev, skb->data,
742 							skb->len,
743 							PCI_DMA_TODEVICE));
744 	txdesc->fraginfo |= cpu_to_le64((u64)skb->len << 48);
745 
746 	/* DL2K bug: DMA fails to get next descriptor ptr in 10Mbps mode
747 	 * Work around: Always use 1 descriptor in 10Mbps mode */
748 	if (entry % np->tx_coalesce == 0 || np->speed == 10)
749 		txdesc->status = cpu_to_le64 (entry | tfc_vlan_tag |
750 					      WordAlignDisable |
751 					      TxDMAIndicate |
752 					      (1 << FragCountShift));
753 	else
754 		txdesc->status = cpu_to_le64 (entry | tfc_vlan_tag |
755 					      WordAlignDisable |
756 					      (1 << FragCountShift));
757 
758 	/* TxDMAPollNow */
759 	dw32(DMACtrl, dr32(DMACtrl) | 0x00001000);
760 	/* Schedule ISR */
761 	dw32(CountDown, 10000);
762 	np->cur_tx = (np->cur_tx + 1) % TX_RING_SIZE;
763 	if ((np->cur_tx - np->old_tx + TX_RING_SIZE) % TX_RING_SIZE
764 			< TX_QUEUE_LEN - 1 && np->speed != 10) {
765 		/* do nothing */
766 	} else if (!netif_queue_stopped(dev)) {
767 		netif_stop_queue (dev);
768 	}
769 
770 	/* The first TFDListPtr */
771 	if (!dr32(TFDListPtr0)) {
772 		dw32(TFDListPtr0, np->tx_ring_dma +
773 		     entry * sizeof (struct netdev_desc));
774 		dw32(TFDListPtr1, 0);
775 	}
776 
777 	return NETDEV_TX_OK;
778 }
779 
780 static irqreturn_t
781 rio_interrupt (int irq, void *dev_instance)
782 {
783 	struct net_device *dev = dev_instance;
784 	struct netdev_private *np = netdev_priv(dev);
785 	void __iomem *ioaddr = np->ioaddr;
786 	unsigned int_status;
787 	int cnt = max_intrloop;
788 	int handled = 0;
789 
790 	while (1) {
791 		int_status = dr16(IntStatus);
792 		dw16(IntStatus, int_status);
793 		int_status &= DEFAULT_INTR;
794 		if (int_status == 0 || --cnt < 0)
795 			break;
796 		handled = 1;
797 		/* Processing received packets */
798 		if (int_status & RxDMAComplete)
799 			receive_packet (dev);
800 		/* TxDMAComplete interrupt */
801 		if ((int_status & (TxDMAComplete|IntRequested))) {
802 			int tx_status;
803 			tx_status = dr32(TxStatus);
804 			if (tx_status & 0x01)
805 				tx_error (dev, tx_status);
806 			/* Free used tx skbuffs */
807 			rio_free_tx (dev, 1);
808 		}
809 
810 		/* Handle uncommon events */
811 		if (int_status &
812 		    (HostError | LinkEvent | UpdateStats))
813 			rio_error (dev, int_status);
814 	}
815 	if (np->cur_tx != np->old_tx)
816 		dw32(CountDown, 100);
817 	return IRQ_RETVAL(handled);
818 }
819 
820 static void
821 rio_free_tx (struct net_device *dev, int irq)
822 {
823 	struct netdev_private *np = netdev_priv(dev);
824 	int entry = np->old_tx % TX_RING_SIZE;
825 	int tx_use = 0;
826 	unsigned long flag = 0;
827 
828 	if (irq)
829 		spin_lock(&np->tx_lock);
830 	else
831 		spin_lock_irqsave(&np->tx_lock, flag);
832 
833 	/* Free used tx skbuffs */
834 	while (entry != np->cur_tx) {
835 		struct sk_buff *skb;
836 
837 		if (!(np->tx_ring[entry].status & cpu_to_le64(TFDDone)))
838 			break;
839 		skb = np->tx_skbuff[entry];
840 		pci_unmap_single (np->pdev,
841 				  desc_to_dma(&np->tx_ring[entry]),
842 				  skb->len, PCI_DMA_TODEVICE);
843 		if (irq)
844 			dev_kfree_skb_irq (skb);
845 		else
846 			dev_kfree_skb (skb);
847 
848 		np->tx_skbuff[entry] = NULL;
849 		entry = (entry + 1) % TX_RING_SIZE;
850 		tx_use++;
851 	}
852 	if (irq)
853 		spin_unlock(&np->tx_lock);
854 	else
855 		spin_unlock_irqrestore(&np->tx_lock, flag);
856 	np->old_tx = entry;
857 
858 	/* If the ring is no longer full, clear tx_full and
859 	   call netif_wake_queue() */
860 
861 	if (netif_queue_stopped(dev) &&
862 	    ((np->cur_tx - np->old_tx + TX_RING_SIZE) % TX_RING_SIZE
863 	    < TX_QUEUE_LEN - 1 || np->speed == 10)) {
864 		netif_wake_queue (dev);
865 	}
866 }
867 
868 static void
869 tx_error (struct net_device *dev, int tx_status)
870 {
871 	struct netdev_private *np = netdev_priv(dev);
872 	void __iomem *ioaddr = np->ioaddr;
873 	int frame_id;
874 	int i;
875 
876 	frame_id = (tx_status & 0xffff0000);
877 	printk (KERN_ERR "%s: Transmit error, TxStatus %4.4x, FrameId %d.\n",
878 		dev->name, tx_status, frame_id);
879 	np->stats.tx_errors++;
880 	/* Ttransmit Underrun */
881 	if (tx_status & 0x10) {
882 		np->stats.tx_fifo_errors++;
883 		dw16(TxStartThresh, dr16(TxStartThresh) + 0x10);
884 		/* Transmit Underrun need to set TxReset, DMARest, FIFOReset */
885 		dw16(ASICCtrl + 2,
886 		     TxReset | DMAReset | FIFOReset | NetworkReset);
887 		/* Wait for ResetBusy bit clear */
888 		for (i = 50; i > 0; i--) {
889 			if (!(dr16(ASICCtrl + 2) & ResetBusy))
890 				break;
891 			mdelay (1);
892 		}
893 		rio_set_led_mode(dev);
894 		rio_free_tx (dev, 1);
895 		/* Reset TFDListPtr */
896 		dw32(TFDListPtr0, np->tx_ring_dma +
897 		     np->old_tx * sizeof (struct netdev_desc));
898 		dw32(TFDListPtr1, 0);
899 
900 		/* Let TxStartThresh stay default value */
901 	}
902 	/* Late Collision */
903 	if (tx_status & 0x04) {
904 		np->stats.tx_fifo_errors++;
905 		/* TxReset and clear FIFO */
906 		dw16(ASICCtrl + 2, TxReset | FIFOReset);
907 		/* Wait reset done */
908 		for (i = 50; i > 0; i--) {
909 			if (!(dr16(ASICCtrl + 2) & ResetBusy))
910 				break;
911 			mdelay (1);
912 		}
913 		rio_set_led_mode(dev);
914 		/* Let TxStartThresh stay default value */
915 	}
916 	/* Maximum Collisions */
917 #ifdef ETHER_STATS
918 	if (tx_status & 0x08)
919 		np->stats.collisions16++;
920 #else
921 	if (tx_status & 0x08)
922 		np->stats.collisions++;
923 #endif
924 	/* Restart the Tx */
925 	dw32(MACCtrl, dr16(MACCtrl) | TxEnable);
926 }
927 
928 static int
929 receive_packet (struct net_device *dev)
930 {
931 	struct netdev_private *np = netdev_priv(dev);
932 	int entry = np->cur_rx % RX_RING_SIZE;
933 	int cnt = 30;
934 
935 	/* If RFDDone, FrameStart and FrameEnd set, there is a new packet in. */
936 	while (1) {
937 		struct netdev_desc *desc = &np->rx_ring[entry];
938 		int pkt_len;
939 		u64 frame_status;
940 
941 		if (!(desc->status & cpu_to_le64(RFDDone)) ||
942 		    !(desc->status & cpu_to_le64(FrameStart)) ||
943 		    !(desc->status & cpu_to_le64(FrameEnd)))
944 			break;
945 
946 		/* Chip omits the CRC. */
947 		frame_status = le64_to_cpu(desc->status);
948 		pkt_len = frame_status & 0xffff;
949 		if (--cnt < 0)
950 			break;
951 		/* Update rx error statistics, drop packet. */
952 		if (frame_status & RFS_Errors) {
953 			np->stats.rx_errors++;
954 			if (frame_status & (RxRuntFrame | RxLengthError))
955 				np->stats.rx_length_errors++;
956 			if (frame_status & RxFCSError)
957 				np->stats.rx_crc_errors++;
958 			if (frame_status & RxAlignmentError && np->speed != 1000)
959 				np->stats.rx_frame_errors++;
960 			if (frame_status & RxFIFOOverrun)
961 	 			np->stats.rx_fifo_errors++;
962 		} else {
963 			struct sk_buff *skb;
964 
965 			/* Small skbuffs for short packets */
966 			if (pkt_len > copy_thresh) {
967 				pci_unmap_single (np->pdev,
968 						  desc_to_dma(desc),
969 						  np->rx_buf_sz,
970 						  PCI_DMA_FROMDEVICE);
971 				skb_put (skb = np->rx_skbuff[entry], pkt_len);
972 				np->rx_skbuff[entry] = NULL;
973 			} else if ((skb = netdev_alloc_skb_ip_align(dev, pkt_len))) {
974 				pci_dma_sync_single_for_cpu(np->pdev,
975 							    desc_to_dma(desc),
976 							    np->rx_buf_sz,
977 							    PCI_DMA_FROMDEVICE);
978 				skb_copy_to_linear_data (skb,
979 						  np->rx_skbuff[entry]->data,
980 						  pkt_len);
981 				skb_put (skb, pkt_len);
982 				pci_dma_sync_single_for_device(np->pdev,
983 							       desc_to_dma(desc),
984 							       np->rx_buf_sz,
985 							       PCI_DMA_FROMDEVICE);
986 			}
987 			skb->protocol = eth_type_trans (skb, dev);
988 #if 0
989 			/* Checksum done by hw, but csum value unavailable. */
990 			if (np->pdev->pci_rev_id >= 0x0c &&
991 				!(frame_status & (TCPError | UDPError | IPError))) {
992 				skb->ip_summed = CHECKSUM_UNNECESSARY;
993 			}
994 #endif
995 			netif_rx (skb);
996 		}
997 		entry = (entry + 1) % RX_RING_SIZE;
998 	}
999 	spin_lock(&np->rx_lock);
1000 	np->cur_rx = entry;
1001 	/* Re-allocate skbuffs to fill the descriptor ring */
1002 	entry = np->old_rx;
1003 	while (entry != np->cur_rx) {
1004 		struct sk_buff *skb;
1005 		/* Dropped packets don't need to re-allocate */
1006 		if (np->rx_skbuff[entry] == NULL) {
1007 			skb = netdev_alloc_skb_ip_align(dev, np->rx_buf_sz);
1008 			if (skb == NULL) {
1009 				np->rx_ring[entry].fraginfo = 0;
1010 				printk (KERN_INFO
1011 					"%s: receive_packet: "
1012 					"Unable to re-allocate Rx skbuff.#%d\n",
1013 					dev->name, entry);
1014 				break;
1015 			}
1016 			np->rx_skbuff[entry] = skb;
1017 			np->rx_ring[entry].fraginfo =
1018 			    cpu_to_le64 (pci_map_single
1019 					 (np->pdev, skb->data, np->rx_buf_sz,
1020 					  PCI_DMA_FROMDEVICE));
1021 		}
1022 		np->rx_ring[entry].fraginfo |=
1023 		    cpu_to_le64((u64)np->rx_buf_sz << 48);
1024 		np->rx_ring[entry].status = 0;
1025 		entry = (entry + 1) % RX_RING_SIZE;
1026 	}
1027 	np->old_rx = entry;
1028 	spin_unlock(&np->rx_lock);
1029 	return 0;
1030 }
1031 
1032 static void
1033 rio_error (struct net_device *dev, int int_status)
1034 {
1035 	struct netdev_private *np = netdev_priv(dev);
1036 	void __iomem *ioaddr = np->ioaddr;
1037 	u16 macctrl;
1038 
1039 	/* Link change event */
1040 	if (int_status & LinkEvent) {
1041 		if (mii_wait_link (dev, 10) == 0) {
1042 			printk (KERN_INFO "%s: Link up\n", dev->name);
1043 			if (np->phy_media)
1044 				mii_get_media_pcs (dev);
1045 			else
1046 				mii_get_media (dev);
1047 			if (np->speed == 1000)
1048 				np->tx_coalesce = tx_coalesce;
1049 			else
1050 				np->tx_coalesce = 1;
1051 			macctrl = 0;
1052 			macctrl |= (np->vlan) ? AutoVLANuntagging : 0;
1053 			macctrl |= (np->full_duplex) ? DuplexSelect : 0;
1054 			macctrl |= (np->tx_flow) ?
1055 				TxFlowControlEnable : 0;
1056 			macctrl |= (np->rx_flow) ?
1057 				RxFlowControlEnable : 0;
1058 			dw16(MACCtrl, macctrl);
1059 			np->link_status = 1;
1060 			netif_carrier_on(dev);
1061 		} else {
1062 			printk (KERN_INFO "%s: Link off\n", dev->name);
1063 			np->link_status = 0;
1064 			netif_carrier_off(dev);
1065 		}
1066 	}
1067 
1068 	/* UpdateStats statistics registers */
1069 	if (int_status & UpdateStats) {
1070 		get_stats (dev);
1071 	}
1072 
1073 	/* PCI Error, a catastronphic error related to the bus interface
1074 	   occurs, set GlobalReset and HostReset to reset. */
1075 	if (int_status & HostError) {
1076 		printk (KERN_ERR "%s: HostError! IntStatus %4.4x.\n",
1077 			dev->name, int_status);
1078 		dw16(ASICCtrl + 2, GlobalReset | HostReset);
1079 		mdelay (500);
1080 		rio_set_led_mode(dev);
1081 	}
1082 }
1083 
1084 static struct net_device_stats *
1085 get_stats (struct net_device *dev)
1086 {
1087 	struct netdev_private *np = netdev_priv(dev);
1088 	void __iomem *ioaddr = np->ioaddr;
1089 #ifdef MEM_MAPPING
1090 	int i;
1091 #endif
1092 	unsigned int stat_reg;
1093 
1094 	/* All statistics registers need to be acknowledged,
1095 	   else statistic overflow could cause problems */
1096 
1097 	np->stats.rx_packets += dr32(FramesRcvOk);
1098 	np->stats.tx_packets += dr32(FramesXmtOk);
1099 	np->stats.rx_bytes += dr32(OctetRcvOk);
1100 	np->stats.tx_bytes += dr32(OctetXmtOk);
1101 
1102 	np->stats.multicast = dr32(McstFramesRcvdOk);
1103 	np->stats.collisions += dr32(SingleColFrames)
1104 			     +  dr32(MultiColFrames);
1105 
1106 	/* detailed tx errors */
1107 	stat_reg = dr16(FramesAbortXSColls);
1108 	np->stats.tx_aborted_errors += stat_reg;
1109 	np->stats.tx_errors += stat_reg;
1110 
1111 	stat_reg = dr16(CarrierSenseErrors);
1112 	np->stats.tx_carrier_errors += stat_reg;
1113 	np->stats.tx_errors += stat_reg;
1114 
1115 	/* Clear all other statistic register. */
1116 	dr32(McstOctetXmtOk);
1117 	dr16(BcstFramesXmtdOk);
1118 	dr32(McstFramesXmtdOk);
1119 	dr16(BcstFramesRcvdOk);
1120 	dr16(MacControlFramesRcvd);
1121 	dr16(FrameTooLongErrors);
1122 	dr16(InRangeLengthErrors);
1123 	dr16(FramesCheckSeqErrors);
1124 	dr16(FramesLostRxErrors);
1125 	dr32(McstOctetXmtOk);
1126 	dr32(BcstOctetXmtOk);
1127 	dr32(McstFramesXmtdOk);
1128 	dr32(FramesWDeferredXmt);
1129 	dr32(LateCollisions);
1130 	dr16(BcstFramesXmtdOk);
1131 	dr16(MacControlFramesXmtd);
1132 	dr16(FramesWEXDeferal);
1133 
1134 #ifdef MEM_MAPPING
1135 	for (i = 0x100; i <= 0x150; i += 4)
1136 		dr32(i);
1137 #endif
1138 	dr16(TxJumboFrames);
1139 	dr16(RxJumboFrames);
1140 	dr16(TCPCheckSumErrors);
1141 	dr16(UDPCheckSumErrors);
1142 	dr16(IPCheckSumErrors);
1143 	return &np->stats;
1144 }
1145 
1146 static int
1147 clear_stats (struct net_device *dev)
1148 {
1149 	struct netdev_private *np = netdev_priv(dev);
1150 	void __iomem *ioaddr = np->ioaddr;
1151 #ifdef MEM_MAPPING
1152 	int i;
1153 #endif
1154 
1155 	/* All statistics registers need to be acknowledged,
1156 	   else statistic overflow could cause problems */
1157 	dr32(FramesRcvOk);
1158 	dr32(FramesXmtOk);
1159 	dr32(OctetRcvOk);
1160 	dr32(OctetXmtOk);
1161 
1162 	dr32(McstFramesRcvdOk);
1163 	dr32(SingleColFrames);
1164 	dr32(MultiColFrames);
1165 	dr32(LateCollisions);
1166 	/* detailed rx errors */
1167 	dr16(FrameTooLongErrors);
1168 	dr16(InRangeLengthErrors);
1169 	dr16(FramesCheckSeqErrors);
1170 	dr16(FramesLostRxErrors);
1171 
1172 	/* detailed tx errors */
1173 	dr16(FramesAbortXSColls);
1174 	dr16(CarrierSenseErrors);
1175 
1176 	/* Clear all other statistic register. */
1177 	dr32(McstOctetXmtOk);
1178 	dr16(BcstFramesXmtdOk);
1179 	dr32(McstFramesXmtdOk);
1180 	dr16(BcstFramesRcvdOk);
1181 	dr16(MacControlFramesRcvd);
1182 	dr32(McstOctetXmtOk);
1183 	dr32(BcstOctetXmtOk);
1184 	dr32(McstFramesXmtdOk);
1185 	dr32(FramesWDeferredXmt);
1186 	dr16(BcstFramesXmtdOk);
1187 	dr16(MacControlFramesXmtd);
1188 	dr16(FramesWEXDeferal);
1189 #ifdef MEM_MAPPING
1190 	for (i = 0x100; i <= 0x150; i += 4)
1191 		dr32(i);
1192 #endif
1193 	dr16(TxJumboFrames);
1194 	dr16(RxJumboFrames);
1195 	dr16(TCPCheckSumErrors);
1196 	dr16(UDPCheckSumErrors);
1197 	dr16(IPCheckSumErrors);
1198 	return 0;
1199 }
1200 
1201 
1202 static int
1203 change_mtu (struct net_device *dev, int new_mtu)
1204 {
1205 	struct netdev_private *np = netdev_priv(dev);
1206 	int max = (np->jumbo) ? MAX_JUMBO : 1536;
1207 
1208 	if ((new_mtu < 68) || (new_mtu > max)) {
1209 		return -EINVAL;
1210 	}
1211 
1212 	dev->mtu = new_mtu;
1213 
1214 	return 0;
1215 }
1216 
1217 static void
1218 set_multicast (struct net_device *dev)
1219 {
1220 	struct netdev_private *np = netdev_priv(dev);
1221 	void __iomem *ioaddr = np->ioaddr;
1222 	u32 hash_table[2];
1223 	u16 rx_mode = 0;
1224 
1225 	hash_table[0] = hash_table[1] = 0;
1226 	/* RxFlowcontrol DA: 01-80-C2-00-00-01. Hash index=0x39 */
1227 	hash_table[1] |= 0x02000000;
1228 	if (dev->flags & IFF_PROMISC) {
1229 		/* Receive all frames promiscuously. */
1230 		rx_mode = ReceiveAllFrames;
1231 	} else if ((dev->flags & IFF_ALLMULTI) ||
1232 			(netdev_mc_count(dev) > multicast_filter_limit)) {
1233 		/* Receive broadcast and multicast frames */
1234 		rx_mode = ReceiveBroadcast | ReceiveMulticast | ReceiveUnicast;
1235 	} else if (!netdev_mc_empty(dev)) {
1236 		struct netdev_hw_addr *ha;
1237 		/* Receive broadcast frames and multicast frames filtering
1238 		   by Hashtable */
1239 		rx_mode =
1240 		    ReceiveBroadcast | ReceiveMulticastHash | ReceiveUnicast;
1241 		netdev_for_each_mc_addr(ha, dev) {
1242 			int bit, index = 0;
1243 			int crc = ether_crc_le(ETH_ALEN, ha->addr);
1244 			/* The inverted high significant 6 bits of CRC are
1245 			   used as an index to hashtable */
1246 			for (bit = 0; bit < 6; bit++)
1247 				if (crc & (1 << (31 - bit)))
1248 					index |= (1 << bit);
1249 			hash_table[index / 32] |= (1 << (index % 32));
1250 		}
1251 	} else {
1252 		rx_mode = ReceiveBroadcast | ReceiveUnicast;
1253 	}
1254 	if (np->vlan) {
1255 		/* ReceiveVLANMatch field in ReceiveMode */
1256 		rx_mode |= ReceiveVLANMatch;
1257 	}
1258 
1259 	dw32(HashTable0, hash_table[0]);
1260 	dw32(HashTable1, hash_table[1]);
1261 	dw16(ReceiveMode, rx_mode);
1262 }
1263 
1264 static void rio_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1265 {
1266 	struct netdev_private *np = netdev_priv(dev);
1267 
1268 	strlcpy(info->driver, "dl2k", sizeof(info->driver));
1269 	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1270 	strlcpy(info->bus_info, pci_name(np->pdev), sizeof(info->bus_info));
1271 }
1272 
1273 static int rio_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1274 {
1275 	struct netdev_private *np = netdev_priv(dev);
1276 	if (np->phy_media) {
1277 		/* fiber device */
1278 		cmd->supported = SUPPORTED_Autoneg | SUPPORTED_FIBRE;
1279 		cmd->advertising= ADVERTISED_Autoneg | ADVERTISED_FIBRE;
1280 		cmd->port = PORT_FIBRE;
1281 		cmd->transceiver = XCVR_INTERNAL;
1282 	} else {
1283 		/* copper device */
1284 		cmd->supported = SUPPORTED_10baseT_Half |
1285 			SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Half
1286 			| SUPPORTED_100baseT_Full | SUPPORTED_1000baseT_Full |
1287 			SUPPORTED_Autoneg | SUPPORTED_MII;
1288 		cmd->advertising = ADVERTISED_10baseT_Half |
1289 			ADVERTISED_10baseT_Full | ADVERTISED_100baseT_Half |
1290 			ADVERTISED_100baseT_Full | ADVERTISED_1000baseT_Full|
1291 			ADVERTISED_Autoneg | ADVERTISED_MII;
1292 		cmd->port = PORT_MII;
1293 		cmd->transceiver = XCVR_INTERNAL;
1294 	}
1295 	if ( np->link_status ) {
1296 		ethtool_cmd_speed_set(cmd, np->speed);
1297 		cmd->duplex = np->full_duplex ? DUPLEX_FULL : DUPLEX_HALF;
1298 	} else {
1299 		ethtool_cmd_speed_set(cmd, SPEED_UNKNOWN);
1300 		cmd->duplex = DUPLEX_UNKNOWN;
1301 	}
1302 	if ( np->an_enable)
1303 		cmd->autoneg = AUTONEG_ENABLE;
1304 	else
1305 		cmd->autoneg = AUTONEG_DISABLE;
1306 
1307 	cmd->phy_address = np->phy_addr;
1308 	return 0;
1309 }
1310 
1311 static int rio_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1312 {
1313 	struct netdev_private *np = netdev_priv(dev);
1314 	netif_carrier_off(dev);
1315 	if (cmd->autoneg == AUTONEG_ENABLE) {
1316 		if (np->an_enable)
1317 			return 0;
1318 		else {
1319 			np->an_enable = 1;
1320 			mii_set_media(dev);
1321 			return 0;
1322 		}
1323 	} else {
1324 		np->an_enable = 0;
1325 		if (np->speed == 1000) {
1326 			ethtool_cmd_speed_set(cmd, SPEED_100);
1327 			cmd->duplex = DUPLEX_FULL;
1328 			printk("Warning!! Can't disable Auto negotiation in 1000Mbps, change to Manual 100Mbps, Full duplex.\n");
1329 		}
1330 		switch (ethtool_cmd_speed(cmd)) {
1331 		case SPEED_10:
1332 			np->speed = 10;
1333 			np->full_duplex = (cmd->duplex == DUPLEX_FULL);
1334 			break;
1335 		case SPEED_100:
1336 			np->speed = 100;
1337 			np->full_duplex = (cmd->duplex == DUPLEX_FULL);
1338 			break;
1339 		case SPEED_1000: /* not supported */
1340 		default:
1341 			return -EINVAL;
1342 		}
1343 		mii_set_media(dev);
1344 	}
1345 	return 0;
1346 }
1347 
1348 static u32 rio_get_link(struct net_device *dev)
1349 {
1350 	struct netdev_private *np = netdev_priv(dev);
1351 	return np->link_status;
1352 }
1353 
1354 static const struct ethtool_ops ethtool_ops = {
1355 	.get_drvinfo = rio_get_drvinfo,
1356 	.get_settings = rio_get_settings,
1357 	.set_settings = rio_set_settings,
1358 	.get_link = rio_get_link,
1359 };
1360 
1361 static int
1362 rio_ioctl (struct net_device *dev, struct ifreq *rq, int cmd)
1363 {
1364 	int phy_addr;
1365 	struct netdev_private *np = netdev_priv(dev);
1366 	struct mii_ioctl_data *miidata = if_mii(rq);
1367 
1368 	phy_addr = np->phy_addr;
1369 	switch (cmd) {
1370 	case SIOCGMIIPHY:
1371 		miidata->phy_id = phy_addr;
1372 		break;
1373 	case SIOCGMIIREG:
1374 		miidata->val_out = mii_read (dev, phy_addr, miidata->reg_num);
1375 		break;
1376 	case SIOCSMIIREG:
1377 		if (!capable(CAP_NET_ADMIN))
1378 			return -EPERM;
1379 		mii_write (dev, phy_addr, miidata->reg_num, miidata->val_in);
1380 		break;
1381 	default:
1382 		return -EOPNOTSUPP;
1383 	}
1384 	return 0;
1385 }
1386 
1387 #define EEP_READ 0x0200
1388 #define EEP_BUSY 0x8000
1389 /* Read the EEPROM word */
1390 /* We use I/O instruction to read/write eeprom to avoid fail on some machines */
1391 static int read_eeprom(struct netdev_private *np, int eep_addr)
1392 {
1393 	void __iomem *ioaddr = np->eeprom_addr;
1394 	int i = 1000;
1395 
1396 	dw16(EepromCtrl, EEP_READ | (eep_addr & 0xff));
1397 	while (i-- > 0) {
1398 		if (!(dr16(EepromCtrl) & EEP_BUSY))
1399 			return dr16(EepromData);
1400 	}
1401 	return 0;
1402 }
1403 
1404 enum phy_ctrl_bits {
1405 	MII_READ = 0x00, MII_CLK = 0x01, MII_DATA1 = 0x02, MII_WRITE = 0x04,
1406 	MII_DUPLEX = 0x08,
1407 };
1408 
1409 #define mii_delay() dr8(PhyCtrl)
1410 static void
1411 mii_sendbit (struct net_device *dev, u32 data)
1412 {
1413 	struct netdev_private *np = netdev_priv(dev);
1414 	void __iomem *ioaddr = np->ioaddr;
1415 
1416 	data = ((data) ? MII_DATA1 : 0) | (dr8(PhyCtrl) & 0xf8) | MII_WRITE;
1417 	dw8(PhyCtrl, data);
1418 	mii_delay ();
1419 	dw8(PhyCtrl, data | MII_CLK);
1420 	mii_delay ();
1421 }
1422 
1423 static int
1424 mii_getbit (struct net_device *dev)
1425 {
1426 	struct netdev_private *np = netdev_priv(dev);
1427 	void __iomem *ioaddr = np->ioaddr;
1428 	u8 data;
1429 
1430 	data = (dr8(PhyCtrl) & 0xf8) | MII_READ;
1431 	dw8(PhyCtrl, data);
1432 	mii_delay ();
1433 	dw8(PhyCtrl, data | MII_CLK);
1434 	mii_delay ();
1435 	return (dr8(PhyCtrl) >> 1) & 1;
1436 }
1437 
1438 static void
1439 mii_send_bits (struct net_device *dev, u32 data, int len)
1440 {
1441 	int i;
1442 
1443 	for (i = len - 1; i >= 0; i--) {
1444 		mii_sendbit (dev, data & (1 << i));
1445 	}
1446 }
1447 
1448 static int
1449 mii_read (struct net_device *dev, int phy_addr, int reg_num)
1450 {
1451 	u32 cmd;
1452 	int i;
1453 	u32 retval = 0;
1454 
1455 	/* Preamble */
1456 	mii_send_bits (dev, 0xffffffff, 32);
1457 	/* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1458 	/* ST,OP = 0110'b for read operation */
1459 	cmd = (0x06 << 10 | phy_addr << 5 | reg_num);
1460 	mii_send_bits (dev, cmd, 14);
1461 	/* Turnaround */
1462 	if (mii_getbit (dev))
1463 		goto err_out;
1464 	/* Read data */
1465 	for (i = 0; i < 16; i++) {
1466 		retval |= mii_getbit (dev);
1467 		retval <<= 1;
1468 	}
1469 	/* End cycle */
1470 	mii_getbit (dev);
1471 	return (retval >> 1) & 0xffff;
1472 
1473       err_out:
1474 	return 0;
1475 }
1476 static int
1477 mii_write (struct net_device *dev, int phy_addr, int reg_num, u16 data)
1478 {
1479 	u32 cmd;
1480 
1481 	/* Preamble */
1482 	mii_send_bits (dev, 0xffffffff, 32);
1483 	/* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1484 	/* ST,OP,AAAAA,RRRRR,TA = 0101xxxxxxxxxx10'b = 0x5002 for write */
1485 	cmd = (0x5002 << 16) | (phy_addr << 23) | (reg_num << 18) | data;
1486 	mii_send_bits (dev, cmd, 32);
1487 	/* End cycle */
1488 	mii_getbit (dev);
1489 	return 0;
1490 }
1491 static int
1492 mii_wait_link (struct net_device *dev, int wait)
1493 {
1494 	__u16 bmsr;
1495 	int phy_addr;
1496 	struct netdev_private *np;
1497 
1498 	np = netdev_priv(dev);
1499 	phy_addr = np->phy_addr;
1500 
1501 	do {
1502 		bmsr = mii_read (dev, phy_addr, MII_BMSR);
1503 		if (bmsr & BMSR_LSTATUS)
1504 			return 0;
1505 		mdelay (1);
1506 	} while (--wait > 0);
1507 	return -1;
1508 }
1509 static int
1510 mii_get_media (struct net_device *dev)
1511 {
1512 	__u16 negotiate;
1513 	__u16 bmsr;
1514 	__u16 mscr;
1515 	__u16 mssr;
1516 	int phy_addr;
1517 	struct netdev_private *np;
1518 
1519 	np = netdev_priv(dev);
1520 	phy_addr = np->phy_addr;
1521 
1522 	bmsr = mii_read (dev, phy_addr, MII_BMSR);
1523 	if (np->an_enable) {
1524 		if (!(bmsr & BMSR_ANEGCOMPLETE)) {
1525 			/* Auto-Negotiation not completed */
1526 			return -1;
1527 		}
1528 		negotiate = mii_read (dev, phy_addr, MII_ADVERTISE) &
1529 			mii_read (dev, phy_addr, MII_LPA);
1530 		mscr = mii_read (dev, phy_addr, MII_CTRL1000);
1531 		mssr = mii_read (dev, phy_addr, MII_STAT1000);
1532 		if (mscr & ADVERTISE_1000FULL && mssr & LPA_1000FULL) {
1533 			np->speed = 1000;
1534 			np->full_duplex = 1;
1535 			printk (KERN_INFO "Auto 1000 Mbps, Full duplex\n");
1536 		} else if (mscr & ADVERTISE_1000HALF && mssr & LPA_1000HALF) {
1537 			np->speed = 1000;
1538 			np->full_duplex = 0;
1539 			printk (KERN_INFO "Auto 1000 Mbps, Half duplex\n");
1540 		} else if (negotiate & ADVERTISE_100FULL) {
1541 			np->speed = 100;
1542 			np->full_duplex = 1;
1543 			printk (KERN_INFO "Auto 100 Mbps, Full duplex\n");
1544 		} else if (negotiate & ADVERTISE_100HALF) {
1545 			np->speed = 100;
1546 			np->full_duplex = 0;
1547 			printk (KERN_INFO "Auto 100 Mbps, Half duplex\n");
1548 		} else if (negotiate & ADVERTISE_10FULL) {
1549 			np->speed = 10;
1550 			np->full_duplex = 1;
1551 			printk (KERN_INFO "Auto 10 Mbps, Full duplex\n");
1552 		} else if (negotiate & ADVERTISE_10HALF) {
1553 			np->speed = 10;
1554 			np->full_duplex = 0;
1555 			printk (KERN_INFO "Auto 10 Mbps, Half duplex\n");
1556 		}
1557 		if (negotiate & ADVERTISE_PAUSE_CAP) {
1558 			np->tx_flow &= 1;
1559 			np->rx_flow &= 1;
1560 		} else if (negotiate & ADVERTISE_PAUSE_ASYM) {
1561 			np->tx_flow = 0;
1562 			np->rx_flow &= 1;
1563 		}
1564 		/* else tx_flow, rx_flow = user select  */
1565 	} else {
1566 		__u16 bmcr = mii_read (dev, phy_addr, MII_BMCR);
1567 		switch (bmcr & (BMCR_SPEED100 | BMCR_SPEED1000)) {
1568 		case BMCR_SPEED1000:
1569 			printk (KERN_INFO "Operating at 1000 Mbps, ");
1570 			break;
1571 		case BMCR_SPEED100:
1572 			printk (KERN_INFO "Operating at 100 Mbps, ");
1573 			break;
1574 		case 0:
1575 			printk (KERN_INFO "Operating at 10 Mbps, ");
1576 		}
1577 		if (bmcr & BMCR_FULLDPLX) {
1578 			printk (KERN_CONT "Full duplex\n");
1579 		} else {
1580 			printk (KERN_CONT "Half duplex\n");
1581 		}
1582 	}
1583 	if (np->tx_flow)
1584 		printk(KERN_INFO "Enable Tx Flow Control\n");
1585 	else
1586 		printk(KERN_INFO "Disable Tx Flow Control\n");
1587 	if (np->rx_flow)
1588 		printk(KERN_INFO "Enable Rx Flow Control\n");
1589 	else
1590 		printk(KERN_INFO "Disable Rx Flow Control\n");
1591 
1592 	return 0;
1593 }
1594 
1595 static int
1596 mii_set_media (struct net_device *dev)
1597 {
1598 	__u16 pscr;
1599 	__u16 bmcr;
1600 	__u16 bmsr;
1601 	__u16 anar;
1602 	int phy_addr;
1603 	struct netdev_private *np;
1604 	np = netdev_priv(dev);
1605 	phy_addr = np->phy_addr;
1606 
1607 	/* Does user set speed? */
1608 	if (np->an_enable) {
1609 		/* Advertise capabilities */
1610 		bmsr = mii_read (dev, phy_addr, MII_BMSR);
1611 		anar = mii_read (dev, phy_addr, MII_ADVERTISE) &
1612 			~(ADVERTISE_100FULL | ADVERTISE_10FULL |
1613 			  ADVERTISE_100HALF | ADVERTISE_10HALF |
1614 			  ADVERTISE_100BASE4);
1615 		if (bmsr & BMSR_100FULL)
1616 			anar |= ADVERTISE_100FULL;
1617 		if (bmsr & BMSR_100HALF)
1618 			anar |= ADVERTISE_100HALF;
1619 		if (bmsr & BMSR_100BASE4)
1620 			anar |= ADVERTISE_100BASE4;
1621 		if (bmsr & BMSR_10FULL)
1622 			anar |= ADVERTISE_10FULL;
1623 		if (bmsr & BMSR_10HALF)
1624 			anar |= ADVERTISE_10HALF;
1625 		anar |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
1626 		mii_write (dev, phy_addr, MII_ADVERTISE, anar);
1627 
1628 		/* Enable Auto crossover */
1629 		pscr = mii_read (dev, phy_addr, MII_PHY_SCR);
1630 		pscr |= 3 << 5;	/* 11'b */
1631 		mii_write (dev, phy_addr, MII_PHY_SCR, pscr);
1632 
1633 		/* Soft reset PHY */
1634 		mii_write (dev, phy_addr, MII_BMCR, BMCR_RESET);
1635 		bmcr = BMCR_ANENABLE | BMCR_ANRESTART | BMCR_RESET;
1636 		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1637 		mdelay(1);
1638 	} else {
1639 		/* Force speed setting */
1640 		/* 1) Disable Auto crossover */
1641 		pscr = mii_read (dev, phy_addr, MII_PHY_SCR);
1642 		pscr &= ~(3 << 5);
1643 		mii_write (dev, phy_addr, MII_PHY_SCR, pscr);
1644 
1645 		/* 2) PHY Reset */
1646 		bmcr = mii_read (dev, phy_addr, MII_BMCR);
1647 		bmcr |= BMCR_RESET;
1648 		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1649 
1650 		/* 3) Power Down */
1651 		bmcr = 0x1940;	/* must be 0x1940 */
1652 		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1653 		mdelay (100);	/* wait a certain time */
1654 
1655 		/* 4) Advertise nothing */
1656 		mii_write (dev, phy_addr, MII_ADVERTISE, 0);
1657 
1658 		/* 5) Set media and Power Up */
1659 		bmcr = BMCR_PDOWN;
1660 		if (np->speed == 100) {
1661 			bmcr |= BMCR_SPEED100;
1662 			printk (KERN_INFO "Manual 100 Mbps, ");
1663 		} else if (np->speed == 10) {
1664 			printk (KERN_INFO "Manual 10 Mbps, ");
1665 		}
1666 		if (np->full_duplex) {
1667 			bmcr |= BMCR_FULLDPLX;
1668 			printk (KERN_CONT "Full duplex\n");
1669 		} else {
1670 			printk (KERN_CONT "Half duplex\n");
1671 		}
1672 #if 0
1673 		/* Set 1000BaseT Master/Slave setting */
1674 		mscr = mii_read (dev, phy_addr, MII_CTRL1000);
1675 		mscr |= MII_MSCR_CFG_ENABLE;
1676 		mscr &= ~MII_MSCR_CFG_VALUE = 0;
1677 #endif
1678 		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1679 		mdelay(10);
1680 	}
1681 	return 0;
1682 }
1683 
1684 static int
1685 mii_get_media_pcs (struct net_device *dev)
1686 {
1687 	__u16 negotiate;
1688 	__u16 bmsr;
1689 	int phy_addr;
1690 	struct netdev_private *np;
1691 
1692 	np = netdev_priv(dev);
1693 	phy_addr = np->phy_addr;
1694 
1695 	bmsr = mii_read (dev, phy_addr, PCS_BMSR);
1696 	if (np->an_enable) {
1697 		if (!(bmsr & BMSR_ANEGCOMPLETE)) {
1698 			/* Auto-Negotiation not completed */
1699 			return -1;
1700 		}
1701 		negotiate = mii_read (dev, phy_addr, PCS_ANAR) &
1702 			mii_read (dev, phy_addr, PCS_ANLPAR);
1703 		np->speed = 1000;
1704 		if (negotiate & PCS_ANAR_FULL_DUPLEX) {
1705 			printk (KERN_INFO "Auto 1000 Mbps, Full duplex\n");
1706 			np->full_duplex = 1;
1707 		} else {
1708 			printk (KERN_INFO "Auto 1000 Mbps, half duplex\n");
1709 			np->full_duplex = 0;
1710 		}
1711 		if (negotiate & PCS_ANAR_PAUSE) {
1712 			np->tx_flow &= 1;
1713 			np->rx_flow &= 1;
1714 		} else if (negotiate & PCS_ANAR_ASYMMETRIC) {
1715 			np->tx_flow = 0;
1716 			np->rx_flow &= 1;
1717 		}
1718 		/* else tx_flow, rx_flow = user select  */
1719 	} else {
1720 		__u16 bmcr = mii_read (dev, phy_addr, PCS_BMCR);
1721 		printk (KERN_INFO "Operating at 1000 Mbps, ");
1722 		if (bmcr & BMCR_FULLDPLX) {
1723 			printk (KERN_CONT "Full duplex\n");
1724 		} else {
1725 			printk (KERN_CONT "Half duplex\n");
1726 		}
1727 	}
1728 	if (np->tx_flow)
1729 		printk(KERN_INFO "Enable Tx Flow Control\n");
1730 	else
1731 		printk(KERN_INFO "Disable Tx Flow Control\n");
1732 	if (np->rx_flow)
1733 		printk(KERN_INFO "Enable Rx Flow Control\n");
1734 	else
1735 		printk(KERN_INFO "Disable Rx Flow Control\n");
1736 
1737 	return 0;
1738 }
1739 
1740 static int
1741 mii_set_media_pcs (struct net_device *dev)
1742 {
1743 	__u16 bmcr;
1744 	__u16 esr;
1745 	__u16 anar;
1746 	int phy_addr;
1747 	struct netdev_private *np;
1748 	np = netdev_priv(dev);
1749 	phy_addr = np->phy_addr;
1750 
1751 	/* Auto-Negotiation? */
1752 	if (np->an_enable) {
1753 		/* Advertise capabilities */
1754 		esr = mii_read (dev, phy_addr, PCS_ESR);
1755 		anar = mii_read (dev, phy_addr, MII_ADVERTISE) &
1756 			~PCS_ANAR_HALF_DUPLEX &
1757 			~PCS_ANAR_FULL_DUPLEX;
1758 		if (esr & (MII_ESR_1000BT_HD | MII_ESR_1000BX_HD))
1759 			anar |= PCS_ANAR_HALF_DUPLEX;
1760 		if (esr & (MII_ESR_1000BT_FD | MII_ESR_1000BX_FD))
1761 			anar |= PCS_ANAR_FULL_DUPLEX;
1762 		anar |= PCS_ANAR_PAUSE | PCS_ANAR_ASYMMETRIC;
1763 		mii_write (dev, phy_addr, MII_ADVERTISE, anar);
1764 
1765 		/* Soft reset PHY */
1766 		mii_write (dev, phy_addr, MII_BMCR, BMCR_RESET);
1767 		bmcr = BMCR_ANENABLE | BMCR_ANRESTART | BMCR_RESET;
1768 		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1769 		mdelay(1);
1770 	} else {
1771 		/* Force speed setting */
1772 		/* PHY Reset */
1773 		bmcr = BMCR_RESET;
1774 		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1775 		mdelay(10);
1776 		if (np->full_duplex) {
1777 			bmcr = BMCR_FULLDPLX;
1778 			printk (KERN_INFO "Manual full duplex\n");
1779 		} else {
1780 			bmcr = 0;
1781 			printk (KERN_INFO "Manual half duplex\n");
1782 		}
1783 		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1784 		mdelay(10);
1785 
1786 		/*  Advertise nothing */
1787 		mii_write (dev, phy_addr, MII_ADVERTISE, 0);
1788 	}
1789 	return 0;
1790 }
1791 
1792 
1793 static int
1794 rio_close (struct net_device *dev)
1795 {
1796 	struct netdev_private *np = netdev_priv(dev);
1797 	struct pci_dev *pdev = np->pdev;
1798 
1799 	netif_stop_queue (dev);
1800 
1801 	rio_hw_stop(dev);
1802 
1803 	free_irq(pdev->irq, dev);
1804 	del_timer_sync (&np->timer);
1805 
1806 	free_list(dev);
1807 
1808 	return 0;
1809 }
1810 
1811 static void
1812 rio_remove1 (struct pci_dev *pdev)
1813 {
1814 	struct net_device *dev = pci_get_drvdata (pdev);
1815 
1816 	if (dev) {
1817 		struct netdev_private *np = netdev_priv(dev);
1818 
1819 		unregister_netdev (dev);
1820 		pci_free_consistent (pdev, RX_TOTAL_SIZE, np->rx_ring,
1821 				     np->rx_ring_dma);
1822 		pci_free_consistent (pdev, TX_TOTAL_SIZE, np->tx_ring,
1823 				     np->tx_ring_dma);
1824 #ifdef MEM_MAPPING
1825 		pci_iounmap(pdev, np->ioaddr);
1826 #endif
1827 		pci_iounmap(pdev, np->eeprom_addr);
1828 		free_netdev (dev);
1829 		pci_release_regions (pdev);
1830 		pci_disable_device (pdev);
1831 	}
1832 }
1833 
1834 #ifdef CONFIG_PM_SLEEP
1835 static int rio_suspend(struct device *device)
1836 {
1837 	struct net_device *dev = dev_get_drvdata(device);
1838 	struct netdev_private *np = netdev_priv(dev);
1839 
1840 	if (!netif_running(dev))
1841 		return 0;
1842 
1843 	netif_device_detach(dev);
1844 	del_timer_sync(&np->timer);
1845 	rio_hw_stop(dev);
1846 
1847 	return 0;
1848 }
1849 
1850 static int rio_resume(struct device *device)
1851 {
1852 	struct net_device *dev = dev_get_drvdata(device);
1853 	struct netdev_private *np = netdev_priv(dev);
1854 
1855 	if (!netif_running(dev))
1856 		return 0;
1857 
1858 	rio_reset_ring(np);
1859 	rio_hw_init(dev);
1860 	np->timer.expires = jiffies + 1 * HZ;
1861 	add_timer(&np->timer);
1862 	netif_device_attach(dev);
1863 	dl2k_enable_int(np);
1864 
1865 	return 0;
1866 }
1867 
1868 static SIMPLE_DEV_PM_OPS(rio_pm_ops, rio_suspend, rio_resume);
1869 #define RIO_PM_OPS    (&rio_pm_ops)
1870 
1871 #else
1872 
1873 #define RIO_PM_OPS	NULL
1874 
1875 #endif /* CONFIG_PM_SLEEP */
1876 
1877 static struct pci_driver rio_driver = {
1878 	.name		= "dl2k",
1879 	.id_table	= rio_pci_tbl,
1880 	.probe		= rio_probe1,
1881 	.remove		= rio_remove1,
1882 	.driver.pm	= RIO_PM_OPS,
1883 };
1884 
1885 module_pci_driver(rio_driver);
1886 /*
1887 
1888 Compile command:
1889 
1890 gcc -D__KERNEL__ -DMODULE -I/usr/src/linux/include -Wall -Wstrict-prototypes -O2 -c dl2k.c
1891 
1892 Read Documentation/networking/dl2k.txt for details.
1893 
1894 */
1895 
1896