xref: /openbmc/linux/drivers/net/ethernet/dlink/dl2k.c (revision 06d5d6b7f9948a89543e1160ef852d57892c750d)
1 /*  D-Link DL2000-based Gigabit Ethernet Adapter Linux driver */
2 /*
3     Copyright (c) 2001, 2002 by D-Link Corporation
4     Written by Edward Peng.<edward_peng@dlink.com.tw>
5     Created 03-May-2001, base on Linux' sundance.c.
6 
7     This program is free software; you can redistribute it and/or modify
8     it under the terms of the GNU General Public License as published by
9     the Free Software Foundation; either version 2 of the License, or
10     (at your option) any later version.
11 */
12 
13 #define DRV_NAME	"DL2000/TC902x-based linux driver"
14 #define DRV_VERSION	"v1.19"
15 #define DRV_RELDATE	"2007/08/12"
16 #include "dl2k.h"
17 #include <linux/dma-mapping.h>
18 
19 #define dw32(reg, val)	iowrite32(val, ioaddr + (reg))
20 #define dw16(reg, val)	iowrite16(val, ioaddr + (reg))
21 #define dw8(reg, val)	iowrite8(val, ioaddr + (reg))
22 #define dr32(reg)	ioread32(ioaddr + (reg))
23 #define dr16(reg)	ioread16(ioaddr + (reg))
24 #define dr8(reg)	ioread8(ioaddr + (reg))
25 
26 static char version[] =
27       KERN_INFO DRV_NAME " " DRV_VERSION " " DRV_RELDATE "\n";
28 #define MAX_UNITS 8
29 static int mtu[MAX_UNITS];
30 static int vlan[MAX_UNITS];
31 static int jumbo[MAX_UNITS];
32 static char *media[MAX_UNITS];
33 static int tx_flow=-1;
34 static int rx_flow=-1;
35 static int copy_thresh;
36 static int rx_coalesce=10;	/* Rx frame count each interrupt */
37 static int rx_timeout=200;	/* Rx DMA wait time in 640ns increments */
38 static int tx_coalesce=16;	/* HW xmit count each TxDMAComplete */
39 
40 
41 MODULE_AUTHOR ("Edward Peng");
42 MODULE_DESCRIPTION ("D-Link DL2000-based Gigabit Ethernet Adapter");
43 MODULE_LICENSE("GPL");
44 module_param_array(mtu, int, NULL, 0);
45 module_param_array(media, charp, NULL, 0);
46 module_param_array(vlan, int, NULL, 0);
47 module_param_array(jumbo, int, NULL, 0);
48 module_param(tx_flow, int, 0);
49 module_param(rx_flow, int, 0);
50 module_param(copy_thresh, int, 0);
51 module_param(rx_coalesce, int, 0);	/* Rx frame count each interrupt */
52 module_param(rx_timeout, int, 0);	/* Rx DMA wait time in 64ns increments */
53 module_param(tx_coalesce, int, 0); /* HW xmit count each TxDMAComplete */
54 
55 
56 /* Enable the default interrupts */
57 #define DEFAULT_INTR (RxDMAComplete | HostError | IntRequested | TxDMAComplete| \
58        UpdateStats | LinkEvent)
59 
60 static void dl2k_enable_int(struct netdev_private *np)
61 {
62 	void __iomem *ioaddr = np->ioaddr;
63 
64 	dw16(IntEnable, DEFAULT_INTR);
65 }
66 
67 static const int max_intrloop = 50;
68 static const int multicast_filter_limit = 0x40;
69 
70 static int rio_open (struct net_device *dev);
71 static void rio_timer (struct timer_list *t);
72 static void rio_tx_timeout (struct net_device *dev);
73 static netdev_tx_t start_xmit (struct sk_buff *skb, struct net_device *dev);
74 static irqreturn_t rio_interrupt (int irq, void *dev_instance);
75 static void rio_free_tx (struct net_device *dev, int irq);
76 static void tx_error (struct net_device *dev, int tx_status);
77 static int receive_packet (struct net_device *dev);
78 static void rio_error (struct net_device *dev, int int_status);
79 static void set_multicast (struct net_device *dev);
80 static struct net_device_stats *get_stats (struct net_device *dev);
81 static int clear_stats (struct net_device *dev);
82 static int rio_ioctl (struct net_device *dev, struct ifreq *rq, int cmd);
83 static int rio_close (struct net_device *dev);
84 static int find_miiphy (struct net_device *dev);
85 static int parse_eeprom (struct net_device *dev);
86 static int read_eeprom (struct netdev_private *, int eep_addr);
87 static int mii_wait_link (struct net_device *dev, int wait);
88 static int mii_set_media (struct net_device *dev);
89 static int mii_get_media (struct net_device *dev);
90 static int mii_set_media_pcs (struct net_device *dev);
91 static int mii_get_media_pcs (struct net_device *dev);
92 static int mii_read (struct net_device *dev, int phy_addr, int reg_num);
93 static int mii_write (struct net_device *dev, int phy_addr, int reg_num,
94 		      u16 data);
95 
96 static const struct ethtool_ops ethtool_ops;
97 
98 static const struct net_device_ops netdev_ops = {
99 	.ndo_open		= rio_open,
100 	.ndo_start_xmit	= start_xmit,
101 	.ndo_stop		= rio_close,
102 	.ndo_get_stats		= get_stats,
103 	.ndo_validate_addr	= eth_validate_addr,
104 	.ndo_set_mac_address 	= eth_mac_addr,
105 	.ndo_set_rx_mode	= set_multicast,
106 	.ndo_do_ioctl		= rio_ioctl,
107 	.ndo_tx_timeout		= rio_tx_timeout,
108 };
109 
110 static int
111 rio_probe1 (struct pci_dev *pdev, const struct pci_device_id *ent)
112 {
113 	struct net_device *dev;
114 	struct netdev_private *np;
115 	static int card_idx;
116 	int chip_idx = ent->driver_data;
117 	int err, irq;
118 	void __iomem *ioaddr;
119 	static int version_printed;
120 	void *ring_space;
121 	dma_addr_t ring_dma;
122 
123 	if (!version_printed++)
124 		printk ("%s", version);
125 
126 	err = pci_enable_device (pdev);
127 	if (err)
128 		return err;
129 
130 	irq = pdev->irq;
131 	err = pci_request_regions (pdev, "dl2k");
132 	if (err)
133 		goto err_out_disable;
134 
135 	pci_set_master (pdev);
136 
137 	err = -ENOMEM;
138 
139 	dev = alloc_etherdev (sizeof (*np));
140 	if (!dev)
141 		goto err_out_res;
142 	SET_NETDEV_DEV(dev, &pdev->dev);
143 
144 	np = netdev_priv(dev);
145 
146 	/* IO registers range. */
147 	ioaddr = pci_iomap(pdev, 0, 0);
148 	if (!ioaddr)
149 		goto err_out_dev;
150 	np->eeprom_addr = ioaddr;
151 
152 #ifdef MEM_MAPPING
153 	/* MM registers range. */
154 	ioaddr = pci_iomap(pdev, 1, 0);
155 	if (!ioaddr)
156 		goto err_out_iounmap;
157 #endif
158 	np->ioaddr = ioaddr;
159 	np->chip_id = chip_idx;
160 	np->pdev = pdev;
161 	spin_lock_init (&np->tx_lock);
162 	spin_lock_init (&np->rx_lock);
163 
164 	/* Parse manual configuration */
165 	np->an_enable = 1;
166 	np->tx_coalesce = 1;
167 	if (card_idx < MAX_UNITS) {
168 		if (media[card_idx] != NULL) {
169 			np->an_enable = 0;
170 			if (strcmp (media[card_idx], "auto") == 0 ||
171 			    strcmp (media[card_idx], "autosense") == 0 ||
172 			    strcmp (media[card_idx], "0") == 0 ) {
173 				np->an_enable = 2;
174 			} else if (strcmp (media[card_idx], "100mbps_fd") == 0 ||
175 			    strcmp (media[card_idx], "4") == 0) {
176 				np->speed = 100;
177 				np->full_duplex = 1;
178 			} else if (strcmp (media[card_idx], "100mbps_hd") == 0 ||
179 				   strcmp (media[card_idx], "3") == 0) {
180 				np->speed = 100;
181 				np->full_duplex = 0;
182 			} else if (strcmp (media[card_idx], "10mbps_fd") == 0 ||
183 				   strcmp (media[card_idx], "2") == 0) {
184 				np->speed = 10;
185 				np->full_duplex = 1;
186 			} else if (strcmp (media[card_idx], "10mbps_hd") == 0 ||
187 				   strcmp (media[card_idx], "1") == 0) {
188 				np->speed = 10;
189 				np->full_duplex = 0;
190 			} else if (strcmp (media[card_idx], "1000mbps_fd") == 0 ||
191 				 strcmp (media[card_idx], "6") == 0) {
192 				np->speed=1000;
193 				np->full_duplex=1;
194 			} else if (strcmp (media[card_idx], "1000mbps_hd") == 0 ||
195 				 strcmp (media[card_idx], "5") == 0) {
196 				np->speed = 1000;
197 				np->full_duplex = 0;
198 			} else {
199 				np->an_enable = 1;
200 			}
201 		}
202 		if (jumbo[card_idx] != 0) {
203 			np->jumbo = 1;
204 			dev->mtu = MAX_JUMBO;
205 		} else {
206 			np->jumbo = 0;
207 			if (mtu[card_idx] > 0 && mtu[card_idx] < PACKET_SIZE)
208 				dev->mtu = mtu[card_idx];
209 		}
210 		np->vlan = (vlan[card_idx] > 0 && vlan[card_idx] < 4096) ?
211 		    vlan[card_idx] : 0;
212 		if (rx_coalesce > 0 && rx_timeout > 0) {
213 			np->rx_coalesce = rx_coalesce;
214 			np->rx_timeout = rx_timeout;
215 			np->coalesce = 1;
216 		}
217 		np->tx_flow = (tx_flow == 0) ? 0 : 1;
218 		np->rx_flow = (rx_flow == 0) ? 0 : 1;
219 
220 		if (tx_coalesce < 1)
221 			tx_coalesce = 1;
222 		else if (tx_coalesce > TX_RING_SIZE-1)
223 			tx_coalesce = TX_RING_SIZE - 1;
224 	}
225 	dev->netdev_ops = &netdev_ops;
226 	dev->watchdog_timeo = TX_TIMEOUT;
227 	dev->ethtool_ops = &ethtool_ops;
228 #if 0
229 	dev->features = NETIF_F_IP_CSUM;
230 #endif
231 	/* MTU range: 68 - 1536 or 8000 */
232 	dev->min_mtu = ETH_MIN_MTU;
233 	dev->max_mtu = np->jumbo ? MAX_JUMBO : PACKET_SIZE;
234 
235 	pci_set_drvdata (pdev, dev);
236 
237 	ring_space = pci_alloc_consistent (pdev, TX_TOTAL_SIZE, &ring_dma);
238 	if (!ring_space)
239 		goto err_out_iounmap;
240 	np->tx_ring = ring_space;
241 	np->tx_ring_dma = ring_dma;
242 
243 	ring_space = pci_alloc_consistent (pdev, RX_TOTAL_SIZE, &ring_dma);
244 	if (!ring_space)
245 		goto err_out_unmap_tx;
246 	np->rx_ring = ring_space;
247 	np->rx_ring_dma = ring_dma;
248 
249 	/* Parse eeprom data */
250 	parse_eeprom (dev);
251 
252 	/* Find PHY address */
253 	err = find_miiphy (dev);
254 	if (err)
255 		goto err_out_unmap_rx;
256 
257 	/* Fiber device? */
258 	np->phy_media = (dr16(ASICCtrl) & PhyMedia) ? 1 : 0;
259 	np->link_status = 0;
260 	/* Set media and reset PHY */
261 	if (np->phy_media) {
262 		/* default Auto-Negotiation for fiber deivices */
263 	 	if (np->an_enable == 2) {
264 			np->an_enable = 1;
265 		}
266 	} else {
267 		/* Auto-Negotiation is mandatory for 1000BASE-T,
268 		   IEEE 802.3ab Annex 28D page 14 */
269 		if (np->speed == 1000)
270 			np->an_enable = 1;
271 	}
272 
273 	err = register_netdev (dev);
274 	if (err)
275 		goto err_out_unmap_rx;
276 
277 	card_idx++;
278 
279 	printk (KERN_INFO "%s: %s, %pM, IRQ %d\n",
280 		dev->name, np->name, dev->dev_addr, irq);
281 	if (tx_coalesce > 1)
282 		printk(KERN_INFO "tx_coalesce:\t%d packets\n",
283 				tx_coalesce);
284 	if (np->coalesce)
285 		printk(KERN_INFO
286 		       "rx_coalesce:\t%d packets\n"
287 		       "rx_timeout: \t%d ns\n",
288 				np->rx_coalesce, np->rx_timeout*640);
289 	if (np->vlan)
290 		printk(KERN_INFO "vlan(id):\t%d\n", np->vlan);
291 	return 0;
292 
293 err_out_unmap_rx:
294 	pci_free_consistent (pdev, RX_TOTAL_SIZE, np->rx_ring, np->rx_ring_dma);
295 err_out_unmap_tx:
296 	pci_free_consistent (pdev, TX_TOTAL_SIZE, np->tx_ring, np->tx_ring_dma);
297 err_out_iounmap:
298 #ifdef MEM_MAPPING
299 	pci_iounmap(pdev, np->ioaddr);
300 #endif
301 	pci_iounmap(pdev, np->eeprom_addr);
302 err_out_dev:
303 	free_netdev (dev);
304 err_out_res:
305 	pci_release_regions (pdev);
306 err_out_disable:
307 	pci_disable_device (pdev);
308 	return err;
309 }
310 
311 static int
312 find_miiphy (struct net_device *dev)
313 {
314 	struct netdev_private *np = netdev_priv(dev);
315 	int i, phy_found = 0;
316 
317 	np->phy_addr = 1;
318 
319 	for (i = 31; i >= 0; i--) {
320 		int mii_status = mii_read (dev, i, 1);
321 		if (mii_status != 0xffff && mii_status != 0x0000) {
322 			np->phy_addr = i;
323 			phy_found++;
324 		}
325 	}
326 	if (!phy_found) {
327 		printk (KERN_ERR "%s: No MII PHY found!\n", dev->name);
328 		return -ENODEV;
329 	}
330 	return 0;
331 }
332 
333 static int
334 parse_eeprom (struct net_device *dev)
335 {
336 	struct netdev_private *np = netdev_priv(dev);
337 	void __iomem *ioaddr = np->ioaddr;
338 	int i, j;
339 	u8 sromdata[256];
340 	u8 *psib;
341 	u32 crc;
342 	PSROM_t psrom = (PSROM_t) sromdata;
343 
344 	int cid, next;
345 
346 	for (i = 0; i < 128; i++)
347 		((__le16 *) sromdata)[i] = cpu_to_le16(read_eeprom(np, i));
348 
349 	if (np->pdev->vendor == PCI_VENDOR_ID_DLINK) {	/* D-Link Only */
350 		/* Check CRC */
351 		crc = ~ether_crc_le (256 - 4, sromdata);
352 		if (psrom->crc != cpu_to_le32(crc)) {
353 			printk (KERN_ERR "%s: EEPROM data CRC error.\n",
354 					dev->name);
355 			return -1;
356 		}
357 	}
358 
359 	/* Set MAC address */
360 	for (i = 0; i < 6; i++)
361 		dev->dev_addr[i] = psrom->mac_addr[i];
362 
363 	if (np->chip_id == CHIP_IP1000A) {
364 		np->led_mode = psrom->led_mode;
365 		return 0;
366 	}
367 
368 	if (np->pdev->vendor != PCI_VENDOR_ID_DLINK) {
369 		return 0;
370 	}
371 
372 	/* Parse Software Information Block */
373 	i = 0x30;
374 	psib = (u8 *) sromdata;
375 	do {
376 		cid = psib[i++];
377 		next = psib[i++];
378 		if ((cid == 0 && next == 0) || (cid == 0xff && next == 0xff)) {
379 			printk (KERN_ERR "Cell data error\n");
380 			return -1;
381 		}
382 		switch (cid) {
383 		case 0:	/* Format version */
384 			break;
385 		case 1:	/* End of cell */
386 			return 0;
387 		case 2:	/* Duplex Polarity */
388 			np->duplex_polarity = psib[i];
389 			dw8(PhyCtrl, dr8(PhyCtrl) | psib[i]);
390 			break;
391 		case 3:	/* Wake Polarity */
392 			np->wake_polarity = psib[i];
393 			break;
394 		case 9:	/* Adapter description */
395 			j = (next - i > 255) ? 255 : next - i;
396 			memcpy (np->name, &(psib[i]), j);
397 			break;
398 		case 4:
399 		case 5:
400 		case 6:
401 		case 7:
402 		case 8:	/* Reversed */
403 			break;
404 		default:	/* Unknown cell */
405 			return -1;
406 		}
407 		i = next;
408 	} while (1);
409 
410 	return 0;
411 }
412 
413 static void rio_set_led_mode(struct net_device *dev)
414 {
415 	struct netdev_private *np = netdev_priv(dev);
416 	void __iomem *ioaddr = np->ioaddr;
417 	u32 mode;
418 
419 	if (np->chip_id != CHIP_IP1000A)
420 		return;
421 
422 	mode = dr32(ASICCtrl);
423 	mode &= ~(IPG_AC_LED_MODE_BIT_1 | IPG_AC_LED_MODE | IPG_AC_LED_SPEED);
424 
425 	if (np->led_mode & 0x01)
426 		mode |= IPG_AC_LED_MODE;
427 	if (np->led_mode & 0x02)
428 		mode |= IPG_AC_LED_MODE_BIT_1;
429 	if (np->led_mode & 0x08)
430 		mode |= IPG_AC_LED_SPEED;
431 
432 	dw32(ASICCtrl, mode);
433 }
434 
435 static inline dma_addr_t desc_to_dma(struct netdev_desc *desc)
436 {
437 	return le64_to_cpu(desc->fraginfo) & DMA_BIT_MASK(48);
438 }
439 
440 static void free_list(struct net_device *dev)
441 {
442 	struct netdev_private *np = netdev_priv(dev);
443 	struct sk_buff *skb;
444 	int i;
445 
446 	/* Free all the skbuffs in the queue. */
447 	for (i = 0; i < RX_RING_SIZE; i++) {
448 		skb = np->rx_skbuff[i];
449 		if (skb) {
450 			pci_unmap_single(np->pdev, desc_to_dma(&np->rx_ring[i]),
451 					 skb->len, PCI_DMA_FROMDEVICE);
452 			dev_kfree_skb(skb);
453 			np->rx_skbuff[i] = NULL;
454 		}
455 		np->rx_ring[i].status = 0;
456 		np->rx_ring[i].fraginfo = 0;
457 	}
458 	for (i = 0; i < TX_RING_SIZE; i++) {
459 		skb = np->tx_skbuff[i];
460 		if (skb) {
461 			pci_unmap_single(np->pdev, desc_to_dma(&np->tx_ring[i]),
462 					 skb->len, PCI_DMA_TODEVICE);
463 			dev_kfree_skb(skb);
464 			np->tx_skbuff[i] = NULL;
465 		}
466 	}
467 }
468 
469 static void rio_reset_ring(struct netdev_private *np)
470 {
471 	int i;
472 
473 	np->cur_rx = 0;
474 	np->cur_tx = 0;
475 	np->old_rx = 0;
476 	np->old_tx = 0;
477 
478 	for (i = 0; i < TX_RING_SIZE; i++)
479 		np->tx_ring[i].status = cpu_to_le64(TFDDone);
480 
481 	for (i = 0; i < RX_RING_SIZE; i++)
482 		np->rx_ring[i].status = 0;
483 }
484 
485  /* allocate and initialize Tx and Rx descriptors */
486 static int alloc_list(struct net_device *dev)
487 {
488 	struct netdev_private *np = netdev_priv(dev);
489 	int i;
490 
491 	rio_reset_ring(np);
492 	np->rx_buf_sz = (dev->mtu <= 1500 ? PACKET_SIZE : dev->mtu + 32);
493 
494 	/* Initialize Tx descriptors, TFDListPtr leaves in start_xmit(). */
495 	for (i = 0; i < TX_RING_SIZE; i++) {
496 		np->tx_skbuff[i] = NULL;
497 		np->tx_ring[i].next_desc = cpu_to_le64(np->tx_ring_dma +
498 					      ((i + 1) % TX_RING_SIZE) *
499 					      sizeof(struct netdev_desc));
500 	}
501 
502 	/* Initialize Rx descriptors & allocate buffers */
503 	for (i = 0; i < RX_RING_SIZE; i++) {
504 		/* Allocated fixed size of skbuff */
505 		struct sk_buff *skb;
506 
507 		skb = netdev_alloc_skb_ip_align(dev, np->rx_buf_sz);
508 		np->rx_skbuff[i] = skb;
509 		if (!skb) {
510 			free_list(dev);
511 			return -ENOMEM;
512 		}
513 
514 		np->rx_ring[i].next_desc = cpu_to_le64(np->rx_ring_dma +
515 						((i + 1) % RX_RING_SIZE) *
516 						sizeof(struct netdev_desc));
517 		/* Rubicon now supports 40 bits of addressing space. */
518 		np->rx_ring[i].fraginfo =
519 		    cpu_to_le64(pci_map_single(
520 				  np->pdev, skb->data, np->rx_buf_sz,
521 				  PCI_DMA_FROMDEVICE));
522 		np->rx_ring[i].fraginfo |= cpu_to_le64((u64)np->rx_buf_sz << 48);
523 	}
524 
525 	return 0;
526 }
527 
528 static void rio_hw_init(struct net_device *dev)
529 {
530 	struct netdev_private *np = netdev_priv(dev);
531 	void __iomem *ioaddr = np->ioaddr;
532 	int i;
533 	u16 macctrl;
534 
535 	/* Reset all logic functions */
536 	dw16(ASICCtrl + 2,
537 	     GlobalReset | DMAReset | FIFOReset | NetworkReset | HostReset);
538 	mdelay(10);
539 
540 	rio_set_led_mode(dev);
541 
542 	/* DebugCtrl bit 4, 5, 9 must set */
543 	dw32(DebugCtrl, dr32(DebugCtrl) | 0x0230);
544 
545 	if (np->chip_id == CHIP_IP1000A &&
546 	    (np->pdev->revision == 0x40 || np->pdev->revision == 0x41)) {
547 		/* PHY magic taken from ipg driver, undocumented registers */
548 		mii_write(dev, np->phy_addr, 31, 0x0001);
549 		mii_write(dev, np->phy_addr, 27, 0x01e0);
550 		mii_write(dev, np->phy_addr, 31, 0x0002);
551 		mii_write(dev, np->phy_addr, 27, 0xeb8e);
552 		mii_write(dev, np->phy_addr, 31, 0x0000);
553 		mii_write(dev, np->phy_addr, 30, 0x005e);
554 		/* advertise 1000BASE-T half & full duplex, prefer MASTER */
555 		mii_write(dev, np->phy_addr, MII_CTRL1000, 0x0700);
556 	}
557 
558 	if (np->phy_media)
559 		mii_set_media_pcs(dev);
560 	else
561 		mii_set_media(dev);
562 
563 	/* Jumbo frame */
564 	if (np->jumbo != 0)
565 		dw16(MaxFrameSize, MAX_JUMBO+14);
566 
567 	/* Set RFDListPtr */
568 	dw32(RFDListPtr0, np->rx_ring_dma);
569 	dw32(RFDListPtr1, 0);
570 
571 	/* Set station address */
572 	/* 16 or 32-bit access is required by TC9020 datasheet but 8-bit works
573 	 * too. However, it doesn't work on IP1000A so we use 16-bit access.
574 	 */
575 	for (i = 0; i < 3; i++)
576 		dw16(StationAddr0 + 2 * i,
577 		     cpu_to_le16(((u16 *)dev->dev_addr)[i]));
578 
579 	set_multicast (dev);
580 	if (np->coalesce) {
581 		dw32(RxDMAIntCtrl, np->rx_coalesce | np->rx_timeout << 16);
582 	}
583 	/* Set RIO to poll every N*320nsec. */
584 	dw8(RxDMAPollPeriod, 0x20);
585 	dw8(TxDMAPollPeriod, 0xff);
586 	dw8(RxDMABurstThresh, 0x30);
587 	dw8(RxDMAUrgentThresh, 0x30);
588 	dw32(RmonStatMask, 0x0007ffff);
589 	/* clear statistics */
590 	clear_stats (dev);
591 
592 	/* VLAN supported */
593 	if (np->vlan) {
594 		/* priority field in RxDMAIntCtrl  */
595 		dw32(RxDMAIntCtrl, dr32(RxDMAIntCtrl) | 0x7 << 10);
596 		/* VLANId */
597 		dw16(VLANId, np->vlan);
598 		/* Length/Type should be 0x8100 */
599 		dw32(VLANTag, 0x8100 << 16 | np->vlan);
600 		/* Enable AutoVLANuntagging, but disable AutoVLANtagging.
601 		   VLAN information tagged by TFC' VID, CFI fields. */
602 		dw32(MACCtrl, dr32(MACCtrl) | AutoVLANuntagging);
603 	}
604 
605 	/* Start Tx/Rx */
606 	dw32(MACCtrl, dr32(MACCtrl) | StatsEnable | RxEnable | TxEnable);
607 
608 	macctrl = 0;
609 	macctrl |= (np->vlan) ? AutoVLANuntagging : 0;
610 	macctrl |= (np->full_duplex) ? DuplexSelect : 0;
611 	macctrl |= (np->tx_flow) ? TxFlowControlEnable : 0;
612 	macctrl |= (np->rx_flow) ? RxFlowControlEnable : 0;
613 	dw16(MACCtrl, macctrl);
614 }
615 
616 static void rio_hw_stop(struct net_device *dev)
617 {
618 	struct netdev_private *np = netdev_priv(dev);
619 	void __iomem *ioaddr = np->ioaddr;
620 
621 	/* Disable interrupts */
622 	dw16(IntEnable, 0);
623 
624 	/* Stop Tx and Rx logics */
625 	dw32(MACCtrl, TxDisable | RxDisable | StatsDisable);
626 }
627 
628 static int rio_open(struct net_device *dev)
629 {
630 	struct netdev_private *np = netdev_priv(dev);
631 	const int irq = np->pdev->irq;
632 	int i;
633 
634 	i = alloc_list(dev);
635 	if (i)
636 		return i;
637 
638 	rio_hw_init(dev);
639 
640 	i = request_irq(irq, rio_interrupt, IRQF_SHARED, dev->name, dev);
641 	if (i) {
642 		rio_hw_stop(dev);
643 		free_list(dev);
644 		return i;
645 	}
646 
647 	timer_setup(&np->timer, rio_timer, 0);
648 	np->timer.expires = jiffies + 1 * HZ;
649 	add_timer(&np->timer);
650 
651 	netif_start_queue (dev);
652 
653 	dl2k_enable_int(np);
654 	return 0;
655 }
656 
657 static void
658 rio_timer (struct timer_list *t)
659 {
660 	struct netdev_private *np = from_timer(np, t, timer);
661 	struct net_device *dev = pci_get_drvdata(np->pdev);
662 	unsigned int entry;
663 	int next_tick = 1*HZ;
664 	unsigned long flags;
665 
666 	spin_lock_irqsave(&np->rx_lock, flags);
667 	/* Recover rx ring exhausted error */
668 	if (np->cur_rx - np->old_rx >= RX_RING_SIZE) {
669 		printk(KERN_INFO "Try to recover rx ring exhausted...\n");
670 		/* Re-allocate skbuffs to fill the descriptor ring */
671 		for (; np->cur_rx - np->old_rx > 0; np->old_rx++) {
672 			struct sk_buff *skb;
673 			entry = np->old_rx % RX_RING_SIZE;
674 			/* Dropped packets don't need to re-allocate */
675 			if (np->rx_skbuff[entry] == NULL) {
676 				skb = netdev_alloc_skb_ip_align(dev,
677 								np->rx_buf_sz);
678 				if (skb == NULL) {
679 					np->rx_ring[entry].fraginfo = 0;
680 					printk (KERN_INFO
681 						"%s: Still unable to re-allocate Rx skbuff.#%d\n",
682 						dev->name, entry);
683 					break;
684 				}
685 				np->rx_skbuff[entry] = skb;
686 				np->rx_ring[entry].fraginfo =
687 				    cpu_to_le64 (pci_map_single
688 					 (np->pdev, skb->data, np->rx_buf_sz,
689 					  PCI_DMA_FROMDEVICE));
690 			}
691 			np->rx_ring[entry].fraginfo |=
692 			    cpu_to_le64((u64)np->rx_buf_sz << 48);
693 			np->rx_ring[entry].status = 0;
694 		} /* end for */
695 	} /* end if */
696 	spin_unlock_irqrestore (&np->rx_lock, flags);
697 	np->timer.expires = jiffies + next_tick;
698 	add_timer(&np->timer);
699 }
700 
701 static void
702 rio_tx_timeout (struct net_device *dev)
703 {
704 	struct netdev_private *np = netdev_priv(dev);
705 	void __iomem *ioaddr = np->ioaddr;
706 
707 	printk (KERN_INFO "%s: Tx timed out (%4.4x), is buffer full?\n",
708 		dev->name, dr32(TxStatus));
709 	rio_free_tx(dev, 0);
710 	dev->if_port = 0;
711 	netif_trans_update(dev); /* prevent tx timeout */
712 }
713 
714 static netdev_tx_t
715 start_xmit (struct sk_buff *skb, struct net_device *dev)
716 {
717 	struct netdev_private *np = netdev_priv(dev);
718 	void __iomem *ioaddr = np->ioaddr;
719 	struct netdev_desc *txdesc;
720 	unsigned entry;
721 	u64 tfc_vlan_tag = 0;
722 
723 	if (np->link_status == 0) {	/* Link Down */
724 		dev_kfree_skb(skb);
725 		return NETDEV_TX_OK;
726 	}
727 	entry = np->cur_tx % TX_RING_SIZE;
728 	np->tx_skbuff[entry] = skb;
729 	txdesc = &np->tx_ring[entry];
730 
731 #if 0
732 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
733 		txdesc->status |=
734 		    cpu_to_le64 (TCPChecksumEnable | UDPChecksumEnable |
735 				 IPChecksumEnable);
736 	}
737 #endif
738 	if (np->vlan) {
739 		tfc_vlan_tag = VLANTagInsert |
740 		    ((u64)np->vlan << 32) |
741 		    ((u64)skb->priority << 45);
742 	}
743 	txdesc->fraginfo = cpu_to_le64 (pci_map_single (np->pdev, skb->data,
744 							skb->len,
745 							PCI_DMA_TODEVICE));
746 	txdesc->fraginfo |= cpu_to_le64((u64)skb->len << 48);
747 
748 	/* DL2K bug: DMA fails to get next descriptor ptr in 10Mbps mode
749 	 * Work around: Always use 1 descriptor in 10Mbps mode */
750 	if (entry % np->tx_coalesce == 0 || np->speed == 10)
751 		txdesc->status = cpu_to_le64 (entry | tfc_vlan_tag |
752 					      WordAlignDisable |
753 					      TxDMAIndicate |
754 					      (1 << FragCountShift));
755 	else
756 		txdesc->status = cpu_to_le64 (entry | tfc_vlan_tag |
757 					      WordAlignDisable |
758 					      (1 << FragCountShift));
759 
760 	/* TxDMAPollNow */
761 	dw32(DMACtrl, dr32(DMACtrl) | 0x00001000);
762 	/* Schedule ISR */
763 	dw32(CountDown, 10000);
764 	np->cur_tx = (np->cur_tx + 1) % TX_RING_SIZE;
765 	if ((np->cur_tx - np->old_tx + TX_RING_SIZE) % TX_RING_SIZE
766 			< TX_QUEUE_LEN - 1 && np->speed != 10) {
767 		/* do nothing */
768 	} else if (!netif_queue_stopped(dev)) {
769 		netif_stop_queue (dev);
770 	}
771 
772 	/* The first TFDListPtr */
773 	if (!dr32(TFDListPtr0)) {
774 		dw32(TFDListPtr0, np->tx_ring_dma +
775 		     entry * sizeof (struct netdev_desc));
776 		dw32(TFDListPtr1, 0);
777 	}
778 
779 	return NETDEV_TX_OK;
780 }
781 
782 static irqreturn_t
783 rio_interrupt (int irq, void *dev_instance)
784 {
785 	struct net_device *dev = dev_instance;
786 	struct netdev_private *np = netdev_priv(dev);
787 	void __iomem *ioaddr = np->ioaddr;
788 	unsigned int_status;
789 	int cnt = max_intrloop;
790 	int handled = 0;
791 
792 	while (1) {
793 		int_status = dr16(IntStatus);
794 		dw16(IntStatus, int_status);
795 		int_status &= DEFAULT_INTR;
796 		if (int_status == 0 || --cnt < 0)
797 			break;
798 		handled = 1;
799 		/* Processing received packets */
800 		if (int_status & RxDMAComplete)
801 			receive_packet (dev);
802 		/* TxDMAComplete interrupt */
803 		if ((int_status & (TxDMAComplete|IntRequested))) {
804 			int tx_status;
805 			tx_status = dr32(TxStatus);
806 			if (tx_status & 0x01)
807 				tx_error (dev, tx_status);
808 			/* Free used tx skbuffs */
809 			rio_free_tx (dev, 1);
810 		}
811 
812 		/* Handle uncommon events */
813 		if (int_status &
814 		    (HostError | LinkEvent | UpdateStats))
815 			rio_error (dev, int_status);
816 	}
817 	if (np->cur_tx != np->old_tx)
818 		dw32(CountDown, 100);
819 	return IRQ_RETVAL(handled);
820 }
821 
822 static void
823 rio_free_tx (struct net_device *dev, int irq)
824 {
825 	struct netdev_private *np = netdev_priv(dev);
826 	int entry = np->old_tx % TX_RING_SIZE;
827 	int tx_use = 0;
828 	unsigned long flag = 0;
829 
830 	if (irq)
831 		spin_lock(&np->tx_lock);
832 	else
833 		spin_lock_irqsave(&np->tx_lock, flag);
834 
835 	/* Free used tx skbuffs */
836 	while (entry != np->cur_tx) {
837 		struct sk_buff *skb;
838 
839 		if (!(np->tx_ring[entry].status & cpu_to_le64(TFDDone)))
840 			break;
841 		skb = np->tx_skbuff[entry];
842 		pci_unmap_single (np->pdev,
843 				  desc_to_dma(&np->tx_ring[entry]),
844 				  skb->len, PCI_DMA_TODEVICE);
845 		if (irq)
846 			dev_consume_skb_irq(skb);
847 		else
848 			dev_kfree_skb(skb);
849 
850 		np->tx_skbuff[entry] = NULL;
851 		entry = (entry + 1) % TX_RING_SIZE;
852 		tx_use++;
853 	}
854 	if (irq)
855 		spin_unlock(&np->tx_lock);
856 	else
857 		spin_unlock_irqrestore(&np->tx_lock, flag);
858 	np->old_tx = entry;
859 
860 	/* If the ring is no longer full, clear tx_full and
861 	   call netif_wake_queue() */
862 
863 	if (netif_queue_stopped(dev) &&
864 	    ((np->cur_tx - np->old_tx + TX_RING_SIZE) % TX_RING_SIZE
865 	    < TX_QUEUE_LEN - 1 || np->speed == 10)) {
866 		netif_wake_queue (dev);
867 	}
868 }
869 
870 static void
871 tx_error (struct net_device *dev, int tx_status)
872 {
873 	struct netdev_private *np = netdev_priv(dev);
874 	void __iomem *ioaddr = np->ioaddr;
875 	int frame_id;
876 	int i;
877 
878 	frame_id = (tx_status & 0xffff0000);
879 	printk (KERN_ERR "%s: Transmit error, TxStatus %4.4x, FrameId %d.\n",
880 		dev->name, tx_status, frame_id);
881 	dev->stats.tx_errors++;
882 	/* Ttransmit Underrun */
883 	if (tx_status & 0x10) {
884 		dev->stats.tx_fifo_errors++;
885 		dw16(TxStartThresh, dr16(TxStartThresh) + 0x10);
886 		/* Transmit Underrun need to set TxReset, DMARest, FIFOReset */
887 		dw16(ASICCtrl + 2,
888 		     TxReset | DMAReset | FIFOReset | NetworkReset);
889 		/* Wait for ResetBusy bit clear */
890 		for (i = 50; i > 0; i--) {
891 			if (!(dr16(ASICCtrl + 2) & ResetBusy))
892 				break;
893 			mdelay (1);
894 		}
895 		rio_set_led_mode(dev);
896 		rio_free_tx (dev, 1);
897 		/* Reset TFDListPtr */
898 		dw32(TFDListPtr0, np->tx_ring_dma +
899 		     np->old_tx * sizeof (struct netdev_desc));
900 		dw32(TFDListPtr1, 0);
901 
902 		/* Let TxStartThresh stay default value */
903 	}
904 	/* Late Collision */
905 	if (tx_status & 0x04) {
906 		dev->stats.tx_fifo_errors++;
907 		/* TxReset and clear FIFO */
908 		dw16(ASICCtrl + 2, TxReset | FIFOReset);
909 		/* Wait reset done */
910 		for (i = 50; i > 0; i--) {
911 			if (!(dr16(ASICCtrl + 2) & ResetBusy))
912 				break;
913 			mdelay (1);
914 		}
915 		rio_set_led_mode(dev);
916 		/* Let TxStartThresh stay default value */
917 	}
918 	/* Maximum Collisions */
919 	if (tx_status & 0x08)
920 		dev->stats.collisions++;
921 	/* Restart the Tx */
922 	dw32(MACCtrl, dr16(MACCtrl) | TxEnable);
923 }
924 
925 static int
926 receive_packet (struct net_device *dev)
927 {
928 	struct netdev_private *np = netdev_priv(dev);
929 	int entry = np->cur_rx % RX_RING_SIZE;
930 	int cnt = 30;
931 
932 	/* If RFDDone, FrameStart and FrameEnd set, there is a new packet in. */
933 	while (1) {
934 		struct netdev_desc *desc = &np->rx_ring[entry];
935 		int pkt_len;
936 		u64 frame_status;
937 
938 		if (!(desc->status & cpu_to_le64(RFDDone)) ||
939 		    !(desc->status & cpu_to_le64(FrameStart)) ||
940 		    !(desc->status & cpu_to_le64(FrameEnd)))
941 			break;
942 
943 		/* Chip omits the CRC. */
944 		frame_status = le64_to_cpu(desc->status);
945 		pkt_len = frame_status & 0xffff;
946 		if (--cnt < 0)
947 			break;
948 		/* Update rx error statistics, drop packet. */
949 		if (frame_status & RFS_Errors) {
950 			dev->stats.rx_errors++;
951 			if (frame_status & (RxRuntFrame | RxLengthError))
952 				dev->stats.rx_length_errors++;
953 			if (frame_status & RxFCSError)
954 				dev->stats.rx_crc_errors++;
955 			if (frame_status & RxAlignmentError && np->speed != 1000)
956 				dev->stats.rx_frame_errors++;
957 			if (frame_status & RxFIFOOverrun)
958 				dev->stats.rx_fifo_errors++;
959 		} else {
960 			struct sk_buff *skb;
961 
962 			/* Small skbuffs for short packets */
963 			if (pkt_len > copy_thresh) {
964 				pci_unmap_single (np->pdev,
965 						  desc_to_dma(desc),
966 						  np->rx_buf_sz,
967 						  PCI_DMA_FROMDEVICE);
968 				skb_put (skb = np->rx_skbuff[entry], pkt_len);
969 				np->rx_skbuff[entry] = NULL;
970 			} else if ((skb = netdev_alloc_skb_ip_align(dev, pkt_len))) {
971 				pci_dma_sync_single_for_cpu(np->pdev,
972 							    desc_to_dma(desc),
973 							    np->rx_buf_sz,
974 							    PCI_DMA_FROMDEVICE);
975 				skb_copy_to_linear_data (skb,
976 						  np->rx_skbuff[entry]->data,
977 						  pkt_len);
978 				skb_put (skb, pkt_len);
979 				pci_dma_sync_single_for_device(np->pdev,
980 							       desc_to_dma(desc),
981 							       np->rx_buf_sz,
982 							       PCI_DMA_FROMDEVICE);
983 			}
984 			skb->protocol = eth_type_trans (skb, dev);
985 #if 0
986 			/* Checksum done by hw, but csum value unavailable. */
987 			if (np->pdev->pci_rev_id >= 0x0c &&
988 				!(frame_status & (TCPError | UDPError | IPError))) {
989 				skb->ip_summed = CHECKSUM_UNNECESSARY;
990 			}
991 #endif
992 			netif_rx (skb);
993 		}
994 		entry = (entry + 1) % RX_RING_SIZE;
995 	}
996 	spin_lock(&np->rx_lock);
997 	np->cur_rx = entry;
998 	/* Re-allocate skbuffs to fill the descriptor ring */
999 	entry = np->old_rx;
1000 	while (entry != np->cur_rx) {
1001 		struct sk_buff *skb;
1002 		/* Dropped packets don't need to re-allocate */
1003 		if (np->rx_skbuff[entry] == NULL) {
1004 			skb = netdev_alloc_skb_ip_align(dev, np->rx_buf_sz);
1005 			if (skb == NULL) {
1006 				np->rx_ring[entry].fraginfo = 0;
1007 				printk (KERN_INFO
1008 					"%s: receive_packet: "
1009 					"Unable to re-allocate Rx skbuff.#%d\n",
1010 					dev->name, entry);
1011 				break;
1012 			}
1013 			np->rx_skbuff[entry] = skb;
1014 			np->rx_ring[entry].fraginfo =
1015 			    cpu_to_le64 (pci_map_single
1016 					 (np->pdev, skb->data, np->rx_buf_sz,
1017 					  PCI_DMA_FROMDEVICE));
1018 		}
1019 		np->rx_ring[entry].fraginfo |=
1020 		    cpu_to_le64((u64)np->rx_buf_sz << 48);
1021 		np->rx_ring[entry].status = 0;
1022 		entry = (entry + 1) % RX_RING_SIZE;
1023 	}
1024 	np->old_rx = entry;
1025 	spin_unlock(&np->rx_lock);
1026 	return 0;
1027 }
1028 
1029 static void
1030 rio_error (struct net_device *dev, int int_status)
1031 {
1032 	struct netdev_private *np = netdev_priv(dev);
1033 	void __iomem *ioaddr = np->ioaddr;
1034 	u16 macctrl;
1035 
1036 	/* Link change event */
1037 	if (int_status & LinkEvent) {
1038 		if (mii_wait_link (dev, 10) == 0) {
1039 			printk (KERN_INFO "%s: Link up\n", dev->name);
1040 			if (np->phy_media)
1041 				mii_get_media_pcs (dev);
1042 			else
1043 				mii_get_media (dev);
1044 			if (np->speed == 1000)
1045 				np->tx_coalesce = tx_coalesce;
1046 			else
1047 				np->tx_coalesce = 1;
1048 			macctrl = 0;
1049 			macctrl |= (np->vlan) ? AutoVLANuntagging : 0;
1050 			macctrl |= (np->full_duplex) ? DuplexSelect : 0;
1051 			macctrl |= (np->tx_flow) ?
1052 				TxFlowControlEnable : 0;
1053 			macctrl |= (np->rx_flow) ?
1054 				RxFlowControlEnable : 0;
1055 			dw16(MACCtrl, macctrl);
1056 			np->link_status = 1;
1057 			netif_carrier_on(dev);
1058 		} else {
1059 			printk (KERN_INFO "%s: Link off\n", dev->name);
1060 			np->link_status = 0;
1061 			netif_carrier_off(dev);
1062 		}
1063 	}
1064 
1065 	/* UpdateStats statistics registers */
1066 	if (int_status & UpdateStats) {
1067 		get_stats (dev);
1068 	}
1069 
1070 	/* PCI Error, a catastronphic error related to the bus interface
1071 	   occurs, set GlobalReset and HostReset to reset. */
1072 	if (int_status & HostError) {
1073 		printk (KERN_ERR "%s: HostError! IntStatus %4.4x.\n",
1074 			dev->name, int_status);
1075 		dw16(ASICCtrl + 2, GlobalReset | HostReset);
1076 		mdelay (500);
1077 		rio_set_led_mode(dev);
1078 	}
1079 }
1080 
1081 static struct net_device_stats *
1082 get_stats (struct net_device *dev)
1083 {
1084 	struct netdev_private *np = netdev_priv(dev);
1085 	void __iomem *ioaddr = np->ioaddr;
1086 #ifdef MEM_MAPPING
1087 	int i;
1088 #endif
1089 	unsigned int stat_reg;
1090 
1091 	/* All statistics registers need to be acknowledged,
1092 	   else statistic overflow could cause problems */
1093 
1094 	dev->stats.rx_packets += dr32(FramesRcvOk);
1095 	dev->stats.tx_packets += dr32(FramesXmtOk);
1096 	dev->stats.rx_bytes += dr32(OctetRcvOk);
1097 	dev->stats.tx_bytes += dr32(OctetXmtOk);
1098 
1099 	dev->stats.multicast = dr32(McstFramesRcvdOk);
1100 	dev->stats.collisions += dr32(SingleColFrames)
1101 			     +  dr32(MultiColFrames);
1102 
1103 	/* detailed tx errors */
1104 	stat_reg = dr16(FramesAbortXSColls);
1105 	dev->stats.tx_aborted_errors += stat_reg;
1106 	dev->stats.tx_errors += stat_reg;
1107 
1108 	stat_reg = dr16(CarrierSenseErrors);
1109 	dev->stats.tx_carrier_errors += stat_reg;
1110 	dev->stats.tx_errors += stat_reg;
1111 
1112 	/* Clear all other statistic register. */
1113 	dr32(McstOctetXmtOk);
1114 	dr16(BcstFramesXmtdOk);
1115 	dr32(McstFramesXmtdOk);
1116 	dr16(BcstFramesRcvdOk);
1117 	dr16(MacControlFramesRcvd);
1118 	dr16(FrameTooLongErrors);
1119 	dr16(InRangeLengthErrors);
1120 	dr16(FramesCheckSeqErrors);
1121 	dr16(FramesLostRxErrors);
1122 	dr32(McstOctetXmtOk);
1123 	dr32(BcstOctetXmtOk);
1124 	dr32(McstFramesXmtdOk);
1125 	dr32(FramesWDeferredXmt);
1126 	dr32(LateCollisions);
1127 	dr16(BcstFramesXmtdOk);
1128 	dr16(MacControlFramesXmtd);
1129 	dr16(FramesWEXDeferal);
1130 
1131 #ifdef MEM_MAPPING
1132 	for (i = 0x100; i <= 0x150; i += 4)
1133 		dr32(i);
1134 #endif
1135 	dr16(TxJumboFrames);
1136 	dr16(RxJumboFrames);
1137 	dr16(TCPCheckSumErrors);
1138 	dr16(UDPCheckSumErrors);
1139 	dr16(IPCheckSumErrors);
1140 	return &dev->stats;
1141 }
1142 
1143 static int
1144 clear_stats (struct net_device *dev)
1145 {
1146 	struct netdev_private *np = netdev_priv(dev);
1147 	void __iomem *ioaddr = np->ioaddr;
1148 #ifdef MEM_MAPPING
1149 	int i;
1150 #endif
1151 
1152 	/* All statistics registers need to be acknowledged,
1153 	   else statistic overflow could cause problems */
1154 	dr32(FramesRcvOk);
1155 	dr32(FramesXmtOk);
1156 	dr32(OctetRcvOk);
1157 	dr32(OctetXmtOk);
1158 
1159 	dr32(McstFramesRcvdOk);
1160 	dr32(SingleColFrames);
1161 	dr32(MultiColFrames);
1162 	dr32(LateCollisions);
1163 	/* detailed rx errors */
1164 	dr16(FrameTooLongErrors);
1165 	dr16(InRangeLengthErrors);
1166 	dr16(FramesCheckSeqErrors);
1167 	dr16(FramesLostRxErrors);
1168 
1169 	/* detailed tx errors */
1170 	dr16(FramesAbortXSColls);
1171 	dr16(CarrierSenseErrors);
1172 
1173 	/* Clear all other statistic register. */
1174 	dr32(McstOctetXmtOk);
1175 	dr16(BcstFramesXmtdOk);
1176 	dr32(McstFramesXmtdOk);
1177 	dr16(BcstFramesRcvdOk);
1178 	dr16(MacControlFramesRcvd);
1179 	dr32(McstOctetXmtOk);
1180 	dr32(BcstOctetXmtOk);
1181 	dr32(McstFramesXmtdOk);
1182 	dr32(FramesWDeferredXmt);
1183 	dr16(BcstFramesXmtdOk);
1184 	dr16(MacControlFramesXmtd);
1185 	dr16(FramesWEXDeferal);
1186 #ifdef MEM_MAPPING
1187 	for (i = 0x100; i <= 0x150; i += 4)
1188 		dr32(i);
1189 #endif
1190 	dr16(TxJumboFrames);
1191 	dr16(RxJumboFrames);
1192 	dr16(TCPCheckSumErrors);
1193 	dr16(UDPCheckSumErrors);
1194 	dr16(IPCheckSumErrors);
1195 	return 0;
1196 }
1197 
1198 static void
1199 set_multicast (struct net_device *dev)
1200 {
1201 	struct netdev_private *np = netdev_priv(dev);
1202 	void __iomem *ioaddr = np->ioaddr;
1203 	u32 hash_table[2];
1204 	u16 rx_mode = 0;
1205 
1206 	hash_table[0] = hash_table[1] = 0;
1207 	/* RxFlowcontrol DA: 01-80-C2-00-00-01. Hash index=0x39 */
1208 	hash_table[1] |= 0x02000000;
1209 	if (dev->flags & IFF_PROMISC) {
1210 		/* Receive all frames promiscuously. */
1211 		rx_mode = ReceiveAllFrames;
1212 	} else if ((dev->flags & IFF_ALLMULTI) ||
1213 			(netdev_mc_count(dev) > multicast_filter_limit)) {
1214 		/* Receive broadcast and multicast frames */
1215 		rx_mode = ReceiveBroadcast | ReceiveMulticast | ReceiveUnicast;
1216 	} else if (!netdev_mc_empty(dev)) {
1217 		struct netdev_hw_addr *ha;
1218 		/* Receive broadcast frames and multicast frames filtering
1219 		   by Hashtable */
1220 		rx_mode =
1221 		    ReceiveBroadcast | ReceiveMulticastHash | ReceiveUnicast;
1222 		netdev_for_each_mc_addr(ha, dev) {
1223 			int bit, index = 0;
1224 			int crc = ether_crc_le(ETH_ALEN, ha->addr);
1225 			/* The inverted high significant 6 bits of CRC are
1226 			   used as an index to hashtable */
1227 			for (bit = 0; bit < 6; bit++)
1228 				if (crc & (1 << (31 - bit)))
1229 					index |= (1 << bit);
1230 			hash_table[index / 32] |= (1 << (index % 32));
1231 		}
1232 	} else {
1233 		rx_mode = ReceiveBroadcast | ReceiveUnicast;
1234 	}
1235 	if (np->vlan) {
1236 		/* ReceiveVLANMatch field in ReceiveMode */
1237 		rx_mode |= ReceiveVLANMatch;
1238 	}
1239 
1240 	dw32(HashTable0, hash_table[0]);
1241 	dw32(HashTable1, hash_table[1]);
1242 	dw16(ReceiveMode, rx_mode);
1243 }
1244 
1245 static void rio_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1246 {
1247 	struct netdev_private *np = netdev_priv(dev);
1248 
1249 	strlcpy(info->driver, "dl2k", sizeof(info->driver));
1250 	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1251 	strlcpy(info->bus_info, pci_name(np->pdev), sizeof(info->bus_info));
1252 }
1253 
1254 static int rio_get_link_ksettings(struct net_device *dev,
1255 				  struct ethtool_link_ksettings *cmd)
1256 {
1257 	struct netdev_private *np = netdev_priv(dev);
1258 	u32 supported, advertising;
1259 
1260 	if (np->phy_media) {
1261 		/* fiber device */
1262 		supported = SUPPORTED_Autoneg | SUPPORTED_FIBRE;
1263 		advertising = ADVERTISED_Autoneg | ADVERTISED_FIBRE;
1264 		cmd->base.port = PORT_FIBRE;
1265 	} else {
1266 		/* copper device */
1267 		supported = SUPPORTED_10baseT_Half |
1268 			SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Half
1269 			| SUPPORTED_100baseT_Full | SUPPORTED_1000baseT_Full |
1270 			SUPPORTED_Autoneg | SUPPORTED_MII;
1271 		advertising = ADVERTISED_10baseT_Half |
1272 			ADVERTISED_10baseT_Full | ADVERTISED_100baseT_Half |
1273 			ADVERTISED_100baseT_Full | ADVERTISED_1000baseT_Full |
1274 			ADVERTISED_Autoneg | ADVERTISED_MII;
1275 		cmd->base.port = PORT_MII;
1276 	}
1277 	if (np->link_status) {
1278 		cmd->base.speed = np->speed;
1279 		cmd->base.duplex = np->full_duplex ? DUPLEX_FULL : DUPLEX_HALF;
1280 	} else {
1281 		cmd->base.speed = SPEED_UNKNOWN;
1282 		cmd->base.duplex = DUPLEX_UNKNOWN;
1283 	}
1284 	if (np->an_enable)
1285 		cmd->base.autoneg = AUTONEG_ENABLE;
1286 	else
1287 		cmd->base.autoneg = AUTONEG_DISABLE;
1288 
1289 	cmd->base.phy_address = np->phy_addr;
1290 
1291 	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
1292 						supported);
1293 	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
1294 						advertising);
1295 
1296 	return 0;
1297 }
1298 
1299 static int rio_set_link_ksettings(struct net_device *dev,
1300 				  const struct ethtool_link_ksettings *cmd)
1301 {
1302 	struct netdev_private *np = netdev_priv(dev);
1303 	u32 speed = cmd->base.speed;
1304 	u8 duplex = cmd->base.duplex;
1305 
1306 	netif_carrier_off(dev);
1307 	if (cmd->base.autoneg == AUTONEG_ENABLE) {
1308 		if (np->an_enable) {
1309 			return 0;
1310 		} else {
1311 			np->an_enable = 1;
1312 			mii_set_media(dev);
1313 			return 0;
1314 		}
1315 	} else {
1316 		np->an_enable = 0;
1317 		if (np->speed == 1000) {
1318 			speed = SPEED_100;
1319 			duplex = DUPLEX_FULL;
1320 			printk("Warning!! Can't disable Auto negotiation in 1000Mbps, change to Manual 100Mbps, Full duplex.\n");
1321 		}
1322 		switch (speed) {
1323 		case SPEED_10:
1324 			np->speed = 10;
1325 			np->full_duplex = (duplex == DUPLEX_FULL);
1326 			break;
1327 		case SPEED_100:
1328 			np->speed = 100;
1329 			np->full_duplex = (duplex == DUPLEX_FULL);
1330 			break;
1331 		case SPEED_1000: /* not supported */
1332 		default:
1333 			return -EINVAL;
1334 		}
1335 		mii_set_media(dev);
1336 	}
1337 	return 0;
1338 }
1339 
1340 static u32 rio_get_link(struct net_device *dev)
1341 {
1342 	struct netdev_private *np = netdev_priv(dev);
1343 	return np->link_status;
1344 }
1345 
1346 static const struct ethtool_ops ethtool_ops = {
1347 	.get_drvinfo = rio_get_drvinfo,
1348 	.get_link = rio_get_link,
1349 	.get_link_ksettings = rio_get_link_ksettings,
1350 	.set_link_ksettings = rio_set_link_ksettings,
1351 };
1352 
1353 static int
1354 rio_ioctl (struct net_device *dev, struct ifreq *rq, int cmd)
1355 {
1356 	int phy_addr;
1357 	struct netdev_private *np = netdev_priv(dev);
1358 	struct mii_ioctl_data *miidata = if_mii(rq);
1359 
1360 	phy_addr = np->phy_addr;
1361 	switch (cmd) {
1362 	case SIOCGMIIPHY:
1363 		miidata->phy_id = phy_addr;
1364 		break;
1365 	case SIOCGMIIREG:
1366 		miidata->val_out = mii_read (dev, phy_addr, miidata->reg_num);
1367 		break;
1368 	case SIOCSMIIREG:
1369 		if (!capable(CAP_NET_ADMIN))
1370 			return -EPERM;
1371 		mii_write (dev, phy_addr, miidata->reg_num, miidata->val_in);
1372 		break;
1373 	default:
1374 		return -EOPNOTSUPP;
1375 	}
1376 	return 0;
1377 }
1378 
1379 #define EEP_READ 0x0200
1380 #define EEP_BUSY 0x8000
1381 /* Read the EEPROM word */
1382 /* We use I/O instruction to read/write eeprom to avoid fail on some machines */
1383 static int read_eeprom(struct netdev_private *np, int eep_addr)
1384 {
1385 	void __iomem *ioaddr = np->eeprom_addr;
1386 	int i = 1000;
1387 
1388 	dw16(EepromCtrl, EEP_READ | (eep_addr & 0xff));
1389 	while (i-- > 0) {
1390 		if (!(dr16(EepromCtrl) & EEP_BUSY))
1391 			return dr16(EepromData);
1392 	}
1393 	return 0;
1394 }
1395 
1396 enum phy_ctrl_bits {
1397 	MII_READ = 0x00, MII_CLK = 0x01, MII_DATA1 = 0x02, MII_WRITE = 0x04,
1398 	MII_DUPLEX = 0x08,
1399 };
1400 
1401 #define mii_delay() dr8(PhyCtrl)
1402 static void
1403 mii_sendbit (struct net_device *dev, u32 data)
1404 {
1405 	struct netdev_private *np = netdev_priv(dev);
1406 	void __iomem *ioaddr = np->ioaddr;
1407 
1408 	data = ((data) ? MII_DATA1 : 0) | (dr8(PhyCtrl) & 0xf8) | MII_WRITE;
1409 	dw8(PhyCtrl, data);
1410 	mii_delay ();
1411 	dw8(PhyCtrl, data | MII_CLK);
1412 	mii_delay ();
1413 }
1414 
1415 static int
1416 mii_getbit (struct net_device *dev)
1417 {
1418 	struct netdev_private *np = netdev_priv(dev);
1419 	void __iomem *ioaddr = np->ioaddr;
1420 	u8 data;
1421 
1422 	data = (dr8(PhyCtrl) & 0xf8) | MII_READ;
1423 	dw8(PhyCtrl, data);
1424 	mii_delay ();
1425 	dw8(PhyCtrl, data | MII_CLK);
1426 	mii_delay ();
1427 	return (dr8(PhyCtrl) >> 1) & 1;
1428 }
1429 
1430 static void
1431 mii_send_bits (struct net_device *dev, u32 data, int len)
1432 {
1433 	int i;
1434 
1435 	for (i = len - 1; i >= 0; i--) {
1436 		mii_sendbit (dev, data & (1 << i));
1437 	}
1438 }
1439 
1440 static int
1441 mii_read (struct net_device *dev, int phy_addr, int reg_num)
1442 {
1443 	u32 cmd;
1444 	int i;
1445 	u32 retval = 0;
1446 
1447 	/* Preamble */
1448 	mii_send_bits (dev, 0xffffffff, 32);
1449 	/* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1450 	/* ST,OP = 0110'b for read operation */
1451 	cmd = (0x06 << 10 | phy_addr << 5 | reg_num);
1452 	mii_send_bits (dev, cmd, 14);
1453 	/* Turnaround */
1454 	if (mii_getbit (dev))
1455 		goto err_out;
1456 	/* Read data */
1457 	for (i = 0; i < 16; i++) {
1458 		retval |= mii_getbit (dev);
1459 		retval <<= 1;
1460 	}
1461 	/* End cycle */
1462 	mii_getbit (dev);
1463 	return (retval >> 1) & 0xffff;
1464 
1465       err_out:
1466 	return 0;
1467 }
1468 static int
1469 mii_write (struct net_device *dev, int phy_addr, int reg_num, u16 data)
1470 {
1471 	u32 cmd;
1472 
1473 	/* Preamble */
1474 	mii_send_bits (dev, 0xffffffff, 32);
1475 	/* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1476 	/* ST,OP,AAAAA,RRRRR,TA = 0101xxxxxxxxxx10'b = 0x5002 for write */
1477 	cmd = (0x5002 << 16) | (phy_addr << 23) | (reg_num << 18) | data;
1478 	mii_send_bits (dev, cmd, 32);
1479 	/* End cycle */
1480 	mii_getbit (dev);
1481 	return 0;
1482 }
1483 static int
1484 mii_wait_link (struct net_device *dev, int wait)
1485 {
1486 	__u16 bmsr;
1487 	int phy_addr;
1488 	struct netdev_private *np;
1489 
1490 	np = netdev_priv(dev);
1491 	phy_addr = np->phy_addr;
1492 
1493 	do {
1494 		bmsr = mii_read (dev, phy_addr, MII_BMSR);
1495 		if (bmsr & BMSR_LSTATUS)
1496 			return 0;
1497 		mdelay (1);
1498 	} while (--wait > 0);
1499 	return -1;
1500 }
1501 static int
1502 mii_get_media (struct net_device *dev)
1503 {
1504 	__u16 negotiate;
1505 	__u16 bmsr;
1506 	__u16 mscr;
1507 	__u16 mssr;
1508 	int phy_addr;
1509 	struct netdev_private *np;
1510 
1511 	np = netdev_priv(dev);
1512 	phy_addr = np->phy_addr;
1513 
1514 	bmsr = mii_read (dev, phy_addr, MII_BMSR);
1515 	if (np->an_enable) {
1516 		if (!(bmsr & BMSR_ANEGCOMPLETE)) {
1517 			/* Auto-Negotiation not completed */
1518 			return -1;
1519 		}
1520 		negotiate = mii_read (dev, phy_addr, MII_ADVERTISE) &
1521 			mii_read (dev, phy_addr, MII_LPA);
1522 		mscr = mii_read (dev, phy_addr, MII_CTRL1000);
1523 		mssr = mii_read (dev, phy_addr, MII_STAT1000);
1524 		if (mscr & ADVERTISE_1000FULL && mssr & LPA_1000FULL) {
1525 			np->speed = 1000;
1526 			np->full_duplex = 1;
1527 			printk (KERN_INFO "Auto 1000 Mbps, Full duplex\n");
1528 		} else if (mscr & ADVERTISE_1000HALF && mssr & LPA_1000HALF) {
1529 			np->speed = 1000;
1530 			np->full_duplex = 0;
1531 			printk (KERN_INFO "Auto 1000 Mbps, Half duplex\n");
1532 		} else if (negotiate & ADVERTISE_100FULL) {
1533 			np->speed = 100;
1534 			np->full_duplex = 1;
1535 			printk (KERN_INFO "Auto 100 Mbps, Full duplex\n");
1536 		} else if (negotiate & ADVERTISE_100HALF) {
1537 			np->speed = 100;
1538 			np->full_duplex = 0;
1539 			printk (KERN_INFO "Auto 100 Mbps, Half duplex\n");
1540 		} else if (negotiate & ADVERTISE_10FULL) {
1541 			np->speed = 10;
1542 			np->full_duplex = 1;
1543 			printk (KERN_INFO "Auto 10 Mbps, Full duplex\n");
1544 		} else if (negotiate & ADVERTISE_10HALF) {
1545 			np->speed = 10;
1546 			np->full_duplex = 0;
1547 			printk (KERN_INFO "Auto 10 Mbps, Half duplex\n");
1548 		}
1549 		if (negotiate & ADVERTISE_PAUSE_CAP) {
1550 			np->tx_flow &= 1;
1551 			np->rx_flow &= 1;
1552 		} else if (negotiate & ADVERTISE_PAUSE_ASYM) {
1553 			np->tx_flow = 0;
1554 			np->rx_flow &= 1;
1555 		}
1556 		/* else tx_flow, rx_flow = user select  */
1557 	} else {
1558 		__u16 bmcr = mii_read (dev, phy_addr, MII_BMCR);
1559 		switch (bmcr & (BMCR_SPEED100 | BMCR_SPEED1000)) {
1560 		case BMCR_SPEED1000:
1561 			printk (KERN_INFO "Operating at 1000 Mbps, ");
1562 			break;
1563 		case BMCR_SPEED100:
1564 			printk (KERN_INFO "Operating at 100 Mbps, ");
1565 			break;
1566 		case 0:
1567 			printk (KERN_INFO "Operating at 10 Mbps, ");
1568 		}
1569 		if (bmcr & BMCR_FULLDPLX) {
1570 			printk (KERN_CONT "Full duplex\n");
1571 		} else {
1572 			printk (KERN_CONT "Half duplex\n");
1573 		}
1574 	}
1575 	if (np->tx_flow)
1576 		printk(KERN_INFO "Enable Tx Flow Control\n");
1577 	else
1578 		printk(KERN_INFO "Disable Tx Flow Control\n");
1579 	if (np->rx_flow)
1580 		printk(KERN_INFO "Enable Rx Flow Control\n");
1581 	else
1582 		printk(KERN_INFO "Disable Rx Flow Control\n");
1583 
1584 	return 0;
1585 }
1586 
1587 static int
1588 mii_set_media (struct net_device *dev)
1589 {
1590 	__u16 pscr;
1591 	__u16 bmcr;
1592 	__u16 bmsr;
1593 	__u16 anar;
1594 	int phy_addr;
1595 	struct netdev_private *np;
1596 	np = netdev_priv(dev);
1597 	phy_addr = np->phy_addr;
1598 
1599 	/* Does user set speed? */
1600 	if (np->an_enable) {
1601 		/* Advertise capabilities */
1602 		bmsr = mii_read (dev, phy_addr, MII_BMSR);
1603 		anar = mii_read (dev, phy_addr, MII_ADVERTISE) &
1604 			~(ADVERTISE_100FULL | ADVERTISE_10FULL |
1605 			  ADVERTISE_100HALF | ADVERTISE_10HALF |
1606 			  ADVERTISE_100BASE4);
1607 		if (bmsr & BMSR_100FULL)
1608 			anar |= ADVERTISE_100FULL;
1609 		if (bmsr & BMSR_100HALF)
1610 			anar |= ADVERTISE_100HALF;
1611 		if (bmsr & BMSR_100BASE4)
1612 			anar |= ADVERTISE_100BASE4;
1613 		if (bmsr & BMSR_10FULL)
1614 			anar |= ADVERTISE_10FULL;
1615 		if (bmsr & BMSR_10HALF)
1616 			anar |= ADVERTISE_10HALF;
1617 		anar |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
1618 		mii_write (dev, phy_addr, MII_ADVERTISE, anar);
1619 
1620 		/* Enable Auto crossover */
1621 		pscr = mii_read (dev, phy_addr, MII_PHY_SCR);
1622 		pscr |= 3 << 5;	/* 11'b */
1623 		mii_write (dev, phy_addr, MII_PHY_SCR, pscr);
1624 
1625 		/* Soft reset PHY */
1626 		mii_write (dev, phy_addr, MII_BMCR, BMCR_RESET);
1627 		bmcr = BMCR_ANENABLE | BMCR_ANRESTART | BMCR_RESET;
1628 		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1629 		mdelay(1);
1630 	} else {
1631 		/* Force speed setting */
1632 		/* 1) Disable Auto crossover */
1633 		pscr = mii_read (dev, phy_addr, MII_PHY_SCR);
1634 		pscr &= ~(3 << 5);
1635 		mii_write (dev, phy_addr, MII_PHY_SCR, pscr);
1636 
1637 		/* 2) PHY Reset */
1638 		bmcr = mii_read (dev, phy_addr, MII_BMCR);
1639 		bmcr |= BMCR_RESET;
1640 		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1641 
1642 		/* 3) Power Down */
1643 		bmcr = 0x1940;	/* must be 0x1940 */
1644 		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1645 		mdelay (100);	/* wait a certain time */
1646 
1647 		/* 4) Advertise nothing */
1648 		mii_write (dev, phy_addr, MII_ADVERTISE, 0);
1649 
1650 		/* 5) Set media and Power Up */
1651 		bmcr = BMCR_PDOWN;
1652 		if (np->speed == 100) {
1653 			bmcr |= BMCR_SPEED100;
1654 			printk (KERN_INFO "Manual 100 Mbps, ");
1655 		} else if (np->speed == 10) {
1656 			printk (KERN_INFO "Manual 10 Mbps, ");
1657 		}
1658 		if (np->full_duplex) {
1659 			bmcr |= BMCR_FULLDPLX;
1660 			printk (KERN_CONT "Full duplex\n");
1661 		} else {
1662 			printk (KERN_CONT "Half duplex\n");
1663 		}
1664 #if 0
1665 		/* Set 1000BaseT Master/Slave setting */
1666 		mscr = mii_read (dev, phy_addr, MII_CTRL1000);
1667 		mscr |= MII_MSCR_CFG_ENABLE;
1668 		mscr &= ~MII_MSCR_CFG_VALUE = 0;
1669 #endif
1670 		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1671 		mdelay(10);
1672 	}
1673 	return 0;
1674 }
1675 
1676 static int
1677 mii_get_media_pcs (struct net_device *dev)
1678 {
1679 	__u16 negotiate;
1680 	__u16 bmsr;
1681 	int phy_addr;
1682 	struct netdev_private *np;
1683 
1684 	np = netdev_priv(dev);
1685 	phy_addr = np->phy_addr;
1686 
1687 	bmsr = mii_read (dev, phy_addr, PCS_BMSR);
1688 	if (np->an_enable) {
1689 		if (!(bmsr & BMSR_ANEGCOMPLETE)) {
1690 			/* Auto-Negotiation not completed */
1691 			return -1;
1692 		}
1693 		negotiate = mii_read (dev, phy_addr, PCS_ANAR) &
1694 			mii_read (dev, phy_addr, PCS_ANLPAR);
1695 		np->speed = 1000;
1696 		if (negotiate & PCS_ANAR_FULL_DUPLEX) {
1697 			printk (KERN_INFO "Auto 1000 Mbps, Full duplex\n");
1698 			np->full_duplex = 1;
1699 		} else {
1700 			printk (KERN_INFO "Auto 1000 Mbps, half duplex\n");
1701 			np->full_duplex = 0;
1702 		}
1703 		if (negotiate & PCS_ANAR_PAUSE) {
1704 			np->tx_flow &= 1;
1705 			np->rx_flow &= 1;
1706 		} else if (negotiate & PCS_ANAR_ASYMMETRIC) {
1707 			np->tx_flow = 0;
1708 			np->rx_flow &= 1;
1709 		}
1710 		/* else tx_flow, rx_flow = user select  */
1711 	} else {
1712 		__u16 bmcr = mii_read (dev, phy_addr, PCS_BMCR);
1713 		printk (KERN_INFO "Operating at 1000 Mbps, ");
1714 		if (bmcr & BMCR_FULLDPLX) {
1715 			printk (KERN_CONT "Full duplex\n");
1716 		} else {
1717 			printk (KERN_CONT "Half duplex\n");
1718 		}
1719 	}
1720 	if (np->tx_flow)
1721 		printk(KERN_INFO "Enable Tx Flow Control\n");
1722 	else
1723 		printk(KERN_INFO "Disable Tx Flow Control\n");
1724 	if (np->rx_flow)
1725 		printk(KERN_INFO "Enable Rx Flow Control\n");
1726 	else
1727 		printk(KERN_INFO "Disable Rx Flow Control\n");
1728 
1729 	return 0;
1730 }
1731 
1732 static int
1733 mii_set_media_pcs (struct net_device *dev)
1734 {
1735 	__u16 bmcr;
1736 	__u16 esr;
1737 	__u16 anar;
1738 	int phy_addr;
1739 	struct netdev_private *np;
1740 	np = netdev_priv(dev);
1741 	phy_addr = np->phy_addr;
1742 
1743 	/* Auto-Negotiation? */
1744 	if (np->an_enable) {
1745 		/* Advertise capabilities */
1746 		esr = mii_read (dev, phy_addr, PCS_ESR);
1747 		anar = mii_read (dev, phy_addr, MII_ADVERTISE) &
1748 			~PCS_ANAR_HALF_DUPLEX &
1749 			~PCS_ANAR_FULL_DUPLEX;
1750 		if (esr & (MII_ESR_1000BT_HD | MII_ESR_1000BX_HD))
1751 			anar |= PCS_ANAR_HALF_DUPLEX;
1752 		if (esr & (MII_ESR_1000BT_FD | MII_ESR_1000BX_FD))
1753 			anar |= PCS_ANAR_FULL_DUPLEX;
1754 		anar |= PCS_ANAR_PAUSE | PCS_ANAR_ASYMMETRIC;
1755 		mii_write (dev, phy_addr, MII_ADVERTISE, anar);
1756 
1757 		/* Soft reset PHY */
1758 		mii_write (dev, phy_addr, MII_BMCR, BMCR_RESET);
1759 		bmcr = BMCR_ANENABLE | BMCR_ANRESTART | BMCR_RESET;
1760 		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1761 		mdelay(1);
1762 	} else {
1763 		/* Force speed setting */
1764 		/* PHY Reset */
1765 		bmcr = BMCR_RESET;
1766 		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1767 		mdelay(10);
1768 		if (np->full_duplex) {
1769 			bmcr = BMCR_FULLDPLX;
1770 			printk (KERN_INFO "Manual full duplex\n");
1771 		} else {
1772 			bmcr = 0;
1773 			printk (KERN_INFO "Manual half duplex\n");
1774 		}
1775 		mii_write (dev, phy_addr, MII_BMCR, bmcr);
1776 		mdelay(10);
1777 
1778 		/*  Advertise nothing */
1779 		mii_write (dev, phy_addr, MII_ADVERTISE, 0);
1780 	}
1781 	return 0;
1782 }
1783 
1784 
1785 static int
1786 rio_close (struct net_device *dev)
1787 {
1788 	struct netdev_private *np = netdev_priv(dev);
1789 	struct pci_dev *pdev = np->pdev;
1790 
1791 	netif_stop_queue (dev);
1792 
1793 	rio_hw_stop(dev);
1794 
1795 	free_irq(pdev->irq, dev);
1796 	del_timer_sync (&np->timer);
1797 
1798 	free_list(dev);
1799 
1800 	return 0;
1801 }
1802 
1803 static void
1804 rio_remove1 (struct pci_dev *pdev)
1805 {
1806 	struct net_device *dev = pci_get_drvdata (pdev);
1807 
1808 	if (dev) {
1809 		struct netdev_private *np = netdev_priv(dev);
1810 
1811 		unregister_netdev (dev);
1812 		pci_free_consistent (pdev, RX_TOTAL_SIZE, np->rx_ring,
1813 				     np->rx_ring_dma);
1814 		pci_free_consistent (pdev, TX_TOTAL_SIZE, np->tx_ring,
1815 				     np->tx_ring_dma);
1816 #ifdef MEM_MAPPING
1817 		pci_iounmap(pdev, np->ioaddr);
1818 #endif
1819 		pci_iounmap(pdev, np->eeprom_addr);
1820 		free_netdev (dev);
1821 		pci_release_regions (pdev);
1822 		pci_disable_device (pdev);
1823 	}
1824 }
1825 
1826 #ifdef CONFIG_PM_SLEEP
1827 static int rio_suspend(struct device *device)
1828 {
1829 	struct net_device *dev = dev_get_drvdata(device);
1830 	struct netdev_private *np = netdev_priv(dev);
1831 
1832 	if (!netif_running(dev))
1833 		return 0;
1834 
1835 	netif_device_detach(dev);
1836 	del_timer_sync(&np->timer);
1837 	rio_hw_stop(dev);
1838 
1839 	return 0;
1840 }
1841 
1842 static int rio_resume(struct device *device)
1843 {
1844 	struct net_device *dev = dev_get_drvdata(device);
1845 	struct netdev_private *np = netdev_priv(dev);
1846 
1847 	if (!netif_running(dev))
1848 		return 0;
1849 
1850 	rio_reset_ring(np);
1851 	rio_hw_init(dev);
1852 	np->timer.expires = jiffies + 1 * HZ;
1853 	add_timer(&np->timer);
1854 	netif_device_attach(dev);
1855 	dl2k_enable_int(np);
1856 
1857 	return 0;
1858 }
1859 
1860 static SIMPLE_DEV_PM_OPS(rio_pm_ops, rio_suspend, rio_resume);
1861 #define RIO_PM_OPS    (&rio_pm_ops)
1862 
1863 #else
1864 
1865 #define RIO_PM_OPS	NULL
1866 
1867 #endif /* CONFIG_PM_SLEEP */
1868 
1869 static struct pci_driver rio_driver = {
1870 	.name		= "dl2k",
1871 	.id_table	= rio_pci_tbl,
1872 	.probe		= rio_probe1,
1873 	.remove		= rio_remove1,
1874 	.driver.pm	= RIO_PM_OPS,
1875 };
1876 
1877 module_pci_driver(rio_driver);
1878 /*
1879 
1880 Compile command:
1881 
1882 gcc -D__KERNEL__ -DMODULE -I/usr/src/linux/include -Wall -Wstrict-prototypes -O2 -c dl2k.c
1883 
1884 Read Documentation/networking/device_drivers/dlink/dl2k.txt for details.
1885 
1886 */
1887 
1888