1 /*	tulip_core.c: A DEC 21x4x-family ethernet driver for Linux.
2 
3 	Copyright 2000,2001  The Linux Kernel Team
4 	Written/copyright 1994-2001 by Donald Becker.
5 
6 	This software may be used and distributed according to the terms
7 	of the GNU General Public License, incorporated herein by reference.
8 
9 	Please submit bugs to http://bugzilla.kernel.org/ .
10 */
11 
12 #define pr_fmt(fmt) "tulip: " fmt
13 
14 #define DRV_NAME	"tulip"
15 #ifdef CONFIG_TULIP_NAPI
16 #define DRV_VERSION    "1.1.15-NAPI" /* Keep at least for test */
17 #else
18 #define DRV_VERSION	"1.1.15"
19 #endif
20 #define DRV_RELDATE	"Feb 27, 2007"
21 
22 
23 #include <linux/module.h>
24 #include <linux/pci.h>
25 #include <linux/slab.h>
26 #include "tulip.h"
27 #include <linux/init.h>
28 #include <linux/interrupt.h>
29 #include <linux/etherdevice.h>
30 #include <linux/delay.h>
31 #include <linux/mii.h>
32 #include <linux/crc32.h>
33 #include <asm/unaligned.h>
34 #include <asm/uaccess.h>
35 
36 #ifdef CONFIG_SPARC
37 #include <asm/prom.h>
38 #endif
39 
40 static char version[] =
41 	"Linux Tulip driver version " DRV_VERSION " (" DRV_RELDATE ")\n";
42 
43 /* A few user-configurable values. */
44 
45 /* Maximum events (Rx packets, etc.) to handle at each interrupt. */
46 static unsigned int max_interrupt_work = 25;
47 
48 #define MAX_UNITS 8
49 /* Used to pass the full-duplex flag, etc. */
50 static int full_duplex[MAX_UNITS];
51 static int options[MAX_UNITS];
52 static int mtu[MAX_UNITS];			/* Jumbo MTU for interfaces. */
53 
54 /*  The possible media types that can be set in options[] are: */
55 const char * const medianame[32] = {
56 	"10baseT", "10base2", "AUI", "100baseTx",
57 	"10baseT-FDX", "100baseTx-FDX", "100baseT4", "100baseFx",
58 	"100baseFx-FDX", "MII 10baseT", "MII 10baseT-FDX", "MII",
59 	"10baseT(forced)", "MII 100baseTx", "MII 100baseTx-FDX", "MII 100baseT4",
60 	"MII 100baseFx-HDX", "MII 100baseFx-FDX", "Home-PNA 1Mbps", "Invalid-19",
61 	"","","","", "","","","",  "","","","Transceiver reset",
62 };
63 
64 /* Set the copy breakpoint for the copy-only-tiny-buffer Rx structure. */
65 #if defined(__alpha__) || defined(__arm__) || defined(__hppa__) || \
66 	defined(CONFIG_SPARC) || defined(__ia64__) || \
67 	defined(__sh__) || defined(__mips__)
68 static int rx_copybreak = 1518;
69 #else
70 static int rx_copybreak = 100;
71 #endif
72 
73 /*
74   Set the bus performance register.
75 	Typical: Set 16 longword cache alignment, no burst limit.
76 	Cache alignment bits 15:14	     Burst length 13:8
77 		0000	No alignment  0x00000000 unlimited		0800 8 longwords
78 		4000	8  longwords		0100 1 longword		1000 16 longwords
79 		8000	16 longwords		0200 2 longwords	2000 32 longwords
80 		C000	32  longwords		0400 4 longwords
81 	Warning: many older 486 systems are broken and require setting 0x00A04800
82 	   8 longword cache alignment, 8 longword burst.
83 	ToDo: Non-Intel setting could be better.
84 */
85 
86 #if defined(__alpha__) || defined(__ia64__)
87 static int csr0 = 0x01A00000 | 0xE000;
88 #elif defined(__i386__) || defined(__powerpc__) || defined(__x86_64__)
89 static int csr0 = 0x01A00000 | 0x8000;
90 #elif defined(CONFIG_SPARC) || defined(__hppa__)
91 /* The UltraSparc PCI controllers will disconnect at every 64-byte
92  * crossing anyways so it makes no sense to tell Tulip to burst
93  * any more than that.
94  */
95 static int csr0 = 0x01A00000 | 0x9000;
96 #elif defined(__arm__) || defined(__sh__)
97 static int csr0 = 0x01A00000 | 0x4800;
98 #elif defined(__mips__)
99 static int csr0 = 0x00200000 | 0x4000;
100 #else
101 static int csr0;
102 #endif
103 
104 /* Operational parameters that usually are not changed. */
105 /* Time in jiffies before concluding the transmitter is hung. */
106 #define TX_TIMEOUT  (4*HZ)
107 
108 
109 MODULE_AUTHOR("The Linux Kernel Team");
110 MODULE_DESCRIPTION("Digital 21*4* Tulip ethernet driver");
111 MODULE_LICENSE("GPL");
112 MODULE_VERSION(DRV_VERSION);
113 module_param(tulip_debug, int, 0);
114 module_param(max_interrupt_work, int, 0);
115 module_param(rx_copybreak, int, 0);
116 module_param(csr0, int, 0);
117 module_param_array(options, int, NULL, 0);
118 module_param_array(full_duplex, int, NULL, 0);
119 
120 #ifdef TULIP_DEBUG
121 int tulip_debug = TULIP_DEBUG;
122 #else
123 int tulip_debug = 1;
124 #endif
125 
126 static void tulip_timer(unsigned long data)
127 {
128 	struct net_device *dev = (struct net_device *)data;
129 	struct tulip_private *tp = netdev_priv(dev);
130 
131 	if (netif_running(dev))
132 		schedule_work(&tp->media_work);
133 }
134 
135 /*
136  * This table use during operation for capabilities and media timer.
137  *
138  * It is indexed via the values in 'enum chips'
139  */
140 
141 struct tulip_chip_table tulip_tbl[] = {
142   { }, /* placeholder for array, slot unused currently */
143   { }, /* placeholder for array, slot unused currently */
144 
145   /* DC21140 */
146   { "Digital DS21140 Tulip", 128, 0x0001ebef,
147 	HAS_MII | HAS_MEDIA_TABLE | CSR12_IN_SROM | HAS_PCI_MWI, tulip_timer,
148 	tulip_media_task },
149 
150   /* DC21142, DC21143 */
151   { "Digital DS21142/43 Tulip", 128, 0x0801fbff,
152 	HAS_MII | HAS_MEDIA_TABLE | ALWAYS_CHECK_MII | HAS_ACPI | HAS_NWAY
153 	| HAS_INTR_MITIGATION | HAS_PCI_MWI, tulip_timer, t21142_media_task },
154 
155   /* LC82C168 */
156   { "Lite-On 82c168 PNIC", 256, 0x0001fbef,
157 	HAS_MII | HAS_PNICNWAY, pnic_timer, },
158 
159   /* MX98713 */
160   { "Macronix 98713 PMAC", 128, 0x0001ebef,
161 	HAS_MII | HAS_MEDIA_TABLE | CSR12_IN_SROM, mxic_timer, },
162 
163   /* MX98715 */
164   { "Macronix 98715 PMAC", 256, 0x0001ebef,
165 	HAS_MEDIA_TABLE, mxic_timer, },
166 
167   /* MX98725 */
168   { "Macronix 98725 PMAC", 256, 0x0001ebef,
169 	HAS_MEDIA_TABLE, mxic_timer, },
170 
171   /* AX88140 */
172   { "ASIX AX88140", 128, 0x0001fbff,
173 	HAS_MII | HAS_MEDIA_TABLE | CSR12_IN_SROM | MC_HASH_ONLY
174 	| IS_ASIX, tulip_timer, tulip_media_task },
175 
176   /* PNIC2 */
177   { "Lite-On PNIC-II", 256, 0x0801fbff,
178 	HAS_MII | HAS_NWAY | HAS_8023X | HAS_PCI_MWI, pnic2_timer, },
179 
180   /* COMET */
181   { "ADMtek Comet", 256, 0x0001abef,
182 	HAS_MII | MC_HASH_ONLY | COMET_MAC_ADDR, comet_timer, },
183 
184   /* COMPEX9881 */
185   { "Compex 9881 PMAC", 128, 0x0001ebef,
186 	HAS_MII | HAS_MEDIA_TABLE | CSR12_IN_SROM, mxic_timer, },
187 
188   /* I21145 */
189   { "Intel DS21145 Tulip", 128, 0x0801fbff,
190 	HAS_MII | HAS_MEDIA_TABLE | ALWAYS_CHECK_MII | HAS_ACPI
191 	| HAS_NWAY | HAS_PCI_MWI, tulip_timer, tulip_media_task },
192 
193   /* DM910X */
194 #ifdef CONFIG_TULIP_DM910X
195   { "Davicom DM9102/DM9102A", 128, 0x0001ebef,
196 	HAS_MII | HAS_MEDIA_TABLE | CSR12_IN_SROM | HAS_ACPI,
197 	tulip_timer, tulip_media_task },
198 #else
199   { NULL },
200 #endif
201 
202   /* RS7112 */
203   { "Conexant LANfinity", 256, 0x0001ebef,
204 	HAS_MII | HAS_ACPI, tulip_timer, tulip_media_task },
205 
206 };
207 
208 
209 static const struct pci_device_id tulip_pci_tbl[] = {
210 	{ 0x1011, 0x0009, PCI_ANY_ID, PCI_ANY_ID, 0, 0, DC21140 },
211 	{ 0x1011, 0x0019, PCI_ANY_ID, PCI_ANY_ID, 0, 0, DC21143 },
212 	{ 0x11AD, 0x0002, PCI_ANY_ID, PCI_ANY_ID, 0, 0, LC82C168 },
213 	{ 0x10d9, 0x0512, PCI_ANY_ID, PCI_ANY_ID, 0, 0, MX98713 },
214 	{ 0x10d9, 0x0531, PCI_ANY_ID, PCI_ANY_ID, 0, 0, MX98715 },
215 /*	{ 0x10d9, 0x0531, PCI_ANY_ID, PCI_ANY_ID, 0, 0, MX98725 },*/
216 	{ 0x125B, 0x1400, PCI_ANY_ID, PCI_ANY_ID, 0, 0, AX88140 },
217 	{ 0x11AD, 0xc115, PCI_ANY_ID, PCI_ANY_ID, 0, 0, PNIC2 },
218 	{ 0x1317, 0x0981, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
219 	{ 0x1317, 0x0985, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
220 	{ 0x1317, 0x1985, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
221 	{ 0x1317, 0x9511, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
222 	{ 0x13D1, 0xAB02, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
223 	{ 0x13D1, 0xAB03, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
224 	{ 0x13D1, 0xAB08, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
225 	{ 0x104A, 0x0981, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
226 	{ 0x104A, 0x2774, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
227 	{ 0x1259, 0xa120, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
228 	{ 0x11F6, 0x9881, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMPEX9881 },
229 	{ 0x8086, 0x0039, PCI_ANY_ID, PCI_ANY_ID, 0, 0, I21145 },
230 #ifdef CONFIG_TULIP_DM910X
231 	{ 0x1282, 0x9100, PCI_ANY_ID, PCI_ANY_ID, 0, 0, DM910X },
232 	{ 0x1282, 0x9102, PCI_ANY_ID, PCI_ANY_ID, 0, 0, DM910X },
233 #endif
234 	{ 0x1113, 0x1216, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
235 	{ 0x1113, 0x1217, PCI_ANY_ID, PCI_ANY_ID, 0, 0, MX98715 },
236 	{ 0x1113, 0x9511, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
237 	{ 0x1186, 0x1541, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
238 	{ 0x1186, 0x1561, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
239 	{ 0x1186, 0x1591, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
240 	{ 0x14f1, 0x1803, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CONEXANT },
241 	{ 0x1626, 0x8410, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
242 	{ 0x1737, 0xAB09, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
243 	{ 0x1737, 0xAB08, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
244 	{ 0x17B3, 0xAB08, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
245 	{ 0x10b7, 0x9300, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET }, /* 3Com 3CSOHO100B-TX */
246 	{ 0x14ea, 0xab08, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET }, /* Planex FNW-3602-TX */
247 	{ 0x1414, 0x0001, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET }, /* Microsoft MN-120 */
248 	{ 0x1414, 0x0002, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
249 	{ } /* terminate list */
250 };
251 MODULE_DEVICE_TABLE(pci, tulip_pci_tbl);
252 
253 
254 /* A full-duplex map for media types. */
255 const char tulip_media_cap[32] =
256 {0,0,0,16,  3,19,16,24,  27,4,7,5, 0,20,23,20,  28,31,0,0, };
257 
258 static void tulip_tx_timeout(struct net_device *dev);
259 static void tulip_init_ring(struct net_device *dev);
260 static void tulip_free_ring(struct net_device *dev);
261 static netdev_tx_t tulip_start_xmit(struct sk_buff *skb,
262 					  struct net_device *dev);
263 static int tulip_open(struct net_device *dev);
264 static int tulip_close(struct net_device *dev);
265 static void tulip_up(struct net_device *dev);
266 static void tulip_down(struct net_device *dev);
267 static struct net_device_stats *tulip_get_stats(struct net_device *dev);
268 static int private_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
269 static void set_rx_mode(struct net_device *dev);
270 static void tulip_set_wolopts(struct pci_dev *pdev, u32 wolopts);
271 #ifdef CONFIG_NET_POLL_CONTROLLER
272 static void poll_tulip(struct net_device *dev);
273 #endif
274 
275 static void tulip_set_power_state (struct tulip_private *tp,
276 				   int sleep, int snooze)
277 {
278 	if (tp->flags & HAS_ACPI) {
279 		u32 tmp, newtmp;
280 		pci_read_config_dword (tp->pdev, CFDD, &tmp);
281 		newtmp = tmp & ~(CFDD_Sleep | CFDD_Snooze);
282 		if (sleep)
283 			newtmp |= CFDD_Sleep;
284 		else if (snooze)
285 			newtmp |= CFDD_Snooze;
286 		if (tmp != newtmp)
287 			pci_write_config_dword (tp->pdev, CFDD, newtmp);
288 	}
289 
290 }
291 
292 
293 static void tulip_up(struct net_device *dev)
294 {
295 	struct tulip_private *tp = netdev_priv(dev);
296 	void __iomem *ioaddr = tp->base_addr;
297 	int next_tick = 3*HZ;
298 	u32 reg;
299 	int i;
300 
301 #ifdef CONFIG_TULIP_NAPI
302 	napi_enable(&tp->napi);
303 #endif
304 
305 	/* Wake the chip from sleep/snooze mode. */
306 	tulip_set_power_state (tp, 0, 0);
307 
308 	/* Disable all WOL events */
309 	pci_enable_wake(tp->pdev, PCI_D3hot, 0);
310 	pci_enable_wake(tp->pdev, PCI_D3cold, 0);
311 	tulip_set_wolopts(tp->pdev, 0);
312 
313 	/* On some chip revs we must set the MII/SYM port before the reset!? */
314 	if (tp->mii_cnt  ||  (tp->mtable  &&  tp->mtable->has_mii))
315 		iowrite32(0x00040000, ioaddr + CSR6);
316 
317 	/* Reset the chip, holding bit 0 set at least 50 PCI cycles. */
318 	iowrite32(0x00000001, ioaddr + CSR0);
319 	pci_read_config_dword(tp->pdev, PCI_COMMAND, &reg);  /* flush write */
320 	udelay(100);
321 
322 	/* Deassert reset.
323 	   Wait the specified 50 PCI cycles after a reset by initializing
324 	   Tx and Rx queues and the address filter list. */
325 	iowrite32(tp->csr0, ioaddr + CSR0);
326 	pci_read_config_dword(tp->pdev, PCI_COMMAND, &reg);  /* flush write */
327 	udelay(100);
328 
329 	if (tulip_debug > 1)
330 		netdev_dbg(dev, "tulip_up(), irq==%d\n", tp->pdev->irq);
331 
332 	iowrite32(tp->rx_ring_dma, ioaddr + CSR3);
333 	iowrite32(tp->tx_ring_dma, ioaddr + CSR4);
334 	tp->cur_rx = tp->cur_tx = 0;
335 	tp->dirty_rx = tp->dirty_tx = 0;
336 
337 	if (tp->flags & MC_HASH_ONLY) {
338 		u32 addr_low = get_unaligned_le32(dev->dev_addr);
339 		u32 addr_high = get_unaligned_le16(dev->dev_addr + 4);
340 		if (tp->chip_id == AX88140) {
341 			iowrite32(0, ioaddr + CSR13);
342 			iowrite32(addr_low,  ioaddr + CSR14);
343 			iowrite32(1, ioaddr + CSR13);
344 			iowrite32(addr_high, ioaddr + CSR14);
345 		} else if (tp->flags & COMET_MAC_ADDR) {
346 			iowrite32(addr_low,  ioaddr + 0xA4);
347 			iowrite32(addr_high, ioaddr + 0xA8);
348 			iowrite32(0, ioaddr + CSR27);
349 			iowrite32(0, ioaddr + CSR28);
350 		}
351 	} else {
352 		/* This is set_rx_mode(), but without starting the transmitter. */
353 		u16 *eaddrs = (u16 *)dev->dev_addr;
354 		u16 *setup_frm = &tp->setup_frame[15*6];
355 		dma_addr_t mapping;
356 
357 		/* 21140 bug: you must add the broadcast address. */
358 		memset(tp->setup_frame, 0xff, sizeof(tp->setup_frame));
359 		/* Fill the final entry of the table with our physical address. */
360 		*setup_frm++ = eaddrs[0]; *setup_frm++ = eaddrs[0];
361 		*setup_frm++ = eaddrs[1]; *setup_frm++ = eaddrs[1];
362 		*setup_frm++ = eaddrs[2]; *setup_frm++ = eaddrs[2];
363 
364 		mapping = pci_map_single(tp->pdev, tp->setup_frame,
365 					 sizeof(tp->setup_frame),
366 					 PCI_DMA_TODEVICE);
367 		tp->tx_buffers[tp->cur_tx].skb = NULL;
368 		tp->tx_buffers[tp->cur_tx].mapping = mapping;
369 
370 		/* Put the setup frame on the Tx list. */
371 		tp->tx_ring[tp->cur_tx].length = cpu_to_le32(0x08000000 | 192);
372 		tp->tx_ring[tp->cur_tx].buffer1 = cpu_to_le32(mapping);
373 		tp->tx_ring[tp->cur_tx].status = cpu_to_le32(DescOwned);
374 
375 		tp->cur_tx++;
376 	}
377 
378 	tp->saved_if_port = dev->if_port;
379 	if (dev->if_port == 0)
380 		dev->if_port = tp->default_port;
381 
382 	/* Allow selecting a default media. */
383 	i = 0;
384 	if (tp->mtable == NULL)
385 		goto media_picked;
386 	if (dev->if_port) {
387 		int looking_for = tulip_media_cap[dev->if_port] & MediaIsMII ? 11 :
388 			(dev->if_port == 12 ? 0 : dev->if_port);
389 		for (i = 0; i < tp->mtable->leafcount; i++)
390 			if (tp->mtable->mleaf[i].media == looking_for) {
391 				dev_info(&dev->dev,
392 					 "Using user-specified media %s\n",
393 					 medianame[dev->if_port]);
394 				goto media_picked;
395 			}
396 	}
397 	if ((tp->mtable->defaultmedia & 0x0800) == 0) {
398 		int looking_for = tp->mtable->defaultmedia & MEDIA_MASK;
399 		for (i = 0; i < tp->mtable->leafcount; i++)
400 			if (tp->mtable->mleaf[i].media == looking_for) {
401 				dev_info(&dev->dev,
402 					 "Using EEPROM-set media %s\n",
403 					 medianame[looking_for]);
404 				goto media_picked;
405 			}
406 	}
407 	/* Start sensing first non-full-duplex media. */
408 	for (i = tp->mtable->leafcount - 1;
409 		 (tulip_media_cap[tp->mtable->mleaf[i].media] & MediaAlwaysFD) && i > 0; i--)
410 		;
411 media_picked:
412 
413 	tp->csr6 = 0;
414 	tp->cur_index = i;
415 	tp->nwayset = 0;
416 
417 	if (dev->if_port) {
418 		if (tp->chip_id == DC21143  &&
419 		    (tulip_media_cap[dev->if_port] & MediaIsMII)) {
420 			/* We must reset the media CSRs when we force-select MII mode. */
421 			iowrite32(0x0000, ioaddr + CSR13);
422 			iowrite32(0x0000, ioaddr + CSR14);
423 			iowrite32(0x0008, ioaddr + CSR15);
424 		}
425 		tulip_select_media(dev, 1);
426 	} else if (tp->chip_id == DC21142) {
427 		if (tp->mii_cnt) {
428 			tulip_select_media(dev, 1);
429 			if (tulip_debug > 1)
430 				dev_info(&dev->dev,
431 					 "Using MII transceiver %d, status %04x\n",
432 					 tp->phys[0],
433 					 tulip_mdio_read(dev, tp->phys[0], 1));
434 			iowrite32(csr6_mask_defstate, ioaddr + CSR6);
435 			tp->csr6 = csr6_mask_hdcap;
436 			dev->if_port = 11;
437 			iowrite32(0x0000, ioaddr + CSR13);
438 			iowrite32(0x0000, ioaddr + CSR14);
439 		} else
440 			t21142_start_nway(dev);
441 	} else if (tp->chip_id == PNIC2) {
442 	        /* for initial startup advertise 10/100 Full and Half */
443 	        tp->sym_advertise = 0x01E0;
444                 /* enable autonegotiate end interrupt */
445 	        iowrite32(ioread32(ioaddr+CSR5)| 0x00008010, ioaddr + CSR5);
446 	        iowrite32(ioread32(ioaddr+CSR7)| 0x00008010, ioaddr + CSR7);
447 		pnic2_start_nway(dev);
448 	} else if (tp->chip_id == LC82C168  &&  ! tp->medialock) {
449 		if (tp->mii_cnt) {
450 			dev->if_port = 11;
451 			tp->csr6 = 0x814C0000 | (tp->full_duplex ? 0x0200 : 0);
452 			iowrite32(0x0001, ioaddr + CSR15);
453 		} else if (ioread32(ioaddr + CSR5) & TPLnkPass)
454 			pnic_do_nway(dev);
455 		else {
456 			/* Start with 10mbps to do autonegotiation. */
457 			iowrite32(0x32, ioaddr + CSR12);
458 			tp->csr6 = 0x00420000;
459 			iowrite32(0x0001B078, ioaddr + 0xB8);
460 			iowrite32(0x0201B078, ioaddr + 0xB8);
461 			next_tick = 1*HZ;
462 		}
463 	} else if ((tp->chip_id == MX98713 || tp->chip_id == COMPEX9881) &&
464 		   ! tp->medialock) {
465 		dev->if_port = 0;
466 		tp->csr6 = 0x01880000 | (tp->full_duplex ? 0x0200 : 0);
467 		iowrite32(0x0f370000 | ioread16(ioaddr + 0x80), ioaddr + 0x80);
468 	} else if (tp->chip_id == MX98715 || tp->chip_id == MX98725) {
469 		/* Provided by BOLO, Macronix - 12/10/1998. */
470 		dev->if_port = 0;
471 		tp->csr6 = 0x01a80200;
472 		iowrite32(0x0f370000 | ioread16(ioaddr + 0x80), ioaddr + 0x80);
473 		iowrite32(0x11000 | ioread16(ioaddr + 0xa0), ioaddr + 0xa0);
474 	} else if (tp->chip_id == COMET || tp->chip_id == CONEXANT) {
475 		/* Enable automatic Tx underrun recovery. */
476 		iowrite32(ioread32(ioaddr + 0x88) | 1, ioaddr + 0x88);
477 		dev->if_port = tp->mii_cnt ? 11 : 0;
478 		tp->csr6 = 0x00040000;
479 	} else if (tp->chip_id == AX88140) {
480 		tp->csr6 = tp->mii_cnt ? 0x00040100 : 0x00000100;
481 	} else
482 		tulip_select_media(dev, 1);
483 
484 	/* Start the chip's Tx to process setup frame. */
485 	tulip_stop_rxtx(tp);
486 	barrier();
487 	udelay(5);
488 	iowrite32(tp->csr6 | TxOn, ioaddr + CSR6);
489 
490 	/* Enable interrupts by setting the interrupt mask. */
491 	iowrite32(tulip_tbl[tp->chip_id].valid_intrs, ioaddr + CSR5);
492 	iowrite32(tulip_tbl[tp->chip_id].valid_intrs, ioaddr + CSR7);
493 	tulip_start_rxtx(tp);
494 	iowrite32(0, ioaddr + CSR2);		/* Rx poll demand */
495 
496 	if (tulip_debug > 2) {
497 		netdev_dbg(dev, "Done tulip_up(), CSR0 %08x, CSR5 %08x CSR6 %08x\n",
498 			   ioread32(ioaddr + CSR0),
499 			   ioread32(ioaddr + CSR5),
500 			   ioread32(ioaddr + CSR6));
501 	}
502 
503 	/* Set the timer to switch to check for link beat and perhaps switch
504 	   to an alternate media type. */
505 	tp->timer.expires = RUN_AT(next_tick);
506 	add_timer(&tp->timer);
507 #ifdef CONFIG_TULIP_NAPI
508 	setup_timer(&tp->oom_timer, oom_timer, (unsigned long)dev);
509 #endif
510 }
511 
512 static int
513 tulip_open(struct net_device *dev)
514 {
515 	struct tulip_private *tp = netdev_priv(dev);
516 	int retval;
517 
518 	tulip_init_ring (dev);
519 
520 	retval = request_irq(tp->pdev->irq, tulip_interrupt, IRQF_SHARED,
521 			     dev->name, dev);
522 	if (retval)
523 		goto free_ring;
524 
525 	tulip_up (dev);
526 
527 	netif_start_queue (dev);
528 
529 	return 0;
530 
531 free_ring:
532 	tulip_free_ring (dev);
533 	return retval;
534 }
535 
536 
537 static void tulip_tx_timeout(struct net_device *dev)
538 {
539 	struct tulip_private *tp = netdev_priv(dev);
540 	void __iomem *ioaddr = tp->base_addr;
541 	unsigned long flags;
542 
543 	spin_lock_irqsave (&tp->lock, flags);
544 
545 	if (tulip_media_cap[dev->if_port] & MediaIsMII) {
546 		/* Do nothing -- the media monitor should handle this. */
547 		if (tulip_debug > 1)
548 			dev_warn(&dev->dev,
549 				 "Transmit timeout using MII device\n");
550 	} else if (tp->chip_id == DC21140 || tp->chip_id == DC21142 ||
551 		   tp->chip_id == MX98713 || tp->chip_id == COMPEX9881 ||
552 		   tp->chip_id == DM910X) {
553 		dev_warn(&dev->dev,
554 			 "21140 transmit timed out, status %08x, SIA %08x %08x %08x %08x, resetting...\n",
555 			 ioread32(ioaddr + CSR5), ioread32(ioaddr + CSR12),
556 			 ioread32(ioaddr + CSR13), ioread32(ioaddr + CSR14),
557 			 ioread32(ioaddr + CSR15));
558 		tp->timeout_recovery = 1;
559 		schedule_work(&tp->media_work);
560 		goto out_unlock;
561 	} else if (tp->chip_id == PNIC2) {
562 		dev_warn(&dev->dev,
563 			 "PNIC2 transmit timed out, status %08x, CSR6/7 %08x / %08x CSR12 %08x, resetting...\n",
564 			 (int)ioread32(ioaddr + CSR5),
565 			 (int)ioread32(ioaddr + CSR6),
566 			 (int)ioread32(ioaddr + CSR7),
567 			 (int)ioread32(ioaddr + CSR12));
568 	} else {
569 		dev_warn(&dev->dev,
570 			 "Transmit timed out, status %08x, CSR12 %08x, resetting...\n",
571 			 ioread32(ioaddr + CSR5), ioread32(ioaddr + CSR12));
572 		dev->if_port = 0;
573 	}
574 
575 #if defined(way_too_many_messages)
576 	if (tulip_debug > 3) {
577 		int i;
578 		for (i = 0; i < RX_RING_SIZE; i++) {
579 			u8 *buf = (u8 *)(tp->rx_ring[i].buffer1);
580 			int j;
581 			printk(KERN_DEBUG
582 			       "%2d: %08x %08x %08x %08x  %02x %02x %02x\n",
583 			       i,
584 			       (unsigned int)tp->rx_ring[i].status,
585 			       (unsigned int)tp->rx_ring[i].length,
586 			       (unsigned int)tp->rx_ring[i].buffer1,
587 			       (unsigned int)tp->rx_ring[i].buffer2,
588 			       buf[0], buf[1], buf[2]);
589 			for (j = 0; ((j < 1600) && buf[j] != 0xee); j++)
590 				if (j < 100)
591 					pr_cont(" %02x", buf[j]);
592 			pr_cont(" j=%d\n", j);
593 		}
594 		printk(KERN_DEBUG "  Rx ring %p: ", tp->rx_ring);
595 		for (i = 0; i < RX_RING_SIZE; i++)
596 			pr_cont(" %08x", (unsigned int)tp->rx_ring[i].status);
597 		printk(KERN_DEBUG "  Tx ring %p: ", tp->tx_ring);
598 		for (i = 0; i < TX_RING_SIZE; i++)
599 			pr_cont(" %08x", (unsigned int)tp->tx_ring[i].status);
600 		pr_cont("\n");
601 	}
602 #endif
603 
604 	tulip_tx_timeout_complete(tp, ioaddr);
605 
606 out_unlock:
607 	spin_unlock_irqrestore (&tp->lock, flags);
608 	netif_trans_update(dev); /* prevent tx timeout */
609 	netif_wake_queue (dev);
610 }
611 
612 
613 /* Initialize the Rx and Tx rings, along with various 'dev' bits. */
614 static void tulip_init_ring(struct net_device *dev)
615 {
616 	struct tulip_private *tp = netdev_priv(dev);
617 	int i;
618 
619 	tp->susp_rx = 0;
620 	tp->ttimer = 0;
621 	tp->nir = 0;
622 
623 	for (i = 0; i < RX_RING_SIZE; i++) {
624 		tp->rx_ring[i].status = 0x00000000;
625 		tp->rx_ring[i].length = cpu_to_le32(PKT_BUF_SZ);
626 		tp->rx_ring[i].buffer2 = cpu_to_le32(tp->rx_ring_dma + sizeof(struct tulip_rx_desc) * (i + 1));
627 		tp->rx_buffers[i].skb = NULL;
628 		tp->rx_buffers[i].mapping = 0;
629 	}
630 	/* Mark the last entry as wrapping the ring. */
631 	tp->rx_ring[i-1].length = cpu_to_le32(PKT_BUF_SZ | DESC_RING_WRAP);
632 	tp->rx_ring[i-1].buffer2 = cpu_to_le32(tp->rx_ring_dma);
633 
634 	for (i = 0; i < RX_RING_SIZE; i++) {
635 		dma_addr_t mapping;
636 
637 		/* Note the receive buffer must be longword aligned.
638 		   netdev_alloc_skb() provides 16 byte alignment.  But do *not*
639 		   use skb_reserve() to align the IP header! */
640 		struct sk_buff *skb = netdev_alloc_skb(dev, PKT_BUF_SZ);
641 		tp->rx_buffers[i].skb = skb;
642 		if (skb == NULL)
643 			break;
644 		mapping = pci_map_single(tp->pdev, skb->data,
645 					 PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
646 		tp->rx_buffers[i].mapping = mapping;
647 		tp->rx_ring[i].status = cpu_to_le32(DescOwned);	/* Owned by Tulip chip */
648 		tp->rx_ring[i].buffer1 = cpu_to_le32(mapping);
649 	}
650 	tp->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
651 
652 	/* The Tx buffer descriptor is filled in as needed, but we
653 	   do need to clear the ownership bit. */
654 	for (i = 0; i < TX_RING_SIZE; i++) {
655 		tp->tx_buffers[i].skb = NULL;
656 		tp->tx_buffers[i].mapping = 0;
657 		tp->tx_ring[i].status = 0x00000000;
658 		tp->tx_ring[i].buffer2 = cpu_to_le32(tp->tx_ring_dma + sizeof(struct tulip_tx_desc) * (i + 1));
659 	}
660 	tp->tx_ring[i-1].buffer2 = cpu_to_le32(tp->tx_ring_dma);
661 }
662 
663 static netdev_tx_t
664 tulip_start_xmit(struct sk_buff *skb, struct net_device *dev)
665 {
666 	struct tulip_private *tp = netdev_priv(dev);
667 	int entry;
668 	u32 flag;
669 	dma_addr_t mapping;
670 	unsigned long flags;
671 
672 	spin_lock_irqsave(&tp->lock, flags);
673 
674 	/* Calculate the next Tx descriptor entry. */
675 	entry = tp->cur_tx % TX_RING_SIZE;
676 
677 	tp->tx_buffers[entry].skb = skb;
678 	mapping = pci_map_single(tp->pdev, skb->data,
679 				 skb->len, PCI_DMA_TODEVICE);
680 	tp->tx_buffers[entry].mapping = mapping;
681 	tp->tx_ring[entry].buffer1 = cpu_to_le32(mapping);
682 
683 	if (tp->cur_tx - tp->dirty_tx < TX_RING_SIZE/2) {/* Typical path */
684 		flag = 0x60000000; /* No interrupt */
685 	} else if (tp->cur_tx - tp->dirty_tx == TX_RING_SIZE/2) {
686 		flag = 0xe0000000; /* Tx-done intr. */
687 	} else if (tp->cur_tx - tp->dirty_tx < TX_RING_SIZE - 2) {
688 		flag = 0x60000000; /* No Tx-done intr. */
689 	} else {		/* Leave room for set_rx_mode() to fill entries. */
690 		flag = 0xe0000000; /* Tx-done intr. */
691 		netif_stop_queue(dev);
692 	}
693 	if (entry == TX_RING_SIZE-1)
694 		flag = 0xe0000000 | DESC_RING_WRAP;
695 
696 	tp->tx_ring[entry].length = cpu_to_le32(skb->len | flag);
697 	/* if we were using Transmit Automatic Polling, we would need a
698 	 * wmb() here. */
699 	tp->tx_ring[entry].status = cpu_to_le32(DescOwned);
700 	wmb();
701 
702 	tp->cur_tx++;
703 
704 	/* Trigger an immediate transmit demand. */
705 	iowrite32(0, tp->base_addr + CSR1);
706 
707 	spin_unlock_irqrestore(&tp->lock, flags);
708 
709 	return NETDEV_TX_OK;
710 }
711 
712 static void tulip_clean_tx_ring(struct tulip_private *tp)
713 {
714 	unsigned int dirty_tx;
715 
716 	for (dirty_tx = tp->dirty_tx ; tp->cur_tx - dirty_tx > 0;
717 		dirty_tx++) {
718 		int entry = dirty_tx % TX_RING_SIZE;
719 		int status = le32_to_cpu(tp->tx_ring[entry].status);
720 
721 		if (status < 0) {
722 			tp->dev->stats.tx_errors++;	/* It wasn't Txed */
723 			tp->tx_ring[entry].status = 0;
724 		}
725 
726 		/* Check for Tx filter setup frames. */
727 		if (tp->tx_buffers[entry].skb == NULL) {
728 			/* test because dummy frames not mapped */
729 			if (tp->tx_buffers[entry].mapping)
730 				pci_unmap_single(tp->pdev,
731 					tp->tx_buffers[entry].mapping,
732 					sizeof(tp->setup_frame),
733 					PCI_DMA_TODEVICE);
734 			continue;
735 		}
736 
737 		pci_unmap_single(tp->pdev, tp->tx_buffers[entry].mapping,
738 				tp->tx_buffers[entry].skb->len,
739 				PCI_DMA_TODEVICE);
740 
741 		/* Free the original skb. */
742 		dev_kfree_skb_irq(tp->tx_buffers[entry].skb);
743 		tp->tx_buffers[entry].skb = NULL;
744 		tp->tx_buffers[entry].mapping = 0;
745 	}
746 }
747 
748 static void tulip_down (struct net_device *dev)
749 {
750 	struct tulip_private *tp = netdev_priv(dev);
751 	void __iomem *ioaddr = tp->base_addr;
752 	unsigned long flags;
753 
754 	cancel_work_sync(&tp->media_work);
755 
756 #ifdef CONFIG_TULIP_NAPI
757 	napi_disable(&tp->napi);
758 #endif
759 
760 	del_timer_sync (&tp->timer);
761 #ifdef CONFIG_TULIP_NAPI
762 	del_timer_sync (&tp->oom_timer);
763 #endif
764 	spin_lock_irqsave (&tp->lock, flags);
765 
766 	/* Disable interrupts by clearing the interrupt mask. */
767 	iowrite32 (0x00000000, ioaddr + CSR7);
768 
769 	/* Stop the Tx and Rx processes. */
770 	tulip_stop_rxtx(tp);
771 
772 	/* prepare receive buffers */
773 	tulip_refill_rx(dev);
774 
775 	/* release any unconsumed transmit buffers */
776 	tulip_clean_tx_ring(tp);
777 
778 	if (ioread32(ioaddr + CSR6) != 0xffffffff)
779 		dev->stats.rx_missed_errors += ioread32(ioaddr + CSR8) & 0xffff;
780 
781 	spin_unlock_irqrestore (&tp->lock, flags);
782 
783 	setup_timer(&tp->timer, tulip_tbl[tp->chip_id].media_timer,
784 		    (unsigned long)dev);
785 
786 	dev->if_port = tp->saved_if_port;
787 
788 	/* Leave the driver in snooze, not sleep, mode. */
789 	tulip_set_power_state (tp, 0, 1);
790 }
791 
792 static void tulip_free_ring (struct net_device *dev)
793 {
794 	struct tulip_private *tp = netdev_priv(dev);
795 	int i;
796 
797 	/* Free all the skbuffs in the Rx queue. */
798 	for (i = 0; i < RX_RING_SIZE; i++) {
799 		struct sk_buff *skb = tp->rx_buffers[i].skb;
800 		dma_addr_t mapping = tp->rx_buffers[i].mapping;
801 
802 		tp->rx_buffers[i].skb = NULL;
803 		tp->rx_buffers[i].mapping = 0;
804 
805 		tp->rx_ring[i].status = 0;	/* Not owned by Tulip chip. */
806 		tp->rx_ring[i].length = 0;
807 		/* An invalid address. */
808 		tp->rx_ring[i].buffer1 = cpu_to_le32(0xBADF00D0);
809 		if (skb) {
810 			pci_unmap_single(tp->pdev, mapping, PKT_BUF_SZ,
811 					 PCI_DMA_FROMDEVICE);
812 			dev_kfree_skb (skb);
813 		}
814 	}
815 
816 	for (i = 0; i < TX_RING_SIZE; i++) {
817 		struct sk_buff *skb = tp->tx_buffers[i].skb;
818 
819 		if (skb != NULL) {
820 			pci_unmap_single(tp->pdev, tp->tx_buffers[i].mapping,
821 					 skb->len, PCI_DMA_TODEVICE);
822 			dev_kfree_skb (skb);
823 		}
824 		tp->tx_buffers[i].skb = NULL;
825 		tp->tx_buffers[i].mapping = 0;
826 	}
827 }
828 
829 static int tulip_close (struct net_device *dev)
830 {
831 	struct tulip_private *tp = netdev_priv(dev);
832 	void __iomem *ioaddr = tp->base_addr;
833 
834 	netif_stop_queue (dev);
835 
836 	tulip_down (dev);
837 
838 	if (tulip_debug > 1)
839 		netdev_dbg(dev, "Shutting down ethercard, status was %02x\n",
840 			   ioread32 (ioaddr + CSR5));
841 
842 	free_irq (tp->pdev->irq, dev);
843 
844 	tulip_free_ring (dev);
845 
846 	return 0;
847 }
848 
849 static struct net_device_stats *tulip_get_stats(struct net_device *dev)
850 {
851 	struct tulip_private *tp = netdev_priv(dev);
852 	void __iomem *ioaddr = tp->base_addr;
853 
854 	if (netif_running(dev)) {
855 		unsigned long flags;
856 
857 		spin_lock_irqsave (&tp->lock, flags);
858 
859 		dev->stats.rx_missed_errors += ioread32(ioaddr + CSR8) & 0xffff;
860 
861 		spin_unlock_irqrestore(&tp->lock, flags);
862 	}
863 
864 	return &dev->stats;
865 }
866 
867 
868 static void tulip_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
869 {
870 	struct tulip_private *np = netdev_priv(dev);
871 	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
872 	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
873 	strlcpy(info->bus_info, pci_name(np->pdev), sizeof(info->bus_info));
874 }
875 
876 
877 static int tulip_ethtool_set_wol(struct net_device *dev,
878 				 struct ethtool_wolinfo *wolinfo)
879 {
880 	struct tulip_private *tp = netdev_priv(dev);
881 
882 	if (wolinfo->wolopts & (~tp->wolinfo.supported))
883 		   return -EOPNOTSUPP;
884 
885 	tp->wolinfo.wolopts = wolinfo->wolopts;
886 	device_set_wakeup_enable(&tp->pdev->dev, tp->wolinfo.wolopts);
887 	return 0;
888 }
889 
890 static void tulip_ethtool_get_wol(struct net_device *dev,
891 				  struct ethtool_wolinfo *wolinfo)
892 {
893 	struct tulip_private *tp = netdev_priv(dev);
894 
895 	wolinfo->supported = tp->wolinfo.supported;
896 	wolinfo->wolopts = tp->wolinfo.wolopts;
897 	return;
898 }
899 
900 
901 static const struct ethtool_ops ops = {
902 	.get_drvinfo = tulip_get_drvinfo,
903 	.set_wol     = tulip_ethtool_set_wol,
904 	.get_wol     = tulip_ethtool_get_wol,
905 };
906 
907 /* Provide ioctl() calls to examine the MII xcvr state. */
908 static int private_ioctl (struct net_device *dev, struct ifreq *rq, int cmd)
909 {
910 	struct tulip_private *tp = netdev_priv(dev);
911 	void __iomem *ioaddr = tp->base_addr;
912 	struct mii_ioctl_data *data = if_mii(rq);
913 	const unsigned int phy_idx = 0;
914 	int phy = tp->phys[phy_idx] & 0x1f;
915 	unsigned int regnum = data->reg_num;
916 
917 	switch (cmd) {
918 	case SIOCGMIIPHY:		/* Get address of MII PHY in use. */
919 		if (tp->mii_cnt)
920 			data->phy_id = phy;
921 		else if (tp->flags & HAS_NWAY)
922 			data->phy_id = 32;
923 		else if (tp->chip_id == COMET)
924 			data->phy_id = 1;
925 		else
926 			return -ENODEV;
927 
928 	case SIOCGMIIREG:		/* Read MII PHY register. */
929 		if (data->phy_id == 32 && (tp->flags & HAS_NWAY)) {
930 			int csr12 = ioread32 (ioaddr + CSR12);
931 			int csr14 = ioread32 (ioaddr + CSR14);
932 			switch (regnum) {
933 			case 0:
934                                 if (((csr14<<5) & 0x1000) ||
935                                         (dev->if_port == 5 && tp->nwayset))
936                                         data->val_out = 0x1000;
937                                 else
938                                         data->val_out = (tulip_media_cap[dev->if_port]&MediaIs100 ? 0x2000 : 0)
939                                                 | (tulip_media_cap[dev->if_port]&MediaIsFD ? 0x0100 : 0);
940 				break;
941 			case 1:
942                                 data->val_out =
943 					0x1848 +
944 					((csr12&0x7000) == 0x5000 ? 0x20 : 0) +
945 					((csr12&0x06) == 6 ? 0 : 4);
946                                 data->val_out |= 0x6048;
947 				break;
948 			case 4:
949                                 /* Advertised value, bogus 10baseTx-FD value from CSR6. */
950                                 data->val_out =
951 					((ioread32(ioaddr + CSR6) >> 3) & 0x0040) +
952 					((csr14 >> 1) & 0x20) + 1;
953                                 data->val_out |= ((csr14 >> 9) & 0x03C0);
954 				break;
955 			case 5: data->val_out = tp->lpar; break;
956 			default: data->val_out = 0; break;
957 			}
958 		} else {
959 			data->val_out = tulip_mdio_read (dev, data->phy_id & 0x1f, regnum);
960 		}
961 		return 0;
962 
963 	case SIOCSMIIREG:		/* Write MII PHY register. */
964 		if (regnum & ~0x1f)
965 			return -EINVAL;
966 		if (data->phy_id == phy) {
967 			u16 value = data->val_in;
968 			switch (regnum) {
969 			case 0:	/* Check for autonegotiation on or reset. */
970 				tp->full_duplex_lock = (value & 0x9000) ? 0 : 1;
971 				if (tp->full_duplex_lock)
972 					tp->full_duplex = (value & 0x0100) ? 1 : 0;
973 				break;
974 			case 4:
975 				tp->advertising[phy_idx] =
976 				tp->mii_advertise = data->val_in;
977 				break;
978 			}
979 		}
980 		if (data->phy_id == 32 && (tp->flags & HAS_NWAY)) {
981 			u16 value = data->val_in;
982 			if (regnum == 0) {
983 			  if ((value & 0x1200) == 0x1200) {
984 			    if (tp->chip_id == PNIC2) {
985                                    pnic2_start_nway (dev);
986                             } else {
987 				   t21142_start_nway (dev);
988                             }
989 			  }
990 			} else if (regnum == 4)
991 				tp->sym_advertise = value;
992 		} else {
993 			tulip_mdio_write (dev, data->phy_id & 0x1f, regnum, data->val_in);
994 		}
995 		return 0;
996 	default:
997 		return -EOPNOTSUPP;
998 	}
999 
1000 	return -EOPNOTSUPP;
1001 }
1002 
1003 
1004 /* Set or clear the multicast filter for this adaptor.
1005    Note that we only use exclusion around actually queueing the
1006    new frame, not around filling tp->setup_frame.  This is non-deterministic
1007    when re-entered but still correct. */
1008 
1009 static void build_setup_frame_hash(u16 *setup_frm, struct net_device *dev)
1010 {
1011 	struct tulip_private *tp = netdev_priv(dev);
1012 	u16 hash_table[32];
1013 	struct netdev_hw_addr *ha;
1014 	int i;
1015 	u16 *eaddrs;
1016 
1017 	memset(hash_table, 0, sizeof(hash_table));
1018 	__set_bit_le(255, hash_table);			/* Broadcast entry */
1019 	/* This should work on big-endian machines as well. */
1020 	netdev_for_each_mc_addr(ha, dev) {
1021 		int index = ether_crc_le(ETH_ALEN, ha->addr) & 0x1ff;
1022 
1023 		__set_bit_le(index, hash_table);
1024 	}
1025 	for (i = 0; i < 32; i++) {
1026 		*setup_frm++ = hash_table[i];
1027 		*setup_frm++ = hash_table[i];
1028 	}
1029 	setup_frm = &tp->setup_frame[13*6];
1030 
1031 	/* Fill the final entry with our physical address. */
1032 	eaddrs = (u16 *)dev->dev_addr;
1033 	*setup_frm++ = eaddrs[0]; *setup_frm++ = eaddrs[0];
1034 	*setup_frm++ = eaddrs[1]; *setup_frm++ = eaddrs[1];
1035 	*setup_frm++ = eaddrs[2]; *setup_frm++ = eaddrs[2];
1036 }
1037 
1038 static void build_setup_frame_perfect(u16 *setup_frm, struct net_device *dev)
1039 {
1040 	struct tulip_private *tp = netdev_priv(dev);
1041 	struct netdev_hw_addr *ha;
1042 	u16 *eaddrs;
1043 
1044 	/* We have <= 14 addresses so we can use the wonderful
1045 	   16 address perfect filtering of the Tulip. */
1046 	netdev_for_each_mc_addr(ha, dev) {
1047 		eaddrs = (u16 *) ha->addr;
1048 		*setup_frm++ = *eaddrs; *setup_frm++ = *eaddrs++;
1049 		*setup_frm++ = *eaddrs; *setup_frm++ = *eaddrs++;
1050 		*setup_frm++ = *eaddrs; *setup_frm++ = *eaddrs++;
1051 	}
1052 	/* Fill the unused entries with the broadcast address. */
1053 	memset(setup_frm, 0xff, (15 - netdev_mc_count(dev)) * 12);
1054 	setup_frm = &tp->setup_frame[15*6];
1055 
1056 	/* Fill the final entry with our physical address. */
1057 	eaddrs = (u16 *)dev->dev_addr;
1058 	*setup_frm++ = eaddrs[0]; *setup_frm++ = eaddrs[0];
1059 	*setup_frm++ = eaddrs[1]; *setup_frm++ = eaddrs[1];
1060 	*setup_frm++ = eaddrs[2]; *setup_frm++ = eaddrs[2];
1061 }
1062 
1063 
1064 static void set_rx_mode(struct net_device *dev)
1065 {
1066 	struct tulip_private *tp = netdev_priv(dev);
1067 	void __iomem *ioaddr = tp->base_addr;
1068 	int csr6;
1069 
1070 	csr6 = ioread32(ioaddr + CSR6) & ~0x00D5;
1071 
1072 	tp->csr6 &= ~0x00D5;
1073 	if (dev->flags & IFF_PROMISC) {			/* Set promiscuous. */
1074 		tp->csr6 |= AcceptAllMulticast | AcceptAllPhys;
1075 		csr6 |= AcceptAllMulticast | AcceptAllPhys;
1076 	} else if ((netdev_mc_count(dev) > 1000) ||
1077 		   (dev->flags & IFF_ALLMULTI)) {
1078 		/* Too many to filter well -- accept all multicasts. */
1079 		tp->csr6 |= AcceptAllMulticast;
1080 		csr6 |= AcceptAllMulticast;
1081 	} else	if (tp->flags & MC_HASH_ONLY) {
1082 		/* Some work-alikes have only a 64-entry hash filter table. */
1083 		/* Should verify correctness on big-endian/__powerpc__ */
1084 		struct netdev_hw_addr *ha;
1085 		if (netdev_mc_count(dev) > 64) {
1086 			/* Arbitrary non-effective limit. */
1087 			tp->csr6 |= AcceptAllMulticast;
1088 			csr6 |= AcceptAllMulticast;
1089 		} else {
1090 			u32 mc_filter[2] = {0, 0};		 /* Multicast hash filter */
1091 			int filterbit;
1092 			netdev_for_each_mc_addr(ha, dev) {
1093 				if (tp->flags & COMET_MAC_ADDR)
1094 					filterbit = ether_crc_le(ETH_ALEN,
1095 								 ha->addr);
1096 				else
1097 					filterbit = ether_crc(ETH_ALEN,
1098 							      ha->addr) >> 26;
1099 				filterbit &= 0x3f;
1100 				mc_filter[filterbit >> 5] |= 1 << (filterbit & 31);
1101 				if (tulip_debug > 2)
1102 					dev_info(&dev->dev,
1103 						 "Added filter for %pM  %08x bit %d\n",
1104 						 ha->addr,
1105 						 ether_crc(ETH_ALEN, ha->addr),
1106 						 filterbit);
1107 			}
1108 			if (mc_filter[0] == tp->mc_filter[0]  &&
1109 				mc_filter[1] == tp->mc_filter[1])
1110 				;				/* No change. */
1111 			else if (tp->flags & IS_ASIX) {
1112 				iowrite32(2, ioaddr + CSR13);
1113 				iowrite32(mc_filter[0], ioaddr + CSR14);
1114 				iowrite32(3, ioaddr + CSR13);
1115 				iowrite32(mc_filter[1], ioaddr + CSR14);
1116 			} else if (tp->flags & COMET_MAC_ADDR) {
1117 				iowrite32(mc_filter[0], ioaddr + CSR27);
1118 				iowrite32(mc_filter[1], ioaddr + CSR28);
1119 			}
1120 			tp->mc_filter[0] = mc_filter[0];
1121 			tp->mc_filter[1] = mc_filter[1];
1122 		}
1123 	} else {
1124 		unsigned long flags;
1125 		u32 tx_flags = 0x08000000 | 192;
1126 
1127 		/* Note that only the low-address shortword of setup_frame is valid!
1128 		   The values are doubled for big-endian architectures. */
1129 		if (netdev_mc_count(dev) > 14) {
1130 			/* Must use a multicast hash table. */
1131 			build_setup_frame_hash(tp->setup_frame, dev);
1132 			tx_flags = 0x08400000 | 192;
1133 		} else {
1134 			build_setup_frame_perfect(tp->setup_frame, dev);
1135 		}
1136 
1137 		spin_lock_irqsave(&tp->lock, flags);
1138 
1139 		if (tp->cur_tx - tp->dirty_tx > TX_RING_SIZE - 2) {
1140 			/* Same setup recently queued, we need not add it. */
1141 		} else {
1142 			unsigned int entry;
1143 			int dummy = -1;
1144 
1145 			/* Now add this frame to the Tx list. */
1146 
1147 			entry = tp->cur_tx++ % TX_RING_SIZE;
1148 
1149 			if (entry != 0) {
1150 				/* Avoid a chip errata by prefixing a dummy entry. */
1151 				tp->tx_buffers[entry].skb = NULL;
1152 				tp->tx_buffers[entry].mapping = 0;
1153 				tp->tx_ring[entry].length =
1154 					(entry == TX_RING_SIZE-1) ? cpu_to_le32(DESC_RING_WRAP) : 0;
1155 				tp->tx_ring[entry].buffer1 = 0;
1156 				/* Must set DescOwned later to avoid race with chip */
1157 				dummy = entry;
1158 				entry = tp->cur_tx++ % TX_RING_SIZE;
1159 
1160 			}
1161 
1162 			tp->tx_buffers[entry].skb = NULL;
1163 			tp->tx_buffers[entry].mapping =
1164 				pci_map_single(tp->pdev, tp->setup_frame,
1165 					       sizeof(tp->setup_frame),
1166 					       PCI_DMA_TODEVICE);
1167 			/* Put the setup frame on the Tx list. */
1168 			if (entry == TX_RING_SIZE-1)
1169 				tx_flags |= DESC_RING_WRAP;		/* Wrap ring. */
1170 			tp->tx_ring[entry].length = cpu_to_le32(tx_flags);
1171 			tp->tx_ring[entry].buffer1 =
1172 				cpu_to_le32(tp->tx_buffers[entry].mapping);
1173 			tp->tx_ring[entry].status = cpu_to_le32(DescOwned);
1174 			if (dummy >= 0)
1175 				tp->tx_ring[dummy].status = cpu_to_le32(DescOwned);
1176 			if (tp->cur_tx - tp->dirty_tx >= TX_RING_SIZE - 2)
1177 				netif_stop_queue(dev);
1178 
1179 			/* Trigger an immediate transmit demand. */
1180 			iowrite32(0, ioaddr + CSR1);
1181 		}
1182 
1183 		spin_unlock_irqrestore(&tp->lock, flags);
1184 	}
1185 
1186 	iowrite32(csr6, ioaddr + CSR6);
1187 }
1188 
1189 #ifdef CONFIG_TULIP_MWI
1190 static void tulip_mwi_config(struct pci_dev *pdev, struct net_device *dev)
1191 {
1192 	struct tulip_private *tp = netdev_priv(dev);
1193 	u8 cache;
1194 	u16 pci_command;
1195 	u32 csr0;
1196 
1197 	if (tulip_debug > 3)
1198 		netdev_dbg(dev, "tulip_mwi_config()\n");
1199 
1200 	tp->csr0 = csr0 = 0;
1201 
1202 	/* if we have any cache line size at all, we can do MRM and MWI */
1203 	csr0 |= MRM | MWI;
1204 
1205 	/* Enable MWI in the standard PCI command bit.
1206 	 * Check for the case where MWI is desired but not available
1207 	 */
1208 	pci_try_set_mwi(pdev);
1209 
1210 	/* read result from hardware (in case bit refused to enable) */
1211 	pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
1212 	if ((csr0 & MWI) && (!(pci_command & PCI_COMMAND_INVALIDATE)))
1213 		csr0 &= ~MWI;
1214 
1215 	/* if cache line size hardwired to zero, no MWI */
1216 	pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE, &cache);
1217 	if ((csr0 & MWI) && (cache == 0)) {
1218 		csr0 &= ~MWI;
1219 		pci_clear_mwi(pdev);
1220 	}
1221 
1222 	/* assign per-cacheline-size cache alignment and
1223 	 * burst length values
1224 	 */
1225 	switch (cache) {
1226 	case 8:
1227 		csr0 |= MRL | (1 << CALShift) | (16 << BurstLenShift);
1228 		break;
1229 	case 16:
1230 		csr0 |= MRL | (2 << CALShift) | (16 << BurstLenShift);
1231 		break;
1232 	case 32:
1233 		csr0 |= MRL | (3 << CALShift) | (32 << BurstLenShift);
1234 		break;
1235 	default:
1236 		cache = 0;
1237 		break;
1238 	}
1239 
1240 	/* if we have a good cache line size, we by now have a good
1241 	 * csr0, so save it and exit
1242 	 */
1243 	if (cache)
1244 		goto out;
1245 
1246 	/* we don't have a good csr0 or cache line size, disable MWI */
1247 	if (csr0 & MWI) {
1248 		pci_clear_mwi(pdev);
1249 		csr0 &= ~MWI;
1250 	}
1251 
1252 	/* sane defaults for burst length and cache alignment
1253 	 * originally from de4x5 driver
1254 	 */
1255 	csr0 |= (8 << BurstLenShift) | (1 << CALShift);
1256 
1257 out:
1258 	tp->csr0 = csr0;
1259 	if (tulip_debug > 2)
1260 		netdev_dbg(dev, "MWI config cacheline=%d, csr0=%08x\n",
1261 			   cache, csr0);
1262 }
1263 #endif
1264 
1265 /*
1266  *	Chips that have the MRM/reserved bit quirk and the burst quirk. That
1267  *	is the DM910X and the on chip ULi devices
1268  */
1269 
1270 static int tulip_uli_dm_quirk(struct pci_dev *pdev)
1271 {
1272 	if (pdev->vendor == 0x1282 && pdev->device == 0x9102)
1273 		return 1;
1274 	return 0;
1275 }
1276 
1277 static const struct net_device_ops tulip_netdev_ops = {
1278 	.ndo_open		= tulip_open,
1279 	.ndo_start_xmit		= tulip_start_xmit,
1280 	.ndo_tx_timeout		= tulip_tx_timeout,
1281 	.ndo_stop		= tulip_close,
1282 	.ndo_get_stats		= tulip_get_stats,
1283 	.ndo_do_ioctl 		= private_ioctl,
1284 	.ndo_set_rx_mode	= set_rx_mode,
1285 	.ndo_change_mtu		= eth_change_mtu,
1286 	.ndo_set_mac_address	= eth_mac_addr,
1287 	.ndo_validate_addr	= eth_validate_addr,
1288 #ifdef CONFIG_NET_POLL_CONTROLLER
1289 	.ndo_poll_controller	 = poll_tulip,
1290 #endif
1291 };
1292 
1293 const struct pci_device_id early_486_chipsets[] = {
1294 	{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82424) },
1295 	{ PCI_DEVICE(PCI_VENDOR_ID_SI, PCI_DEVICE_ID_SI_496) },
1296 	{ },
1297 };
1298 
1299 static int tulip_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
1300 {
1301 	struct tulip_private *tp;
1302 	/* See note below on the multiport cards. */
1303 	static unsigned char last_phys_addr[ETH_ALEN] = {
1304 		0x00, 'L', 'i', 'n', 'u', 'x'
1305 	};
1306 	static int last_irq;
1307 	static int multiport_cnt;	/* For four-port boards w/one EEPROM */
1308 	int i, irq;
1309 	unsigned short sum;
1310 	unsigned char *ee_data;
1311 	struct net_device *dev;
1312 	void __iomem *ioaddr;
1313 	static int board_idx = -1;
1314 	int chip_idx = ent->driver_data;
1315 	const char *chip_name = tulip_tbl[chip_idx].chip_name;
1316 	unsigned int eeprom_missing = 0;
1317 	unsigned int force_csr0 = 0;
1318 
1319 #ifndef MODULE
1320 	if (tulip_debug > 0)
1321 		printk_once(KERN_INFO "%s", version);
1322 #endif
1323 
1324 	board_idx++;
1325 
1326 	/*
1327 	 *	Lan media wire a tulip chip to a wan interface. Needs a very
1328 	 *	different driver (lmc driver)
1329 	 */
1330 
1331         if (pdev->subsystem_vendor == PCI_VENDOR_ID_LMC) {
1332 		pr_err("skipping LMC card\n");
1333 		return -ENODEV;
1334 	} else if (pdev->subsystem_vendor == PCI_VENDOR_ID_SBE &&
1335 		   (pdev->subsystem_device == PCI_SUBDEVICE_ID_SBE_T3E3 ||
1336 		    pdev->subsystem_device == PCI_SUBDEVICE_ID_SBE_2T3E3_P0 ||
1337 		    pdev->subsystem_device == PCI_SUBDEVICE_ID_SBE_2T3E3_P1)) {
1338 		pr_err("skipping SBE T3E3 port\n");
1339 		return -ENODEV;
1340 	}
1341 
1342 	/*
1343 	 *	DM910x chips should be handled by the dmfe driver, except
1344 	 *	on-board chips on SPARC systems.  Also, early DM9100s need
1345 	 *	software CRC which only the dmfe driver supports.
1346 	 */
1347 
1348 #ifdef CONFIG_TULIP_DM910X
1349 	if (chip_idx == DM910X) {
1350 		struct device_node *dp;
1351 
1352 		if (pdev->vendor == 0x1282 && pdev->device == 0x9100 &&
1353 		    pdev->revision < 0x30) {
1354 			pr_info("skipping early DM9100 with Crc bug (use dmfe)\n");
1355 			return -ENODEV;
1356 		}
1357 
1358 		dp = pci_device_to_OF_node(pdev);
1359 		if (!(dp && of_get_property(dp, "local-mac-address", NULL))) {
1360 			pr_info("skipping DM910x expansion card (use dmfe)\n");
1361 			return -ENODEV;
1362 		}
1363 	}
1364 #endif
1365 
1366 	/*
1367 	 *	Looks for early PCI chipsets where people report hangs
1368 	 *	without the workarounds being on.
1369 	 */
1370 
1371 	/* 1. Intel Saturn. Switch to 8 long words burst, 8 long word cache
1372 	      aligned.  Aries might need this too. The Saturn errata are not
1373 	      pretty reading but thankfully it's an old 486 chipset.
1374 
1375 	   2. The dreaded SiS496 486 chipset. Same workaround as Intel
1376 	      Saturn.
1377 	*/
1378 
1379 	if (pci_dev_present(early_486_chipsets)) {
1380 		csr0 = MRL | MRM | (8 << BurstLenShift) | (1 << CALShift);
1381 		force_csr0 = 1;
1382 	}
1383 
1384 	/* bugfix: the ASIX must have a burst limit or horrible things happen. */
1385 	if (chip_idx == AX88140) {
1386 		if ((csr0 & 0x3f00) == 0)
1387 			csr0 |= 0x2000;
1388 	}
1389 
1390 	/* PNIC doesn't have MWI/MRL/MRM... */
1391 	if (chip_idx == LC82C168)
1392 		csr0 &= ~0xfff10000; /* zero reserved bits 31:20, 16 */
1393 
1394 	/* DM9102A has troubles with MRM & clear reserved bits 24:22, 20, 16, 7:1 */
1395 	if (tulip_uli_dm_quirk(pdev)) {
1396 		csr0 &= ~0x01f100ff;
1397 #if defined(CONFIG_SPARC)
1398                 csr0 = (csr0 & ~0xff00) | 0xe000;
1399 #endif
1400 	}
1401 	/*
1402 	 *	And back to business
1403 	 */
1404 
1405 	i = pci_enable_device(pdev);
1406 	if (i) {
1407 		pr_err("Cannot enable tulip board #%d, aborting\n", board_idx);
1408 		return i;
1409 	}
1410 
1411 	irq = pdev->irq;
1412 
1413 	/* alloc_etherdev ensures aligned and zeroed private structures */
1414 	dev = alloc_etherdev (sizeof (*tp));
1415 	if (!dev)
1416 		return -ENOMEM;
1417 
1418 	SET_NETDEV_DEV(dev, &pdev->dev);
1419 	if (pci_resource_len (pdev, 0) < tulip_tbl[chip_idx].io_size) {
1420 		pr_err("%s: I/O region (0x%llx@0x%llx) too small, aborting\n",
1421 		       pci_name(pdev),
1422 		       (unsigned long long)pci_resource_len (pdev, 0),
1423 		       (unsigned long long)pci_resource_start (pdev, 0));
1424 		goto err_out_free_netdev;
1425 	}
1426 
1427 	/* grab all resources from both PIO and MMIO regions, as we
1428 	 * don't want anyone else messing around with our hardware */
1429 	if (pci_request_regions (pdev, DRV_NAME))
1430 		goto err_out_free_netdev;
1431 
1432 	ioaddr =  pci_iomap(pdev, TULIP_BAR, tulip_tbl[chip_idx].io_size);
1433 
1434 	if (!ioaddr)
1435 		goto err_out_free_res;
1436 
1437 	/*
1438 	 * initialize private data structure 'tp'
1439 	 * it is zeroed and aligned in alloc_etherdev
1440 	 */
1441 	tp = netdev_priv(dev);
1442 	tp->dev = dev;
1443 
1444 	tp->rx_ring = pci_alloc_consistent(pdev,
1445 					   sizeof(struct tulip_rx_desc) * RX_RING_SIZE +
1446 					   sizeof(struct tulip_tx_desc) * TX_RING_SIZE,
1447 					   &tp->rx_ring_dma);
1448 	if (!tp->rx_ring)
1449 		goto err_out_mtable;
1450 	tp->tx_ring = (struct tulip_tx_desc *)(tp->rx_ring + RX_RING_SIZE);
1451 	tp->tx_ring_dma = tp->rx_ring_dma + sizeof(struct tulip_rx_desc) * RX_RING_SIZE;
1452 
1453 	tp->chip_id = chip_idx;
1454 	tp->flags = tulip_tbl[chip_idx].flags;
1455 
1456 	tp->wolinfo.supported = 0;
1457 	tp->wolinfo.wolopts = 0;
1458 	/* COMET: Enable power management only for AN983B */
1459 	if (chip_idx == COMET ) {
1460 		u32 sig;
1461 		pci_read_config_dword (pdev, 0x80, &sig);
1462 		if (sig == 0x09811317) {
1463 			tp->flags |= COMET_PM;
1464 			tp->wolinfo.supported = WAKE_PHY | WAKE_MAGIC;
1465 			pr_info("%s: Enabled WOL support for AN983B\n",
1466 				__func__);
1467 		}
1468 	}
1469 	tp->pdev = pdev;
1470 	tp->base_addr = ioaddr;
1471 	tp->revision = pdev->revision;
1472 	tp->csr0 = csr0;
1473 	spin_lock_init(&tp->lock);
1474 	spin_lock_init(&tp->mii_lock);
1475 	setup_timer(&tp->timer, tulip_tbl[tp->chip_id].media_timer,
1476 		    (unsigned long)dev);
1477 
1478 	INIT_WORK(&tp->media_work, tulip_tbl[tp->chip_id].media_task);
1479 
1480 #ifdef CONFIG_TULIP_MWI
1481 	if (!force_csr0 && (tp->flags & HAS_PCI_MWI))
1482 		tulip_mwi_config (pdev, dev);
1483 #endif
1484 
1485 	/* Stop the chip's Tx and Rx processes. */
1486 	tulip_stop_rxtx(tp);
1487 
1488 	pci_set_master(pdev);
1489 
1490 #ifdef CONFIG_GSC
1491 	if (pdev->subsystem_vendor == PCI_VENDOR_ID_HP) {
1492 		switch (pdev->subsystem_device) {
1493 		default:
1494 			break;
1495 		case 0x1061:
1496 		case 0x1062:
1497 		case 0x1063:
1498 		case 0x1098:
1499 		case 0x1099:
1500 		case 0x10EE:
1501 			tp->flags |= HAS_SWAPPED_SEEPROM | NEEDS_FAKE_MEDIA_TABLE;
1502 			chip_name = "GSC DS21140 Tulip";
1503 		}
1504 	}
1505 #endif
1506 
1507 	/* Clear the missed-packet counter. */
1508 	ioread32(ioaddr + CSR8);
1509 
1510 	/* The station address ROM is read byte serially.  The register must
1511 	   be polled, waiting for the value to be read bit serially from the
1512 	   EEPROM.
1513 	   */
1514 	ee_data = tp->eeprom;
1515 	memset(ee_data, 0, sizeof(tp->eeprom));
1516 	sum = 0;
1517 	if (chip_idx == LC82C168) {
1518 		for (i = 0; i < 3; i++) {
1519 			int value, boguscnt = 100000;
1520 			iowrite32(0x600 | i, ioaddr + 0x98);
1521 			do {
1522 				value = ioread32(ioaddr + CSR9);
1523 			} while (value < 0  && --boguscnt > 0);
1524 			put_unaligned_le16(value, ((__le16 *)dev->dev_addr) + i);
1525 			sum += value & 0xffff;
1526 		}
1527 	} else if (chip_idx == COMET) {
1528 		/* No need to read the EEPROM. */
1529 		put_unaligned_le32(ioread32(ioaddr + 0xA4), dev->dev_addr);
1530 		put_unaligned_le16(ioread32(ioaddr + 0xA8), dev->dev_addr + 4);
1531 		for (i = 0; i < 6; i ++)
1532 			sum += dev->dev_addr[i];
1533 	} else {
1534 		/* A serial EEPROM interface, we read now and sort it out later. */
1535 		int sa_offset = 0;
1536 		int ee_addr_size = tulip_read_eeprom(dev, 0xff, 8) & 0x40000 ? 8 : 6;
1537 		int ee_max_addr = ((1 << ee_addr_size) - 1) * sizeof(u16);
1538 
1539 		if (ee_max_addr > sizeof(tp->eeprom))
1540 			ee_max_addr = sizeof(tp->eeprom);
1541 
1542 		for (i = 0; i < ee_max_addr ; i += sizeof(u16)) {
1543 			u16 data = tulip_read_eeprom(dev, i/2, ee_addr_size);
1544 			ee_data[i] = data & 0xff;
1545 			ee_data[i + 1] = data >> 8;
1546 		}
1547 
1548 		/* DEC now has a specification (see Notes) but early board makers
1549 		   just put the address in the first EEPROM locations. */
1550 		/* This does  memcmp(ee_data, ee_data+16, 8) */
1551 		for (i = 0; i < 8; i ++)
1552 			if (ee_data[i] != ee_data[16+i])
1553 				sa_offset = 20;
1554 		if (chip_idx == CONEXANT) {
1555 			/* Check that the tuple type and length is correct. */
1556 			if (ee_data[0x198] == 0x04  &&  ee_data[0x199] == 6)
1557 				sa_offset = 0x19A;
1558 		} else if (ee_data[0] == 0xff  &&  ee_data[1] == 0xff &&
1559 				   ee_data[2] == 0) {
1560 			sa_offset = 2;		/* Grrr, damn Matrox boards. */
1561 			multiport_cnt = 4;
1562 		}
1563 #ifdef CONFIG_MIPS_COBALT
1564                if ((pdev->bus->number == 0) &&
1565                    ((PCI_SLOT(pdev->devfn) == 7) ||
1566                     (PCI_SLOT(pdev->devfn) == 12))) {
1567                        /* Cobalt MAC address in first EEPROM locations. */
1568                        sa_offset = 0;
1569 		       /* Ensure our media table fixup get's applied */
1570 		       memcpy(ee_data + 16, ee_data, 8);
1571                }
1572 #endif
1573 #ifdef CONFIG_GSC
1574 		/* Check to see if we have a broken srom */
1575 		if (ee_data[0] == 0x61 && ee_data[1] == 0x10) {
1576 			/* pci_vendor_id and subsystem_id are swapped */
1577 			ee_data[0] = ee_data[2];
1578 			ee_data[1] = ee_data[3];
1579 			ee_data[2] = 0x61;
1580 			ee_data[3] = 0x10;
1581 
1582 			/* HSC-PCI boards need to be byte-swaped and shifted
1583 			 * up 1 word.  This shift needs to happen at the end
1584 			 * of the MAC first because of the 2 byte overlap.
1585 			 */
1586 			for (i = 4; i >= 0; i -= 2) {
1587 				ee_data[17 + i + 3] = ee_data[17 + i];
1588 				ee_data[16 + i + 5] = ee_data[16 + i];
1589 			}
1590 		}
1591 #endif
1592 
1593 		for (i = 0; i < 6; i ++) {
1594 			dev->dev_addr[i] = ee_data[i + sa_offset];
1595 			sum += ee_data[i + sa_offset];
1596 		}
1597 	}
1598 	/* Lite-On boards have the address byte-swapped. */
1599 	if ((dev->dev_addr[0] == 0xA0 ||
1600 	     dev->dev_addr[0] == 0xC0 ||
1601 	     dev->dev_addr[0] == 0x02) &&
1602 	    dev->dev_addr[1] == 0x00)
1603 		for (i = 0; i < 6; i+=2) {
1604 			char tmp = dev->dev_addr[i];
1605 			dev->dev_addr[i] = dev->dev_addr[i+1];
1606 			dev->dev_addr[i+1] = tmp;
1607 		}
1608 	/* On the Zynx 315 Etherarray and other multiport boards only the
1609 	   first Tulip has an EEPROM.
1610 	   On Sparc systems the mac address is held in the OBP property
1611 	   "local-mac-address".
1612 	   The addresses of the subsequent ports are derived from the first.
1613 	   Many PCI BIOSes also incorrectly report the IRQ line, so we correct
1614 	   that here as well. */
1615 	if (sum == 0  || sum == 6*0xff) {
1616 #if defined(CONFIG_SPARC)
1617 		struct device_node *dp = pci_device_to_OF_node(pdev);
1618 		const unsigned char *addr;
1619 		int len;
1620 #endif
1621 		eeprom_missing = 1;
1622 		for (i = 0; i < 5; i++)
1623 			dev->dev_addr[i] = last_phys_addr[i];
1624 		dev->dev_addr[i] = last_phys_addr[i] + 1;
1625 #if defined(CONFIG_SPARC)
1626 		addr = of_get_property(dp, "local-mac-address", &len);
1627 		if (addr && len == ETH_ALEN)
1628 			memcpy(dev->dev_addr, addr, ETH_ALEN);
1629 #endif
1630 #if defined(__i386__) || defined(__x86_64__)	/* Patch up x86 BIOS bug. */
1631 		if (last_irq)
1632 			irq = last_irq;
1633 #endif
1634 	}
1635 
1636 	for (i = 0; i < 6; i++)
1637 		last_phys_addr[i] = dev->dev_addr[i];
1638 	last_irq = irq;
1639 
1640 	/* The lower four bits are the media type. */
1641 	if (board_idx >= 0  &&  board_idx < MAX_UNITS) {
1642 		if (options[board_idx] & MEDIA_MASK)
1643 			tp->default_port = options[board_idx] & MEDIA_MASK;
1644 		if ((options[board_idx] & FullDuplex) || full_duplex[board_idx] > 0)
1645 			tp->full_duplex = 1;
1646 		if (mtu[board_idx] > 0)
1647 			dev->mtu = mtu[board_idx];
1648 	}
1649 	if (dev->mem_start & MEDIA_MASK)
1650 		tp->default_port = dev->mem_start & MEDIA_MASK;
1651 	if (tp->default_port) {
1652 		pr_info(DRV_NAME "%d: Transceiver selection forced to %s\n",
1653 			board_idx, medianame[tp->default_port & MEDIA_MASK]);
1654 		tp->medialock = 1;
1655 		if (tulip_media_cap[tp->default_port] & MediaAlwaysFD)
1656 			tp->full_duplex = 1;
1657 	}
1658 	if (tp->full_duplex)
1659 		tp->full_duplex_lock = 1;
1660 
1661 	if (tulip_media_cap[tp->default_port] & MediaIsMII) {
1662 		static const u16 media2advert[] = {
1663 			0x20, 0x40, 0x03e0, 0x60, 0x80, 0x100, 0x200
1664 		};
1665 		tp->mii_advertise = media2advert[tp->default_port - 9];
1666 		tp->mii_advertise |= (tp->flags & HAS_8023X); /* Matching bits! */
1667 	}
1668 
1669 	if (tp->flags & HAS_MEDIA_TABLE) {
1670 		sprintf(dev->name, DRV_NAME "%d", board_idx);	/* hack */
1671 		tulip_parse_eeprom(dev);
1672 		strcpy(dev->name, "eth%d");			/* un-hack */
1673 	}
1674 
1675 	if ((tp->flags & ALWAYS_CHECK_MII) ||
1676 		(tp->mtable  &&  tp->mtable->has_mii) ||
1677 		( ! tp->mtable  &&  (tp->flags & HAS_MII))) {
1678 		if (tp->mtable  &&  tp->mtable->has_mii) {
1679 			for (i = 0; i < tp->mtable->leafcount; i++)
1680 				if (tp->mtable->mleaf[i].media == 11) {
1681 					tp->cur_index = i;
1682 					tp->saved_if_port = dev->if_port;
1683 					tulip_select_media(dev, 2);
1684 					dev->if_port = tp->saved_if_port;
1685 					break;
1686 				}
1687 		}
1688 
1689 		/* Find the connected MII xcvrs.
1690 		   Doing this in open() would allow detecting external xcvrs
1691 		   later, but takes much time. */
1692 		tulip_find_mii (dev, board_idx);
1693 	}
1694 
1695 	/* The Tulip-specific entries in the device structure. */
1696 	dev->netdev_ops = &tulip_netdev_ops;
1697 	dev->watchdog_timeo = TX_TIMEOUT;
1698 #ifdef CONFIG_TULIP_NAPI
1699 	netif_napi_add(dev, &tp->napi, tulip_poll, 16);
1700 #endif
1701 	dev->ethtool_ops = &ops;
1702 
1703 	if (register_netdev(dev))
1704 		goto err_out_free_ring;
1705 
1706 	pci_set_drvdata(pdev, dev);
1707 
1708 	dev_info(&dev->dev,
1709 #ifdef CONFIG_TULIP_MMIO
1710 		 "%s rev %d at MMIO %#llx,%s %pM, IRQ %d\n",
1711 #else
1712 		 "%s rev %d at Port %#llx,%s %pM, IRQ %d\n",
1713 #endif
1714 		 chip_name, pdev->revision,
1715 		 (unsigned long long)pci_resource_start(pdev, TULIP_BAR),
1716 		 eeprom_missing ? " EEPROM not present," : "",
1717 		 dev->dev_addr, irq);
1718 
1719         if (tp->chip_id == PNIC2)
1720 		tp->link_change = pnic2_lnk_change;
1721 	else if (tp->flags & HAS_NWAY)
1722 		tp->link_change = t21142_lnk_change;
1723 	else if (tp->flags & HAS_PNICNWAY)
1724 		tp->link_change = pnic_lnk_change;
1725 
1726 	/* Reset the xcvr interface and turn on heartbeat. */
1727 	switch (chip_idx) {
1728 	case DC21140:
1729 	case DM910X:
1730 	default:
1731 		if (tp->mtable)
1732 			iowrite32(tp->mtable->csr12dir | 0x100, ioaddr + CSR12);
1733 		break;
1734 	case DC21142:
1735 		if (tp->mii_cnt  ||  tulip_media_cap[dev->if_port] & MediaIsMII) {
1736 			iowrite32(csr6_mask_defstate, ioaddr + CSR6);
1737 			iowrite32(0x0000, ioaddr + CSR13);
1738 			iowrite32(0x0000, ioaddr + CSR14);
1739 			iowrite32(csr6_mask_hdcap, ioaddr + CSR6);
1740 		} else
1741 			t21142_start_nway(dev);
1742 		break;
1743 	case PNIC2:
1744 	        /* just do a reset for sanity sake */
1745 		iowrite32(0x0000, ioaddr + CSR13);
1746 		iowrite32(0x0000, ioaddr + CSR14);
1747 		break;
1748 	case LC82C168:
1749 		if ( ! tp->mii_cnt) {
1750 			tp->nway = 1;
1751 			tp->nwayset = 0;
1752 			iowrite32(csr6_ttm | csr6_ca, ioaddr + CSR6);
1753 			iowrite32(0x30, ioaddr + CSR12);
1754 			iowrite32(0x0001F078, ioaddr + CSR6);
1755 			iowrite32(0x0201F078, ioaddr + CSR6); /* Turn on autonegotiation. */
1756 		}
1757 		break;
1758 	case MX98713:
1759 	case COMPEX9881:
1760 		iowrite32(0x00000000, ioaddr + CSR6);
1761 		iowrite32(0x000711C0, ioaddr + CSR14); /* Turn on NWay. */
1762 		iowrite32(0x00000001, ioaddr + CSR13);
1763 		break;
1764 	case MX98715:
1765 	case MX98725:
1766 		iowrite32(0x01a80000, ioaddr + CSR6);
1767 		iowrite32(0xFFFFFFFF, ioaddr + CSR14);
1768 		iowrite32(0x00001000, ioaddr + CSR12);
1769 		break;
1770 	case COMET:
1771 		/* No initialization necessary. */
1772 		break;
1773 	}
1774 
1775 	/* put the chip in snooze mode until opened */
1776 	tulip_set_power_state (tp, 0, 1);
1777 
1778 	return 0;
1779 
1780 err_out_free_ring:
1781 	pci_free_consistent (pdev,
1782 			     sizeof (struct tulip_rx_desc) * RX_RING_SIZE +
1783 			     sizeof (struct tulip_tx_desc) * TX_RING_SIZE,
1784 			     tp->rx_ring, tp->rx_ring_dma);
1785 
1786 err_out_mtable:
1787 	kfree (tp->mtable);
1788 	pci_iounmap(pdev, ioaddr);
1789 
1790 err_out_free_res:
1791 	pci_release_regions (pdev);
1792 
1793 err_out_free_netdev:
1794 	free_netdev (dev);
1795 	return -ENODEV;
1796 }
1797 
1798 
1799 /* set the registers according to the given wolopts */
1800 static void tulip_set_wolopts (struct pci_dev *pdev, u32 wolopts)
1801 {
1802 	struct net_device *dev = pci_get_drvdata(pdev);
1803 	struct tulip_private *tp = netdev_priv(dev);
1804 	void __iomem *ioaddr = tp->base_addr;
1805 
1806 	if (tp->flags & COMET_PM) {
1807 
1808 		unsigned int tmp;
1809 
1810 		tmp = ioread32(ioaddr + CSR18);
1811 		tmp &= ~(comet_csr18_pmes_sticky | comet_csr18_apm_mode | comet_csr18_d3a);
1812 		tmp |= comet_csr18_pm_mode;
1813 		iowrite32(tmp, ioaddr + CSR18);
1814 
1815 		/* Set the Wake-up Control/Status Register to the given WOL options*/
1816 		tmp = ioread32(ioaddr + CSR13);
1817 		tmp &= ~(comet_csr13_linkoffe | comet_csr13_linkone | comet_csr13_wfre | comet_csr13_lsce | comet_csr13_mpre);
1818 		if (wolopts & WAKE_MAGIC)
1819 			tmp |= comet_csr13_mpre;
1820 		if (wolopts & WAKE_PHY)
1821 			tmp |= comet_csr13_linkoffe | comet_csr13_linkone | comet_csr13_lsce;
1822 		/* Clear the event flags */
1823 		tmp |= comet_csr13_wfr | comet_csr13_mpr | comet_csr13_lsc;
1824 		iowrite32(tmp, ioaddr + CSR13);
1825 	}
1826 }
1827 
1828 #ifdef CONFIG_PM
1829 
1830 
1831 static int tulip_suspend (struct pci_dev *pdev, pm_message_t state)
1832 {
1833 	pci_power_t pstate;
1834 	struct net_device *dev = pci_get_drvdata(pdev);
1835 	struct tulip_private *tp = netdev_priv(dev);
1836 
1837 	if (!dev)
1838 		return -EINVAL;
1839 
1840 	if (!netif_running(dev))
1841 		goto save_state;
1842 
1843 	tulip_down(dev);
1844 
1845 	netif_device_detach(dev);
1846 	/* FIXME: it needlessly adds an error path. */
1847 	free_irq(tp->pdev->irq, dev);
1848 
1849 save_state:
1850 	pci_save_state(pdev);
1851 	pci_disable_device(pdev);
1852 	pstate = pci_choose_state(pdev, state);
1853 	if (state.event == PM_EVENT_SUSPEND && pstate != PCI_D0) {
1854 		int rc;
1855 
1856 		tulip_set_wolopts(pdev, tp->wolinfo.wolopts);
1857 		rc = pci_enable_wake(pdev, pstate, tp->wolinfo.wolopts);
1858 		if (rc)
1859 			pr_err("pci_enable_wake failed (%d)\n", rc);
1860 	}
1861 	pci_set_power_state(pdev, pstate);
1862 
1863 	return 0;
1864 }
1865 
1866 
1867 static int tulip_resume(struct pci_dev *pdev)
1868 {
1869 	struct net_device *dev = pci_get_drvdata(pdev);
1870 	struct tulip_private *tp = netdev_priv(dev);
1871 	void __iomem *ioaddr = tp->base_addr;
1872 	int retval;
1873 	unsigned int tmp;
1874 
1875 	if (!dev)
1876 		return -EINVAL;
1877 
1878 	pci_set_power_state(pdev, PCI_D0);
1879 	pci_restore_state(pdev);
1880 
1881 	if (!netif_running(dev))
1882 		return 0;
1883 
1884 	if ((retval = pci_enable_device(pdev))) {
1885 		pr_err("pci_enable_device failed in resume\n");
1886 		return retval;
1887 	}
1888 
1889 	retval = request_irq(pdev->irq, tulip_interrupt, IRQF_SHARED,
1890 			     dev->name, dev);
1891 	if (retval) {
1892 		pr_err("request_irq failed in resume\n");
1893 		return retval;
1894 	}
1895 
1896 	if (tp->flags & COMET_PM) {
1897 		pci_enable_wake(pdev, PCI_D3hot, 0);
1898 		pci_enable_wake(pdev, PCI_D3cold, 0);
1899 
1900 		/* Clear the PMES flag */
1901 		tmp = ioread32(ioaddr + CSR20);
1902 		tmp |= comet_csr20_pmes;
1903 		iowrite32(tmp, ioaddr + CSR20);
1904 
1905 		/* Disable all wake-up events */
1906 		tulip_set_wolopts(pdev, 0);
1907 	}
1908 	netif_device_attach(dev);
1909 
1910 	if (netif_running(dev))
1911 		tulip_up(dev);
1912 
1913 	return 0;
1914 }
1915 
1916 #endif /* CONFIG_PM */
1917 
1918 
1919 static void tulip_remove_one(struct pci_dev *pdev)
1920 {
1921 	struct net_device *dev = pci_get_drvdata (pdev);
1922 	struct tulip_private *tp;
1923 
1924 	if (!dev)
1925 		return;
1926 
1927 	tp = netdev_priv(dev);
1928 	unregister_netdev(dev);
1929 	pci_free_consistent (pdev,
1930 			     sizeof (struct tulip_rx_desc) * RX_RING_SIZE +
1931 			     sizeof (struct tulip_tx_desc) * TX_RING_SIZE,
1932 			     tp->rx_ring, tp->rx_ring_dma);
1933 	kfree (tp->mtable);
1934 	pci_iounmap(pdev, tp->base_addr);
1935 	free_netdev (dev);
1936 	pci_release_regions (pdev);
1937 	pci_disable_device(pdev);
1938 
1939 	/* pci_power_off (pdev, -1); */
1940 }
1941 
1942 #ifdef CONFIG_NET_POLL_CONTROLLER
1943 /*
1944  * Polling 'interrupt' - used by things like netconsole to send skbs
1945  * without having to re-enable interrupts. It's not called while
1946  * the interrupt routine is executing.
1947  */
1948 
1949 static void poll_tulip (struct net_device *dev)
1950 {
1951 	struct tulip_private *tp = netdev_priv(dev);
1952 	const int irq = tp->pdev->irq;
1953 
1954 	/* disable_irq here is not very nice, but with the lockless
1955 	   interrupt handler we have no other choice. */
1956 	disable_irq(irq);
1957 	tulip_interrupt (irq, dev);
1958 	enable_irq(irq);
1959 }
1960 #endif
1961 
1962 static struct pci_driver tulip_driver = {
1963 	.name		= DRV_NAME,
1964 	.id_table	= tulip_pci_tbl,
1965 	.probe		= tulip_init_one,
1966 	.remove		= tulip_remove_one,
1967 #ifdef CONFIG_PM
1968 	.suspend	= tulip_suspend,
1969 	.resume		= tulip_resume,
1970 #endif /* CONFIG_PM */
1971 };
1972 
1973 
1974 static int __init tulip_init (void)
1975 {
1976 #ifdef MODULE
1977 	pr_info("%s", version);
1978 #endif
1979 
1980 	if (!csr0) {
1981 		pr_warn("tulip: unknown CPU architecture, using default csr0\n");
1982 		/* default to 8 longword cache line alignment */
1983 		csr0 = 0x00A00000 | 0x4800;
1984 	}
1985 
1986 	/* copy module parms into globals */
1987 	tulip_rx_copybreak = rx_copybreak;
1988 	tulip_max_interrupt_work = max_interrupt_work;
1989 
1990 	/* probe for and init boards */
1991 	return pci_register_driver(&tulip_driver);
1992 }
1993 
1994 
1995 static void __exit tulip_cleanup (void)
1996 {
1997 	pci_unregister_driver (&tulip_driver);
1998 }
1999 
2000 
2001 module_init(tulip_init);
2002 module_exit(tulip_cleanup);
2003