xref: /openbmc/linux/drivers/net/ethernet/dlink/dl2k.c (revision 174cd4b1)
1 /*  D-Link DL2000-based Gigabit Ethernet Adapter Linux driver */
2 /*
3     Copyright (c) 2001, 2002 by D-Link Corporation
4     Written by Edward Peng.<edward_peng@dlink.com.tw>
5     Created 03-May-2001, base on Linux' sundance.c.
6 
7     This program is free software; you can redistribute it and/or modify
8     it under the terms of the GNU General Public License as published by
9     the Free Software Foundation; either version 2 of the License, or
10     (at your option) any later version.
11 */
12 
13 #define DRV_NAME	"DL2000/TC902x-based linux driver"
14 #define DRV_VERSION	"v1.19"
15 #define DRV_RELDATE	"2007/08/12"
16 #include "dl2k.h"
17 #include <linux/dma-mapping.h>
18 
19 #define dw32(reg, val)	iowrite32(val, ioaddr + (reg))
20 #define dw16(reg, val)	iowrite16(val, ioaddr + (reg))
21 #define dw8(reg, val)	iowrite8(val, ioaddr + (reg))
22 #define dr32(reg)	ioread32(ioaddr + (reg))
23 #define dr16(reg)	ioread16(ioaddr + (reg))
24 #define dr8(reg)	ioread8(ioaddr + (reg))
25 
26 static char version[] =
27       KERN_INFO DRV_NAME " " DRV_VERSION " " DRV_RELDATE "\n";
28 #define MAX_UNITS 8
29 static int mtu[MAX_UNITS];
30 static int vlan[MAX_UNITS];
31 static int jumbo[MAX_UNITS];
32 static char *media[MAX_UNITS];
33 static int tx_flow=-1;
34 static int rx_flow=-1;
35 static int copy_thresh;
36 static int rx_coalesce=10;	/* Rx frame count each interrupt */
37 static int rx_timeout=200;	/* Rx DMA wait time in 640ns increments */
38 static int tx_coalesce=16;	/* HW xmit count each TxDMAComplete */
39 
40 
41 MODULE_AUTHOR ("Edward Peng");
42 MODULE_DESCRIPTION ("D-Link DL2000-based Gigabit Ethernet Adapter");
43 MODULE_LICENSE("GPL");
44 module_param_array(mtu, int, NULL, 0);
45 module_param_array(media, charp, NULL, 0);
46 module_param_array(vlan, int, NULL, 0);
47 module_param_array(jumbo, int, NULL, 0);
48 module_param(tx_flow, int, 0);
49 module_param(rx_flow, int, 0);
50 module_param(copy_thresh, int, 0);
51 module_param(rx_coalesce, int, 0);	/* Rx frame count each interrupt */
52 module_param(rx_timeout, int, 0);	/* Rx DMA wait time in 64ns increments */
53 module_param(tx_coalesce, int, 0); /* HW xmit count each TxDMAComplete */
54 
55 
56 /* Enable the default interrupts */
57 #define DEFAULT_INTR (RxDMAComplete | HostError | IntRequested | TxDMAComplete| \
58        UpdateStats | LinkEvent)
59 
60 static void dl2k_enable_int(struct netdev_private *np)
61 {
62 	void __iomem *ioaddr = np->ioaddr;
63 
64 	dw16(IntEnable, DEFAULT_INTR);
65 }
66 
67 static const int max_intrloop = 50;
68 static const int multicast_filter_limit = 0x40;
69 
70 static int rio_open (struct net_device *dev);
71 static void rio_timer (unsigned long data);
72 static void rio_tx_timeout (struct net_device *dev);
73 static netdev_tx_t start_xmit (struct sk_buff *skb, struct net_device *dev);
74 static irqreturn_t rio_interrupt (int irq, void *dev_instance);
75 static void rio_free_tx (struct net_device *dev, int irq);
76 static void tx_error (struct net_device *dev, int tx_status);
77 static int receive_packet (struct net_device *dev);
78 static void rio_error (struct net_device *dev, int int_status);
79 static void set_multicast (struct net_device *dev);
80 static struct net_device_stats *get_stats (struct net_device *dev);
81 static int clear_stats (struct net_device *dev);
82 static int rio_ioctl (struct net_device *dev, struct ifreq *rq, int cmd);
83 static int rio_close (struct net_device *dev);
84 static int find_miiphy (struct net_device *dev);
85 static int parse_eeprom (struct net_device *dev);
86 static int read_eeprom (struct netdev_private *, int eep_addr);
87 static int mii_wait_link (struct net_device *dev, int wait);
88 static int mii_set_media (struct net_device *dev);
89 static int mii_get_media (struct net_device *dev);
90 static int mii_set_media_pcs (struct net_device *dev);
91 static int mii_get_media_pcs (struct net_device *dev);
92 static int mii_read (struct net_device *dev, int phy_addr, int reg_num);
93 static int mii_write (struct net_device *dev, int phy_addr, int reg_num,
94 		      u16 data);
95 
96 static const struct ethtool_ops ethtool_ops;
97 
98 static const struct net_device_ops netdev_ops = {
99 	.ndo_open		= rio_open,
100 	.ndo_start_xmit	= start_xmit,
101 	.ndo_stop		= rio_close,
102 	.ndo_get_stats		= get_stats,
103 	.ndo_validate_addr	= eth_validate_addr,
104 	.ndo_set_mac_address 	= eth_mac_addr,
105 	.ndo_set_rx_mode	= set_multicast,
106 	.ndo_do_ioctl		= rio_ioctl,
107 	.ndo_tx_timeout		= rio_tx_timeout,
108 };
109 
110 static int
111 rio_probe1 (struct pci_dev *pdev, const struct pci_device_id *ent)
112 {
113 	struct net_device *dev;
114 	struct netdev_private *np;
115 	static int card_idx;
116 	int chip_idx = ent->driver_data;
117 	int err, irq;
118 	void __iomem *ioaddr;
119 	static int version_printed;
120 	void *ring_space;
121 	dma_addr_t ring_dma;
122 
123 	if (!version_printed++)
124 		printk ("%s", version);
125 
126 	err = pci_enable_device (pdev);
127 	if (err)
128 		return err;
129 
130 	irq = pdev->irq;
131 	err = pci_request_regions (pdev, "dl2k");
132 	if (err)
133 		goto err_out_disable;
134 
135 	pci_set_master (pdev);
136 
137 	err = -ENOMEM;
138 
139 	dev = alloc_etherdev (sizeof (*np));
140 	if (!dev)
141 		goto err_out_res;
142 	SET_NETDEV_DEV(dev, &pdev->dev);
143 
144 	np = netdev_priv(dev);
145 
146 	/* IO registers range. */
147 	ioaddr = pci_iomap(pdev, 0, 0);
148 	if (!ioaddr)
149 		goto err_out_dev;
150 	np->eeprom_addr = ioaddr;
151 
152 #ifdef MEM_MAPPING
153 	/* MM registers range. */
154 	ioaddr = pci_iomap(pdev, 1, 0);
155 	if (!ioaddr)
156 		goto err_out_iounmap;
157 #endif
158 	np->ioaddr = ioaddr;
159 	np->chip_id = chip_idx;
160 	np->pdev = pdev;
161 	spin_lock_init (&np->tx_lock);
162 	spin_lock_init (&np->rx_lock);
163 
164 	/* Parse manual configuration */
165 	np->an_enable = 1;
166 	np->tx_coalesce = 1;
167 	if (card_idx < MAX_UNITS) {
168 		if (media[card_idx] != NULL) {
169 			np->an_enable = 0;
170 			if (strcmp (media[card_idx], "auto") == 0 ||
171 			    strcmp (media[card_idx], "autosense") == 0 ||
172 			    strcmp (media[card_idx], "0") == 0 ) {
173 				np->an_enable = 2;
174 			} else if (strcmp (media[card_idx], "100mbps_fd") == 0 ||
175 			    strcmp (media[card_idx], "4") == 0) {
176 				np->speed = 100;
177 				np->full_duplex = 1;
178 			} else if (strcmp (media[card_idx], "100mbps_hd") == 0 ||
179 				   strcmp (media[card_idx], "3") == 0) {
180 				np->speed = 100;
181 				np->full_duplex = 0;
182 			} else if (strcmp (media[card_idx], "10mbps_fd") == 0 ||
183 				   strcmp (media[card_idx], "2") == 0) {
184 				np->speed = 10;
185 				np->full_duplex = 1;
186 			} else if (strcmp (media[card_idx], "10mbps_hd") == 0 ||
187 				   strcmp (media[card_idx], "1") == 0) {
188 				np->speed = 10;
189 				np->full_duplex = 0;
190 			} else if (strcmp (media[card_idx], "1000mbps_fd") == 0 ||
191 				 strcmp (media[card_idx], "6") == 0) {
192 				np->speed=1000;
193 				np->full_duplex=1;
194 			} else if (strcmp (media[card_idx], "1000mbps_hd") == 0 ||
195 				 strcmp (media[card_idx], "5") == 0) {
196 				np->speed = 1000;
197 				np->full_duplex = 0;
198 			} else {
199 				np->an_enable = 1;
200 			}
201 		}
202 		if (jumbo[card_idx] != 0) {
203 			np->jumbo = 1;
204 			dev->mtu = MAX_JUMBO;
205 		} else {
206 			np->jumbo = 0;
207 			if (mtu[card_idx] > 0 && mtu[card_idx] < PACKET_SIZE)
208 				dev->mtu = mtu[card_idx];
209 		}
210 		np->vlan = (vlan[card_idx] > 0 && vlan[card_idx] < 4096) ?
211 		    vlan[card_idx] : 0;
212 		if (rx_coalesce > 0 && rx_timeout > 0) {
213 			np->rx_coalesce = rx_coalesce;
214 			np->rx_timeout = rx_timeout;
215 			np->coalesce = 1;
216 		}
217 		np->tx_flow = (tx_flow == 0) ? 0 : 1;
218 		np->rx_flow = (rx_flow == 0) ? 0 : 1;
219 
220 		if (tx_coalesce < 1)
221 			tx_coalesce = 1;
222 		else if (tx_coalesce > TX_RING_SIZE-1)
223 			tx_coalesce = TX_RING_SIZE - 1;
224 	}
225 	dev->netdev_ops = &netdev_ops;
226 	dev->watchdog_timeo = TX_TIMEOUT;
227 	dev->ethtool_ops = &ethtool_ops;
228 #if 0
229 	dev->features = NETIF_F_IP_CSUM;
230 #endif
231 	/* MTU range: 68 - 1536 or 8000 */
232 	dev->min_mtu = ETH_MIN_MTU;
233 	dev->max_mtu = np->jumbo ? MAX_JUMBO : PACKET_SIZE;
234 
235 	pci_set_drvdata (pdev, dev);
236 
237 	ring_space = pci_alloc_consistent (pdev, TX_TOTAL_SIZE, &ring_dma);
238 	if (!ring_space)
239 		goto err_out_iounmap;
240 	np->tx_ring = ring_space;
241 	np->tx_ring_dma = ring_dma;
242 
243 	ring_space = pci_alloc_consistent (pdev, RX_TOTAL_SIZE, &ring_dma);
244 	if (!ring_space)
245 		goto err_out_unmap_tx;
246 	np->rx_ring = ring_space;
247 	np->rx_ring_dma = ring_dma;
248 
249 	/* Parse eeprom data */
250 	parse_eeprom (dev);
251 
252 	/* Find PHY address */
253 	err = find_miiphy (dev);
254 	if (err)
255 		goto err_out_unmap_rx;
256 
257 	/* Fiber device? */
258 	np->phy_media = (dr16(ASICCtrl) & PhyMedia) ? 1 : 0;
259 	np->link_status = 0;
260 	/* Set media and reset PHY */
261 	if (np->phy_media) {
262 		/* default Auto-Negotiation for fiber deivices */
263 	 	if (np->an_enable == 2) {
264 			np->an_enable = 1;
265 		}
266 	} else {
267 		/* Auto-Negotiation is mandatory for 1000BASE-T,
268 		   IEEE 802.3ab Annex 28D page 14 */
269 		if (np->speed == 1000)
270 			np->an_enable = 1;
271 	}
272 
273 	err = register_netdev (dev);
274 	if (err)
275 		goto err_out_unmap_rx;
276 
277 	card_idx++;
278 
279 	printk (KERN_INFO "%s: %s, %pM, IRQ %d\n",
280 		dev->name, np->name, dev->dev_addr, irq);
281 	if (tx_coalesce > 1)
282 		printk(KERN_INFO "tx_coalesce:\t%d packets\n",
283 				tx_coalesce);
284 	if (np->coalesce)
285 		printk(KERN_INFO
286 		       "rx_coalesce:\t%d packets\n"
287 		       "rx_timeout: \t%d ns\n",
288 				np->rx_coalesce, np->rx_timeout*640);
289 	if (np->vlan)
290 		printk(KERN_INFO "vlan(id):\t%d\n", np->vlan);
291 	return 0;
292 
293 err_out_unmap_rx:
294 	pci_free_consistent (pdev, RX_TOTAL_SIZE, np->rx_ring, np->rx_ring_dma);
295 err_out_unmap_tx:
296 	pci_free_consistent (pdev, TX_TOTAL_SIZE, np->tx_ring, np->tx_ring_dma);
297 err_out_iounmap:
298 #ifdef MEM_MAPPING
299 	pci_iounmap(pdev, np->ioaddr);
300 #endif
301 	pci_iounmap(pdev, np->eeprom_addr);
302 err_out_dev:
303 	free_netdev (dev);
304 err_out_res:
305 	pci_release_regions (pdev);
306 err_out_disable:
307 	pci_disable_device (pdev);
308 	return err;
309 }
310 
311 static int
312 find_miiphy (struct net_device *dev)
313 {
314 	struct netdev_private *np = netdev_priv(dev);
315 	int i, phy_found = 0;
316 	np = netdev_priv(dev);
317 	np->phy_addr = 1;
318 
319 	for (i = 31; i >= 0; i--) {
320 		int mii_status = mii_read (dev, i, 1);
321 		if (mii_status != 0xffff && mii_status != 0x0000) {
322 			np->phy_addr = i;
323 			phy_found++;
324 		}
325 	}
326 	if (!phy_found) {
327 		printk (KERN_ERR "%s: No MII PHY found!\n", dev->name);
328 		return -ENODEV;
329 	}
330 	return 0;
331 }
332 
333 static int
334 parse_eeprom (struct net_device *dev)
335 {
336 	struct netdev_private *np = netdev_priv(dev);
337 	void __iomem *ioaddr = np->ioaddr;
338 	int i, j;
339 	u8 sromdata[256];
340 	u8 *psib;
341 	u32 crc;
342 	PSROM_t psrom = (PSROM_t) sromdata;
343 
344 	int cid, next;
345 
346 	for (i = 0; i < 128; i++)
347 		((__le16 *) sromdata)[i] = cpu_to_le16(read_eeprom(np, i));
348 
349 	if (np->pdev->vendor == PCI_VENDOR_ID_DLINK) {	/* D-Link Only */
350 		/* Check CRC */
351 		crc = ~ether_crc_le (256 - 4, sromdata);
352 		if (psrom->crc != cpu_to_le32(crc)) {
353 			printk (KERN_ERR "%s: EEPROM data CRC error.\n",
354 					dev->name);
355 			return -1;
356 		}
357 	}
358 
359 	/* Set MAC address */
360 	for (i = 0; i < 6; i++)
361 		dev->dev_addr[i] = psrom->mac_addr[i];
362 
363 	if (np->chip_id == CHIP_IP1000A) {
364 		np->led_mode = psrom->led_mode;
365 		return 0;
366 	}
367 
368 	if (np->pdev->vendor != PCI_VENDOR_ID_DLINK) {
369 		return 0;
370 	}
371 
372 	/* Parse Software Information Block */
373 	i = 0x30;
374 	psib = (u8 *) sromdata;
375 	do {
376 		cid = psib[i++];
377 		next = psib[i++];
378 		if ((cid == 0 && next == 0) || (cid == 0xff && next == 0xff)) {
379 			printk (KERN_ERR "Cell data error\n");
380 			return -1;
381 		}
382 		switch (cid) {
383 		case 0:	/* Format version */
384 			break;
385 		case 1:	/* End of cell */
386 			return 0;
387 		case 2:	/* Duplex Polarity */
388 			np->duplex_polarity = psib[i];
389 			dw8(PhyCtrl, dr8(PhyCtrl) | psib[i]);
390 			break;
391 		case 3:	/* Wake Polarity */
392 			np->wake_polarity = psib[i];
393 			break;
394 		case 9:	/* Adapter description */
395 			j = (next - i > 255) ? 255 : next - i;
396 			memcpy (np->name, &(psib[i]), j);
397 			break;
398 		case 4:
399 		case 5:
400 		case 6:
401 		case 7:
402 		case 8:	/* Reversed */
403 			break;
404 		default:	/* Unknown cell */
405 			return -1;
406 		}
407 		i = next;
408 	} while (1);
409 
410 	return 0;
411 }
412 
413 static void rio_set_led_mode(struct net_device *dev)
414 {
415 	struct netdev_private *np = netdev_priv(dev);
416 	void __iomem *ioaddr = np->ioaddr;
417 	u32 mode;
418 
419 	if (np->chip_id != CHIP_IP1000A)
420 		return;
421 
422 	mode = dr32(ASICCtrl);
423 	mode &= ~(IPG_AC_LED_MODE_BIT_1 | IPG_AC_LED_MODE | IPG_AC_LED_SPEED);
424 
425 	if (np->led_mode & 0x01)
426 		mode |= IPG_AC_LED_MODE;
427 	if (np->led_mode & 0x02)
428 		mode |= IPG_AC_LED_MODE_BIT_1;
429 	if (np->led_mode & 0x08)
430 		mode |= IPG_AC_LED_SPEED;
431 
432 	dw32(ASICCtrl, mode);
433 }
434 
435 static inline dma_addr_t desc_to_dma(struct netdev_desc *desc)
436 {
437 	return le64_to_cpu(desc->fraginfo) & DMA_BIT_MASK(48);
438 }
439 
440 static void free_list(struct net_device *dev)
441 {
442 	struct netdev_private *np = netdev_priv(dev);
443 	struct sk_buff *skb;
444 	int i;
445 
446 	/* Free all the skbuffs in the queue. */
447 	for (i = 0; i < RX_RING_SIZE; i++) {
448 		skb = np->rx_skbuff[i];
449 		if (skb) {
450 			pci_unmap_single(np->pdev, desc_to_dma(&np->rx_ring[i]),
451 					 skb->len, PCI_DMA_FROMDEVICE);
452 			dev_kfree_skb(skb);
453 			np->rx_skbuff[i] = NULL;
454 		}
455 		np->rx_ring[i].status = 0;
456 		np->rx_ring[i].fraginfo = 0;
457 	}
458 	for (i = 0; i < TX_RING_SIZE; i++) {
459 		skb = np->tx_skbuff[i];
460 		if (skb) {
461 			pci_unmap_single(np->pdev, desc_to_dma(&np->tx_ring[i]),
462 					 skb->len, PCI_DMA_TODEVICE);
463 			dev_kfree_skb(skb);
464 			np->tx_skbuff[i] = NULL;
465 		}
466 	}
467 }
468 
469 static void rio_reset_ring(struct netdev_private *np)
470 {
471 	int i;
472 
473 	np->cur_rx = 0;
474 	np->cur_tx = 0;
475 	np->old_rx = 0;
476 	np->old_tx = 0;
477 
478 	for (i = 0; i < TX_RING_SIZE; i++)
479 		np->tx_ring[i].status = cpu_to_le64(TFDDone);
480 
481 	for (i = 0; i < RX_RING_SIZE; i++)
482 		np->rx_ring[i].status = 0;
483 }
484 
485  /* allocate and initialize Tx and Rx descriptors */
486 static int alloc_list(struct net_device *dev)
487 {
488 	struct netdev_private *np = netdev_priv(dev);
489 	int i;
490 
491 	rio_reset_ring(np);
492 	np->rx_buf_sz = (dev->mtu <= 1500 ? PACKET_SIZE : dev->mtu + 32);
493 
494 	/* Initialize Tx descriptors, TFDListPtr leaves in start_xmit(). */
495 	for (i = 0; i < TX_RING_SIZE; i++) {
496 		np->tx_skbuff[i] = NULL;
497 		np->tx_ring[i].next_desc = cpu_to_le64(np->tx_ring_dma +
498 					      ((i + 1) % TX_RING_SIZE) *
499 					      sizeof(struct netdev_desc));
500 	}
501 
502 	/* Initialize Rx descriptors & allocate buffers */
503 	for (i = 0; i < RX_RING_SIZE; i++) {
504 		/* Allocated fixed size of skbuff */
505 		struct sk_buff *skb;
506 
507 		skb = netdev_alloc_skb_ip_align(dev, np->rx_buf_sz);
508 		np->rx_skbuff[i] = skb;
509 		if (!skb) {
510 			free_list(dev);
511 			return -ENOMEM;
512 		}
513 
514 		np->rx_ring[i].next_desc = cpu_to_le64(np->rx_ring_dma +
515 						((i + 1) % RX_RING_SIZE) *
516 						sizeof(struct netdev_desc));
517 		/* Rubicon now supports 40 bits of addressing space. */
518 		np->rx_ring[i].fraginfo =
519 		    cpu_to_le64(pci_map_single(
520 				  np->pdev, skb->data, np->rx_buf_sz,
521 				  PCI_DMA_FROMDEVICE));
522 		np->rx_ring[i].fraginfo |= cpu_to_le64((u64)np->rx_buf_sz << 48);
523 	}
524 
525 	return 0;
526 }
527 
528 static void rio_hw_init(struct net_device *dev)
529 {
530 	struct netdev_private *np = netdev_priv(dev);
531 	void __iomem *ioaddr = np->ioaddr;
532 	int i;
533 	u16 macctrl;
534 
535 	/* Reset all logic functions */
536 	dw16(ASICCtrl + 2,
537 	     GlobalReset | DMAReset | FIFOReset | NetworkReset | HostReset);
538 	mdelay(10);
539 
540 	rio_set_led_mode(dev);
541 
542 	/* DebugCtrl bit 4, 5, 9 must set */
543 	dw32(DebugCtrl, dr32(DebugCtrl) | 0x0230);
544 
545 	if (np->chip_id == CHIP_IP1000A &&
546 	    (np->pdev->revision == 0x40 || np->pdev->revision == 0x41)) {
547 		/* PHY magic taken from ipg driver, undocumented registers */
548 		mii_write(dev, np->phy_addr, 31, 0x0001);
549 		mii_write(dev, np->phy_addr, 27, 0x01e0);
550 		mii_write(dev, np->phy_addr, 31, 0x0002);
551 		mii_write(dev, np->phy_addr, 27, 0xeb8e);
552 		mii_write(dev, np->phy_addr, 31, 0x0000);
553 		mii_write(dev, np->phy_addr, 30, 0x005e);
554 		/* advertise 1000BASE-T half & full duplex, prefer MASTER */
555 		mii_write(dev, np->phy_addr, MII_CTRL1000, 0x0700);
556 	}
557 
558 	if (np->phy_media)
559 		mii_set_media_pcs(dev);
560 	else
561 		mii_set_media(dev);
562 
563 	/* Jumbo frame */
564 	if (np->jumbo != 0)
565 		dw16(MaxFrameSize, MAX_JUMBO+14);
566 
567 	/* Set RFDListPtr */
568 	dw32(RFDListPtr0, np->rx_ring_dma);
569 	dw32(RFDListPtr1, 0);
570 
571 	/* Set station address */
572 	/* 16 or 32-bit access is required by TC9020 datasheet but 8-bit works
573 	 * too. However, it doesn't work on IP1000A so we use 16-bit access.
574 	 */
575 	for (i = 0; i < 3; i++)
576 		dw16(StationAddr0 + 2 * i,
577 		     cpu_to_le16(((u16 *)dev->dev_addr)[i]));
578 
579 	set_multicast (dev);
580 	if (np->coalesce) {
581 		dw32(RxDMAIntCtrl, np->rx_coalesce | np->rx_timeout << 16);
582 	}
583 	/* Set RIO to poll every N*320nsec. */
584 	dw8(RxDMAPollPeriod, 0x20);
585 	dw8(TxDMAPollPeriod, 0xff);
586 	dw8(RxDMABurstThresh, 0x30);
587 	dw8(RxDMAUrgentThresh, 0x30);
588 	dw32(RmonStatMask, 0x0007ffff);
589 	/* clear statistics */
590 	clear_stats (dev);
591 
592 	/* VLAN supported */
593 	if (np->vlan) {
594 		/* priority field in RxDMAIntCtrl  */
595 		dw32(RxDMAIntCtrl, dr32(RxDMAIntCtrl) | 0x7 << 10);
596 		/* VLANId */
597 		dw16(VLANId, np->vlan);
598 		/* Length/Type should be 0x8100 */
599 		dw32(VLANTag, 0x8100 << 16 | np->vlan);
600 		/* Enable AutoVLANuntagging, but disable AutoVLANtagging.
601 		   VLAN information tagged by TFC' VID, CFI fields. */
602 		dw32(MACCtrl, dr32(MACCtrl) | AutoVLANuntagging);
603 	}
604 
605 	/* Start Tx/Rx */
606 	dw32(MACCtrl, dr32(MACCtrl) | StatsEnable | RxEnable | TxEnable);
607 
608 	macctrl = 0;
609 	macctrl |= (np->vlan) ? AutoVLANuntagging : 0;
610 	macctrl |= (np->full_duplex) ? DuplexSelect : 0;
611 	macctrl |= (np->tx_flow) ? TxFlowControlEnable : 0;
612 	macctrl |= (np->rx_flow) ? RxFlowControlEnable : 0;
613 	dw16(MACCtrl, macctrl);
614 }
615 
616 static void rio_hw_stop(struct net_device *dev)
617 {
618 	struct netdev_private *np = netdev_priv(dev);
619 	void __iomem *ioaddr = np->ioaddr;
620 
621 	/* Disable interrupts */
622 	dw16(IntEnable, 0);
623 
624 	/* Stop Tx and Rx logics */
625 	dw32(MACCtrl, TxDisable | RxDisable | StatsDisable);
626 }
627 
628 static int rio_open(struct net_device *dev)
629 {
630 	struct netdev_private *np = netdev_priv(dev);
631 	const int irq = np->pdev->irq;
632 	int i;
633 
634 	i = alloc_list(dev);
635 	if (i)
636 		return i;
637 
638 	rio_hw_init(dev);
639 
640 	i = request_irq(irq, rio_interrupt, IRQF_SHARED, dev->name, dev);
641 	if (i) {
642 		rio_hw_stop(dev);
643 		free_list(dev);
644 		return i;
645 	}
646 
647 	setup_timer(&np->timer, rio_timer, (unsigned long)dev);
648 	np->timer.expires = jiffies + 1 * HZ;
649 	add_timer(&np->timer);
650 
651 	netif_start_queue (dev);
652 
653 	dl2k_enable_int(np);
654 	return 0;
655 }
656 
657 static void
658 rio_timer (unsigned long data)
659 {
660 	struct net_device *dev = (struct net_device *)data;
661 	struct netdev_private *np = netdev_priv(dev);
662 	unsigned int entry;
663 	int next_tick = 1*HZ;
664 	unsigned long flags;
665 
666 	spin_lock_irqsave(&np->rx_lock, flags);
667 	/* Recover rx ring exhausted error */
668 	if (np->cur_rx - np->old_rx >= RX_RING_SIZE) {
669 		printk(KERN_INFO "Try to recover rx ring exhausted...\n");
670 		/* Re-allocate skbuffs to fill the descriptor ring */
671 		for (; np->cur_rx - np->old_rx > 0; np->old_rx++) {
672 			struct sk_buff *skb;
673 			entry = np->old_rx % RX_RING_SIZE;
674 			/* Dropped packets don't need to re-allocate */
675 			if (np->rx_skbuff[entry] == NULL) {
676 				skb = netdev_alloc_skb_ip_align(dev,
677 								np->rx_buf_sz);
678 				if (skb == NULL) {
679 					np->rx_ring[entry].fraginfo = 0;
680 					printk (KERN_INFO
681 						"%s: Still unable to re-allocate Rx skbuff.#%d\n",
682 						dev->name, entry);
683 					break;
684 				}
685 				np->rx_skbuff[entry] = skb;
686 				np->rx_ring[entry].fraginfo =
687 				    cpu_to_le64 (pci_map_single
688 					 (np->pdev, skb->data, np->rx_buf_sz,
689 					  PCI_DMA_FROMDEVICE));
690 			}
691 			np->rx_ring[entry].fraginfo |=
692 			    cpu_to_le64((u64)np->rx_buf_sz << 48);
693 			np->rx_ring[entry].status = 0;
694 		} /* end for */
695 	} /* end if */
696 	spin_unlock_irqrestore (&np->rx_lock, flags);
697 	np->timer.expires = jiffies + next_tick;
698 	add_timer(&np->timer);
699 }
700 
701 static void
702 rio_tx_timeout (struct net_device *dev)
703 {
704 	struct netdev_private *np = netdev_priv(dev);
705 	void __iomem *ioaddr = np->ioaddr;
706 
707 	printk (KERN_INFO "%s: Tx timed out (%4.4x), is buffer full?\n",
708 		dev->name, dr32(TxStatus));
709 	rio_free_tx(dev, 0);
710 	dev->if_port = 0;
711 	netif_trans_update(dev); /* prevent tx timeout */
712 }
713 
714 static netdev_tx_t
715 start_xmit (struct sk_buff *skb, struct net_device *dev)
716 {
717 	struct netdev_private *np = netdev_priv(dev);
718 	void __iomem *ioaddr = np->ioaddr;
719 	struct netdev_desc *txdesc;
720 	unsigned entry;
721 	u64 tfc_vlan_tag = 0;
722 
723 	if (np->link_status == 0) {	/* Link Down */
724 		dev_kfree_skb(skb);
725 		return NETDEV_TX_OK;
726 	}
727 	entry = np->cur_tx % TX_RING_SIZE;
728 	np->tx_skbuff[entry] = skb;
729 	txdesc = &np->tx_ring[entry];
730 
731 #if 0
732 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
733 		txdesc->status |=
734 		    cpu_to_le64 (TCPChecksumEnable | UDPChecksumEnable |
735 				 IPChecksumEnable);
736 	}
737 #endif
738 	if (np->vlan) {
739 		tfc_vlan_tag = VLANTagInsert |
740 		    ((u64)np->vlan << 32) |
741 		    ((u64)skb->priority << 45);
742 	}
743 	txdesc->fraginfo = cpu_to_le64 (pci_map_single (np->pdev, skb->data,
744 							skb->len,
745 							PCI_DMA_TODEVICE));
746 	txdesc->fraginfo |= cpu_to_le64((u64)skb->len << 48);
747 
748 	/* DL2K bug: DMA fails to get next descriptor ptr in 10Mbps mode
749 	 * Work around: Always use 1 descriptor in 10Mbps mode */
750 	if (entry % np->tx_coalesce == 0 || np->speed == 10)
751 		txdesc->status = cpu_to_le64 (entry | tfc_vlan_tag |
752 					      WordAlignDisable |
753 					      TxDMAIndicate |
754 					      (1 << FragCountShift));
755 	else
756 		txdesc->status = cpu_to_le64 (entry | tfc_vlan_tag |
757 					      WordAlignDisable |
758 					      (1 << FragCountShift));
759 
760 	/* TxDMAPollNow */
761 	dw32(DMACtrl, dr32(DMACtrl) | 0x00001000);
762 	/* Schedule ISR */
763 	dw32(CountDown, 10000);
764 	np->cur_tx = (np->cur_tx + 1) % TX_RING_SIZE;
765 	if ((np->cur_tx - np->old_tx + TX_RING_SIZE) % TX_RING_SIZE
766 			< TX_QUEUE_LEN - 1 && np->speed != 10) {
767 		/* do nothing */
768 	} else if (!netif_queue_stopped(dev)) {
769 		netif_stop_queue (dev);
770 	}
771 
772 	/* The first TFDListPtr */
773 	if (!dr32(TFDListPtr0)) {
774 		dw32(TFDListPtr0, np->tx_ring_dma +
775 		     entry * sizeof (struct netdev_desc));
776 		dw32(TFDListPtr1, 0);
777 	}
778 
779 	return NETDEV_TX_OK;
780 }
781 
782 static irqreturn_t
783 rio_interrupt (int irq, void *dev_instance)
784 {
785 	struct net_device *dev = dev_instance;
786 	struct netdev_private *np = netdev_priv(dev);
787 	void __iomem *ioaddr = np->ioaddr;
788 	unsigned int_status;
789 	int cnt = max_intrloop;
790 	int handled = 0;
791 
792 	while (1) {
793 		int_status = dr16(IntStatus);
794 		dw16(IntStatus, int_status);
795 		int_status &= DEFAULT_INTR;
796 		if (int_status == 0 || --cnt < 0)
797 			break;
798 		handled = 1;
799 		/* Processing received packets */
800 		if (int_status & RxDMAComplete)
801 			receive_packet (dev);
802 		/* TxDMAComplete interrupt */
803 		if ((int_status & (TxDMAComplete|IntRequested))) {
804 			int tx_status;
805 			tx_status = dr32(TxStatus);
806 			if (tx_status & 0x01)
807 				tx_error (dev, tx_status);
808 			/* Free used tx skbuffs */
809 			rio_free_tx (dev, 1);
810 		}
811 
812 		/* Handle uncommon events */
813 		if (int_status &
814 		    (HostError | LinkEvent | UpdateStats))
815 			rio_error (dev, int_status);
816 	}
817 	if (np->cur_tx != np->old_tx)
818 		dw32(CountDown, 100);
819 	return IRQ_RETVAL(handled);
820 }
821 
822 static void
823 rio_free_tx (struct net_device *dev, int irq)
824 {
825 	struct netdev_private *np = netdev_priv(dev);
826 	int entry = np->old_tx % TX_RING_SIZE;
827 	int tx_use = 0;
828 	unsigned long flag = 0;
829 
830 	if (irq)
831 		spin_lock(&np->tx_lock);
832 	else
833 		spin_lock_irqsave(&np->tx_lock, flag);
834 
835 	/* Free used tx skbuffs */
836 	while (entry != np->cur_tx) {
837 		struct sk_buff *skb;
838 
839 		if (!(np->tx_ring[entry].status & cpu_to_le64(TFDDone)))
840 			break;
841 		skb = np->tx_skbuff[entry];
842 		pci_unmap_single (np->pdev,
843 				  desc_to_dma(&np->tx_ring[entry]),
844 				  skb->len, PCI_DMA_TODEVICE);
845 		if (irq)
846 			dev_kfree_skb_irq (skb);
847 		else
848 			dev_kfree_skb (skb);
849 
850 		np->tx_skbuff[entry] = NULL;
851 		entry = (entry + 1) % TX_RING_SIZE;
852 		tx_use++;
853 	}
854 	if (irq)
855 		spin_unlock(&np->tx_lock);
856 	else
857 		spin_unlock_irqrestore(&np->tx_lock, flag);
858 	np->old_tx = entry;
859 
860 	/* If the ring is no longer full, clear tx_full and
861 	   call netif_wake_queue() */
862 
863 	if (netif_queue_stopped(dev) &&
864 	    ((np->cur_tx - np->old_tx + TX_RING_SIZE) % TX_RING_SIZE
865 	    < TX_QUEUE_LEN - 1 || np->speed == 10)) {
866 		netif_wake_queue (dev);
867 	}
868 }
869 
870 static void
871 tx_error (struct net_device *dev, int tx_status)
872 {
873 	struct netdev_private *np = netdev_priv(dev);
874 	void __iomem *ioaddr = np->ioaddr;
875 	int frame_id;
876 	int i;
877 
878 	frame_id = (tx_status & 0xffff0000);
879 	printk (KERN_ERR "%s: Transmit error, TxStatus %4.4x, FrameId %d.\n",
880 		dev->name, tx_status, frame_id);
881 	np->stats.tx_errors++;
882 	/* Ttransmit Underrun */
883 	if (tx_status & 0x10) {
884 		np->stats.tx_fifo_errors++;
885 		dw16(TxStartThresh, dr16(TxStartThresh) + 0x10);
886 		/* Transmit Underrun need to set TxReset, DMARest, FIFOReset */
887 		dw16(ASICCtrl + 2,
888 		     TxReset | DMAReset | FIFOReset | NetworkReset);
889 		/* Wait for ResetBusy bit clear */
890 		for (i = 50; i > 0; i--) {
891 			if (!(dr16(ASICCtrl + 2) & ResetBusy))
892 				break;
893 			mdelay (1);
894 		}
895 		rio_set_led_mode(dev);
896 		rio_free_tx (dev, 1);
897 		/* Reset TFDListPtr */
898 		dw32(TFDListPtr0, np->tx_ring_dma +
899 		     np->old_tx * sizeof (struct netdev_desc));
900 		dw32(TFDListPtr1, 0);
901 
902 		/* Let TxStartThresh stay default value */
903 	}
904 	/* Late Collision */
905 	if (tx_status & 0x04) {
906 		np->stats.tx_fifo_errors++;
907 		/* TxReset and clear FIFO */
908 		dw16(ASICCtrl + 2, TxReset | FIFOReset);
909 		/* Wait reset done */
910 		for (i = 50; i > 0; i--) {
911 			if (!(dr16(ASICCtrl + 2) & ResetBusy))
912 				break;
913 			mdelay (1);
914 		}
915 		rio_set_led_mode(dev);
916 		/* Let TxStartThresh stay default value */
917 	}
918 	/* Maximum Collisions */
919 #ifdef ETHER_STATS
920 	if (tx_status & 0x08)
921 		np->stats.collisions16++;
922 #else
923 	if (tx_status & 0x08)
924 		np->stats.collisions++;
925 #endif
926 	/* Restart the Tx */
927 	dw32(MACCtrl, dr16(MACCtrl) | TxEnable);
928 }
929 
930 static int
931 receive_packet (struct net_device *dev)
932 {
933 	struct netdev_private *np = netdev_priv(dev);
934 	int entry = np->cur_rx % RX_RING_SIZE;
935 	int cnt = 30;
936 
937 	/* If RFDDone, FrameStart and FrameEnd set, there is a new packet in. */
938 	while (1) {
939 		struct netdev_desc *desc = &np->rx_ring[entry];
940 		int pkt_len;
941 		u64 frame_status;
942 
943 		if (!(desc->status & cpu_to_le64(RFDDone)) ||
944 		    !(desc->status & cpu_to_le64(FrameStart)) ||
945 		    !(desc->status & cpu_to_le64(FrameEnd)))
946 			break;
947 
948 		/* Chip omits the CRC. */
949 		frame_status = le64_to_cpu(desc->status);
950 		pkt_len = frame_status & 0xffff;
951 		if (--cnt < 0)
952 			break;
953 		/* Update rx error statistics, drop packet. */
954 		if (frame_status & RFS_Errors) {
955 			np->stats.rx_errors++;
956 			if (frame_status & (RxRuntFrame | RxLengthError))
957 				np->stats.rx_length_errors++;
958 			if (frame_status & RxFCSError)
959 				np->stats.rx_crc_errors++;
960 			if (frame_status & RxAlignmentError && np->speed != 1000)
961 				np->stats.rx_frame_errors++;
962 			if (frame_status & RxFIFOOverrun)
963 	 			np->stats.rx_fifo_errors++;
964 		} else {
965 			struct sk_buff *skb;
966 
967 			/* Small skbuffs for short packets */
968 			if (pkt_len > copy_thresh) {
969 				pci_unmap_single (np->pdev,
970 						  desc_to_dma(desc),
971 						  np->rx_buf_sz,
972 						  PCI_DMA_FROMDEVICE);
973 				skb_put (skb = np->rx_skbuff[entry], pkt_len);
974 				np->rx_skbuff[entry] = NULL;
975 			} else if ((skb = netdev_alloc_skb_ip_align(dev, pkt_len))) {
976 				pci_dma_sync_single_for_cpu(np->pdev,
977 							    desc_to_dma(desc),
978 							    np->rx_buf_sz,
979 							    PCI_DMA_FROMDEVICE);
980 				skb_copy_to_linear_data (skb,
981 						  np->rx_skbuff[entry]->data,
982 						  pkt_len);
983 				skb_put (skb, pkt_len);
984 				pci_dma_sync_single_for_device(np->pdev,
985 							       desc_to_dma(desc),
986 							       np->rx_buf_sz,
987 							       PCI_DMA_FROMDEVICE);
988 			}
989 			skb->protocol = eth_type_trans (skb, dev);
990 #if 0
991 			/* Checksum done by hw, but csum value unavailable. */
992 			if (np->pdev->pci_rev_id >= 0x0c &&
993 				!(frame_status & (TCPError | UDPError | IPError))) {
994 				skb->ip_summed = CHECKSUM_UNNECESSARY;
995 			}
996 #endif
997 			netif_rx (skb);
998 		}
999 		entry = (entry + 1) % RX_RING_SIZE;
1000 	}
1001 	spin_lock(&np->rx_lock);
1002 	np->cur_rx = entry;
1003 	/* Re-allocate skbuffs to fill the descriptor ring */
1004 	entry = np->old_rx;
1005 	while (entry != np->cur_rx) {
1006 		struct sk_buff *skb;
1007 		/* Dropped packets don't need to re-allocate */
1008 		if (np->rx_skbuff[entry] == NULL) {
1009 			skb = netdev_alloc_skb_ip_align(dev, np->rx_buf_sz);
1010 			if (skb == NULL) {
1011 				np->rx_ring[entry].fraginfo = 0;
1012 				printk (KERN_INFO
1013 					"%s: receive_packet: "
1014 					"Unable to re-allocate Rx skbuff.#%d\n",
1015 					dev->name, entry);
1016 				break;
1017 			}
1018 			np->rx_skbuff[entry] = skb;
1019 			np->rx_ring[entry].fraginfo =
1020 			    cpu_to_le64 (pci_map_single
1021 					 (np->pdev, skb->data, np->rx_buf_sz,
1022 					  PCI_DMA_FROMDEVICE));
1023 		}
1024 		np->rx_ring[entry].fraginfo |=
1025 		    cpu_to_le64((u64)np->rx_buf_sz << 48);
1026 		np->rx_ring[entry].status = 0;
1027 		entry = (entry + 1) % RX_RING_SIZE;
1028 	}
1029 	np->old_rx = entry;
1030 	spin_unlock(&np->rx_lock);
1031 	return 0;
1032 }
1033 
1034 static void
1035 rio_error (struct net_device *dev, int int_status)
1036 {
1037 	struct netdev_private *np = netdev_priv(dev);
1038 	void __iomem *ioaddr = np->ioaddr;
1039 	u16 macctrl;
1040 
1041 	/* Link change event */
1042 	if (int_status & LinkEvent) {
1043 		if (mii_wait_link (dev, 10) == 0) {
1044 			printk (KERN_INFO "%s: Link up\n", dev->name);
1045 			if (np->phy_media)
1046 				mii_get_media_pcs (dev);
1047 			else
1048 				mii_get_media (dev);
1049 			if (np->speed == 1000)
1050 				np->tx_coalesce = tx_coalesce;
1051 			else
1052 				np->tx_coalesce = 1;
1053 			macctrl = 0;
1054 			macctrl |= (np->vlan) ? AutoVLANuntagging : 0;
1055 			macctrl |= (np->full_duplex) ? DuplexSelect : 0;
1056 			macctrl |= (np->tx_flow) ?
1057 				TxFlowControlEnable : 0;
1058 			macctrl |= (np->rx_flow) ?
1059 				RxFlowControlEnable : 0;
1060 			dw16(MACCtrl, macctrl);
1061 			np->link_status = 1;
1062 			netif_carrier_on(dev);
1063 		} else {
1064 			printk (KERN_INFO "%s: Link off\n", dev->name);
1065 			np->link_status = 0;
1066 			netif_carrier_off(dev);
1067 		}
1068 	}
1069 
1070 	/* UpdateStats statistics registers */
1071 	if (int_status & UpdateStats) {
1072 		get_stats (dev);
1073 	}
1074 
1075 	/* PCI Error, a catastronphic error related to the bus interface
1076 	   occurs, set GlobalReset and HostReset to reset. */
1077 	if (int_status & HostError) {
1078 		printk (KERN_ERR "%s: HostError! IntStatus %4.4x.\n",
1079 			dev->name, int_status);
1080 		dw16(ASICCtrl + 2, GlobalReset | HostReset);
1081 		mdelay (500);
1082 		rio_set_led_mode(dev);
1083 	}
1084 }
1085 
1086 static struct net_device_stats *
1087 get_stats (struct net_device *dev)
1088 {
1089 	struct netdev_private *np = netdev_priv(dev);
1090 	void __iomem *ioaddr = np->ioaddr;
1091 #ifdef MEM_MAPPING
1092 	int i;
1093 #endif
1094 	unsigned int stat_reg;
1095 
1096 	/* All statistics registers need to be acknowledged,
1097 	   else statistic overflow could cause problems */
1098 
1099 	np->stats.rx_packets += dr32(FramesRcvOk);
1100 	np->stats.tx_packets += dr32(FramesXmtOk);
1101 	np->stats.rx_bytes += dr32(OctetRcvOk);
1102 	np->stats.tx_bytes += dr32(OctetXmtOk);
1103 
1104 	np->stats.multicast = dr32(McstFramesRcvdOk);
1105 	np->stats.collisions += dr32(SingleColFrames)
1106 			     +  dr32(MultiColFrames);
1107 
1108 	/* detailed tx errors */
1109 	stat_reg = dr16(FramesAbortXSColls);
1110 	np->stats.tx_aborted_errors += stat_reg;
1111 	np->stats.tx_errors += stat_reg;
1112 
1113 	stat_reg = dr16(CarrierSenseErrors);
1114 	np->stats.tx_carrier_errors += stat_reg;
1115 	np->stats.tx_errors += stat_reg;
1116 
1117 	/* Clear all other statistic register. */
1118 	dr32(McstOctetXmtOk);
1119 	dr16(BcstFramesXmtdOk);
1120 	dr32(McstFramesXmtdOk);
1121 	dr16(BcstFramesRcvdOk);
1122 	dr16(MacControlFramesRcvd);
1123 	dr16(FrameTooLongErrors);
1124 	dr16(InRangeLengthErrors);
1125 	dr16(FramesCheckSeqErrors);
1126 	dr16(FramesLostRxErrors);
1127 	dr32(McstOctetXmtOk);
1128 	dr32(BcstOctetXmtOk);
1129 	dr32(McstFramesXmtdOk);
1130 	dr32(FramesWDeferredXmt);
1131 	dr32(LateCollisions);
1132 	dr16(BcstFramesXmtdOk);
1133 	dr16(MacControlFramesXmtd);
1134 	dr16(FramesWEXDeferal);
1135 
1136 #ifdef MEM_MAPPING
1137 	for (i = 0x100; i <= 0x150; i += 4)
1138 		dr32(i);
1139 #endif
1140 	dr16(TxJumboFrames);
1141 	dr16(RxJumboFrames);
1142 	dr16(TCPCheckSumErrors);
1143 	dr16(UDPCheckSumErrors);
1144 	dr16(IPCheckSumErrors);
1145 	return &np->stats;
1146 }
1147 
1148 static int
1149 clear_stats (struct net_device *dev)
1150 {
1151 	struct netdev_private *np = netdev_priv(dev);
1152 	void __iomem *ioaddr = np->ioaddr;
1153 #ifdef MEM_MAPPING
1154 	int i;
1155 #endif
1156 
1157 	/* All statistics registers need to be acknowledged,
1158 	   else statistic overflow could cause problems */
1159 	dr32(FramesRcvOk);
1160 	dr32(FramesXmtOk);
1161 	dr32(OctetRcvOk);
1162 	dr32(OctetXmtOk);
1163 
1164 	dr32(McstFramesRcvdOk);
1165 	dr32(SingleColFrames);
1166 	dr32(MultiColFrames);
1167 	dr32(LateCollisions);
1168 	/* detailed rx errors */
1169 	dr16(FrameTooLongErrors);
1170 	dr16(InRangeLengthErrors);
1171 	dr16(FramesCheckSeqErrors);
1172 	dr16(FramesLostRxErrors);
1173 
1174 	/* detailed tx errors */
1175 	dr16(FramesAbortXSColls);
1176 	dr16(CarrierSenseErrors);
1177 
1178 	/* Clear all other statistic register. */
1179 	dr32(McstOctetXmtOk);
1180 	dr16(BcstFramesXmtdOk);
1181 	dr32(McstFramesXmtdOk);
1182 	dr16(BcstFramesRcvdOk);
1183 	dr16(MacControlFramesRcvd);
1184 	dr32(McstOctetXmtOk);
1185 	dr32(BcstOctetXmtOk);
1186 	dr32(McstFramesXmtdOk);
1187 	dr32(FramesWDeferredXmt);
1188 	dr16(BcstFramesXmtdOk);
1189 	dr16(MacControlFramesXmtd);
1190 	dr16(FramesWEXDeferal);
1191 #ifdef MEM_MAPPING
1192 	for (i = 0x100; i <= 0x150; i += 4)
1193 		dr32(i);
1194 #endif
1195 	dr16(TxJumboFrames);
1196 	dr16(RxJumboFrames);
1197 	dr16(TCPCheckSumErrors);
1198 	dr16(UDPCheckSumErrors);
1199 	dr16(IPCheckSumErrors);
1200 	return 0;
1201 }
1202 
1203 static void
1204 set_multicast (struct net_device *dev)
1205 {
1206 	struct netdev_private *np = netdev_priv(dev);
1207 	void __iomem *ioaddr = np->ioaddr;
1208 	u32 hash_table[2];
1209 	u16 rx_mode = 0;
1210 
1211 	hash_table[0] = hash_table[1] = 0;
1212 	/* RxFlowcontrol DA: 01-80-C2-00-00-01. Hash index=0x39 */
1213 	hash_table[1] |= 0x02000000;
1214 	if (dev->flags & IFF_PROMISC) {
1215 		/* Receive all frames promiscuously. */
1216 		rx_mode = ReceiveAllFrames;
1217 	} else if ((dev->flags & IFF_ALLMULTI) ||
1218 			(netdev_mc_count(dev) > multicast_filter_limit)) {
1219 		/* Receive broadcast and multicast frames */
1220 		rx_mode = ReceiveBroadcast | ReceiveMulticast | ReceiveUnicast;
1221 	} else if (!netdev_mc_empty(dev)) {
1222 		struct netdev_hw_addr *ha;
1223 		/* Receive broadcast frames and multicast frames filtering
1224 		   by Hashtable */
1225 		rx_mode =
1226 		    ReceiveBroadcast | ReceiveMulticastHash | ReceiveUnicast;
1227 		netdev_for_each_mc_addr(ha, dev) {
1228 			int bit, index = 0;
1229 			int crc = ether_crc_le(ETH_ALEN, ha->addr);
1230 			/* The inverted high significant 6 bits of CRC are
1231 			   used as an index to hashtable */
1232 			for (bit = 0; bit < 6; bit++)
1233 				if (crc & (1 << (31 - bit)))
1234 					index |= (1 << bit);
1235 			hash_table[index / 32] |= (1 << (index % 32));
1236 		}
1237 	} else {
1238 		rx_mode = ReceiveBroadcast | ReceiveUnicast;
1239 	}
1240 	if (np->vlan) {
1241 		/* ReceiveVLANMatch field in ReceiveMode */
1242 		rx_mode |= ReceiveVLANMatch;
1243 	}
1244 
1245 	dw32(HashTable0, hash_table[0]);
1246 	dw32(HashTable1, hash_table[1]);
1247 	dw16(ReceiveMode, rx_mode);
1248 }
1249 
1250 static void rio_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1251 {
1252 	struct netdev_private *np = netdev_priv(dev);
1253 
1254 	strlcpy(info->driver, "dl2k", sizeof(info->driver));
1255 	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1256 	strlcpy(info->bus_info, pci_name(np->pdev), sizeof(info->bus_info));
1257 }
1258 
1259 static int rio_get_link_ksettings(struct net_device *dev,
1260 				  struct ethtool_link_ksettings *cmd)
1261 {
1262 	struct netdev_private *np = netdev_priv(dev);
1263 	u32 supported, advertising;
1264 
1265 	if (np->phy_media) {
1266 		/* fiber device */
1267 		supported = SUPPORTED_Autoneg | SUPPORTED_FIBRE;
1268 		advertising = ADVERTISED_Autoneg | ADVERTISED_FIBRE;
1269 		cmd->base.port = PORT_FIBRE;
1270 	} else {
1271 		/* copper device */
1272 		supported = SUPPORTED_10baseT_Half |
1273 			SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Half
1274 			| SUPPORTED_100baseT_Full | SUPPORTED_1000baseT_Full |
1275 			SUPPORTED_Autoneg | SUPPORTED_MII;
1276 		advertising = ADVERTISED_10baseT_Half |
1277 			ADVERTISED_10baseT_Full | ADVERTISED_100baseT_Half |
1278 			ADVERTISED_100baseT_Full | ADVERTISED_1000baseT_Full |
1279 			ADVERTISED_Autoneg | ADVERTISED_MII;
1280 		cmd->base.port = PORT_MII;
1281 	}
1282 	if (np->link_status) {
1283 		cmd->base.speed = np->speed;
1284 		cmd->base.duplex = np->full_duplex ? DUPLEX_FULL : DUPLEX_HALF;
1285 	} else {
1286 		cmd->base.speed = SPEED_UNKNOWN;
1287 		cmd->base.duplex = DUPLEX_UNKNOWN;
1288 	}
1289 	if (np->an_enable)
1290 		cmd->base.autoneg = AUTONEG_ENABLE;
1291 	else
1292 		cmd->base.autoneg = AUTONEG_DISABLE;
1293 
1294 	cmd->base.phy_address = np->phy_addr;
1295 
1296 	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
1297 						supported);
1298 	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
1299 						advertising);
1300 
1301 	return 0;
1302 }
1303 
1304 static int rio_set_link_ksettings(struct net_device *dev,
1305 				  const struct ethtool_link_ksettings *cmd)
1306 {
1307 	struct netdev_private *np = netdev_priv(dev);
1308 	u32 speed = cmd->base.speed;
1309 	u8 duplex = cmd->base.duplex;
1310 
1311 	netif_carrier_off(dev);
1312 	if (cmd->base.autoneg == AUTONEG_ENABLE) {
1313 		if (np->an_enable) {
1314 			return 0;
1315 		} else {
1316 			np->an_enable = 1;
1317 			mii_set_media(dev);
1318 			return 0;
1319 		}
1320 	} else {
1321 		np->an_enable = 0;
1322 		if (np->speed == 1000) {
1323 			speed = SPEED_100;
1324 			duplex = DUPLEX_FULL;
1325 			printk("Warning!! Can't disable Auto negotiation in 1000Mbps, change to Manual 100Mbps, Full duplex.\n");
1326 		}
1327 		switch (speed) {
1328 		case SPEED_10:
1329 			np->speed = 10;
1330 			np->full_duplex = (duplex == DUPLEX_FULL);
1331 			break;
1332 		case SPEED_100:
1333 			np->speed = 100;
1334 			np->full_duplex = (duplex == DUPLEX_FULL);
1335 			break;
1336 		case SPEED_1000: /* not supported */
1337 		default:
1338 			return -EINVAL;
1339 		}
1340 		mii_set_media(dev);
1341 	}
1342 	return 0;
1343 }
1344 
1345 static u32 rio_get_link(struct net_device *dev)
1346 {
1347 	struct netdev_private *np = netdev_priv(dev);
1348 	return np->link_status;
1349 }
1350 
1351 static const struct ethtool_ops ethtool_ops = {
1352 	.get_drvinfo = rio_get_drvinfo,
1353 	.get_link = rio_get_link,
1354 	.get_link_ksettings = rio_get_link_ksettings,
1355 	.set_link_ksettings = rio_set_link_ksettings,
1356 };
1357 
1358 static int
1359 rio_ioctl (struct net_device *dev, struct ifreq *rq, int cmd)
1360 {
1361 	int phy_addr;
1362 	struct netdev_private *np = netdev_priv(dev);
1363 	struct mii_ioctl_data *miidata = if_mii(rq);
1364 
1365 	phy_addr = np->phy_addr;
1366 	switch (cmd) {
1367 	case SIOCGMIIPHY:
1368 		miidata->phy_id = phy_addr;
1369 		break;
1370 	case SIOCGMIIREG:
1371 		miidata->val_out = mii_read (dev, phy_addr, miidata->reg_num);
1372 		break;
1373 	case SIOCSMIIREG:
1374 		if (!capable(CAP_NET_ADMIN))
1375 			return -EPERM;
1376 		mii_write (dev, phy_addr, miidata->reg_num, miidata->val_in);
1377 		break;
1378 	default:
1379 		return -EOPNOTSUPP;
1380 	}
1381 	return 0;
1382 }
1383 
1384 #define EEP_READ 0x0200
1385 #define EEP_BUSY 0x8000
1386 /* Read the EEPROM word */
1387 /* We use I/O instruction to read/write eeprom to avoid fail on some machines */
1388 static int read_eeprom(struct netdev_private *np, int eep_addr)
1389 {
1390 	void __iomem *ioaddr = np->eeprom_addr;
1391 	int i = 1000;
1392 
1393 	dw16(EepromCtrl, EEP_READ | (eep_addr & 0xff));
1394 	while (i-- > 0) {
1395 		if (!(dr16(EepromCtrl) & EEP_BUSY))
1396 			return dr16(EepromData);
1397 	}
1398 	return 0;
1399 }
1400 
1401 enum phy_ctrl_bits {
1402 	MII_READ = 0x00, MII_CLK = 0x01, MII_DATA1 = 0x02, MII_WRITE = 0x04,
1403 	MII_DUPLEX = 0x08,
1404 };
1405 
1406 #define mii_delay() dr8(PhyCtrl)
1407 static void
1408 mii_sendbit (struct net_device *dev, u32 data)
1409 {
1410 	struct netdev_private *np = netdev_priv(dev);
1411 	void __iomem *ioaddr = np->ioaddr;
1412 
1413 	data = ((data) ? MII_DATA1 : 0) | (dr8(PhyCtrl) & 0xf8) | MII_WRITE;
1414 	dw8(PhyCtrl, data);
1415 	mii_delay ();
1416 	dw8(PhyCtrl, data | MII_CLK);
1417 	mii_delay ();
1418 }
1419 
1420 static int
1421 mii_getbit (struct net_device *dev)
1422 {
1423 	struct netdev_private *np = netdev_priv(dev);
1424 	void __iomem *ioaddr = np->ioaddr;
1425 	u8 data;
1426 
1427 	data = (dr8(PhyCtrl) & 0xf8) | MII_READ;
1428 	dw8(PhyCtrl, data);
1429 	mii_delay ();
1430 	dw8(PhyCtrl, data | MII_CLK);
1431 	mii_delay ();
1432 	return (dr8(PhyCtrl) >> 1) & 1;
1433 }
1434 
1435 static void
1436 mii_send_bits (struct net_device *dev, u32 data, int len)
1437 {
1438 	int i;
1439 
1440 	for (i = len - 1; i >= 0; i--) {
1441 		mii_sendbit (dev, data & (1 << i));
1442 	}
1443 }
1444 
1445 static int
1446 mii_read (struct net_device *dev, int phy_addr, int reg_num)
1447 {
1448 	u32 cmd;
1449 	int i;
1450 	u32 retval = 0;
1451 
1452 	/* Preamble */
1453 	mii_send_bits (dev, 0xffffffff, 32);
1454 	/* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1455 	/* ST,OP = 0110'b for read operation */
1456 	cmd = (0x06 << 10 | phy_addr << 5 | reg_num);
1457 	mii_send_bits (dev, cmd, 14);
1458 	/* Turnaround */
1459 	if (mii_getbit (dev))
1460 		goto err_out;
1461 	/* Read data */
1462 	for (i = 0; i < 16; i++) {
1463 		retval |= mii_getbit (dev);
1464 		retval <<= 1;
1465 	}
1466 	/* End cycle */
1467 	mii_getbit (dev);
1468 	return (retval >> 1) & 0xffff;
1469 
1470       err_out:
1471 	return 0;
1472 }
1473 static int
1474 mii_write (struct net_device *dev, int phy_addr, int reg_num, u16 data)
1475 {
1476 	u32 cmd;
1477 
1478 	/* Preamble */
1479 	mii_send_bits (dev, 0xffffffff, 32);
1480 	/* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1481 	/* ST,OP,AAAAA,RRRRR,TA = 0101xxxxxxxxxx10'b = 0x5002 for write */
1482 	cmd = (0x5002 << 16) | (phy_addr << 23) | (reg_num << 18) | data;
1483 	mii_send_bits (dev, cmd, 32);
1484 	/* End cycle */
1485 	mii_getbit (dev);
1486 	return 0;
1487 }
1488 static int
1489 mii_wait_link (struct net_device *dev, int wait)
1490 {
1491 	__u16 bmsr;
1492 	int phy_addr;
1493 	struct netdev_private *np;
1494 
1495 	np = netdev_priv(dev);
1496 	phy_addr = np->phy_addr;
1497 
1498 	do {
1499 		bmsr = mii_read (dev, phy_addr, MII_BMSR);
1500 		if (bmsr & BMSR_LSTATUS)
1501 			return 0;
1502 		mdelay (1);
1503 	} while (--wait > 0);
1504 	return -1;
1505 }
1506 static int
1507 mii_get_media (struct net_device *dev)
1508 {
1509 	__u16 negotiate;
1510 	__u16 bmsr;
1511 	__u16 mscr;
1512 	__u16 mssr;
1513 	int phy_addr;
1514 	struct netdev_private *np;
1515 
1516 	np = netdev_priv(dev);
1517 	phy_addr = np->phy_addr;
1518 
1519 	bmsr = mii_read (dev, phy_addr, MII_BMSR);
1520 	if (np->an_enable) {
1521 		if (!(bmsr & BMSR_ANEGCOMPLETE)) {
1522 			/* Auto-Negotiation not completed */
1523 			return -1;
1524 		}
1525 		negotiate = mii_read (dev, phy_addr, MII_ADVERTISE) &
1526 			mii_read (dev, phy_addr, MII_LPA);
1527 		mscr = mii_read (dev, phy_addr, MII_CTRL1000);
1528 		mssr = mii_read (dev, phy_addr, MII_STAT1000);
1529 		if (mscr & ADVERTISE_1000FULL && mssr & LPA_1000FULL) {
1530 			np->speed = 1000;
1531 			np->full_duplex = 1;
1532 			printk (KERN_INFO "Auto 1000 Mbps, Full duplex\n");
1533 		} else if (mscr & ADVERTISE_1000HALF && mssr & LPA_1000HALF) {
1534 			np->speed = 1000;
1535 			np->full_duplex = 0;
1536 			printk (KERN_INFO "Auto 1000 Mbps, Half duplex\n");
1537 		} else if (negotiate & ADVERTISE_100FULL) {
1538 			np->speed = 100;
1539 			np->full_duplex = 1;
1540 			printk (KERN_INFO "Auto 100 Mbps, Full duplex\n");
1541 		} else if (negotiate & ADVERTISE_100HALF) {
1542 			np->speed = 100;
1543 			np->full_duplex = 0;
1544 			printk (KERN_INFO "Auto 100 Mbps, Half duplex\n");
1545 		} else if (negotiate & ADVERTISE_10FULL) {
1546 			np->speed = 10;
1547 			np->full_duplex = 1;
1548 			printk (KERN_INFO "Auto 10 Mbps, Full duplex\n");
1549 		} else if (negotiate & ADVERTISE_10HALF) {
1550 			np->speed = 10;
1551 			np->full_duplex = 0;
1552 			printk (KERN_INFO "Auto 10 Mbps, Half duplex\n");
1553 		}
1554 		if (negotiate & ADVERTISE_PAUSE_CAP) {
1555 			np->tx_flow &= 1;
1556 			np->rx_flow &= 1;
1557 		} else if (negotiate & ADVERTISE_PAUSE_ASYM) {
1558 			np->tx_flow = 0;
1559 			np->rx_flow &= 1;
1560 		}
1561 		/* else tx_flow, rx_flow = user select  */
1562 	} else {
1563 		__u16 bmcr = mii_read (dev, phy_addr, MII_BMCR);
1564 		switch (bmcr & (BMCR_SPEED100 | BMCR_SPEED1000)) {
1565 		case BMCR_SPEED1000:
1566 			printk (KERN_INFO "Operating at 1000 Mbps, ");
1567 			break;
1568 		case BMCR_SPEED100:
1569 			printk (KERN_INFO "Operating at 100 Mbps, ");
1570 			break;
1571 		case 0:
1572 			printk (KERN_INFO "Operating at 10 Mbps, ");
1573 		}
1574 		if (bmcr & BMCR_FULLDPLX) {
1575 			printk (KERN_CONT "Full duplex\n");
1576 		} else {
1577 			printk (KERN_CONT "Half duplex\n");
1578 		}
1579 	}
1580 	if (np->tx_flow)
1581 		printk(KERN_INFO "Enable Tx Flow Control\n");
1582 	else
1583 		printk(KERN_INFO "Disable Tx Flow Control\n");
1584 	if (np->rx_flow)
1585 		printk(KERN_INFO "Enable Rx Flow Control\n");
1586 	else
1587 		printk(KERN_INFO "Disable Rx Flow Control\n");
1588 
1589 	return 0;
1590 }
1591 
1592 static int
1593 mii_set_media (struct net_device *dev)
1594 {
1595 	__u16 pscr;
1596 	__u16 bmcr;
1597 	__u16 bmsr;
1598 	__u16 anar;
1599 	int phy_addr;
1600 	struct netdev_private *np;
1601 	np = netdev_priv(dev);
1602 	phy_addr = np->phy_addr;
1603 
1604 	/* Does user set speed? */
1605 	if (np->an_enable) {
1606 		/* Advertise capabilities */
1607 		bmsr = mii_read (dev, phy_addr, MII_BMSR);
1608 		anar = mii_read (dev, phy_addr, MII_ADVERTISE) &
1609 			~(ADVERTISE_100FULL | ADVERTISE_10FULL |
1610 			  ADVERTISE_100HALF | ADVERTISE_10HALF |
1611 			  ADVERTISE_100BASE4);
1612 		if (bmsr & BMSR_100FULL)
1613 			anar |= ADVERTISE_100FULL;
1614 		if (bmsr & BMSR_100HALF)
1615 			anar |= ADVERTISE_100HALF;
1616 		if (bmsr & BMSR_100BASE4)
1617 			anar |= ADVERTISE_100BASE4;
1618 		if (bmsr & BMSR_10FULL)
1619 			anar |= ADVERTISE_10FULL;
1620 		if (bmsr & BMSR_10HALF)
1621 			anar |= ADVERTISE_10HALF;
1622 		anar |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
1623 		mii_write (dev, phy_addr, MII_ADVERTISE, anar);
1624 
1625 		/* Enable Auto crossover */
1626 		pscr = mii_read (dev, phy_addr, MII_PHY_SCR);
1627 		pscr |= 3 << 5;	/* 11'b */
1628 		mii_write (dev, phy_addr, MII_PHY_SCR, pscr);
1629 
1630 		/* Soft reset PHY */
1631 		mii_write (dev, phy_addr, MII_BMCR, BMCR_RESET);
1632 		bmcr = BMCR_ANENABLE | BMCR_ANRESTART | BMCR_RESET;
1633 		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1634 		mdelay(1);
1635 	} else {
1636 		/* Force speed setting */
1637 		/* 1) Disable Auto crossover */
1638 		pscr = mii_read (dev, phy_addr, MII_PHY_SCR);
1639 		pscr &= ~(3 << 5);
1640 		mii_write (dev, phy_addr, MII_PHY_SCR, pscr);
1641 
1642 		/* 2) PHY Reset */
1643 		bmcr = mii_read (dev, phy_addr, MII_BMCR);
1644 		bmcr |= BMCR_RESET;
1645 		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1646 
1647 		/* 3) Power Down */
1648 		bmcr = 0x1940;	/* must be 0x1940 */
1649 		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1650 		mdelay (100);	/* wait a certain time */
1651 
1652 		/* 4) Advertise nothing */
1653 		mii_write (dev, phy_addr, MII_ADVERTISE, 0);
1654 
1655 		/* 5) Set media and Power Up */
1656 		bmcr = BMCR_PDOWN;
1657 		if (np->speed == 100) {
1658 			bmcr |= BMCR_SPEED100;
1659 			printk (KERN_INFO "Manual 100 Mbps, ");
1660 		} else if (np->speed == 10) {
1661 			printk (KERN_INFO "Manual 10 Mbps, ");
1662 		}
1663 		if (np->full_duplex) {
1664 			bmcr |= BMCR_FULLDPLX;
1665 			printk (KERN_CONT "Full duplex\n");
1666 		} else {
1667 			printk (KERN_CONT "Half duplex\n");
1668 		}
1669 #if 0
1670 		/* Set 1000BaseT Master/Slave setting */
1671 		mscr = mii_read (dev, phy_addr, MII_CTRL1000);
1672 		mscr |= MII_MSCR_CFG_ENABLE;
1673 		mscr &= ~MII_MSCR_CFG_VALUE = 0;
1674 #endif
1675 		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1676 		mdelay(10);
1677 	}
1678 	return 0;
1679 }
1680 
1681 static int
1682 mii_get_media_pcs (struct net_device *dev)
1683 {
1684 	__u16 negotiate;
1685 	__u16 bmsr;
1686 	int phy_addr;
1687 	struct netdev_private *np;
1688 
1689 	np = netdev_priv(dev);
1690 	phy_addr = np->phy_addr;
1691 
1692 	bmsr = mii_read (dev, phy_addr, PCS_BMSR);
1693 	if (np->an_enable) {
1694 		if (!(bmsr & BMSR_ANEGCOMPLETE)) {
1695 			/* Auto-Negotiation not completed */
1696 			return -1;
1697 		}
1698 		negotiate = mii_read (dev, phy_addr, PCS_ANAR) &
1699 			mii_read (dev, phy_addr, PCS_ANLPAR);
1700 		np->speed = 1000;
1701 		if (negotiate & PCS_ANAR_FULL_DUPLEX) {
1702 			printk (KERN_INFO "Auto 1000 Mbps, Full duplex\n");
1703 			np->full_duplex = 1;
1704 		} else {
1705 			printk (KERN_INFO "Auto 1000 Mbps, half duplex\n");
1706 			np->full_duplex = 0;
1707 		}
1708 		if (negotiate & PCS_ANAR_PAUSE) {
1709 			np->tx_flow &= 1;
1710 			np->rx_flow &= 1;
1711 		} else if (negotiate & PCS_ANAR_ASYMMETRIC) {
1712 			np->tx_flow = 0;
1713 			np->rx_flow &= 1;
1714 		}
1715 		/* else tx_flow, rx_flow = user select  */
1716 	} else {
1717 		__u16 bmcr = mii_read (dev, phy_addr, PCS_BMCR);
1718 		printk (KERN_INFO "Operating at 1000 Mbps, ");
1719 		if (bmcr & BMCR_FULLDPLX) {
1720 			printk (KERN_CONT "Full duplex\n");
1721 		} else {
1722 			printk (KERN_CONT "Half duplex\n");
1723 		}
1724 	}
1725 	if (np->tx_flow)
1726 		printk(KERN_INFO "Enable Tx Flow Control\n");
1727 	else
1728 		printk(KERN_INFO "Disable Tx Flow Control\n");
1729 	if (np->rx_flow)
1730 		printk(KERN_INFO "Enable Rx Flow Control\n");
1731 	else
1732 		printk(KERN_INFO "Disable Rx Flow Control\n");
1733 
1734 	return 0;
1735 }
1736 
1737 static int
1738 mii_set_media_pcs (struct net_device *dev)
1739 {
1740 	__u16 bmcr;
1741 	__u16 esr;
1742 	__u16 anar;
1743 	int phy_addr;
1744 	struct netdev_private *np;
1745 	np = netdev_priv(dev);
1746 	phy_addr = np->phy_addr;
1747 
1748 	/* Auto-Negotiation? */
1749 	if (np->an_enable) {
1750 		/* Advertise capabilities */
1751 		esr = mii_read (dev, phy_addr, PCS_ESR);
1752 		anar = mii_read (dev, phy_addr, MII_ADVERTISE) &
1753 			~PCS_ANAR_HALF_DUPLEX &
1754 			~PCS_ANAR_FULL_DUPLEX;
1755 		if (esr & (MII_ESR_1000BT_HD | MII_ESR_1000BX_HD))
1756 			anar |= PCS_ANAR_HALF_DUPLEX;
1757 		if (esr & (MII_ESR_1000BT_FD | MII_ESR_1000BX_FD))
1758 			anar |= PCS_ANAR_FULL_DUPLEX;
1759 		anar |= PCS_ANAR_PAUSE | PCS_ANAR_ASYMMETRIC;
1760 		mii_write (dev, phy_addr, MII_ADVERTISE, anar);
1761 
1762 		/* Soft reset PHY */
1763 		mii_write (dev, phy_addr, MII_BMCR, BMCR_RESET);
1764 		bmcr = BMCR_ANENABLE | BMCR_ANRESTART | BMCR_RESET;
1765 		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1766 		mdelay(1);
1767 	} else {
1768 		/* Force speed setting */
1769 		/* PHY Reset */
1770 		bmcr = BMCR_RESET;
1771 		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1772 		mdelay(10);
1773 		if (np->full_duplex) {
1774 			bmcr = BMCR_FULLDPLX;
1775 			printk (KERN_INFO "Manual full duplex\n");
1776 		} else {
1777 			bmcr = 0;
1778 			printk (KERN_INFO "Manual half duplex\n");
1779 		}
1780 		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1781 		mdelay(10);
1782 
1783 		/*  Advertise nothing */
1784 		mii_write (dev, phy_addr, MII_ADVERTISE, 0);
1785 	}
1786 	return 0;
1787 }
1788 
1789 
1790 static int
1791 rio_close (struct net_device *dev)
1792 {
1793 	struct netdev_private *np = netdev_priv(dev);
1794 	struct pci_dev *pdev = np->pdev;
1795 
1796 	netif_stop_queue (dev);
1797 
1798 	rio_hw_stop(dev);
1799 
1800 	free_irq(pdev->irq, dev);
1801 	del_timer_sync (&np->timer);
1802 
1803 	free_list(dev);
1804 
1805 	return 0;
1806 }
1807 
1808 static void
1809 rio_remove1 (struct pci_dev *pdev)
1810 {
1811 	struct net_device *dev = pci_get_drvdata (pdev);
1812 
1813 	if (dev) {
1814 		struct netdev_private *np = netdev_priv(dev);
1815 
1816 		unregister_netdev (dev);
1817 		pci_free_consistent (pdev, RX_TOTAL_SIZE, np->rx_ring,
1818 				     np->rx_ring_dma);
1819 		pci_free_consistent (pdev, TX_TOTAL_SIZE, np->tx_ring,
1820 				     np->tx_ring_dma);
1821 #ifdef MEM_MAPPING
1822 		pci_iounmap(pdev, np->ioaddr);
1823 #endif
1824 		pci_iounmap(pdev, np->eeprom_addr);
1825 		free_netdev (dev);
1826 		pci_release_regions (pdev);
1827 		pci_disable_device (pdev);
1828 	}
1829 }
1830 
1831 #ifdef CONFIG_PM_SLEEP
1832 static int rio_suspend(struct device *device)
1833 {
1834 	struct net_device *dev = dev_get_drvdata(device);
1835 	struct netdev_private *np = netdev_priv(dev);
1836 
1837 	if (!netif_running(dev))
1838 		return 0;
1839 
1840 	netif_device_detach(dev);
1841 	del_timer_sync(&np->timer);
1842 	rio_hw_stop(dev);
1843 
1844 	return 0;
1845 }
1846 
1847 static int rio_resume(struct device *device)
1848 {
1849 	struct net_device *dev = dev_get_drvdata(device);
1850 	struct netdev_private *np = netdev_priv(dev);
1851 
1852 	if (!netif_running(dev))
1853 		return 0;
1854 
1855 	rio_reset_ring(np);
1856 	rio_hw_init(dev);
1857 	np->timer.expires = jiffies + 1 * HZ;
1858 	add_timer(&np->timer);
1859 	netif_device_attach(dev);
1860 	dl2k_enable_int(np);
1861 
1862 	return 0;
1863 }
1864 
1865 static SIMPLE_DEV_PM_OPS(rio_pm_ops, rio_suspend, rio_resume);
1866 #define RIO_PM_OPS    (&rio_pm_ops)
1867 
1868 #else
1869 
1870 #define RIO_PM_OPS	NULL
1871 
1872 #endif /* CONFIG_PM_SLEEP */
1873 
1874 static struct pci_driver rio_driver = {
1875 	.name		= "dl2k",
1876 	.id_table	= rio_pci_tbl,
1877 	.probe		= rio_probe1,
1878 	.remove		= rio_remove1,
1879 	.driver.pm	= RIO_PM_OPS,
1880 };
1881 
1882 module_pci_driver(rio_driver);
1883 /*
1884 
1885 Compile command:
1886 
1887 gcc -D__KERNEL__ -DMODULE -I/usr/src/linux/include -Wall -Wstrict-prototypes -O2 -c dl2k.c
1888 
1889 Read Documentation/networking/dl2k.txt for details.
1890 
1891 */
1892 
1893