xref: /openbmc/linux/drivers/net/ethernet/dec/tulip/winbond-840.c (revision 023e41632e065d49bcbe31b3c4b336217f96a271)
1 /* winbond-840.c: A Linux PCI network adapter device driver. */
2 /*
3 	Written 1998-2001 by Donald Becker.
4 
5 	This software may be used and distributed according to the terms of
6 	the GNU General Public License (GPL), incorporated herein by reference.
7 	Drivers based on or derived from this code fall under the GPL and must
8 	retain the authorship, copyright and license notice.  This file is not
9 	a complete program and may only be used when the entire operating
10 	system is licensed under the GPL.
11 
12 	The author may be reached as becker@scyld.com, or C/O
13 	Scyld Computing Corporation
14 	410 Severn Ave., Suite 210
15 	Annapolis MD 21403
16 
17 	Support and updates available at
18 	http://www.scyld.com/network/drivers.html
19 
20 	Do not remove the copyright information.
21 	Do not change the version information unless an improvement has been made.
22 	Merely removing my name, as Compex has done in the past, does not count
23 	as an improvement.
24 
25 	Changelog:
26 	* ported to 2.4
27 		???
28 	* spin lock update, memory barriers, new style dma mappings
29 		limit each tx buffer to < 1024 bytes
30 		remove DescIntr from Rx descriptors (that's an Tx flag)
31 		remove next pointer from Tx descriptors
32 		synchronize tx_q_bytes
33 		software reset in tx_timeout
34 			Copyright (C) 2000 Manfred Spraul
35 	* further cleanups
36 		power management.
37 		support for big endian descriptors
38 			Copyright (C) 2001 Manfred Spraul
39   	* ethtool support (jgarzik)
40 	* Replace some MII-related magic numbers with constants (jgarzik)
41 
42 	TODO:
43 	* enable pci_power_off
44 	* Wake-On-LAN
45 */
46 
47 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
48 
49 #define DRV_NAME	"winbond-840"
50 #define DRV_VERSION	"1.01-e"
51 #define DRV_RELDATE	"Sep-11-2006"
52 
53 
54 /* Automatically extracted configuration info:
55 probe-func: winbond840_probe
56 config-in: tristate 'Winbond W89c840 Ethernet support' CONFIG_WINBOND_840
57 
58 c-help-name: Winbond W89c840 PCI Ethernet support
59 c-help-symbol: CONFIG_WINBOND_840
60 c-help: This driver is for the Winbond W89c840 chip.  It also works with
61 c-help: the TX9882 chip on the Compex RL100-ATX board.
62 c-help: More specific information and updates are available from
63 c-help: http://www.scyld.com/network/drivers.html
64 */
65 
66 /* The user-configurable values.
67    These may be modified when a driver module is loaded.*/
68 
69 static int debug = 1;			/* 1 normal messages, 0 quiet .. 7 verbose. */
70 static int max_interrupt_work = 20;
71 /* Maximum number of multicast addresses to filter (vs. Rx-all-multicast).
72    The '840 uses a 64 element hash table based on the Ethernet CRC.  */
73 static int multicast_filter_limit = 32;
74 
75 /* Set the copy breakpoint for the copy-only-tiny-frames scheme.
76    Setting to > 1518 effectively disables this feature. */
77 static int rx_copybreak;
78 
79 /* Used to pass the media type, etc.
80    Both 'options[]' and 'full_duplex[]' should exist for driver
81    interoperability.
82    The media type is usually passed in 'options[]'.
83 */
84 #define MAX_UNITS 8		/* More are supported, limit only on options */
85 static int options[MAX_UNITS] = {-1, -1, -1, -1, -1, -1, -1, -1};
86 static int full_duplex[MAX_UNITS] = {-1, -1, -1, -1, -1, -1, -1, -1};
87 
88 /* Operational parameters that are set at compile time. */
89 
90 /* Keep the ring sizes a power of two for compile efficiency.
91    The compiler will convert <unsigned>'%'<2^N> into a bit mask.
92    Making the Tx ring too large decreases the effectiveness of channel
93    bonding and packet priority.
94    There are no ill effects from too-large receive rings. */
95 #define TX_QUEUE_LEN	10		/* Limit ring entries actually used.  */
96 #define TX_QUEUE_LEN_RESTART	5
97 
98 #define TX_BUFLIMIT	(1024-128)
99 
100 /* The presumed FIFO size for working around the Tx-FIFO-overflow bug.
101    To avoid overflowing we don't queue again until we have room for a
102    full-size packet.
103  */
104 #define TX_FIFO_SIZE (2048)
105 #define TX_BUG_FIFO_LIMIT (TX_FIFO_SIZE-1514-16)
106 
107 
108 /* Operational parameters that usually are not changed. */
109 /* Time in jiffies before concluding the transmitter is hung. */
110 #define TX_TIMEOUT  (2*HZ)
111 
112 /* Include files, designed to support most kernel versions 2.0.0 and later. */
113 #include <linux/module.h>
114 #include <linux/kernel.h>
115 #include <linux/string.h>
116 #include <linux/timer.h>
117 #include <linux/errno.h>
118 #include <linux/ioport.h>
119 #include <linux/interrupt.h>
120 #include <linux/pci.h>
121 #include <linux/dma-mapping.h>
122 #include <linux/netdevice.h>
123 #include <linux/etherdevice.h>
124 #include <linux/skbuff.h>
125 #include <linux/init.h>
126 #include <linux/delay.h>
127 #include <linux/ethtool.h>
128 #include <linux/mii.h>
129 #include <linux/rtnetlink.h>
130 #include <linux/crc32.h>
131 #include <linux/bitops.h>
132 #include <linux/uaccess.h>
133 #include <asm/processor.h>		/* Processor type for cache alignment. */
134 #include <asm/io.h>
135 #include <asm/irq.h>
136 
137 #include "tulip.h"
138 
139 #undef PKT_BUF_SZ			/* tulip.h also defines this */
140 #define PKT_BUF_SZ		1536	/* Size of each temporary Rx buffer.*/
141 
142 /* These identify the driver base version and may not be removed. */
143 static const char version[] __initconst =
144 	"v" DRV_VERSION " (2.4 port) "
145 	DRV_RELDATE "  Donald Becker <becker@scyld.com>\n"
146 	"  http://www.scyld.com/network/drivers.html\n";
147 
148 MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
149 MODULE_DESCRIPTION("Winbond W89c840 Ethernet driver");
150 MODULE_LICENSE("GPL");
151 MODULE_VERSION(DRV_VERSION);
152 
153 module_param(max_interrupt_work, int, 0);
154 module_param(debug, int, 0);
155 module_param(rx_copybreak, int, 0);
156 module_param(multicast_filter_limit, int, 0);
157 module_param_array(options, int, NULL, 0);
158 module_param_array(full_duplex, int, NULL, 0);
159 MODULE_PARM_DESC(max_interrupt_work, "winbond-840 maximum events handled per interrupt");
160 MODULE_PARM_DESC(debug, "winbond-840 debug level (0-6)");
161 MODULE_PARM_DESC(rx_copybreak, "winbond-840 copy breakpoint for copy-only-tiny-frames");
162 MODULE_PARM_DESC(multicast_filter_limit, "winbond-840 maximum number of filtered multicast addresses");
163 MODULE_PARM_DESC(options, "winbond-840: Bits 0-3: media type, bit 17: full duplex");
164 MODULE_PARM_DESC(full_duplex, "winbond-840 full duplex setting(s) (1)");
165 
166 /*
167 				Theory of Operation
168 
169 I. Board Compatibility
170 
171 This driver is for the Winbond w89c840 chip.
172 
173 II. Board-specific settings
174 
175 None.
176 
177 III. Driver operation
178 
179 This chip is very similar to the Digital 21*4* "Tulip" family.  The first
180 twelve registers and the descriptor format are nearly identical.  Read a
181 Tulip manual for operational details.
182 
183 A significant difference is that the multicast filter and station address are
184 stored in registers rather than loaded through a pseudo-transmit packet.
185 
186 Unlike the Tulip, transmit buffers are limited to 1KB.  To transmit a
187 full-sized packet we must use both data buffers in a descriptor.  Thus the
188 driver uses ring mode where descriptors are implicitly sequential in memory,
189 rather than using the second descriptor address as a chain pointer to
190 subsequent descriptors.
191 
192 IV. Notes
193 
194 If you are going to almost clone a Tulip, why not go all the way and avoid
195 the need for a new driver?
196 
197 IVb. References
198 
199 http://www.scyld.com/expert/100mbps.html
200 http://www.scyld.com/expert/NWay.html
201 http://www.winbond.com.tw/
202 
203 IVc. Errata
204 
205 A horrible bug exists in the transmit FIFO.  Apparently the chip doesn't
206 correctly detect a full FIFO, and queuing more than 2048 bytes may result in
207 silent data corruption.
208 
209 Test with 'ping -s 10000' on a fast computer.
210 
211 */
212 
213 
214 
215 /*
216   PCI probe table.
217 */
218 enum chip_capability_flags {
219 	CanHaveMII=1, HasBrokenTx=2, AlwaysFDX=4, FDXOnNoMII=8,
220 };
221 
222 static const struct pci_device_id w840_pci_tbl[] = {
223 	{ 0x1050, 0x0840, PCI_ANY_ID, 0x8153,     0, 0, 0 },
224 	{ 0x1050, 0x0840, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 1 },
225 	{ 0x11f6, 0x2011, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 2 },
226 	{ }
227 };
228 MODULE_DEVICE_TABLE(pci, w840_pci_tbl);
229 
230 enum {
231 	netdev_res_size		= 128,	/* size of PCI BAR resource */
232 };
233 
234 struct pci_id_info {
235         const char *name;
236         int drv_flags;		/* Driver use, intended as capability flags. */
237 };
238 
239 static const struct pci_id_info pci_id_tbl[] = {
240 	{ 				/* Sometime a Level-One switch card. */
241 	  "Winbond W89c840",	CanHaveMII | HasBrokenTx | FDXOnNoMII},
242 	{ "Winbond W89c840",	CanHaveMII | HasBrokenTx},
243 	{ "Compex RL100-ATX",	CanHaveMII | HasBrokenTx},
244 	{ }	/* terminate list. */
245 };
246 
247 /* This driver was written to use PCI memory space, however some x86 systems
248    work only with I/O space accesses. See CONFIG_TULIP_MMIO in .config
249 */
250 
251 /* Offsets to the Command and Status Registers, "CSRs".
252    While similar to the Tulip, these registers are longword aligned.
253    Note: It's not useful to define symbolic names for every register bit in
254    the device.  The name can only partially document the semantics and make
255    the driver longer and more difficult to read.
256 */
257 enum w840_offsets {
258 	PCIBusCfg=0x00, TxStartDemand=0x04, RxStartDemand=0x08,
259 	RxRingPtr=0x0C, TxRingPtr=0x10,
260 	IntrStatus=0x14, NetworkConfig=0x18, IntrEnable=0x1C,
261 	RxMissed=0x20, EECtrl=0x24, MIICtrl=0x24, BootRom=0x28, GPTimer=0x2C,
262 	CurRxDescAddr=0x30, CurRxBufAddr=0x34,			/* Debug use */
263 	MulticastFilter0=0x38, MulticastFilter1=0x3C, StationAddr=0x40,
264 	CurTxDescAddr=0x4C, CurTxBufAddr=0x50,
265 };
266 
267 /* Bits in the NetworkConfig register. */
268 enum rx_mode_bits {
269 	AcceptErr=0x80,
270 	RxAcceptBroadcast=0x20, AcceptMulticast=0x10,
271 	RxAcceptAllPhys=0x08, AcceptMyPhys=0x02,
272 };
273 
274 enum mii_reg_bits {
275 	MDIO_ShiftClk=0x10000, MDIO_DataIn=0x80000, MDIO_DataOut=0x20000,
276 	MDIO_EnbOutput=0x40000, MDIO_EnbIn = 0x00000,
277 };
278 
279 /* The Tulip Rx and Tx buffer descriptors. */
280 struct w840_rx_desc {
281 	s32 status;
282 	s32 length;
283 	u32 buffer1;
284 	u32 buffer2;
285 };
286 
287 struct w840_tx_desc {
288 	s32 status;
289 	s32 length;
290 	u32 buffer1, buffer2;
291 };
292 
293 #define MII_CNT		1 /* winbond only supports one MII */
294 struct netdev_private {
295 	struct w840_rx_desc *rx_ring;
296 	dma_addr_t	rx_addr[RX_RING_SIZE];
297 	struct w840_tx_desc *tx_ring;
298 	dma_addr_t	tx_addr[TX_RING_SIZE];
299 	dma_addr_t ring_dma_addr;
300 	/* The addresses of receive-in-place skbuffs. */
301 	struct sk_buff* rx_skbuff[RX_RING_SIZE];
302 	/* The saved address of a sent-in-place packet/buffer, for later free(). */
303 	struct sk_buff* tx_skbuff[TX_RING_SIZE];
304 	struct net_device_stats stats;
305 	struct timer_list timer;	/* Media monitoring timer. */
306 	/* Frequently used values: keep some adjacent for cache effect. */
307 	spinlock_t lock;
308 	int chip_id, drv_flags;
309 	struct pci_dev *pci_dev;
310 	int csr6;
311 	struct w840_rx_desc *rx_head_desc;
312 	unsigned int cur_rx, dirty_rx;		/* Producer/consumer ring indices */
313 	unsigned int rx_buf_sz;				/* Based on MTU+slack. */
314 	unsigned int cur_tx, dirty_tx;
315 	unsigned int tx_q_bytes;
316 	unsigned int tx_full;				/* The Tx queue is full. */
317 	/* MII transceiver section. */
318 	int mii_cnt;						/* MII device addresses. */
319 	unsigned char phys[MII_CNT];		/* MII device addresses, but only the first is used */
320 	u32 mii;
321 	struct mii_if_info mii_if;
322 	void __iomem *base_addr;
323 };
324 
325 static int  eeprom_read(void __iomem *ioaddr, int location);
326 static int  mdio_read(struct net_device *dev, int phy_id, int location);
327 static void mdio_write(struct net_device *dev, int phy_id, int location, int value);
328 static int  netdev_open(struct net_device *dev);
329 static int  update_link(struct net_device *dev);
330 static void netdev_timer(struct timer_list *t);
331 static void init_rxtx_rings(struct net_device *dev);
332 static void free_rxtx_rings(struct netdev_private *np);
333 static void init_registers(struct net_device *dev);
334 static void tx_timeout(struct net_device *dev);
335 static int alloc_ringdesc(struct net_device *dev);
336 static void free_ringdesc(struct netdev_private *np);
337 static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev);
338 static irqreturn_t intr_handler(int irq, void *dev_instance);
339 static void netdev_error(struct net_device *dev, int intr_status);
340 static int  netdev_rx(struct net_device *dev);
341 static u32 __set_rx_mode(struct net_device *dev);
342 static void set_rx_mode(struct net_device *dev);
343 static struct net_device_stats *get_stats(struct net_device *dev);
344 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
345 static const struct ethtool_ops netdev_ethtool_ops;
346 static int  netdev_close(struct net_device *dev);
347 
348 static const struct net_device_ops netdev_ops = {
349 	.ndo_open		= netdev_open,
350 	.ndo_stop		= netdev_close,
351 	.ndo_start_xmit		= start_tx,
352 	.ndo_get_stats		= get_stats,
353 	.ndo_set_rx_mode	= set_rx_mode,
354 	.ndo_do_ioctl		= netdev_ioctl,
355 	.ndo_tx_timeout		= tx_timeout,
356 	.ndo_set_mac_address	= eth_mac_addr,
357 	.ndo_validate_addr	= eth_validate_addr,
358 };
359 
360 static int w840_probe1(struct pci_dev *pdev, const struct pci_device_id *ent)
361 {
362 	struct net_device *dev;
363 	struct netdev_private *np;
364 	static int find_cnt;
365 	int chip_idx = ent->driver_data;
366 	int irq;
367 	int i, option = find_cnt < MAX_UNITS ? options[find_cnt] : 0;
368 	void __iomem *ioaddr;
369 
370 	i = pci_enable_device(pdev);
371 	if (i) return i;
372 
373 	pci_set_master(pdev);
374 
375 	irq = pdev->irq;
376 
377 	if (pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) {
378 		pr_warn("Device %s disabled due to DMA limitations\n",
379 			pci_name(pdev));
380 		return -EIO;
381 	}
382 	dev = alloc_etherdev(sizeof(*np));
383 	if (!dev)
384 		return -ENOMEM;
385 	SET_NETDEV_DEV(dev, &pdev->dev);
386 
387 	if (pci_request_regions(pdev, DRV_NAME))
388 		goto err_out_netdev;
389 
390 	ioaddr = pci_iomap(pdev, TULIP_BAR, netdev_res_size);
391 	if (!ioaddr)
392 		goto err_out_free_res;
393 
394 	for (i = 0; i < 3; i++)
395 		((__le16 *)dev->dev_addr)[i] = cpu_to_le16(eeprom_read(ioaddr, i));
396 
397 	/* Reset the chip to erase previous misconfiguration.
398 	   No hold time required! */
399 	iowrite32(0x00000001, ioaddr + PCIBusCfg);
400 
401 	np = netdev_priv(dev);
402 	np->pci_dev = pdev;
403 	np->chip_id = chip_idx;
404 	np->drv_flags = pci_id_tbl[chip_idx].drv_flags;
405 	spin_lock_init(&np->lock);
406 	np->mii_if.dev = dev;
407 	np->mii_if.mdio_read = mdio_read;
408 	np->mii_if.mdio_write = mdio_write;
409 	np->base_addr = ioaddr;
410 
411 	pci_set_drvdata(pdev, dev);
412 
413 	if (dev->mem_start)
414 		option = dev->mem_start;
415 
416 	/* The lower four bits are the media type. */
417 	if (option > 0) {
418 		if (option & 0x200)
419 			np->mii_if.full_duplex = 1;
420 		if (option & 15)
421 			dev_info(&dev->dev,
422 				 "ignoring user supplied media type %d",
423 				 option & 15);
424 	}
425 	if (find_cnt < MAX_UNITS  &&  full_duplex[find_cnt] > 0)
426 		np->mii_if.full_duplex = 1;
427 
428 	if (np->mii_if.full_duplex)
429 		np->mii_if.force_media = 1;
430 
431 	/* The chip-specific entries in the device structure. */
432 	dev->netdev_ops = &netdev_ops;
433 	dev->ethtool_ops = &netdev_ethtool_ops;
434 	dev->watchdog_timeo = TX_TIMEOUT;
435 
436 	i = register_netdev(dev);
437 	if (i)
438 		goto err_out_cleardev;
439 
440 	dev_info(&dev->dev, "%s at %p, %pM, IRQ %d\n",
441 		 pci_id_tbl[chip_idx].name, ioaddr, dev->dev_addr, irq);
442 
443 	if (np->drv_flags & CanHaveMII) {
444 		int phy, phy_idx = 0;
445 		for (phy = 1; phy < 32 && phy_idx < MII_CNT; phy++) {
446 			int mii_status = mdio_read(dev, phy, MII_BMSR);
447 			if (mii_status != 0xffff  &&  mii_status != 0x0000) {
448 				np->phys[phy_idx++] = phy;
449 				np->mii_if.advertising = mdio_read(dev, phy, MII_ADVERTISE);
450 				np->mii = (mdio_read(dev, phy, MII_PHYSID1) << 16)+
451 						mdio_read(dev, phy, MII_PHYSID2);
452 				dev_info(&dev->dev,
453 					 "MII PHY %08xh found at address %d, status 0x%04x advertising %04x\n",
454 					 np->mii, phy, mii_status,
455 					 np->mii_if.advertising);
456 			}
457 		}
458 		np->mii_cnt = phy_idx;
459 		np->mii_if.phy_id = np->phys[0];
460 		if (phy_idx == 0) {
461 			dev_warn(&dev->dev,
462 				 "MII PHY not found -- this device may not operate correctly\n");
463 		}
464 	}
465 
466 	find_cnt++;
467 	return 0;
468 
469 err_out_cleardev:
470 	pci_iounmap(pdev, ioaddr);
471 err_out_free_res:
472 	pci_release_regions(pdev);
473 err_out_netdev:
474 	free_netdev (dev);
475 	return -ENODEV;
476 }
477 
478 
479 /* Read the EEPROM and MII Management Data I/O (MDIO) interfaces.  These are
480    often serial bit streams generated by the host processor.
481    The example below is for the common 93c46 EEPROM, 64 16 bit words. */
482 
483 /* Delay between EEPROM clock transitions.
484    No extra delay is needed with 33Mhz PCI, but future 66Mhz access may need
485    a delay.  Note that pre-2.0.34 kernels had a cache-alignment bug that
486    made udelay() unreliable.
487    The old method of using an ISA access as a delay, __SLOW_DOWN_IO__, is
488    deprecated.
489 */
490 #define eeprom_delay(ee_addr)	ioread32(ee_addr)
491 
492 enum EEPROM_Ctrl_Bits {
493 	EE_ShiftClk=0x02, EE_Write0=0x801, EE_Write1=0x805,
494 	EE_ChipSelect=0x801, EE_DataIn=0x08,
495 };
496 
497 /* The EEPROM commands include the alway-set leading bit. */
498 enum EEPROM_Cmds {
499 	EE_WriteCmd=(5 << 6), EE_ReadCmd=(6 << 6), EE_EraseCmd=(7 << 6),
500 };
501 
502 static int eeprom_read(void __iomem *addr, int location)
503 {
504 	int i;
505 	int retval = 0;
506 	void __iomem *ee_addr = addr + EECtrl;
507 	int read_cmd = location | EE_ReadCmd;
508 	iowrite32(EE_ChipSelect, ee_addr);
509 
510 	/* Shift the read command bits out. */
511 	for (i = 10; i >= 0; i--) {
512 		short dataval = (read_cmd & (1 << i)) ? EE_Write1 : EE_Write0;
513 		iowrite32(dataval, ee_addr);
514 		eeprom_delay(ee_addr);
515 		iowrite32(dataval | EE_ShiftClk, ee_addr);
516 		eeprom_delay(ee_addr);
517 	}
518 	iowrite32(EE_ChipSelect, ee_addr);
519 	eeprom_delay(ee_addr);
520 
521 	for (i = 16; i > 0; i--) {
522 		iowrite32(EE_ChipSelect | EE_ShiftClk, ee_addr);
523 		eeprom_delay(ee_addr);
524 		retval = (retval << 1) | ((ioread32(ee_addr) & EE_DataIn) ? 1 : 0);
525 		iowrite32(EE_ChipSelect, ee_addr);
526 		eeprom_delay(ee_addr);
527 	}
528 
529 	/* Terminate the EEPROM access. */
530 	iowrite32(0, ee_addr);
531 	return retval;
532 }
533 
534 /*  MII transceiver control section.
535 	Read and write the MII registers using software-generated serial
536 	MDIO protocol.  See the MII specifications or DP83840A data sheet
537 	for details.
538 
539 	The maximum data clock rate is 2.5 Mhz.  The minimum timing is usually
540 	met by back-to-back 33Mhz PCI cycles. */
541 #define mdio_delay(mdio_addr) ioread32(mdio_addr)
542 
543 /* Set iff a MII transceiver on any interface requires mdio preamble.
544    This only set with older transceivers, so the extra
545    code size of a per-interface flag is not worthwhile. */
546 static char mii_preamble_required = 1;
547 
548 #define MDIO_WRITE0 (MDIO_EnbOutput)
549 #define MDIO_WRITE1 (MDIO_DataOut | MDIO_EnbOutput)
550 
551 /* Generate the preamble required for initial synchronization and
552    a few older transceivers. */
553 static void mdio_sync(void __iomem *mdio_addr)
554 {
555 	int bits = 32;
556 
557 	/* Establish sync by sending at least 32 logic ones. */
558 	while (--bits >= 0) {
559 		iowrite32(MDIO_WRITE1, mdio_addr);
560 		mdio_delay(mdio_addr);
561 		iowrite32(MDIO_WRITE1 | MDIO_ShiftClk, mdio_addr);
562 		mdio_delay(mdio_addr);
563 	}
564 }
565 
566 static int mdio_read(struct net_device *dev, int phy_id, int location)
567 {
568 	struct netdev_private *np = netdev_priv(dev);
569 	void __iomem *mdio_addr = np->base_addr + MIICtrl;
570 	int mii_cmd = (0xf6 << 10) | (phy_id << 5) | location;
571 	int i, retval = 0;
572 
573 	if (mii_preamble_required)
574 		mdio_sync(mdio_addr);
575 
576 	/* Shift the read command bits out. */
577 	for (i = 15; i >= 0; i--) {
578 		int dataval = (mii_cmd & (1 << i)) ? MDIO_WRITE1 : MDIO_WRITE0;
579 
580 		iowrite32(dataval, mdio_addr);
581 		mdio_delay(mdio_addr);
582 		iowrite32(dataval | MDIO_ShiftClk, mdio_addr);
583 		mdio_delay(mdio_addr);
584 	}
585 	/* Read the two transition, 16 data, and wire-idle bits. */
586 	for (i = 20; i > 0; i--) {
587 		iowrite32(MDIO_EnbIn, mdio_addr);
588 		mdio_delay(mdio_addr);
589 		retval = (retval << 1) | ((ioread32(mdio_addr) & MDIO_DataIn) ? 1 : 0);
590 		iowrite32(MDIO_EnbIn | MDIO_ShiftClk, mdio_addr);
591 		mdio_delay(mdio_addr);
592 	}
593 	return (retval>>1) & 0xffff;
594 }
595 
596 static void mdio_write(struct net_device *dev, int phy_id, int location, int value)
597 {
598 	struct netdev_private *np = netdev_priv(dev);
599 	void __iomem *mdio_addr = np->base_addr + MIICtrl;
600 	int mii_cmd = (0x5002 << 16) | (phy_id << 23) | (location<<18) | value;
601 	int i;
602 
603 	if (location == 4  &&  phy_id == np->phys[0])
604 		np->mii_if.advertising = value;
605 
606 	if (mii_preamble_required)
607 		mdio_sync(mdio_addr);
608 
609 	/* Shift the command bits out. */
610 	for (i = 31; i >= 0; i--) {
611 		int dataval = (mii_cmd & (1 << i)) ? MDIO_WRITE1 : MDIO_WRITE0;
612 
613 		iowrite32(dataval, mdio_addr);
614 		mdio_delay(mdio_addr);
615 		iowrite32(dataval | MDIO_ShiftClk, mdio_addr);
616 		mdio_delay(mdio_addr);
617 	}
618 	/* Clear out extra bits. */
619 	for (i = 2; i > 0; i--) {
620 		iowrite32(MDIO_EnbIn, mdio_addr);
621 		mdio_delay(mdio_addr);
622 		iowrite32(MDIO_EnbIn | MDIO_ShiftClk, mdio_addr);
623 		mdio_delay(mdio_addr);
624 	}
625 }
626 
627 
628 static int netdev_open(struct net_device *dev)
629 {
630 	struct netdev_private *np = netdev_priv(dev);
631 	void __iomem *ioaddr = np->base_addr;
632 	const int irq = np->pci_dev->irq;
633 	int i;
634 
635 	iowrite32(0x00000001, ioaddr + PCIBusCfg);		/* Reset */
636 
637 	netif_device_detach(dev);
638 	i = request_irq(irq, intr_handler, IRQF_SHARED, dev->name, dev);
639 	if (i)
640 		goto out_err;
641 
642 	if (debug > 1)
643 		netdev_dbg(dev, "w89c840_open() irq %d\n", irq);
644 
645 	if((i=alloc_ringdesc(dev)))
646 		goto out_err;
647 
648 	spin_lock_irq(&np->lock);
649 	netif_device_attach(dev);
650 	init_registers(dev);
651 	spin_unlock_irq(&np->lock);
652 
653 	netif_start_queue(dev);
654 	if (debug > 2)
655 		netdev_dbg(dev, "Done netdev_open()\n");
656 
657 	/* Set the timer to check for link beat. */
658 	timer_setup(&np->timer, netdev_timer, 0);
659 	np->timer.expires = jiffies + 1*HZ;
660 	add_timer(&np->timer);
661 	return 0;
662 out_err:
663 	netif_device_attach(dev);
664 	return i;
665 }
666 
667 #define MII_DAVICOM_DM9101	0x0181b800
668 
669 static int update_link(struct net_device *dev)
670 {
671 	struct netdev_private *np = netdev_priv(dev);
672 	int duplex, fasteth, result, mii_reg;
673 
674 	/* BSMR */
675 	mii_reg = mdio_read(dev, np->phys[0], MII_BMSR);
676 
677 	if (mii_reg == 0xffff)
678 		return np->csr6;
679 	/* reread: the link status bit is sticky */
680 	mii_reg = mdio_read(dev, np->phys[0], MII_BMSR);
681 	if (!(mii_reg & 0x4)) {
682 		if (netif_carrier_ok(dev)) {
683 			if (debug)
684 				dev_info(&dev->dev,
685 					 "MII #%d reports no link. Disabling watchdog\n",
686 					 np->phys[0]);
687 			netif_carrier_off(dev);
688 		}
689 		return np->csr6;
690 	}
691 	if (!netif_carrier_ok(dev)) {
692 		if (debug)
693 			dev_info(&dev->dev,
694 				 "MII #%d link is back. Enabling watchdog\n",
695 				 np->phys[0]);
696 		netif_carrier_on(dev);
697 	}
698 
699 	if ((np->mii & ~0xf) == MII_DAVICOM_DM9101) {
700 		/* If the link partner doesn't support autonegotiation
701 		 * the MII detects it's abilities with the "parallel detection".
702 		 * Some MIIs update the LPA register to the result of the parallel
703 		 * detection, some don't.
704 		 * The Davicom PHY [at least 0181b800] doesn't.
705 		 * Instead bit 9 and 13 of the BMCR are updated to the result
706 		 * of the negotiation..
707 		 */
708 		mii_reg = mdio_read(dev, np->phys[0], MII_BMCR);
709 		duplex = mii_reg & BMCR_FULLDPLX;
710 		fasteth = mii_reg & BMCR_SPEED100;
711 	} else {
712 		int negotiated;
713 		mii_reg	= mdio_read(dev, np->phys[0], MII_LPA);
714 		negotiated = mii_reg & np->mii_if.advertising;
715 
716 		duplex = (negotiated & LPA_100FULL) || ((negotiated & 0x02C0) == LPA_10FULL);
717 		fasteth = negotiated & 0x380;
718 	}
719 	duplex |= np->mii_if.force_media;
720 	/* remove fastether and fullduplex */
721 	result = np->csr6 & ~0x20000200;
722 	if (duplex)
723 		result |= 0x200;
724 	if (fasteth)
725 		result |= 0x20000000;
726 	if (result != np->csr6 && debug)
727 		dev_info(&dev->dev,
728 			 "Setting %dMBit-%s-duplex based on MII#%d\n",
729 			 fasteth ? 100 : 10, duplex ? "full" : "half",
730 			 np->phys[0]);
731 	return result;
732 }
733 
734 #define RXTX_TIMEOUT	2000
735 static inline void update_csr6(struct net_device *dev, int new)
736 {
737 	struct netdev_private *np = netdev_priv(dev);
738 	void __iomem *ioaddr = np->base_addr;
739 	int limit = RXTX_TIMEOUT;
740 
741 	if (!netif_device_present(dev))
742 		new = 0;
743 	if (new==np->csr6)
744 		return;
745 	/* stop both Tx and Rx processes */
746 	iowrite32(np->csr6 & ~0x2002, ioaddr + NetworkConfig);
747 	/* wait until they have really stopped */
748 	for (;;) {
749 		int csr5 = ioread32(ioaddr + IntrStatus);
750 		int t;
751 
752 		t = (csr5 >> 17) & 0x07;
753 		if (t==0||t==1) {
754 			/* rx stopped */
755 			t = (csr5 >> 20) & 0x07;
756 			if (t==0||t==1)
757 				break;
758 		}
759 
760 		limit--;
761 		if(!limit) {
762 			dev_info(&dev->dev,
763 				 "couldn't stop rxtx, IntrStatus %xh\n", csr5);
764 			break;
765 		}
766 		udelay(1);
767 	}
768 	np->csr6 = new;
769 	/* and restart them with the new configuration */
770 	iowrite32(np->csr6, ioaddr + NetworkConfig);
771 	if (new & 0x200)
772 		np->mii_if.full_duplex = 1;
773 }
774 
775 static void netdev_timer(struct timer_list *t)
776 {
777 	struct netdev_private *np = from_timer(np, t, timer);
778 	struct net_device *dev = pci_get_drvdata(np->pci_dev);
779 	void __iomem *ioaddr = np->base_addr;
780 
781 	if (debug > 2)
782 		netdev_dbg(dev, "Media selection timer tick, status %08x config %08x\n",
783 			   ioread32(ioaddr + IntrStatus),
784 			   ioread32(ioaddr + NetworkConfig));
785 	spin_lock_irq(&np->lock);
786 	update_csr6(dev, update_link(dev));
787 	spin_unlock_irq(&np->lock);
788 	np->timer.expires = jiffies + 10*HZ;
789 	add_timer(&np->timer);
790 }
791 
792 static void init_rxtx_rings(struct net_device *dev)
793 {
794 	struct netdev_private *np = netdev_priv(dev);
795 	int i;
796 
797 	np->rx_head_desc = &np->rx_ring[0];
798 	np->tx_ring = (struct w840_tx_desc*)&np->rx_ring[RX_RING_SIZE];
799 
800 	/* Initial all Rx descriptors. */
801 	for (i = 0; i < RX_RING_SIZE; i++) {
802 		np->rx_ring[i].length = np->rx_buf_sz;
803 		np->rx_ring[i].status = 0;
804 		np->rx_skbuff[i] = NULL;
805 	}
806 	/* Mark the last entry as wrapping the ring. */
807 	np->rx_ring[i-1].length |= DescEndRing;
808 
809 	/* Fill in the Rx buffers.  Handle allocation failure gracefully. */
810 	for (i = 0; i < RX_RING_SIZE; i++) {
811 		struct sk_buff *skb = netdev_alloc_skb(dev, np->rx_buf_sz);
812 		np->rx_skbuff[i] = skb;
813 		if (skb == NULL)
814 			break;
815 		np->rx_addr[i] = pci_map_single(np->pci_dev,skb->data,
816 					np->rx_buf_sz,PCI_DMA_FROMDEVICE);
817 
818 		np->rx_ring[i].buffer1 = np->rx_addr[i];
819 		np->rx_ring[i].status = DescOwned;
820 	}
821 
822 	np->cur_rx = 0;
823 	np->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
824 
825 	/* Initialize the Tx descriptors */
826 	for (i = 0; i < TX_RING_SIZE; i++) {
827 		np->tx_skbuff[i] = NULL;
828 		np->tx_ring[i].status = 0;
829 	}
830 	np->tx_full = 0;
831 	np->tx_q_bytes = np->dirty_tx = np->cur_tx = 0;
832 
833 	iowrite32(np->ring_dma_addr, np->base_addr + RxRingPtr);
834 	iowrite32(np->ring_dma_addr+sizeof(struct w840_rx_desc)*RX_RING_SIZE,
835 		np->base_addr + TxRingPtr);
836 
837 }
838 
839 static void free_rxtx_rings(struct netdev_private* np)
840 {
841 	int i;
842 	/* Free all the skbuffs in the Rx queue. */
843 	for (i = 0; i < RX_RING_SIZE; i++) {
844 		np->rx_ring[i].status = 0;
845 		if (np->rx_skbuff[i]) {
846 			pci_unmap_single(np->pci_dev,
847 						np->rx_addr[i],
848 						np->rx_skbuff[i]->len,
849 						PCI_DMA_FROMDEVICE);
850 			dev_kfree_skb(np->rx_skbuff[i]);
851 		}
852 		np->rx_skbuff[i] = NULL;
853 	}
854 	for (i = 0; i < TX_RING_SIZE; i++) {
855 		if (np->tx_skbuff[i]) {
856 			pci_unmap_single(np->pci_dev,
857 						np->tx_addr[i],
858 						np->tx_skbuff[i]->len,
859 						PCI_DMA_TODEVICE);
860 			dev_kfree_skb(np->tx_skbuff[i]);
861 		}
862 		np->tx_skbuff[i] = NULL;
863 	}
864 }
865 
866 static void init_registers(struct net_device *dev)
867 {
868 	struct netdev_private *np = netdev_priv(dev);
869 	void __iomem *ioaddr = np->base_addr;
870 	int i;
871 
872 	for (i = 0; i < 6; i++)
873 		iowrite8(dev->dev_addr[i], ioaddr + StationAddr + i);
874 
875 	/* Initialize other registers. */
876 #ifdef __BIG_ENDIAN
877 	i = (1<<20);	/* Big-endian descriptors */
878 #else
879 	i = 0;
880 #endif
881 	i |= (0x04<<2);		/* skip length 4 u32 */
882 	i |= 0x02;		/* give Rx priority */
883 
884 	/* Configure the PCI bus bursts and FIFO thresholds.
885 	   486: Set 8 longword cache alignment, 8 longword burst.
886 	   586: Set 16 longword cache alignment, no burst limit.
887 	   Cache alignment bits 15:14	     Burst length 13:8
888 		0000	<not allowed> 		0000 align to cache	0800 8 longwords
889 		4000	8  longwords		0100 1 longword		1000 16 longwords
890 		8000	16 longwords		0200 2 longwords	2000 32 longwords
891 		C000	32  longwords		0400 4 longwords */
892 
893 #if defined (__i386__) && !defined(MODULE)
894 	/* When not a module we can work around broken '486 PCI boards. */
895 	if (boot_cpu_data.x86 <= 4) {
896 		i |= 0x4800;
897 		dev_info(&dev->dev,
898 			 "This is a 386/486 PCI system, setting cache alignment to 8 longwords\n");
899 	} else {
900 		i |= 0xE000;
901 	}
902 #elif defined(__powerpc__) || defined(__i386__) || defined(__alpha__) || defined(__ia64__) || defined(__x86_64__)
903 	i |= 0xE000;
904 #elif defined(CONFIG_SPARC) || defined (CONFIG_PARISC) || defined(CONFIG_ARM)
905 	i |= 0x4800;
906 #else
907 	dev_warn(&dev->dev, "unknown CPU architecture, using default csr0 setting\n");
908 	i |= 0x4800;
909 #endif
910 	iowrite32(i, ioaddr + PCIBusCfg);
911 
912 	np->csr6 = 0;
913 	/* 128 byte Tx threshold;
914 		Transmit on; Receive on; */
915 	update_csr6(dev, 0x00022002 | update_link(dev) | __set_rx_mode(dev));
916 
917 	/* Clear and Enable interrupts by setting the interrupt mask. */
918 	iowrite32(0x1A0F5, ioaddr + IntrStatus);
919 	iowrite32(0x1A0F5, ioaddr + IntrEnable);
920 
921 	iowrite32(0, ioaddr + RxStartDemand);
922 }
923 
924 static void tx_timeout(struct net_device *dev)
925 {
926 	struct netdev_private *np = netdev_priv(dev);
927 	void __iomem *ioaddr = np->base_addr;
928 	const int irq = np->pci_dev->irq;
929 
930 	dev_warn(&dev->dev, "Transmit timed out, status %08x, resetting...\n",
931 		 ioread32(ioaddr + IntrStatus));
932 
933 	{
934 		int i;
935 		printk(KERN_DEBUG "  Rx ring %p: ", np->rx_ring);
936 		for (i = 0; i < RX_RING_SIZE; i++)
937 			printk(KERN_CONT " %08x", (unsigned int)np->rx_ring[i].status);
938 		printk(KERN_CONT "\n");
939 		printk(KERN_DEBUG "  Tx ring %p: ", np->tx_ring);
940 		for (i = 0; i < TX_RING_SIZE; i++)
941 			printk(KERN_CONT " %08x", np->tx_ring[i].status);
942 		printk(KERN_CONT "\n");
943 	}
944 	printk(KERN_DEBUG "Tx cur %d Tx dirty %d Tx Full %d, q bytes %d\n",
945 	       np->cur_tx, np->dirty_tx, np->tx_full, np->tx_q_bytes);
946 	printk(KERN_DEBUG "Tx Descriptor addr %xh\n", ioread32(ioaddr+0x4C));
947 
948 	disable_irq(irq);
949 	spin_lock_irq(&np->lock);
950 	/*
951 	 * Under high load dirty_tx and the internal tx descriptor pointer
952 	 * come out of sync, thus perform a software reset and reinitialize
953 	 * everything.
954 	 */
955 
956 	iowrite32(1, np->base_addr+PCIBusCfg);
957 	udelay(1);
958 
959 	free_rxtx_rings(np);
960 	init_rxtx_rings(dev);
961 	init_registers(dev);
962 	spin_unlock_irq(&np->lock);
963 	enable_irq(irq);
964 
965 	netif_wake_queue(dev);
966 	netif_trans_update(dev); /* prevent tx timeout */
967 	np->stats.tx_errors++;
968 }
969 
970 /* Initialize the Rx and Tx rings, along with various 'dev' bits. */
971 static int alloc_ringdesc(struct net_device *dev)
972 {
973 	struct netdev_private *np = netdev_priv(dev);
974 
975 	np->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
976 
977 	np->rx_ring = pci_alloc_consistent(np->pci_dev,
978 			sizeof(struct w840_rx_desc)*RX_RING_SIZE +
979 			sizeof(struct w840_tx_desc)*TX_RING_SIZE,
980 			&np->ring_dma_addr);
981 	if(!np->rx_ring)
982 		return -ENOMEM;
983 	init_rxtx_rings(dev);
984 	return 0;
985 }
986 
987 static void free_ringdesc(struct netdev_private *np)
988 {
989 	pci_free_consistent(np->pci_dev,
990 			sizeof(struct w840_rx_desc)*RX_RING_SIZE +
991 			sizeof(struct w840_tx_desc)*TX_RING_SIZE,
992 			np->rx_ring, np->ring_dma_addr);
993 
994 }
995 
996 static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev)
997 {
998 	struct netdev_private *np = netdev_priv(dev);
999 	unsigned entry;
1000 
1001 	/* Caution: the write order is important here, set the field
1002 	   with the "ownership" bits last. */
1003 
1004 	/* Calculate the next Tx descriptor entry. */
1005 	entry = np->cur_tx % TX_RING_SIZE;
1006 
1007 	np->tx_addr[entry] = pci_map_single(np->pci_dev,
1008 				skb->data,skb->len, PCI_DMA_TODEVICE);
1009 	np->tx_skbuff[entry] = skb;
1010 
1011 	np->tx_ring[entry].buffer1 = np->tx_addr[entry];
1012 	if (skb->len < TX_BUFLIMIT) {
1013 		np->tx_ring[entry].length = DescWholePkt | skb->len;
1014 	} else {
1015 		int len = skb->len - TX_BUFLIMIT;
1016 
1017 		np->tx_ring[entry].buffer2 = np->tx_addr[entry]+TX_BUFLIMIT;
1018 		np->tx_ring[entry].length = DescWholePkt | (len << 11) | TX_BUFLIMIT;
1019 	}
1020 	if(entry == TX_RING_SIZE-1)
1021 		np->tx_ring[entry].length |= DescEndRing;
1022 
1023 	/* Now acquire the irq spinlock.
1024 	 * The difficult race is the ordering between
1025 	 * increasing np->cur_tx and setting DescOwned:
1026 	 * - if np->cur_tx is increased first the interrupt
1027 	 *   handler could consider the packet as transmitted
1028 	 *   since DescOwned is cleared.
1029 	 * - If DescOwned is set first the NIC could report the
1030 	 *   packet as sent, but the interrupt handler would ignore it
1031 	 *   since the np->cur_tx was not yet increased.
1032 	 */
1033 	spin_lock_irq(&np->lock);
1034 	np->cur_tx++;
1035 
1036 	wmb(); /* flush length, buffer1, buffer2 */
1037 	np->tx_ring[entry].status = DescOwned;
1038 	wmb(); /* flush status and kick the hardware */
1039 	iowrite32(0, np->base_addr + TxStartDemand);
1040 	np->tx_q_bytes += skb->len;
1041 	/* Work around horrible bug in the chip by marking the queue as full
1042 	   when we do not have FIFO room for a maximum sized packet. */
1043 	if (np->cur_tx - np->dirty_tx > TX_QUEUE_LEN ||
1044 		((np->drv_flags & HasBrokenTx) && np->tx_q_bytes > TX_BUG_FIFO_LIMIT)) {
1045 		netif_stop_queue(dev);
1046 		wmb();
1047 		np->tx_full = 1;
1048 	}
1049 	spin_unlock_irq(&np->lock);
1050 
1051 	if (debug > 4) {
1052 		netdev_dbg(dev, "Transmit frame #%d queued in slot %d\n",
1053 			   np->cur_tx, entry);
1054 	}
1055 	return NETDEV_TX_OK;
1056 }
1057 
1058 static void netdev_tx_done(struct net_device *dev)
1059 {
1060 	struct netdev_private *np = netdev_priv(dev);
1061 	for (; np->cur_tx - np->dirty_tx > 0; np->dirty_tx++) {
1062 		int entry = np->dirty_tx % TX_RING_SIZE;
1063 		int tx_status = np->tx_ring[entry].status;
1064 
1065 		if (tx_status < 0)
1066 			break;
1067 		if (tx_status & 0x8000) { 	/* There was an error, log it. */
1068 #ifndef final_version
1069 			if (debug > 1)
1070 				netdev_dbg(dev, "Transmit error, Tx status %08x\n",
1071 					   tx_status);
1072 #endif
1073 			np->stats.tx_errors++;
1074 			if (tx_status & 0x0104) np->stats.tx_aborted_errors++;
1075 			if (tx_status & 0x0C80) np->stats.tx_carrier_errors++;
1076 			if (tx_status & 0x0200) np->stats.tx_window_errors++;
1077 			if (tx_status & 0x0002) np->stats.tx_fifo_errors++;
1078 			if ((tx_status & 0x0080) && np->mii_if.full_duplex == 0)
1079 				np->stats.tx_heartbeat_errors++;
1080 		} else {
1081 #ifndef final_version
1082 			if (debug > 3)
1083 				netdev_dbg(dev, "Transmit slot %d ok, Tx status %08x\n",
1084 					   entry, tx_status);
1085 #endif
1086 			np->stats.tx_bytes += np->tx_skbuff[entry]->len;
1087 			np->stats.collisions += (tx_status >> 3) & 15;
1088 			np->stats.tx_packets++;
1089 		}
1090 		/* Free the original skb. */
1091 		pci_unmap_single(np->pci_dev,np->tx_addr[entry],
1092 					np->tx_skbuff[entry]->len,
1093 					PCI_DMA_TODEVICE);
1094 		np->tx_q_bytes -= np->tx_skbuff[entry]->len;
1095 		dev_kfree_skb_irq(np->tx_skbuff[entry]);
1096 		np->tx_skbuff[entry] = NULL;
1097 	}
1098 	if (np->tx_full &&
1099 		np->cur_tx - np->dirty_tx < TX_QUEUE_LEN_RESTART &&
1100 		np->tx_q_bytes < TX_BUG_FIFO_LIMIT) {
1101 		/* The ring is no longer full, clear tbusy. */
1102 		np->tx_full = 0;
1103 		wmb();
1104 		netif_wake_queue(dev);
1105 	}
1106 }
1107 
1108 /* The interrupt handler does all of the Rx thread work and cleans up
1109    after the Tx thread. */
1110 static irqreturn_t intr_handler(int irq, void *dev_instance)
1111 {
1112 	struct net_device *dev = (struct net_device *)dev_instance;
1113 	struct netdev_private *np = netdev_priv(dev);
1114 	void __iomem *ioaddr = np->base_addr;
1115 	int work_limit = max_interrupt_work;
1116 	int handled = 0;
1117 
1118 	if (!netif_device_present(dev))
1119 		return IRQ_NONE;
1120 	do {
1121 		u32 intr_status = ioread32(ioaddr + IntrStatus);
1122 
1123 		/* Acknowledge all of the current interrupt sources ASAP. */
1124 		iowrite32(intr_status & 0x001ffff, ioaddr + IntrStatus);
1125 
1126 		if (debug > 4)
1127 			netdev_dbg(dev, "Interrupt, status %04x\n", intr_status);
1128 
1129 		if ((intr_status & (NormalIntr|AbnormalIntr)) == 0)
1130 			break;
1131 
1132 		handled = 1;
1133 
1134 		if (intr_status & (RxIntr | RxNoBuf))
1135 			netdev_rx(dev);
1136 		if (intr_status & RxNoBuf)
1137 			iowrite32(0, ioaddr + RxStartDemand);
1138 
1139 		if (intr_status & (TxNoBuf | TxIntr) &&
1140 			np->cur_tx != np->dirty_tx) {
1141 			spin_lock(&np->lock);
1142 			netdev_tx_done(dev);
1143 			spin_unlock(&np->lock);
1144 		}
1145 
1146 		/* Abnormal error summary/uncommon events handlers. */
1147 		if (intr_status & (AbnormalIntr | TxFIFOUnderflow | SystemError |
1148 						   TimerInt | TxDied))
1149 			netdev_error(dev, intr_status);
1150 
1151 		if (--work_limit < 0) {
1152 			dev_warn(&dev->dev,
1153 				 "Too much work at interrupt, status=0x%04x\n",
1154 				 intr_status);
1155 			/* Set the timer to re-enable the other interrupts after
1156 			   10*82usec ticks. */
1157 			spin_lock(&np->lock);
1158 			if (netif_device_present(dev)) {
1159 				iowrite32(AbnormalIntr | TimerInt, ioaddr + IntrEnable);
1160 				iowrite32(10, ioaddr + GPTimer);
1161 			}
1162 			spin_unlock(&np->lock);
1163 			break;
1164 		}
1165 	} while (1);
1166 
1167 	if (debug > 3)
1168 		netdev_dbg(dev, "exiting interrupt, status=%#4.4x\n",
1169 			   ioread32(ioaddr + IntrStatus));
1170 	return IRQ_RETVAL(handled);
1171 }
1172 
1173 /* This routine is logically part of the interrupt handler, but separated
1174    for clarity and better register allocation. */
1175 static int netdev_rx(struct net_device *dev)
1176 {
1177 	struct netdev_private *np = netdev_priv(dev);
1178 	int entry = np->cur_rx % RX_RING_SIZE;
1179 	int work_limit = np->dirty_rx + RX_RING_SIZE - np->cur_rx;
1180 
1181 	if (debug > 4) {
1182 		netdev_dbg(dev, " In netdev_rx(), entry %d status %04x\n",
1183 			   entry, np->rx_ring[entry].status);
1184 	}
1185 
1186 	/* If EOP is set on the next entry, it's a new packet. Send it up. */
1187 	while (--work_limit >= 0) {
1188 		struct w840_rx_desc *desc = np->rx_head_desc;
1189 		s32 status = desc->status;
1190 
1191 		if (debug > 4)
1192 			netdev_dbg(dev, "  netdev_rx() status was %08x\n",
1193 				   status);
1194 		if (status < 0)
1195 			break;
1196 		if ((status & 0x38008300) != 0x0300) {
1197 			if ((status & 0x38000300) != 0x0300) {
1198 				/* Ingore earlier buffers. */
1199 				if ((status & 0xffff) != 0x7fff) {
1200 					dev_warn(&dev->dev,
1201 						 "Oversized Ethernet frame spanned multiple buffers, entry %#x status %04x!\n",
1202 						 np->cur_rx, status);
1203 					np->stats.rx_length_errors++;
1204 				}
1205 			} else if (status & 0x8000) {
1206 				/* There was a fatal error. */
1207 				if (debug > 2)
1208 					netdev_dbg(dev, "Receive error, Rx status %08x\n",
1209 						   status);
1210 				np->stats.rx_errors++; /* end of a packet.*/
1211 				if (status & 0x0890) np->stats.rx_length_errors++;
1212 				if (status & 0x004C) np->stats.rx_frame_errors++;
1213 				if (status & 0x0002) np->stats.rx_crc_errors++;
1214 			}
1215 		} else {
1216 			struct sk_buff *skb;
1217 			/* Omit the four octet CRC from the length. */
1218 			int pkt_len = ((status >> 16) & 0x7ff) - 4;
1219 
1220 #ifndef final_version
1221 			if (debug > 4)
1222 				netdev_dbg(dev, "  netdev_rx() normal Rx pkt length %d status %x\n",
1223 					   pkt_len, status);
1224 #endif
1225 			/* Check if the packet is long enough to accept without copying
1226 			   to a minimally-sized skbuff. */
1227 			if (pkt_len < rx_copybreak &&
1228 			    (skb = netdev_alloc_skb(dev, pkt_len + 2)) != NULL) {
1229 				skb_reserve(skb, 2);	/* 16 byte align the IP header */
1230 				pci_dma_sync_single_for_cpu(np->pci_dev,np->rx_addr[entry],
1231 							    np->rx_skbuff[entry]->len,
1232 							    PCI_DMA_FROMDEVICE);
1233 				skb_copy_to_linear_data(skb, np->rx_skbuff[entry]->data, pkt_len);
1234 				skb_put(skb, pkt_len);
1235 				pci_dma_sync_single_for_device(np->pci_dev,np->rx_addr[entry],
1236 							       np->rx_skbuff[entry]->len,
1237 							       PCI_DMA_FROMDEVICE);
1238 			} else {
1239 				pci_unmap_single(np->pci_dev,np->rx_addr[entry],
1240 							np->rx_skbuff[entry]->len,
1241 							PCI_DMA_FROMDEVICE);
1242 				skb_put(skb = np->rx_skbuff[entry], pkt_len);
1243 				np->rx_skbuff[entry] = NULL;
1244 			}
1245 #ifndef final_version				/* Remove after testing. */
1246 			/* You will want this info for the initial debug. */
1247 			if (debug > 5)
1248 				netdev_dbg(dev, "  Rx data %pM %pM %02x%02x %pI4\n",
1249 					   &skb->data[0], &skb->data[6],
1250 					   skb->data[12], skb->data[13],
1251 					   &skb->data[14]);
1252 #endif
1253 			skb->protocol = eth_type_trans(skb, dev);
1254 			netif_rx(skb);
1255 			np->stats.rx_packets++;
1256 			np->stats.rx_bytes += pkt_len;
1257 		}
1258 		entry = (++np->cur_rx) % RX_RING_SIZE;
1259 		np->rx_head_desc = &np->rx_ring[entry];
1260 	}
1261 
1262 	/* Refill the Rx ring buffers. */
1263 	for (; np->cur_rx - np->dirty_rx > 0; np->dirty_rx++) {
1264 		struct sk_buff *skb;
1265 		entry = np->dirty_rx % RX_RING_SIZE;
1266 		if (np->rx_skbuff[entry] == NULL) {
1267 			skb = netdev_alloc_skb(dev, np->rx_buf_sz);
1268 			np->rx_skbuff[entry] = skb;
1269 			if (skb == NULL)
1270 				break;			/* Better luck next round. */
1271 			np->rx_addr[entry] = pci_map_single(np->pci_dev,
1272 							skb->data,
1273 							np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1274 			np->rx_ring[entry].buffer1 = np->rx_addr[entry];
1275 		}
1276 		wmb();
1277 		np->rx_ring[entry].status = DescOwned;
1278 	}
1279 
1280 	return 0;
1281 }
1282 
1283 static void netdev_error(struct net_device *dev, int intr_status)
1284 {
1285 	struct netdev_private *np = netdev_priv(dev);
1286 	void __iomem *ioaddr = np->base_addr;
1287 
1288 	if (debug > 2)
1289 		netdev_dbg(dev, "Abnormal event, %08x\n", intr_status);
1290 	if (intr_status == 0xffffffff)
1291 		return;
1292 	spin_lock(&np->lock);
1293 	if (intr_status & TxFIFOUnderflow) {
1294 		int new;
1295 		/* Bump up the Tx threshold */
1296 #if 0
1297 		/* This causes lots of dropped packets,
1298 		 * and under high load even tx_timeouts
1299 		 */
1300 		new = np->csr6 + 0x4000;
1301 #else
1302 		new = (np->csr6 >> 14)&0x7f;
1303 		if (new < 64)
1304 			new *= 2;
1305 		 else
1306 		 	new = 127; /* load full packet before starting */
1307 		new = (np->csr6 & ~(0x7F << 14)) | (new<<14);
1308 #endif
1309 		netdev_dbg(dev, "Tx underflow, new csr6 %08x\n", new);
1310 		update_csr6(dev, new);
1311 	}
1312 	if (intr_status & RxDied) {		/* Missed a Rx frame. */
1313 		np->stats.rx_errors++;
1314 	}
1315 	if (intr_status & TimerInt) {
1316 		/* Re-enable other interrupts. */
1317 		if (netif_device_present(dev))
1318 			iowrite32(0x1A0F5, ioaddr + IntrEnable);
1319 	}
1320 	np->stats.rx_missed_errors += ioread32(ioaddr + RxMissed) & 0xffff;
1321 	iowrite32(0, ioaddr + RxStartDemand);
1322 	spin_unlock(&np->lock);
1323 }
1324 
1325 static struct net_device_stats *get_stats(struct net_device *dev)
1326 {
1327 	struct netdev_private *np = netdev_priv(dev);
1328 	void __iomem *ioaddr = np->base_addr;
1329 
1330 	/* The chip only need report frame silently dropped. */
1331 	spin_lock_irq(&np->lock);
1332 	if (netif_running(dev) && netif_device_present(dev))
1333 		np->stats.rx_missed_errors += ioread32(ioaddr + RxMissed) & 0xffff;
1334 	spin_unlock_irq(&np->lock);
1335 
1336 	return &np->stats;
1337 }
1338 
1339 
1340 static u32 __set_rx_mode(struct net_device *dev)
1341 {
1342 	struct netdev_private *np = netdev_priv(dev);
1343 	void __iomem *ioaddr = np->base_addr;
1344 	u32 mc_filter[2];			/* Multicast hash filter */
1345 	u32 rx_mode;
1346 
1347 	if (dev->flags & IFF_PROMISC) {			/* Set promiscuous. */
1348 		memset(mc_filter, 0xff, sizeof(mc_filter));
1349 		rx_mode = RxAcceptBroadcast | AcceptMulticast | RxAcceptAllPhys
1350 			| AcceptMyPhys;
1351 	} else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
1352 		   (dev->flags & IFF_ALLMULTI)) {
1353 		/* Too many to match, or accept all multicasts. */
1354 		memset(mc_filter, 0xff, sizeof(mc_filter));
1355 		rx_mode = RxAcceptBroadcast | AcceptMulticast | AcceptMyPhys;
1356 	} else {
1357 		struct netdev_hw_addr *ha;
1358 
1359 		memset(mc_filter, 0, sizeof(mc_filter));
1360 		netdev_for_each_mc_addr(ha, dev) {
1361 			int filbit;
1362 
1363 			filbit = (ether_crc(ETH_ALEN, ha->addr) >> 26) ^ 0x3F;
1364 			filbit &= 0x3f;
1365 			mc_filter[filbit >> 5] |= 1 << (filbit & 31);
1366 		}
1367 		rx_mode = RxAcceptBroadcast | AcceptMulticast | AcceptMyPhys;
1368 	}
1369 	iowrite32(mc_filter[0], ioaddr + MulticastFilter0);
1370 	iowrite32(mc_filter[1], ioaddr + MulticastFilter1);
1371 	return rx_mode;
1372 }
1373 
1374 static void set_rx_mode(struct net_device *dev)
1375 {
1376 	struct netdev_private *np = netdev_priv(dev);
1377 	u32 rx_mode = __set_rx_mode(dev);
1378 	spin_lock_irq(&np->lock);
1379 	update_csr6(dev, (np->csr6 & ~0x00F8) | rx_mode);
1380 	spin_unlock_irq(&np->lock);
1381 }
1382 
1383 static void netdev_get_drvinfo (struct net_device *dev, struct ethtool_drvinfo *info)
1384 {
1385 	struct netdev_private *np = netdev_priv(dev);
1386 
1387 	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1388 	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1389 	strlcpy(info->bus_info, pci_name(np->pci_dev), sizeof(info->bus_info));
1390 }
1391 
1392 static int netdev_get_link_ksettings(struct net_device *dev,
1393 				     struct ethtool_link_ksettings *cmd)
1394 {
1395 	struct netdev_private *np = netdev_priv(dev);
1396 
1397 	spin_lock_irq(&np->lock);
1398 	mii_ethtool_get_link_ksettings(&np->mii_if, cmd);
1399 	spin_unlock_irq(&np->lock);
1400 
1401 	return 0;
1402 }
1403 
1404 static int netdev_set_link_ksettings(struct net_device *dev,
1405 				     const struct ethtool_link_ksettings *cmd)
1406 {
1407 	struct netdev_private *np = netdev_priv(dev);
1408 	int rc;
1409 
1410 	spin_lock_irq(&np->lock);
1411 	rc = mii_ethtool_set_link_ksettings(&np->mii_if, cmd);
1412 	spin_unlock_irq(&np->lock);
1413 
1414 	return rc;
1415 }
1416 
1417 static int netdev_nway_reset(struct net_device *dev)
1418 {
1419 	struct netdev_private *np = netdev_priv(dev);
1420 	return mii_nway_restart(&np->mii_if);
1421 }
1422 
1423 static u32 netdev_get_link(struct net_device *dev)
1424 {
1425 	struct netdev_private *np = netdev_priv(dev);
1426 	return mii_link_ok(&np->mii_if);
1427 }
1428 
1429 static u32 netdev_get_msglevel(struct net_device *dev)
1430 {
1431 	return debug;
1432 }
1433 
1434 static void netdev_set_msglevel(struct net_device *dev, u32 value)
1435 {
1436 	debug = value;
1437 }
1438 
1439 static const struct ethtool_ops netdev_ethtool_ops = {
1440 	.get_drvinfo		= netdev_get_drvinfo,
1441 	.nway_reset		= netdev_nway_reset,
1442 	.get_link		= netdev_get_link,
1443 	.get_msglevel		= netdev_get_msglevel,
1444 	.set_msglevel		= netdev_set_msglevel,
1445 	.get_link_ksettings	= netdev_get_link_ksettings,
1446 	.set_link_ksettings	= netdev_set_link_ksettings,
1447 };
1448 
1449 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1450 {
1451 	struct mii_ioctl_data *data = if_mii(rq);
1452 	struct netdev_private *np = netdev_priv(dev);
1453 
1454 	switch(cmd) {
1455 	case SIOCGMIIPHY:		/* Get address of MII PHY in use. */
1456 		data->phy_id = ((struct netdev_private *)netdev_priv(dev))->phys[0] & 0x1f;
1457 		/* Fall Through */
1458 
1459 	case SIOCGMIIREG:		/* Read MII PHY register. */
1460 		spin_lock_irq(&np->lock);
1461 		data->val_out = mdio_read(dev, data->phy_id & 0x1f, data->reg_num & 0x1f);
1462 		spin_unlock_irq(&np->lock);
1463 		return 0;
1464 
1465 	case SIOCSMIIREG:		/* Write MII PHY register. */
1466 		spin_lock_irq(&np->lock);
1467 		mdio_write(dev, data->phy_id & 0x1f, data->reg_num & 0x1f, data->val_in);
1468 		spin_unlock_irq(&np->lock);
1469 		return 0;
1470 	default:
1471 		return -EOPNOTSUPP;
1472 	}
1473 }
1474 
1475 static int netdev_close(struct net_device *dev)
1476 {
1477 	struct netdev_private *np = netdev_priv(dev);
1478 	void __iomem *ioaddr = np->base_addr;
1479 
1480 	netif_stop_queue(dev);
1481 
1482 	if (debug > 1) {
1483 		netdev_dbg(dev, "Shutting down ethercard, status was %08x Config %08x\n",
1484 			   ioread32(ioaddr + IntrStatus),
1485 			   ioread32(ioaddr + NetworkConfig));
1486 		netdev_dbg(dev, "Queue pointers were Tx %d / %d,  Rx %d / %d\n",
1487 			   np->cur_tx, np->dirty_tx,
1488 			   np->cur_rx, np->dirty_rx);
1489 	}
1490 
1491  	/* Stop the chip's Tx and Rx processes. */
1492 	spin_lock_irq(&np->lock);
1493 	netif_device_detach(dev);
1494 	update_csr6(dev, 0);
1495 	iowrite32(0x0000, ioaddr + IntrEnable);
1496 	spin_unlock_irq(&np->lock);
1497 
1498 	free_irq(np->pci_dev->irq, dev);
1499 	wmb();
1500 	netif_device_attach(dev);
1501 
1502 	if (ioread32(ioaddr + NetworkConfig) != 0xffffffff)
1503 		np->stats.rx_missed_errors += ioread32(ioaddr + RxMissed) & 0xffff;
1504 
1505 #ifdef __i386__
1506 	if (debug > 2) {
1507 		int i;
1508 
1509 		printk(KERN_DEBUG"  Tx ring at %p:\n", np->tx_ring);
1510 		for (i = 0; i < TX_RING_SIZE; i++)
1511 			printk(KERN_DEBUG " #%d desc. %04x %04x %08x\n",
1512 			       i, np->tx_ring[i].length,
1513 			       np->tx_ring[i].status, np->tx_ring[i].buffer1);
1514 		printk(KERN_DEBUG "  Rx ring %p:\n", np->rx_ring);
1515 		for (i = 0; i < RX_RING_SIZE; i++) {
1516 			printk(KERN_DEBUG " #%d desc. %04x %04x %08x\n",
1517 			       i, np->rx_ring[i].length,
1518 			       np->rx_ring[i].status, np->rx_ring[i].buffer1);
1519 		}
1520 	}
1521 #endif /* __i386__ debugging only */
1522 
1523 	del_timer_sync(&np->timer);
1524 
1525 	free_rxtx_rings(np);
1526 	free_ringdesc(np);
1527 
1528 	return 0;
1529 }
1530 
1531 static void w840_remove1(struct pci_dev *pdev)
1532 {
1533 	struct net_device *dev = pci_get_drvdata(pdev);
1534 
1535 	if (dev) {
1536 		struct netdev_private *np = netdev_priv(dev);
1537 		unregister_netdev(dev);
1538 		pci_release_regions(pdev);
1539 		pci_iounmap(pdev, np->base_addr);
1540 		free_netdev(dev);
1541 	}
1542 }
1543 
1544 #ifdef CONFIG_PM
1545 
1546 /*
1547  * suspend/resume synchronization:
1548  * - open, close, do_ioctl:
1549  * 	rtnl_lock, & netif_device_detach after the rtnl_unlock.
1550  * - get_stats:
1551  * 	spin_lock_irq(np->lock), doesn't touch hw if not present
1552  * - start_xmit:
1553  * 	synchronize_irq + netif_tx_disable;
1554  * - tx_timeout:
1555  * 	netif_device_detach + netif_tx_disable;
1556  * - set_multicast_list
1557  * 	netif_device_detach + netif_tx_disable;
1558  * - interrupt handler
1559  * 	doesn't touch hw if not present, synchronize_irq waits for
1560  * 	running instances of the interrupt handler.
1561  *
1562  * Disabling hw requires clearing csr6 & IntrEnable.
1563  * update_csr6 & all function that write IntrEnable check netif_device_present
1564  * before settings any bits.
1565  *
1566  * Detach must occur under spin_unlock_irq(), interrupts from a detached
1567  * device would cause an irq storm.
1568  */
1569 static int w840_suspend (struct pci_dev *pdev, pm_message_t state)
1570 {
1571 	struct net_device *dev = pci_get_drvdata (pdev);
1572 	struct netdev_private *np = netdev_priv(dev);
1573 	void __iomem *ioaddr = np->base_addr;
1574 
1575 	rtnl_lock();
1576 	if (netif_running (dev)) {
1577 		del_timer_sync(&np->timer);
1578 
1579 		spin_lock_irq(&np->lock);
1580 		netif_device_detach(dev);
1581 		update_csr6(dev, 0);
1582 		iowrite32(0, ioaddr + IntrEnable);
1583 		spin_unlock_irq(&np->lock);
1584 
1585 		synchronize_irq(np->pci_dev->irq);
1586 		netif_tx_disable(dev);
1587 
1588 		np->stats.rx_missed_errors += ioread32(ioaddr + RxMissed) & 0xffff;
1589 
1590 		/* no more hardware accesses behind this line. */
1591 
1592 		BUG_ON(np->csr6 || ioread32(ioaddr + IntrEnable));
1593 
1594 		/* pci_power_off(pdev, -1); */
1595 
1596 		free_rxtx_rings(np);
1597 	} else {
1598 		netif_device_detach(dev);
1599 	}
1600 	rtnl_unlock();
1601 	return 0;
1602 }
1603 
1604 static int w840_resume (struct pci_dev *pdev)
1605 {
1606 	struct net_device *dev = pci_get_drvdata (pdev);
1607 	struct netdev_private *np = netdev_priv(dev);
1608 	int retval = 0;
1609 
1610 	rtnl_lock();
1611 	if (netif_device_present(dev))
1612 		goto out; /* device not suspended */
1613 	if (netif_running(dev)) {
1614 		if ((retval = pci_enable_device(pdev))) {
1615 			dev_err(&dev->dev,
1616 				"pci_enable_device failed in resume\n");
1617 			goto out;
1618 		}
1619 		spin_lock_irq(&np->lock);
1620 		iowrite32(1, np->base_addr+PCIBusCfg);
1621 		ioread32(np->base_addr+PCIBusCfg);
1622 		udelay(1);
1623 		netif_device_attach(dev);
1624 		init_rxtx_rings(dev);
1625 		init_registers(dev);
1626 		spin_unlock_irq(&np->lock);
1627 
1628 		netif_wake_queue(dev);
1629 
1630 		mod_timer(&np->timer, jiffies + 1*HZ);
1631 	} else {
1632 		netif_device_attach(dev);
1633 	}
1634 out:
1635 	rtnl_unlock();
1636 	return retval;
1637 }
1638 #endif
1639 
1640 static struct pci_driver w840_driver = {
1641 	.name		= DRV_NAME,
1642 	.id_table	= w840_pci_tbl,
1643 	.probe		= w840_probe1,
1644 	.remove		= w840_remove1,
1645 #ifdef CONFIG_PM
1646 	.suspend	= w840_suspend,
1647 	.resume		= w840_resume,
1648 #endif
1649 };
1650 
1651 static int __init w840_init(void)
1652 {
1653 	printk(version);
1654 	return pci_register_driver(&w840_driver);
1655 }
1656 
1657 static void __exit w840_exit(void)
1658 {
1659 	pci_unregister_driver(&w840_driver);
1660 }
1661 
1662 module_init(w840_init);
1663 module_exit(w840_exit);
1664