1 /* winbond-840.c: A Linux PCI network adapter device driver. */ 2 /* 3 Written 1998-2001 by Donald Becker. 4 5 This software may be used and distributed according to the terms of 6 the GNU General Public License (GPL), incorporated herein by reference. 7 Drivers based on or derived from this code fall under the GPL and must 8 retain the authorship, copyright and license notice. This file is not 9 a complete program and may only be used when the entire operating 10 system is licensed under the GPL. 11 12 The author may be reached as becker@scyld.com, or C/O 13 Scyld Computing Corporation 14 410 Severn Ave., Suite 210 15 Annapolis MD 21403 16 17 Support and updates available at 18 http://www.scyld.com/network/drivers.html 19 20 Do not remove the copyright information. 21 Do not change the version information unless an improvement has been made. 22 Merely removing my name, as Compex has done in the past, does not count 23 as an improvement. 24 25 Changelog: 26 * ported to 2.4 27 ??? 28 * spin lock update, memory barriers, new style dma mappings 29 limit each tx buffer to < 1024 bytes 30 remove DescIntr from Rx descriptors (that's an Tx flag) 31 remove next pointer from Tx descriptors 32 synchronize tx_q_bytes 33 software reset in tx_timeout 34 Copyright (C) 2000 Manfred Spraul 35 * further cleanups 36 power management. 37 support for big endian descriptors 38 Copyright (C) 2001 Manfred Spraul 39 * ethtool support (jgarzik) 40 * Replace some MII-related magic numbers with constants (jgarzik) 41 42 TODO: 43 * enable pci_power_off 44 * Wake-On-LAN 45 */ 46 47 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 48 49 #define DRV_NAME "winbond-840" 50 51 /* Automatically extracted configuration info: 52 probe-func: winbond840_probe 53 config-in: tristate 'Winbond W89c840 Ethernet support' CONFIG_WINBOND_840 54 55 c-help-name: Winbond W89c840 PCI Ethernet support 56 c-help-symbol: CONFIG_WINBOND_840 57 c-help: This driver is for the Winbond W89c840 chip. It also works with 58 c-help: the TX9882 chip on the Compex RL100-ATX board. 59 c-help: More specific information and updates are available from 60 c-help: http://www.scyld.com/network/drivers.html 61 */ 62 63 /* The user-configurable values. 64 These may be modified when a driver module is loaded.*/ 65 66 static int debug = 1; /* 1 normal messages, 0 quiet .. 7 verbose. */ 67 static int max_interrupt_work = 20; 68 /* Maximum number of multicast addresses to filter (vs. Rx-all-multicast). 69 The '840 uses a 64 element hash table based on the Ethernet CRC. */ 70 static int multicast_filter_limit = 32; 71 72 /* Set the copy breakpoint for the copy-only-tiny-frames scheme. 73 Setting to > 1518 effectively disables this feature. */ 74 static int rx_copybreak; 75 76 /* Used to pass the media type, etc. 77 Both 'options[]' and 'full_duplex[]' should exist for driver 78 interoperability. 79 The media type is usually passed in 'options[]'. 80 */ 81 #define MAX_UNITS 8 /* More are supported, limit only on options */ 82 static int options[MAX_UNITS] = {-1, -1, -1, -1, -1, -1, -1, -1}; 83 static int full_duplex[MAX_UNITS] = {-1, -1, -1, -1, -1, -1, -1, -1}; 84 85 /* Operational parameters that are set at compile time. */ 86 87 /* Keep the ring sizes a power of two for compile efficiency. 88 The compiler will convert <unsigned>'%'<2^N> into a bit mask. 89 Making the Tx ring too large decreases the effectiveness of channel 90 bonding and packet priority. 91 There are no ill effects from too-large receive rings. */ 92 #define TX_QUEUE_LEN 10 /* Limit ring entries actually used. */ 93 #define TX_QUEUE_LEN_RESTART 5 94 95 #define TX_BUFLIMIT (1024-128) 96 97 /* The presumed FIFO size for working around the Tx-FIFO-overflow bug. 98 To avoid overflowing we don't queue again until we have room for a 99 full-size packet. 100 */ 101 #define TX_FIFO_SIZE (2048) 102 #define TX_BUG_FIFO_LIMIT (TX_FIFO_SIZE-1514-16) 103 104 105 /* Operational parameters that usually are not changed. */ 106 /* Time in jiffies before concluding the transmitter is hung. */ 107 #define TX_TIMEOUT (2*HZ) 108 109 /* Include files, designed to support most kernel versions 2.0.0 and later. */ 110 #include <linux/module.h> 111 #include <linux/kernel.h> 112 #include <linux/string.h> 113 #include <linux/timer.h> 114 #include <linux/errno.h> 115 #include <linux/ioport.h> 116 #include <linux/interrupt.h> 117 #include <linux/pci.h> 118 #include <linux/dma-mapping.h> 119 #include <linux/netdevice.h> 120 #include <linux/etherdevice.h> 121 #include <linux/skbuff.h> 122 #include <linux/init.h> 123 #include <linux/delay.h> 124 #include <linux/ethtool.h> 125 #include <linux/mii.h> 126 #include <linux/rtnetlink.h> 127 #include <linux/crc32.h> 128 #include <linux/bitops.h> 129 #include <linux/uaccess.h> 130 #include <asm/processor.h> /* Processor type for cache alignment. */ 131 #include <asm/io.h> 132 #include <asm/irq.h> 133 134 #include "tulip.h" 135 136 #undef PKT_BUF_SZ /* tulip.h also defines this */ 137 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/ 138 139 MODULE_AUTHOR("Donald Becker <becker@scyld.com>"); 140 MODULE_DESCRIPTION("Winbond W89c840 Ethernet driver"); 141 MODULE_LICENSE("GPL"); 142 143 module_param(max_interrupt_work, int, 0); 144 module_param(debug, int, 0); 145 module_param(rx_copybreak, int, 0); 146 module_param(multicast_filter_limit, int, 0); 147 module_param_array(options, int, NULL, 0); 148 module_param_array(full_duplex, int, NULL, 0); 149 MODULE_PARM_DESC(max_interrupt_work, "winbond-840 maximum events handled per interrupt"); 150 MODULE_PARM_DESC(debug, "winbond-840 debug level (0-6)"); 151 MODULE_PARM_DESC(rx_copybreak, "winbond-840 copy breakpoint for copy-only-tiny-frames"); 152 MODULE_PARM_DESC(multicast_filter_limit, "winbond-840 maximum number of filtered multicast addresses"); 153 MODULE_PARM_DESC(options, "winbond-840: Bits 0-3: media type, bit 17: full duplex"); 154 MODULE_PARM_DESC(full_duplex, "winbond-840 full duplex setting(s) (1)"); 155 156 /* 157 Theory of Operation 158 159 I. Board Compatibility 160 161 This driver is for the Winbond w89c840 chip. 162 163 II. Board-specific settings 164 165 None. 166 167 III. Driver operation 168 169 This chip is very similar to the Digital 21*4* "Tulip" family. The first 170 twelve registers and the descriptor format are nearly identical. Read a 171 Tulip manual for operational details. 172 173 A significant difference is that the multicast filter and station address are 174 stored in registers rather than loaded through a pseudo-transmit packet. 175 176 Unlike the Tulip, transmit buffers are limited to 1KB. To transmit a 177 full-sized packet we must use both data buffers in a descriptor. Thus the 178 driver uses ring mode where descriptors are implicitly sequential in memory, 179 rather than using the second descriptor address as a chain pointer to 180 subsequent descriptors. 181 182 IV. Notes 183 184 If you are going to almost clone a Tulip, why not go all the way and avoid 185 the need for a new driver? 186 187 IVb. References 188 189 http://www.scyld.com/expert/100mbps.html 190 http://www.scyld.com/expert/NWay.html 191 http://www.winbond.com.tw/ 192 193 IVc. Errata 194 195 A horrible bug exists in the transmit FIFO. Apparently the chip doesn't 196 correctly detect a full FIFO, and queuing more than 2048 bytes may result in 197 silent data corruption. 198 199 Test with 'ping -s 10000' on a fast computer. 200 201 */ 202 203 204 205 /* 206 PCI probe table. 207 */ 208 enum chip_capability_flags { 209 CanHaveMII=1, HasBrokenTx=2, AlwaysFDX=4, FDXOnNoMII=8, 210 }; 211 212 static const struct pci_device_id w840_pci_tbl[] = { 213 { 0x1050, 0x0840, PCI_ANY_ID, 0x8153, 0, 0, 0 }, 214 { 0x1050, 0x0840, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 1 }, 215 { 0x11f6, 0x2011, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 2 }, 216 { } 217 }; 218 MODULE_DEVICE_TABLE(pci, w840_pci_tbl); 219 220 enum { 221 netdev_res_size = 128, /* size of PCI BAR resource */ 222 }; 223 224 struct pci_id_info { 225 const char *name; 226 int drv_flags; /* Driver use, intended as capability flags. */ 227 }; 228 229 static const struct pci_id_info pci_id_tbl[] = { 230 { /* Sometime a Level-One switch card. */ 231 "Winbond W89c840", CanHaveMII | HasBrokenTx | FDXOnNoMII}, 232 { "Winbond W89c840", CanHaveMII | HasBrokenTx}, 233 { "Compex RL100-ATX", CanHaveMII | HasBrokenTx}, 234 { } /* terminate list. */ 235 }; 236 237 /* This driver was written to use PCI memory space, however some x86 systems 238 work only with I/O space accesses. See CONFIG_TULIP_MMIO in .config 239 */ 240 241 /* Offsets to the Command and Status Registers, "CSRs". 242 While similar to the Tulip, these registers are longword aligned. 243 Note: It's not useful to define symbolic names for every register bit in 244 the device. The name can only partially document the semantics and make 245 the driver longer and more difficult to read. 246 */ 247 enum w840_offsets { 248 PCIBusCfg=0x00, TxStartDemand=0x04, RxStartDemand=0x08, 249 RxRingPtr=0x0C, TxRingPtr=0x10, 250 IntrStatus=0x14, NetworkConfig=0x18, IntrEnable=0x1C, 251 RxMissed=0x20, EECtrl=0x24, MIICtrl=0x24, BootRom=0x28, GPTimer=0x2C, 252 CurRxDescAddr=0x30, CurRxBufAddr=0x34, /* Debug use */ 253 MulticastFilter0=0x38, MulticastFilter1=0x3C, StationAddr=0x40, 254 CurTxDescAddr=0x4C, CurTxBufAddr=0x50, 255 }; 256 257 /* Bits in the NetworkConfig register. */ 258 enum rx_mode_bits { 259 AcceptErr=0x80, 260 RxAcceptBroadcast=0x20, AcceptMulticast=0x10, 261 RxAcceptAllPhys=0x08, AcceptMyPhys=0x02, 262 }; 263 264 enum mii_reg_bits { 265 MDIO_ShiftClk=0x10000, MDIO_DataIn=0x80000, MDIO_DataOut=0x20000, 266 MDIO_EnbOutput=0x40000, MDIO_EnbIn = 0x00000, 267 }; 268 269 /* The Tulip Rx and Tx buffer descriptors. */ 270 struct w840_rx_desc { 271 s32 status; 272 s32 length; 273 u32 buffer1; 274 u32 buffer2; 275 }; 276 277 struct w840_tx_desc { 278 s32 status; 279 s32 length; 280 u32 buffer1, buffer2; 281 }; 282 283 #define MII_CNT 1 /* winbond only supports one MII */ 284 struct netdev_private { 285 struct w840_rx_desc *rx_ring; 286 dma_addr_t rx_addr[RX_RING_SIZE]; 287 struct w840_tx_desc *tx_ring; 288 dma_addr_t tx_addr[TX_RING_SIZE]; 289 dma_addr_t ring_dma_addr; 290 /* The addresses of receive-in-place skbuffs. */ 291 struct sk_buff* rx_skbuff[RX_RING_SIZE]; 292 /* The saved address of a sent-in-place packet/buffer, for later free(). */ 293 struct sk_buff* tx_skbuff[TX_RING_SIZE]; 294 struct net_device_stats stats; 295 struct timer_list timer; /* Media monitoring timer. */ 296 /* Frequently used values: keep some adjacent for cache effect. */ 297 spinlock_t lock; 298 int chip_id, drv_flags; 299 struct pci_dev *pci_dev; 300 int csr6; 301 struct w840_rx_desc *rx_head_desc; 302 unsigned int cur_rx, dirty_rx; /* Producer/consumer ring indices */ 303 unsigned int rx_buf_sz; /* Based on MTU+slack. */ 304 unsigned int cur_tx, dirty_tx; 305 unsigned int tx_q_bytes; 306 unsigned int tx_full; /* The Tx queue is full. */ 307 /* MII transceiver section. */ 308 int mii_cnt; /* MII device addresses. */ 309 unsigned char phys[MII_CNT]; /* MII device addresses, but only the first is used */ 310 u32 mii; 311 struct mii_if_info mii_if; 312 void __iomem *base_addr; 313 }; 314 315 static int eeprom_read(void __iomem *ioaddr, int location); 316 static int mdio_read(struct net_device *dev, int phy_id, int location); 317 static void mdio_write(struct net_device *dev, int phy_id, int location, int value); 318 static int netdev_open(struct net_device *dev); 319 static int update_link(struct net_device *dev); 320 static void netdev_timer(struct timer_list *t); 321 static void init_rxtx_rings(struct net_device *dev); 322 static void free_rxtx_rings(struct netdev_private *np); 323 static void init_registers(struct net_device *dev); 324 static void tx_timeout(struct net_device *dev, unsigned int txqueue); 325 static int alloc_ringdesc(struct net_device *dev); 326 static void free_ringdesc(struct netdev_private *np); 327 static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev); 328 static irqreturn_t intr_handler(int irq, void *dev_instance); 329 static void netdev_error(struct net_device *dev, int intr_status); 330 static int netdev_rx(struct net_device *dev); 331 static u32 __set_rx_mode(struct net_device *dev); 332 static void set_rx_mode(struct net_device *dev); 333 static struct net_device_stats *get_stats(struct net_device *dev); 334 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd); 335 static const struct ethtool_ops netdev_ethtool_ops; 336 static int netdev_close(struct net_device *dev); 337 338 static const struct net_device_ops netdev_ops = { 339 .ndo_open = netdev_open, 340 .ndo_stop = netdev_close, 341 .ndo_start_xmit = start_tx, 342 .ndo_get_stats = get_stats, 343 .ndo_set_rx_mode = set_rx_mode, 344 .ndo_do_ioctl = netdev_ioctl, 345 .ndo_tx_timeout = tx_timeout, 346 .ndo_set_mac_address = eth_mac_addr, 347 .ndo_validate_addr = eth_validate_addr, 348 }; 349 350 static int w840_probe1(struct pci_dev *pdev, const struct pci_device_id *ent) 351 { 352 struct net_device *dev; 353 struct netdev_private *np; 354 static int find_cnt; 355 int chip_idx = ent->driver_data; 356 int irq; 357 int i, option = find_cnt < MAX_UNITS ? options[find_cnt] : 0; 358 void __iomem *ioaddr; 359 360 i = pci_enable_device(pdev); 361 if (i) return i; 362 363 pci_set_master(pdev); 364 365 irq = pdev->irq; 366 367 if (dma_set_mask(&pdev->dev, DMA_BIT_MASK(32))) { 368 pr_warn("Device %s disabled due to DMA limitations\n", 369 pci_name(pdev)); 370 return -EIO; 371 } 372 dev = alloc_etherdev(sizeof(*np)); 373 if (!dev) 374 return -ENOMEM; 375 SET_NETDEV_DEV(dev, &pdev->dev); 376 377 if (pci_request_regions(pdev, DRV_NAME)) 378 goto err_out_netdev; 379 380 ioaddr = pci_iomap(pdev, TULIP_BAR, netdev_res_size); 381 if (!ioaddr) 382 goto err_out_free_res; 383 384 for (i = 0; i < 3; i++) 385 ((__le16 *)dev->dev_addr)[i] = cpu_to_le16(eeprom_read(ioaddr, i)); 386 387 /* Reset the chip to erase previous misconfiguration. 388 No hold time required! */ 389 iowrite32(0x00000001, ioaddr + PCIBusCfg); 390 391 np = netdev_priv(dev); 392 np->pci_dev = pdev; 393 np->chip_id = chip_idx; 394 np->drv_flags = pci_id_tbl[chip_idx].drv_flags; 395 spin_lock_init(&np->lock); 396 np->mii_if.dev = dev; 397 np->mii_if.mdio_read = mdio_read; 398 np->mii_if.mdio_write = mdio_write; 399 np->base_addr = ioaddr; 400 401 pci_set_drvdata(pdev, dev); 402 403 if (dev->mem_start) 404 option = dev->mem_start; 405 406 /* The lower four bits are the media type. */ 407 if (option > 0) { 408 if (option & 0x200) 409 np->mii_if.full_duplex = 1; 410 if (option & 15) 411 dev_info(&dev->dev, 412 "ignoring user supplied media type %d", 413 option & 15); 414 } 415 if (find_cnt < MAX_UNITS && full_duplex[find_cnt] > 0) 416 np->mii_if.full_duplex = 1; 417 418 if (np->mii_if.full_duplex) 419 np->mii_if.force_media = 1; 420 421 /* The chip-specific entries in the device structure. */ 422 dev->netdev_ops = &netdev_ops; 423 dev->ethtool_ops = &netdev_ethtool_ops; 424 dev->watchdog_timeo = TX_TIMEOUT; 425 426 i = register_netdev(dev); 427 if (i) 428 goto err_out_cleardev; 429 430 dev_info(&dev->dev, "%s at %p, %pM, IRQ %d\n", 431 pci_id_tbl[chip_idx].name, ioaddr, dev->dev_addr, irq); 432 433 if (np->drv_flags & CanHaveMII) { 434 int phy, phy_idx = 0; 435 for (phy = 1; phy < 32 && phy_idx < MII_CNT; phy++) { 436 int mii_status = mdio_read(dev, phy, MII_BMSR); 437 if (mii_status != 0xffff && mii_status != 0x0000) { 438 np->phys[phy_idx++] = phy; 439 np->mii_if.advertising = mdio_read(dev, phy, MII_ADVERTISE); 440 np->mii = (mdio_read(dev, phy, MII_PHYSID1) << 16)+ 441 mdio_read(dev, phy, MII_PHYSID2); 442 dev_info(&dev->dev, 443 "MII PHY %08xh found at address %d, status 0x%04x advertising %04x\n", 444 np->mii, phy, mii_status, 445 np->mii_if.advertising); 446 } 447 } 448 np->mii_cnt = phy_idx; 449 np->mii_if.phy_id = np->phys[0]; 450 if (phy_idx == 0) { 451 dev_warn(&dev->dev, 452 "MII PHY not found -- this device may not operate correctly\n"); 453 } 454 } 455 456 find_cnt++; 457 return 0; 458 459 err_out_cleardev: 460 pci_iounmap(pdev, ioaddr); 461 err_out_free_res: 462 pci_release_regions(pdev); 463 err_out_netdev: 464 free_netdev (dev); 465 return -ENODEV; 466 } 467 468 469 /* Read the EEPROM and MII Management Data I/O (MDIO) interfaces. These are 470 often serial bit streams generated by the host processor. 471 The example below is for the common 93c46 EEPROM, 64 16 bit words. */ 472 473 /* Delay between EEPROM clock transitions. 474 No extra delay is needed with 33Mhz PCI, but future 66Mhz access may need 475 a delay. Note that pre-2.0.34 kernels had a cache-alignment bug that 476 made udelay() unreliable. 477 The old method of using an ISA access as a delay, __SLOW_DOWN_IO__, is 478 deprecated. 479 */ 480 #define eeprom_delay(ee_addr) ioread32(ee_addr) 481 482 enum EEPROM_Ctrl_Bits { 483 EE_ShiftClk=0x02, EE_Write0=0x801, EE_Write1=0x805, 484 EE_ChipSelect=0x801, EE_DataIn=0x08, 485 }; 486 487 /* The EEPROM commands include the alway-set leading bit. */ 488 enum EEPROM_Cmds { 489 EE_WriteCmd=(5 << 6), EE_ReadCmd=(6 << 6), EE_EraseCmd=(7 << 6), 490 }; 491 492 static int eeprom_read(void __iomem *addr, int location) 493 { 494 int i; 495 int retval = 0; 496 void __iomem *ee_addr = addr + EECtrl; 497 int read_cmd = location | EE_ReadCmd; 498 iowrite32(EE_ChipSelect, ee_addr); 499 500 /* Shift the read command bits out. */ 501 for (i = 10; i >= 0; i--) { 502 short dataval = (read_cmd & (1 << i)) ? EE_Write1 : EE_Write0; 503 iowrite32(dataval, ee_addr); 504 eeprom_delay(ee_addr); 505 iowrite32(dataval | EE_ShiftClk, ee_addr); 506 eeprom_delay(ee_addr); 507 } 508 iowrite32(EE_ChipSelect, ee_addr); 509 eeprom_delay(ee_addr); 510 511 for (i = 16; i > 0; i--) { 512 iowrite32(EE_ChipSelect | EE_ShiftClk, ee_addr); 513 eeprom_delay(ee_addr); 514 retval = (retval << 1) | ((ioread32(ee_addr) & EE_DataIn) ? 1 : 0); 515 iowrite32(EE_ChipSelect, ee_addr); 516 eeprom_delay(ee_addr); 517 } 518 519 /* Terminate the EEPROM access. */ 520 iowrite32(0, ee_addr); 521 return retval; 522 } 523 524 /* MII transceiver control section. 525 Read and write the MII registers using software-generated serial 526 MDIO protocol. See the MII specifications or DP83840A data sheet 527 for details. 528 529 The maximum data clock rate is 2.5 Mhz. The minimum timing is usually 530 met by back-to-back 33Mhz PCI cycles. */ 531 #define mdio_delay(mdio_addr) ioread32(mdio_addr) 532 533 /* Set iff a MII transceiver on any interface requires mdio preamble. 534 This only set with older transceivers, so the extra 535 code size of a per-interface flag is not worthwhile. */ 536 static char mii_preamble_required = 1; 537 538 #define MDIO_WRITE0 (MDIO_EnbOutput) 539 #define MDIO_WRITE1 (MDIO_DataOut | MDIO_EnbOutput) 540 541 /* Generate the preamble required for initial synchronization and 542 a few older transceivers. */ 543 static void mdio_sync(void __iomem *mdio_addr) 544 { 545 int bits = 32; 546 547 /* Establish sync by sending at least 32 logic ones. */ 548 while (--bits >= 0) { 549 iowrite32(MDIO_WRITE1, mdio_addr); 550 mdio_delay(mdio_addr); 551 iowrite32(MDIO_WRITE1 | MDIO_ShiftClk, mdio_addr); 552 mdio_delay(mdio_addr); 553 } 554 } 555 556 static int mdio_read(struct net_device *dev, int phy_id, int location) 557 { 558 struct netdev_private *np = netdev_priv(dev); 559 void __iomem *mdio_addr = np->base_addr + MIICtrl; 560 int mii_cmd = (0xf6 << 10) | (phy_id << 5) | location; 561 int i, retval = 0; 562 563 if (mii_preamble_required) 564 mdio_sync(mdio_addr); 565 566 /* Shift the read command bits out. */ 567 for (i = 15; i >= 0; i--) { 568 int dataval = (mii_cmd & (1 << i)) ? MDIO_WRITE1 : MDIO_WRITE0; 569 570 iowrite32(dataval, mdio_addr); 571 mdio_delay(mdio_addr); 572 iowrite32(dataval | MDIO_ShiftClk, mdio_addr); 573 mdio_delay(mdio_addr); 574 } 575 /* Read the two transition, 16 data, and wire-idle bits. */ 576 for (i = 20; i > 0; i--) { 577 iowrite32(MDIO_EnbIn, mdio_addr); 578 mdio_delay(mdio_addr); 579 retval = (retval << 1) | ((ioread32(mdio_addr) & MDIO_DataIn) ? 1 : 0); 580 iowrite32(MDIO_EnbIn | MDIO_ShiftClk, mdio_addr); 581 mdio_delay(mdio_addr); 582 } 583 return (retval>>1) & 0xffff; 584 } 585 586 static void mdio_write(struct net_device *dev, int phy_id, int location, int value) 587 { 588 struct netdev_private *np = netdev_priv(dev); 589 void __iomem *mdio_addr = np->base_addr + MIICtrl; 590 int mii_cmd = (0x5002 << 16) | (phy_id << 23) | (location<<18) | value; 591 int i; 592 593 if (location == 4 && phy_id == np->phys[0]) 594 np->mii_if.advertising = value; 595 596 if (mii_preamble_required) 597 mdio_sync(mdio_addr); 598 599 /* Shift the command bits out. */ 600 for (i = 31; i >= 0; i--) { 601 int dataval = (mii_cmd & (1 << i)) ? MDIO_WRITE1 : MDIO_WRITE0; 602 603 iowrite32(dataval, mdio_addr); 604 mdio_delay(mdio_addr); 605 iowrite32(dataval | MDIO_ShiftClk, mdio_addr); 606 mdio_delay(mdio_addr); 607 } 608 /* Clear out extra bits. */ 609 for (i = 2; i > 0; i--) { 610 iowrite32(MDIO_EnbIn, mdio_addr); 611 mdio_delay(mdio_addr); 612 iowrite32(MDIO_EnbIn | MDIO_ShiftClk, mdio_addr); 613 mdio_delay(mdio_addr); 614 } 615 } 616 617 618 static int netdev_open(struct net_device *dev) 619 { 620 struct netdev_private *np = netdev_priv(dev); 621 void __iomem *ioaddr = np->base_addr; 622 const int irq = np->pci_dev->irq; 623 int i; 624 625 iowrite32(0x00000001, ioaddr + PCIBusCfg); /* Reset */ 626 627 netif_device_detach(dev); 628 i = request_irq(irq, intr_handler, IRQF_SHARED, dev->name, dev); 629 if (i) 630 goto out_err; 631 632 if (debug > 1) 633 netdev_dbg(dev, "%s() irq %d\n", __func__, irq); 634 635 i = alloc_ringdesc(dev); 636 if (i) 637 goto out_err; 638 639 spin_lock_irq(&np->lock); 640 netif_device_attach(dev); 641 init_registers(dev); 642 spin_unlock_irq(&np->lock); 643 644 netif_start_queue(dev); 645 if (debug > 2) 646 netdev_dbg(dev, "Done %s()\n", __func__); 647 648 /* Set the timer to check for link beat. */ 649 timer_setup(&np->timer, netdev_timer, 0); 650 np->timer.expires = jiffies + 1*HZ; 651 add_timer(&np->timer); 652 return 0; 653 out_err: 654 netif_device_attach(dev); 655 return i; 656 } 657 658 #define MII_DAVICOM_DM9101 0x0181b800 659 660 static int update_link(struct net_device *dev) 661 { 662 struct netdev_private *np = netdev_priv(dev); 663 int duplex, fasteth, result, mii_reg; 664 665 /* BSMR */ 666 mii_reg = mdio_read(dev, np->phys[0], MII_BMSR); 667 668 if (mii_reg == 0xffff) 669 return np->csr6; 670 /* reread: the link status bit is sticky */ 671 mii_reg = mdio_read(dev, np->phys[0], MII_BMSR); 672 if (!(mii_reg & 0x4)) { 673 if (netif_carrier_ok(dev)) { 674 if (debug) 675 dev_info(&dev->dev, 676 "MII #%d reports no link. Disabling watchdog\n", 677 np->phys[0]); 678 netif_carrier_off(dev); 679 } 680 return np->csr6; 681 } 682 if (!netif_carrier_ok(dev)) { 683 if (debug) 684 dev_info(&dev->dev, 685 "MII #%d link is back. Enabling watchdog\n", 686 np->phys[0]); 687 netif_carrier_on(dev); 688 } 689 690 if ((np->mii & ~0xf) == MII_DAVICOM_DM9101) { 691 /* If the link partner doesn't support autonegotiation 692 * the MII detects it's abilities with the "parallel detection". 693 * Some MIIs update the LPA register to the result of the parallel 694 * detection, some don't. 695 * The Davicom PHY [at least 0181b800] doesn't. 696 * Instead bit 9 and 13 of the BMCR are updated to the result 697 * of the negotiation.. 698 */ 699 mii_reg = mdio_read(dev, np->phys[0], MII_BMCR); 700 duplex = mii_reg & BMCR_FULLDPLX; 701 fasteth = mii_reg & BMCR_SPEED100; 702 } else { 703 int negotiated; 704 mii_reg = mdio_read(dev, np->phys[0], MII_LPA); 705 negotiated = mii_reg & np->mii_if.advertising; 706 707 duplex = (negotiated & LPA_100FULL) || ((negotiated & 0x02C0) == LPA_10FULL); 708 fasteth = negotiated & 0x380; 709 } 710 duplex |= np->mii_if.force_media; 711 /* remove fastether and fullduplex */ 712 result = np->csr6 & ~0x20000200; 713 if (duplex) 714 result |= 0x200; 715 if (fasteth) 716 result |= 0x20000000; 717 if (result != np->csr6 && debug) 718 dev_info(&dev->dev, 719 "Setting %dMBit-%s-duplex based on MII#%d\n", 720 fasteth ? 100 : 10, duplex ? "full" : "half", 721 np->phys[0]); 722 return result; 723 } 724 725 #define RXTX_TIMEOUT 2000 726 static inline void update_csr6(struct net_device *dev, int new) 727 { 728 struct netdev_private *np = netdev_priv(dev); 729 void __iomem *ioaddr = np->base_addr; 730 int limit = RXTX_TIMEOUT; 731 732 if (!netif_device_present(dev)) 733 new = 0; 734 if (new==np->csr6) 735 return; 736 /* stop both Tx and Rx processes */ 737 iowrite32(np->csr6 & ~0x2002, ioaddr + NetworkConfig); 738 /* wait until they have really stopped */ 739 for (;;) { 740 int csr5 = ioread32(ioaddr + IntrStatus); 741 int t; 742 743 t = (csr5 >> 17) & 0x07; 744 if (t==0||t==1) { 745 /* rx stopped */ 746 t = (csr5 >> 20) & 0x07; 747 if (t==0||t==1) 748 break; 749 } 750 751 limit--; 752 if(!limit) { 753 dev_info(&dev->dev, 754 "couldn't stop rxtx, IntrStatus %xh\n", csr5); 755 break; 756 } 757 udelay(1); 758 } 759 np->csr6 = new; 760 /* and restart them with the new configuration */ 761 iowrite32(np->csr6, ioaddr + NetworkConfig); 762 if (new & 0x200) 763 np->mii_if.full_duplex = 1; 764 } 765 766 static void netdev_timer(struct timer_list *t) 767 { 768 struct netdev_private *np = from_timer(np, t, timer); 769 struct net_device *dev = pci_get_drvdata(np->pci_dev); 770 void __iomem *ioaddr = np->base_addr; 771 772 if (debug > 2) 773 netdev_dbg(dev, "Media selection timer tick, status %08x config %08x\n", 774 ioread32(ioaddr + IntrStatus), 775 ioread32(ioaddr + NetworkConfig)); 776 spin_lock_irq(&np->lock); 777 update_csr6(dev, update_link(dev)); 778 spin_unlock_irq(&np->lock); 779 np->timer.expires = jiffies + 10*HZ; 780 add_timer(&np->timer); 781 } 782 783 static void init_rxtx_rings(struct net_device *dev) 784 { 785 struct netdev_private *np = netdev_priv(dev); 786 int i; 787 788 np->rx_head_desc = &np->rx_ring[0]; 789 np->tx_ring = (struct w840_tx_desc*)&np->rx_ring[RX_RING_SIZE]; 790 791 /* Initial all Rx descriptors. */ 792 for (i = 0; i < RX_RING_SIZE; i++) { 793 np->rx_ring[i].length = np->rx_buf_sz; 794 np->rx_ring[i].status = 0; 795 np->rx_skbuff[i] = NULL; 796 } 797 /* Mark the last entry as wrapping the ring. */ 798 np->rx_ring[i-1].length |= DescEndRing; 799 800 /* Fill in the Rx buffers. Handle allocation failure gracefully. */ 801 for (i = 0; i < RX_RING_SIZE; i++) { 802 struct sk_buff *skb = netdev_alloc_skb(dev, np->rx_buf_sz); 803 np->rx_skbuff[i] = skb; 804 if (skb == NULL) 805 break; 806 np->rx_addr[i] = dma_map_single(&np->pci_dev->dev, skb->data, 807 np->rx_buf_sz, 808 DMA_FROM_DEVICE); 809 810 np->rx_ring[i].buffer1 = np->rx_addr[i]; 811 np->rx_ring[i].status = DescOwned; 812 } 813 814 np->cur_rx = 0; 815 np->dirty_rx = (unsigned int)(i - RX_RING_SIZE); 816 817 /* Initialize the Tx descriptors */ 818 for (i = 0; i < TX_RING_SIZE; i++) { 819 np->tx_skbuff[i] = NULL; 820 np->tx_ring[i].status = 0; 821 } 822 np->tx_full = 0; 823 np->tx_q_bytes = np->dirty_tx = np->cur_tx = 0; 824 825 iowrite32(np->ring_dma_addr, np->base_addr + RxRingPtr); 826 iowrite32(np->ring_dma_addr+sizeof(struct w840_rx_desc)*RX_RING_SIZE, 827 np->base_addr + TxRingPtr); 828 829 } 830 831 static void free_rxtx_rings(struct netdev_private* np) 832 { 833 int i; 834 /* Free all the skbuffs in the Rx queue. */ 835 for (i = 0; i < RX_RING_SIZE; i++) { 836 np->rx_ring[i].status = 0; 837 if (np->rx_skbuff[i]) { 838 dma_unmap_single(&np->pci_dev->dev, np->rx_addr[i], 839 np->rx_skbuff[i]->len, 840 DMA_FROM_DEVICE); 841 dev_kfree_skb(np->rx_skbuff[i]); 842 } 843 np->rx_skbuff[i] = NULL; 844 } 845 for (i = 0; i < TX_RING_SIZE; i++) { 846 if (np->tx_skbuff[i]) { 847 dma_unmap_single(&np->pci_dev->dev, np->tx_addr[i], 848 np->tx_skbuff[i]->len, DMA_TO_DEVICE); 849 dev_kfree_skb(np->tx_skbuff[i]); 850 } 851 np->tx_skbuff[i] = NULL; 852 } 853 } 854 855 static void init_registers(struct net_device *dev) 856 { 857 struct netdev_private *np = netdev_priv(dev); 858 void __iomem *ioaddr = np->base_addr; 859 int i; 860 861 for (i = 0; i < 6; i++) 862 iowrite8(dev->dev_addr[i], ioaddr + StationAddr + i); 863 864 /* Initialize other registers. */ 865 #ifdef __BIG_ENDIAN 866 i = (1<<20); /* Big-endian descriptors */ 867 #else 868 i = 0; 869 #endif 870 i |= (0x04<<2); /* skip length 4 u32 */ 871 i |= 0x02; /* give Rx priority */ 872 873 /* Configure the PCI bus bursts and FIFO thresholds. 874 486: Set 8 longword cache alignment, 8 longword burst. 875 586: Set 16 longword cache alignment, no burst limit. 876 Cache alignment bits 15:14 Burst length 13:8 877 0000 <not allowed> 0000 align to cache 0800 8 longwords 878 4000 8 longwords 0100 1 longword 1000 16 longwords 879 8000 16 longwords 0200 2 longwords 2000 32 longwords 880 C000 32 longwords 0400 4 longwords */ 881 882 #if defined (__i386__) && !defined(MODULE) 883 /* When not a module we can work around broken '486 PCI boards. */ 884 if (boot_cpu_data.x86 <= 4) { 885 i |= 0x4800; 886 dev_info(&dev->dev, 887 "This is a 386/486 PCI system, setting cache alignment to 8 longwords\n"); 888 } else { 889 i |= 0xE000; 890 } 891 #elif defined(__powerpc__) || defined(__i386__) || defined(__alpha__) || defined(__ia64__) || defined(__x86_64__) 892 i |= 0xE000; 893 #elif defined(CONFIG_SPARC) || defined (CONFIG_PARISC) || defined(CONFIG_ARM) 894 i |= 0x4800; 895 #else 896 dev_warn(&dev->dev, "unknown CPU architecture, using default csr0 setting\n"); 897 i |= 0x4800; 898 #endif 899 iowrite32(i, ioaddr + PCIBusCfg); 900 901 np->csr6 = 0; 902 /* 128 byte Tx threshold; 903 Transmit on; Receive on; */ 904 update_csr6(dev, 0x00022002 | update_link(dev) | __set_rx_mode(dev)); 905 906 /* Clear and Enable interrupts by setting the interrupt mask. */ 907 iowrite32(0x1A0F5, ioaddr + IntrStatus); 908 iowrite32(0x1A0F5, ioaddr + IntrEnable); 909 910 iowrite32(0, ioaddr + RxStartDemand); 911 } 912 913 static void tx_timeout(struct net_device *dev, unsigned int txqueue) 914 { 915 struct netdev_private *np = netdev_priv(dev); 916 void __iomem *ioaddr = np->base_addr; 917 const int irq = np->pci_dev->irq; 918 919 dev_warn(&dev->dev, "Transmit timed out, status %08x, resetting...\n", 920 ioread32(ioaddr + IntrStatus)); 921 922 { 923 int i; 924 printk(KERN_DEBUG " Rx ring %p: ", np->rx_ring); 925 for (i = 0; i < RX_RING_SIZE; i++) 926 printk(KERN_CONT " %08x", (unsigned int)np->rx_ring[i].status); 927 printk(KERN_CONT "\n"); 928 printk(KERN_DEBUG " Tx ring %p: ", np->tx_ring); 929 for (i = 0; i < TX_RING_SIZE; i++) 930 printk(KERN_CONT " %08x", np->tx_ring[i].status); 931 printk(KERN_CONT "\n"); 932 } 933 printk(KERN_DEBUG "Tx cur %d Tx dirty %d Tx Full %d, q bytes %d\n", 934 np->cur_tx, np->dirty_tx, np->tx_full, np->tx_q_bytes); 935 printk(KERN_DEBUG "Tx Descriptor addr %xh\n", ioread32(ioaddr+0x4C)); 936 937 disable_irq(irq); 938 spin_lock_irq(&np->lock); 939 /* 940 * Under high load dirty_tx and the internal tx descriptor pointer 941 * come out of sync, thus perform a software reset and reinitialize 942 * everything. 943 */ 944 945 iowrite32(1, np->base_addr+PCIBusCfg); 946 udelay(1); 947 948 free_rxtx_rings(np); 949 init_rxtx_rings(dev); 950 init_registers(dev); 951 spin_unlock_irq(&np->lock); 952 enable_irq(irq); 953 954 netif_wake_queue(dev); 955 netif_trans_update(dev); /* prevent tx timeout */ 956 np->stats.tx_errors++; 957 } 958 959 /* Initialize the Rx and Tx rings, along with various 'dev' bits. */ 960 static int alloc_ringdesc(struct net_device *dev) 961 { 962 struct netdev_private *np = netdev_priv(dev); 963 964 np->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32); 965 966 np->rx_ring = dma_alloc_coherent(&np->pci_dev->dev, 967 sizeof(struct w840_rx_desc) * RX_RING_SIZE + 968 sizeof(struct w840_tx_desc) * TX_RING_SIZE, 969 &np->ring_dma_addr, GFP_KERNEL); 970 if(!np->rx_ring) 971 return -ENOMEM; 972 init_rxtx_rings(dev); 973 return 0; 974 } 975 976 static void free_ringdesc(struct netdev_private *np) 977 { 978 dma_free_coherent(&np->pci_dev->dev, 979 sizeof(struct w840_rx_desc) * RX_RING_SIZE + 980 sizeof(struct w840_tx_desc) * TX_RING_SIZE, 981 np->rx_ring, np->ring_dma_addr); 982 983 } 984 985 static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev) 986 { 987 struct netdev_private *np = netdev_priv(dev); 988 unsigned entry; 989 990 /* Caution: the write order is important here, set the field 991 with the "ownership" bits last. */ 992 993 /* Calculate the next Tx descriptor entry. */ 994 entry = np->cur_tx % TX_RING_SIZE; 995 996 np->tx_addr[entry] = dma_map_single(&np->pci_dev->dev, skb->data, 997 skb->len, DMA_TO_DEVICE); 998 np->tx_skbuff[entry] = skb; 999 1000 np->tx_ring[entry].buffer1 = np->tx_addr[entry]; 1001 if (skb->len < TX_BUFLIMIT) { 1002 np->tx_ring[entry].length = DescWholePkt | skb->len; 1003 } else { 1004 int len = skb->len - TX_BUFLIMIT; 1005 1006 np->tx_ring[entry].buffer2 = np->tx_addr[entry]+TX_BUFLIMIT; 1007 np->tx_ring[entry].length = DescWholePkt | (len << 11) | TX_BUFLIMIT; 1008 } 1009 if(entry == TX_RING_SIZE-1) 1010 np->tx_ring[entry].length |= DescEndRing; 1011 1012 /* Now acquire the irq spinlock. 1013 * The difficult race is the ordering between 1014 * increasing np->cur_tx and setting DescOwned: 1015 * - if np->cur_tx is increased first the interrupt 1016 * handler could consider the packet as transmitted 1017 * since DescOwned is cleared. 1018 * - If DescOwned is set first the NIC could report the 1019 * packet as sent, but the interrupt handler would ignore it 1020 * since the np->cur_tx was not yet increased. 1021 */ 1022 spin_lock_irq(&np->lock); 1023 np->cur_tx++; 1024 1025 wmb(); /* flush length, buffer1, buffer2 */ 1026 np->tx_ring[entry].status = DescOwned; 1027 wmb(); /* flush status and kick the hardware */ 1028 iowrite32(0, np->base_addr + TxStartDemand); 1029 np->tx_q_bytes += skb->len; 1030 /* Work around horrible bug in the chip by marking the queue as full 1031 when we do not have FIFO room for a maximum sized packet. */ 1032 if (np->cur_tx - np->dirty_tx > TX_QUEUE_LEN || 1033 ((np->drv_flags & HasBrokenTx) && np->tx_q_bytes > TX_BUG_FIFO_LIMIT)) { 1034 netif_stop_queue(dev); 1035 wmb(); 1036 np->tx_full = 1; 1037 } 1038 spin_unlock_irq(&np->lock); 1039 1040 if (debug > 4) { 1041 netdev_dbg(dev, "Transmit frame #%d queued in slot %d\n", 1042 np->cur_tx, entry); 1043 } 1044 return NETDEV_TX_OK; 1045 } 1046 1047 static void netdev_tx_done(struct net_device *dev) 1048 { 1049 struct netdev_private *np = netdev_priv(dev); 1050 for (; np->cur_tx - np->dirty_tx > 0; np->dirty_tx++) { 1051 int entry = np->dirty_tx % TX_RING_SIZE; 1052 int tx_status = np->tx_ring[entry].status; 1053 1054 if (tx_status < 0) 1055 break; 1056 if (tx_status & 0x8000) { /* There was an error, log it. */ 1057 #ifndef final_version 1058 if (debug > 1) 1059 netdev_dbg(dev, "Transmit error, Tx status %08x\n", 1060 tx_status); 1061 #endif 1062 np->stats.tx_errors++; 1063 if (tx_status & 0x0104) np->stats.tx_aborted_errors++; 1064 if (tx_status & 0x0C80) np->stats.tx_carrier_errors++; 1065 if (tx_status & 0x0200) np->stats.tx_window_errors++; 1066 if (tx_status & 0x0002) np->stats.tx_fifo_errors++; 1067 if ((tx_status & 0x0080) && np->mii_if.full_duplex == 0) 1068 np->stats.tx_heartbeat_errors++; 1069 } else { 1070 #ifndef final_version 1071 if (debug > 3) 1072 netdev_dbg(dev, "Transmit slot %d ok, Tx status %08x\n", 1073 entry, tx_status); 1074 #endif 1075 np->stats.tx_bytes += np->tx_skbuff[entry]->len; 1076 np->stats.collisions += (tx_status >> 3) & 15; 1077 np->stats.tx_packets++; 1078 } 1079 /* Free the original skb. */ 1080 dma_unmap_single(&np->pci_dev->dev, np->tx_addr[entry], 1081 np->tx_skbuff[entry]->len, DMA_TO_DEVICE); 1082 np->tx_q_bytes -= np->tx_skbuff[entry]->len; 1083 dev_kfree_skb_irq(np->tx_skbuff[entry]); 1084 np->tx_skbuff[entry] = NULL; 1085 } 1086 if (np->tx_full && 1087 np->cur_tx - np->dirty_tx < TX_QUEUE_LEN_RESTART && 1088 np->tx_q_bytes < TX_BUG_FIFO_LIMIT) { 1089 /* The ring is no longer full, clear tbusy. */ 1090 np->tx_full = 0; 1091 wmb(); 1092 netif_wake_queue(dev); 1093 } 1094 } 1095 1096 /* The interrupt handler does all of the Rx thread work and cleans up 1097 after the Tx thread. */ 1098 static irqreturn_t intr_handler(int irq, void *dev_instance) 1099 { 1100 struct net_device *dev = (struct net_device *)dev_instance; 1101 struct netdev_private *np = netdev_priv(dev); 1102 void __iomem *ioaddr = np->base_addr; 1103 int work_limit = max_interrupt_work; 1104 int handled = 0; 1105 1106 if (!netif_device_present(dev)) 1107 return IRQ_NONE; 1108 do { 1109 u32 intr_status = ioread32(ioaddr + IntrStatus); 1110 1111 /* Acknowledge all of the current interrupt sources ASAP. */ 1112 iowrite32(intr_status & 0x001ffff, ioaddr + IntrStatus); 1113 1114 if (debug > 4) 1115 netdev_dbg(dev, "Interrupt, status %04x\n", intr_status); 1116 1117 if ((intr_status & (NormalIntr|AbnormalIntr)) == 0) 1118 break; 1119 1120 handled = 1; 1121 1122 if (intr_status & (RxIntr | RxNoBuf)) 1123 netdev_rx(dev); 1124 if (intr_status & RxNoBuf) 1125 iowrite32(0, ioaddr + RxStartDemand); 1126 1127 if (intr_status & (TxNoBuf | TxIntr) && 1128 np->cur_tx != np->dirty_tx) { 1129 spin_lock(&np->lock); 1130 netdev_tx_done(dev); 1131 spin_unlock(&np->lock); 1132 } 1133 1134 /* Abnormal error summary/uncommon events handlers. */ 1135 if (intr_status & (AbnormalIntr | TxFIFOUnderflow | SystemError | 1136 TimerInt | TxDied)) 1137 netdev_error(dev, intr_status); 1138 1139 if (--work_limit < 0) { 1140 dev_warn(&dev->dev, 1141 "Too much work at interrupt, status=0x%04x\n", 1142 intr_status); 1143 /* Set the timer to re-enable the other interrupts after 1144 10*82usec ticks. */ 1145 spin_lock(&np->lock); 1146 if (netif_device_present(dev)) { 1147 iowrite32(AbnormalIntr | TimerInt, ioaddr + IntrEnable); 1148 iowrite32(10, ioaddr + GPTimer); 1149 } 1150 spin_unlock(&np->lock); 1151 break; 1152 } 1153 } while (1); 1154 1155 if (debug > 3) 1156 netdev_dbg(dev, "exiting interrupt, status=%#4.4x\n", 1157 ioread32(ioaddr + IntrStatus)); 1158 return IRQ_RETVAL(handled); 1159 } 1160 1161 /* This routine is logically part of the interrupt handler, but separated 1162 for clarity and better register allocation. */ 1163 static int netdev_rx(struct net_device *dev) 1164 { 1165 struct netdev_private *np = netdev_priv(dev); 1166 int entry = np->cur_rx % RX_RING_SIZE; 1167 int work_limit = np->dirty_rx + RX_RING_SIZE - np->cur_rx; 1168 1169 if (debug > 4) { 1170 netdev_dbg(dev, " In netdev_rx(), entry %d status %04x\n", 1171 entry, np->rx_ring[entry].status); 1172 } 1173 1174 /* If EOP is set on the next entry, it's a new packet. Send it up. */ 1175 while (--work_limit >= 0) { 1176 struct w840_rx_desc *desc = np->rx_head_desc; 1177 s32 status = desc->status; 1178 1179 if (debug > 4) 1180 netdev_dbg(dev, " netdev_rx() status was %08x\n", 1181 status); 1182 if (status < 0) 1183 break; 1184 if ((status & 0x38008300) != 0x0300) { 1185 if ((status & 0x38000300) != 0x0300) { 1186 /* Ingore earlier buffers. */ 1187 if ((status & 0xffff) != 0x7fff) { 1188 dev_warn(&dev->dev, 1189 "Oversized Ethernet frame spanned multiple buffers, entry %#x status %04x!\n", 1190 np->cur_rx, status); 1191 np->stats.rx_length_errors++; 1192 } 1193 } else if (status & 0x8000) { 1194 /* There was a fatal error. */ 1195 if (debug > 2) 1196 netdev_dbg(dev, "Receive error, Rx status %08x\n", 1197 status); 1198 np->stats.rx_errors++; /* end of a packet.*/ 1199 if (status & 0x0890) np->stats.rx_length_errors++; 1200 if (status & 0x004C) np->stats.rx_frame_errors++; 1201 if (status & 0x0002) np->stats.rx_crc_errors++; 1202 } 1203 } else { 1204 struct sk_buff *skb; 1205 /* Omit the four octet CRC from the length. */ 1206 int pkt_len = ((status >> 16) & 0x7ff) - 4; 1207 1208 #ifndef final_version 1209 if (debug > 4) 1210 netdev_dbg(dev, " netdev_rx() normal Rx pkt length %d status %x\n", 1211 pkt_len, status); 1212 #endif 1213 /* Check if the packet is long enough to accept without copying 1214 to a minimally-sized skbuff. */ 1215 if (pkt_len < rx_copybreak && 1216 (skb = netdev_alloc_skb(dev, pkt_len + 2)) != NULL) { 1217 skb_reserve(skb, 2); /* 16 byte align the IP header */ 1218 dma_sync_single_for_cpu(&np->pci_dev->dev, 1219 np->rx_addr[entry], 1220 np->rx_skbuff[entry]->len, 1221 DMA_FROM_DEVICE); 1222 skb_copy_to_linear_data(skb, np->rx_skbuff[entry]->data, pkt_len); 1223 skb_put(skb, pkt_len); 1224 dma_sync_single_for_device(&np->pci_dev->dev, 1225 np->rx_addr[entry], 1226 np->rx_skbuff[entry]->len, 1227 DMA_FROM_DEVICE); 1228 } else { 1229 dma_unmap_single(&np->pci_dev->dev, 1230 np->rx_addr[entry], 1231 np->rx_skbuff[entry]->len, 1232 DMA_FROM_DEVICE); 1233 skb_put(skb = np->rx_skbuff[entry], pkt_len); 1234 np->rx_skbuff[entry] = NULL; 1235 } 1236 #ifndef final_version /* Remove after testing. */ 1237 /* You will want this info for the initial debug. */ 1238 if (debug > 5) 1239 netdev_dbg(dev, " Rx data %pM %pM %02x%02x %pI4\n", 1240 &skb->data[0], &skb->data[6], 1241 skb->data[12], skb->data[13], 1242 &skb->data[14]); 1243 #endif 1244 skb->protocol = eth_type_trans(skb, dev); 1245 netif_rx(skb); 1246 np->stats.rx_packets++; 1247 np->stats.rx_bytes += pkt_len; 1248 } 1249 entry = (++np->cur_rx) % RX_RING_SIZE; 1250 np->rx_head_desc = &np->rx_ring[entry]; 1251 } 1252 1253 /* Refill the Rx ring buffers. */ 1254 for (; np->cur_rx - np->dirty_rx > 0; np->dirty_rx++) { 1255 struct sk_buff *skb; 1256 entry = np->dirty_rx % RX_RING_SIZE; 1257 if (np->rx_skbuff[entry] == NULL) { 1258 skb = netdev_alloc_skb(dev, np->rx_buf_sz); 1259 np->rx_skbuff[entry] = skb; 1260 if (skb == NULL) 1261 break; /* Better luck next round. */ 1262 np->rx_addr[entry] = dma_map_single(&np->pci_dev->dev, 1263 skb->data, 1264 np->rx_buf_sz, 1265 DMA_FROM_DEVICE); 1266 np->rx_ring[entry].buffer1 = np->rx_addr[entry]; 1267 } 1268 wmb(); 1269 np->rx_ring[entry].status = DescOwned; 1270 } 1271 1272 return 0; 1273 } 1274 1275 static void netdev_error(struct net_device *dev, int intr_status) 1276 { 1277 struct netdev_private *np = netdev_priv(dev); 1278 void __iomem *ioaddr = np->base_addr; 1279 1280 if (debug > 2) 1281 netdev_dbg(dev, "Abnormal event, %08x\n", intr_status); 1282 if (intr_status == 0xffffffff) 1283 return; 1284 spin_lock(&np->lock); 1285 if (intr_status & TxFIFOUnderflow) { 1286 int new; 1287 /* Bump up the Tx threshold */ 1288 #if 0 1289 /* This causes lots of dropped packets, 1290 * and under high load even tx_timeouts 1291 */ 1292 new = np->csr6 + 0x4000; 1293 #else 1294 new = (np->csr6 >> 14)&0x7f; 1295 if (new < 64) 1296 new *= 2; 1297 else 1298 new = 127; /* load full packet before starting */ 1299 new = (np->csr6 & ~(0x7F << 14)) | (new<<14); 1300 #endif 1301 netdev_dbg(dev, "Tx underflow, new csr6 %08x\n", new); 1302 update_csr6(dev, new); 1303 } 1304 if (intr_status & RxDied) { /* Missed a Rx frame. */ 1305 np->stats.rx_errors++; 1306 } 1307 if (intr_status & TimerInt) { 1308 /* Re-enable other interrupts. */ 1309 if (netif_device_present(dev)) 1310 iowrite32(0x1A0F5, ioaddr + IntrEnable); 1311 } 1312 np->stats.rx_missed_errors += ioread32(ioaddr + RxMissed) & 0xffff; 1313 iowrite32(0, ioaddr + RxStartDemand); 1314 spin_unlock(&np->lock); 1315 } 1316 1317 static struct net_device_stats *get_stats(struct net_device *dev) 1318 { 1319 struct netdev_private *np = netdev_priv(dev); 1320 void __iomem *ioaddr = np->base_addr; 1321 1322 /* The chip only need report frame silently dropped. */ 1323 spin_lock_irq(&np->lock); 1324 if (netif_running(dev) && netif_device_present(dev)) 1325 np->stats.rx_missed_errors += ioread32(ioaddr + RxMissed) & 0xffff; 1326 spin_unlock_irq(&np->lock); 1327 1328 return &np->stats; 1329 } 1330 1331 1332 static u32 __set_rx_mode(struct net_device *dev) 1333 { 1334 struct netdev_private *np = netdev_priv(dev); 1335 void __iomem *ioaddr = np->base_addr; 1336 u32 mc_filter[2]; /* Multicast hash filter */ 1337 u32 rx_mode; 1338 1339 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */ 1340 memset(mc_filter, 0xff, sizeof(mc_filter)); 1341 rx_mode = RxAcceptBroadcast | AcceptMulticast | RxAcceptAllPhys 1342 | AcceptMyPhys; 1343 } else if ((netdev_mc_count(dev) > multicast_filter_limit) || 1344 (dev->flags & IFF_ALLMULTI)) { 1345 /* Too many to match, or accept all multicasts. */ 1346 memset(mc_filter, 0xff, sizeof(mc_filter)); 1347 rx_mode = RxAcceptBroadcast | AcceptMulticast | AcceptMyPhys; 1348 } else { 1349 struct netdev_hw_addr *ha; 1350 1351 memset(mc_filter, 0, sizeof(mc_filter)); 1352 netdev_for_each_mc_addr(ha, dev) { 1353 int filbit; 1354 1355 filbit = (ether_crc(ETH_ALEN, ha->addr) >> 26) ^ 0x3F; 1356 filbit &= 0x3f; 1357 mc_filter[filbit >> 5] |= 1 << (filbit & 31); 1358 } 1359 rx_mode = RxAcceptBroadcast | AcceptMulticast | AcceptMyPhys; 1360 } 1361 iowrite32(mc_filter[0], ioaddr + MulticastFilter0); 1362 iowrite32(mc_filter[1], ioaddr + MulticastFilter1); 1363 return rx_mode; 1364 } 1365 1366 static void set_rx_mode(struct net_device *dev) 1367 { 1368 struct netdev_private *np = netdev_priv(dev); 1369 u32 rx_mode = __set_rx_mode(dev); 1370 spin_lock_irq(&np->lock); 1371 update_csr6(dev, (np->csr6 & ~0x00F8) | rx_mode); 1372 spin_unlock_irq(&np->lock); 1373 } 1374 1375 static void netdev_get_drvinfo (struct net_device *dev, struct ethtool_drvinfo *info) 1376 { 1377 struct netdev_private *np = netdev_priv(dev); 1378 1379 strlcpy(info->driver, DRV_NAME, sizeof(info->driver)); 1380 strlcpy(info->bus_info, pci_name(np->pci_dev), sizeof(info->bus_info)); 1381 } 1382 1383 static int netdev_get_link_ksettings(struct net_device *dev, 1384 struct ethtool_link_ksettings *cmd) 1385 { 1386 struct netdev_private *np = netdev_priv(dev); 1387 1388 spin_lock_irq(&np->lock); 1389 mii_ethtool_get_link_ksettings(&np->mii_if, cmd); 1390 spin_unlock_irq(&np->lock); 1391 1392 return 0; 1393 } 1394 1395 static int netdev_set_link_ksettings(struct net_device *dev, 1396 const struct ethtool_link_ksettings *cmd) 1397 { 1398 struct netdev_private *np = netdev_priv(dev); 1399 int rc; 1400 1401 spin_lock_irq(&np->lock); 1402 rc = mii_ethtool_set_link_ksettings(&np->mii_if, cmd); 1403 spin_unlock_irq(&np->lock); 1404 1405 return rc; 1406 } 1407 1408 static int netdev_nway_reset(struct net_device *dev) 1409 { 1410 struct netdev_private *np = netdev_priv(dev); 1411 return mii_nway_restart(&np->mii_if); 1412 } 1413 1414 static u32 netdev_get_link(struct net_device *dev) 1415 { 1416 struct netdev_private *np = netdev_priv(dev); 1417 return mii_link_ok(&np->mii_if); 1418 } 1419 1420 static u32 netdev_get_msglevel(struct net_device *dev) 1421 { 1422 return debug; 1423 } 1424 1425 static void netdev_set_msglevel(struct net_device *dev, u32 value) 1426 { 1427 debug = value; 1428 } 1429 1430 static const struct ethtool_ops netdev_ethtool_ops = { 1431 .get_drvinfo = netdev_get_drvinfo, 1432 .nway_reset = netdev_nway_reset, 1433 .get_link = netdev_get_link, 1434 .get_msglevel = netdev_get_msglevel, 1435 .set_msglevel = netdev_set_msglevel, 1436 .get_link_ksettings = netdev_get_link_ksettings, 1437 .set_link_ksettings = netdev_set_link_ksettings, 1438 }; 1439 1440 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 1441 { 1442 struct mii_ioctl_data *data = if_mii(rq); 1443 struct netdev_private *np = netdev_priv(dev); 1444 1445 switch(cmd) { 1446 case SIOCGMIIPHY: /* Get address of MII PHY in use. */ 1447 data->phy_id = ((struct netdev_private *)netdev_priv(dev))->phys[0] & 0x1f; 1448 fallthrough; 1449 1450 case SIOCGMIIREG: /* Read MII PHY register. */ 1451 spin_lock_irq(&np->lock); 1452 data->val_out = mdio_read(dev, data->phy_id & 0x1f, data->reg_num & 0x1f); 1453 spin_unlock_irq(&np->lock); 1454 return 0; 1455 1456 case SIOCSMIIREG: /* Write MII PHY register. */ 1457 spin_lock_irq(&np->lock); 1458 mdio_write(dev, data->phy_id & 0x1f, data->reg_num & 0x1f, data->val_in); 1459 spin_unlock_irq(&np->lock); 1460 return 0; 1461 default: 1462 return -EOPNOTSUPP; 1463 } 1464 } 1465 1466 static int netdev_close(struct net_device *dev) 1467 { 1468 struct netdev_private *np = netdev_priv(dev); 1469 void __iomem *ioaddr = np->base_addr; 1470 1471 netif_stop_queue(dev); 1472 1473 if (debug > 1) { 1474 netdev_dbg(dev, "Shutting down ethercard, status was %08x Config %08x\n", 1475 ioread32(ioaddr + IntrStatus), 1476 ioread32(ioaddr + NetworkConfig)); 1477 netdev_dbg(dev, "Queue pointers were Tx %d / %d, Rx %d / %d\n", 1478 np->cur_tx, np->dirty_tx, 1479 np->cur_rx, np->dirty_rx); 1480 } 1481 1482 /* Stop the chip's Tx and Rx processes. */ 1483 spin_lock_irq(&np->lock); 1484 netif_device_detach(dev); 1485 update_csr6(dev, 0); 1486 iowrite32(0x0000, ioaddr + IntrEnable); 1487 spin_unlock_irq(&np->lock); 1488 1489 free_irq(np->pci_dev->irq, dev); 1490 wmb(); 1491 netif_device_attach(dev); 1492 1493 if (ioread32(ioaddr + NetworkConfig) != 0xffffffff) 1494 np->stats.rx_missed_errors += ioread32(ioaddr + RxMissed) & 0xffff; 1495 1496 #ifdef __i386__ 1497 if (debug > 2) { 1498 int i; 1499 1500 printk(KERN_DEBUG" Tx ring at %p:\n", np->tx_ring); 1501 for (i = 0; i < TX_RING_SIZE; i++) 1502 printk(KERN_DEBUG " #%d desc. %04x %04x %08x\n", 1503 i, np->tx_ring[i].length, 1504 np->tx_ring[i].status, np->tx_ring[i].buffer1); 1505 printk(KERN_DEBUG " Rx ring %p:\n", np->rx_ring); 1506 for (i = 0; i < RX_RING_SIZE; i++) { 1507 printk(KERN_DEBUG " #%d desc. %04x %04x %08x\n", 1508 i, np->rx_ring[i].length, 1509 np->rx_ring[i].status, np->rx_ring[i].buffer1); 1510 } 1511 } 1512 #endif /* __i386__ debugging only */ 1513 1514 del_timer_sync(&np->timer); 1515 1516 free_rxtx_rings(np); 1517 free_ringdesc(np); 1518 1519 return 0; 1520 } 1521 1522 static void w840_remove1(struct pci_dev *pdev) 1523 { 1524 struct net_device *dev = pci_get_drvdata(pdev); 1525 1526 if (dev) { 1527 struct netdev_private *np = netdev_priv(dev); 1528 unregister_netdev(dev); 1529 pci_release_regions(pdev); 1530 pci_iounmap(pdev, np->base_addr); 1531 free_netdev(dev); 1532 } 1533 } 1534 1535 /* 1536 * suspend/resume synchronization: 1537 * - open, close, do_ioctl: 1538 * rtnl_lock, & netif_device_detach after the rtnl_unlock. 1539 * - get_stats: 1540 * spin_lock_irq(np->lock), doesn't touch hw if not present 1541 * - start_xmit: 1542 * synchronize_irq + netif_tx_disable; 1543 * - tx_timeout: 1544 * netif_device_detach + netif_tx_disable; 1545 * - set_multicast_list 1546 * netif_device_detach + netif_tx_disable; 1547 * - interrupt handler 1548 * doesn't touch hw if not present, synchronize_irq waits for 1549 * running instances of the interrupt handler. 1550 * 1551 * Disabling hw requires clearing csr6 & IntrEnable. 1552 * update_csr6 & all function that write IntrEnable check netif_device_present 1553 * before settings any bits. 1554 * 1555 * Detach must occur under spin_unlock_irq(), interrupts from a detached 1556 * device would cause an irq storm. 1557 */ 1558 static int __maybe_unused w840_suspend(struct device *dev_d) 1559 { 1560 struct net_device *dev = dev_get_drvdata(dev_d); 1561 struct netdev_private *np = netdev_priv(dev); 1562 void __iomem *ioaddr = np->base_addr; 1563 1564 rtnl_lock(); 1565 if (netif_running (dev)) { 1566 del_timer_sync(&np->timer); 1567 1568 spin_lock_irq(&np->lock); 1569 netif_device_detach(dev); 1570 update_csr6(dev, 0); 1571 iowrite32(0, ioaddr + IntrEnable); 1572 spin_unlock_irq(&np->lock); 1573 1574 synchronize_irq(np->pci_dev->irq); 1575 netif_tx_disable(dev); 1576 1577 np->stats.rx_missed_errors += ioread32(ioaddr + RxMissed) & 0xffff; 1578 1579 /* no more hardware accesses behind this line. */ 1580 1581 BUG_ON(np->csr6 || ioread32(ioaddr + IntrEnable)); 1582 1583 /* pci_power_off(pdev, -1); */ 1584 1585 free_rxtx_rings(np); 1586 } else { 1587 netif_device_detach(dev); 1588 } 1589 rtnl_unlock(); 1590 return 0; 1591 } 1592 1593 static int __maybe_unused w840_resume(struct device *dev_d) 1594 { 1595 struct net_device *dev = dev_get_drvdata(dev_d); 1596 struct netdev_private *np = netdev_priv(dev); 1597 1598 rtnl_lock(); 1599 if (netif_device_present(dev)) 1600 goto out; /* device not suspended */ 1601 if (netif_running(dev)) { 1602 spin_lock_irq(&np->lock); 1603 iowrite32(1, np->base_addr+PCIBusCfg); 1604 ioread32(np->base_addr+PCIBusCfg); 1605 udelay(1); 1606 netif_device_attach(dev); 1607 init_rxtx_rings(dev); 1608 init_registers(dev); 1609 spin_unlock_irq(&np->lock); 1610 1611 netif_wake_queue(dev); 1612 1613 mod_timer(&np->timer, jiffies + 1*HZ); 1614 } else { 1615 netif_device_attach(dev); 1616 } 1617 out: 1618 rtnl_unlock(); 1619 return 0; 1620 } 1621 1622 static SIMPLE_DEV_PM_OPS(w840_pm_ops, w840_suspend, w840_resume); 1623 1624 static struct pci_driver w840_driver = { 1625 .name = DRV_NAME, 1626 .id_table = w840_pci_tbl, 1627 .probe = w840_probe1, 1628 .remove = w840_remove1, 1629 .driver.pm = &w840_pm_ops, 1630 }; 1631 1632 module_pci_driver(w840_driver); 1633