1 /* de2104x.c: A Linux PCI Ethernet driver for Intel/Digital 21040/1 chips. */
2 /*
3 	Copyright 2001,2003 Jeff Garzik <jgarzik@pobox.com>
4 
5 	Copyright 1994, 1995 Digital Equipment Corporation.	    [de4x5.c]
6 	Written/copyright 1994-2001 by Donald Becker.		    [tulip.c]
7 
8 	This software may be used and distributed according to the terms of
9 	the GNU General Public License (GPL), incorporated herein by reference.
10 	Drivers based on or derived from this code fall under the GPL and must
11 	retain the authorship, copyright and license notice.  This file is not
12 	a complete program and may only be used when the entire operating
13 	system is licensed under the GPL.
14 
15 	See the file COPYING in this distribution for more information.
16 
17 	TODO, in rough priority order:
18 	* Support forcing media type with a module parameter,
19 	  like dl2k.c/sundance.c
20 	* Constants (module parms?) for Rx work limit
21 	* Complete reset on PciErr
22 	* Jumbo frames / dev->change_mtu
23 	* Adjust Rx FIFO threshold and Max Rx DMA burst on Rx FIFO error
24 	* Adjust Tx FIFO threshold and Max Tx DMA burst on Tx FIFO error
25 	* Implement Tx software interrupt mitigation via
26 	  Tx descriptor bit
27 
28  */
29 
30 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
31 
32 #define DRV_NAME		"de2104x"
33 #define DRV_VERSION		"0.7"
34 #define DRV_RELDATE		"Mar 17, 2004"
35 
36 #include <linux/module.h>
37 #include <linux/kernel.h>
38 #include <linux/netdevice.h>
39 #include <linux/etherdevice.h>
40 #include <linux/init.h>
41 #include <linux/interrupt.h>
42 #include <linux/pci.h>
43 #include <linux/delay.h>
44 #include <linux/ethtool.h>
45 #include <linux/compiler.h>
46 #include <linux/rtnetlink.h>
47 #include <linux/crc32.h>
48 #include <linux/slab.h>
49 
50 #include <asm/io.h>
51 #include <asm/irq.h>
52 #include <asm/uaccess.h>
53 #include <asm/unaligned.h>
54 
55 /* These identify the driver base version and may not be removed. */
56 static char version[] =
57 "PCI Ethernet driver v" DRV_VERSION " (" DRV_RELDATE ")";
58 
59 MODULE_AUTHOR("Jeff Garzik <jgarzik@pobox.com>");
60 MODULE_DESCRIPTION("Intel/Digital 21040/1 series PCI Ethernet driver");
61 MODULE_LICENSE("GPL");
62 MODULE_VERSION(DRV_VERSION);
63 
64 static int debug = -1;
65 module_param (debug, int, 0);
66 MODULE_PARM_DESC (debug, "de2104x bitmapped message enable number");
67 
68 /* Set the copy breakpoint for the copy-only-tiny-buffer Rx structure. */
69 #if defined(__alpha__) || defined(__arm__) || defined(__hppa__) || \
70         defined(CONFIG_SPARC) || defined(__ia64__) ||		   \
71         defined(__sh__) || defined(__mips__)
72 static int rx_copybreak = 1518;
73 #else
74 static int rx_copybreak = 100;
75 #endif
76 module_param (rx_copybreak, int, 0);
77 MODULE_PARM_DESC (rx_copybreak, "de2104x Breakpoint at which Rx packets are copied");
78 
79 #define DE_DEF_MSG_ENABLE	(NETIF_MSG_DRV		| \
80 				 NETIF_MSG_PROBE 	| \
81 				 NETIF_MSG_LINK		| \
82 				 NETIF_MSG_IFDOWN	| \
83 				 NETIF_MSG_IFUP		| \
84 				 NETIF_MSG_RX_ERR	| \
85 				 NETIF_MSG_TX_ERR)
86 
87 /* Descriptor skip length in 32 bit longwords. */
88 #ifndef CONFIG_DE2104X_DSL
89 #define DSL			0
90 #else
91 #define DSL			CONFIG_DE2104X_DSL
92 #endif
93 
94 #define DE_RX_RING_SIZE		64
95 #define DE_TX_RING_SIZE		64
96 #define DE_RING_BYTES		\
97 		((sizeof(struct de_desc) * DE_RX_RING_SIZE) +	\
98 		(sizeof(struct de_desc) * DE_TX_RING_SIZE))
99 #define NEXT_TX(N)		(((N) + 1) & (DE_TX_RING_SIZE - 1))
100 #define NEXT_RX(N)		(((N) + 1) & (DE_RX_RING_SIZE - 1))
101 #define TX_BUFFS_AVAIL(CP)					\
102 	(((CP)->tx_tail <= (CP)->tx_head) ?			\
103 	  (CP)->tx_tail + (DE_TX_RING_SIZE - 1) - (CP)->tx_head :	\
104 	  (CP)->tx_tail - (CP)->tx_head - 1)
105 
106 #define PKT_BUF_SZ		1536	/* Size of each temporary Rx buffer.*/
107 #define RX_OFFSET		2
108 
109 #define DE_SETUP_SKB		((struct sk_buff *) 1)
110 #define DE_DUMMY_SKB		((struct sk_buff *) 2)
111 #define DE_SETUP_FRAME_WORDS	96
112 #define DE_EEPROM_WORDS		256
113 #define DE_EEPROM_SIZE		(DE_EEPROM_WORDS * sizeof(u16))
114 #define DE_MAX_MEDIA		5
115 
116 #define DE_MEDIA_TP_AUTO	0
117 #define DE_MEDIA_BNC		1
118 #define DE_MEDIA_AUI		2
119 #define DE_MEDIA_TP		3
120 #define DE_MEDIA_TP_FD		4
121 #define DE_MEDIA_INVALID	DE_MAX_MEDIA
122 #define DE_MEDIA_FIRST		0
123 #define DE_MEDIA_LAST		(DE_MAX_MEDIA - 1)
124 #define DE_AUI_BNC		(SUPPORTED_AUI | SUPPORTED_BNC)
125 
126 #define DE_TIMER_LINK		(60 * HZ)
127 #define DE_TIMER_NO_LINK	(5 * HZ)
128 
129 #define DE_NUM_REGS		16
130 #define DE_REGS_SIZE		(DE_NUM_REGS * sizeof(u32))
131 #define DE_REGS_VER		1
132 
133 /* Time in jiffies before concluding the transmitter is hung. */
134 #define TX_TIMEOUT		(6*HZ)
135 
136 /* This is a mysterious value that can be written to CSR11 in the 21040 (only)
137    to support a pre-NWay full-duplex signaling mechanism using short frames.
138    No one knows what it should be, but if left at its default value some
139    10base2(!) packets trigger a full-duplex-request interrupt. */
140 #define FULL_DUPLEX_MAGIC	0x6969
141 
142 enum {
143 	/* NIC registers */
144 	BusMode			= 0x00,
145 	TxPoll			= 0x08,
146 	RxPoll			= 0x10,
147 	RxRingAddr		= 0x18,
148 	TxRingAddr		= 0x20,
149 	MacStatus		= 0x28,
150 	MacMode			= 0x30,
151 	IntrMask		= 0x38,
152 	RxMissed		= 0x40,
153 	ROMCmd			= 0x48,
154 	CSR11			= 0x58,
155 	SIAStatus		= 0x60,
156 	CSR13			= 0x68,
157 	CSR14			= 0x70,
158 	CSR15			= 0x78,
159 	PCIPM			= 0x40,
160 
161 	/* BusMode bits */
162 	CmdReset		= (1 << 0),
163 	CacheAlign16		= 0x00008000,
164 	BurstLen4		= 0x00000400,
165 	DescSkipLen		= (DSL << 2),
166 
167 	/* Rx/TxPoll bits */
168 	NormalTxPoll		= (1 << 0),
169 	NormalRxPoll		= (1 << 0),
170 
171 	/* Tx/Rx descriptor status bits */
172 	DescOwn			= (1 << 31),
173 	RxError			= (1 << 15),
174 	RxErrLong		= (1 << 7),
175 	RxErrCRC		= (1 << 1),
176 	RxErrFIFO		= (1 << 0),
177 	RxErrRunt		= (1 << 11),
178 	RxErrFrame		= (1 << 14),
179 	RingEnd			= (1 << 25),
180 	FirstFrag		= (1 << 29),
181 	LastFrag		= (1 << 30),
182 	TxError			= (1 << 15),
183 	TxFIFOUnder		= (1 << 1),
184 	TxLinkFail		= (1 << 2) | (1 << 10) | (1 << 11),
185 	TxMaxCol		= (1 << 8),
186 	TxOWC			= (1 << 9),
187 	TxJabber		= (1 << 14),
188 	SetupFrame		= (1 << 27),
189 	TxSwInt			= (1 << 31),
190 
191 	/* MacStatus bits */
192 	IntrOK			= (1 << 16),
193 	IntrErr			= (1 << 15),
194 	RxIntr			= (1 << 6),
195 	RxEmpty			= (1 << 7),
196 	TxIntr			= (1 << 0),
197 	TxEmpty			= (1 << 2),
198 	PciErr			= (1 << 13),
199 	TxState			= (1 << 22) | (1 << 21) | (1 << 20),
200 	RxState			= (1 << 19) | (1 << 18) | (1 << 17),
201 	LinkFail		= (1 << 12),
202 	LinkPass		= (1 << 4),
203 	RxStopped		= (1 << 8),
204 	TxStopped		= (1 << 1),
205 
206 	/* MacMode bits */
207 	TxEnable		= (1 << 13),
208 	RxEnable		= (1 << 1),
209 	RxTx			= TxEnable | RxEnable,
210 	FullDuplex		= (1 << 9),
211 	AcceptAllMulticast	= (1 << 7),
212 	AcceptAllPhys		= (1 << 6),
213 	BOCnt			= (1 << 5),
214 	MacModeClear		= (1<<12) | (1<<11) | (1<<10) | (1<<8) | (1<<3) |
215 				  RxTx | BOCnt | AcceptAllPhys | AcceptAllMulticast,
216 
217 	/* ROMCmd bits */
218 	EE_SHIFT_CLK		= 0x02,	/* EEPROM shift clock. */
219 	EE_CS			= 0x01,	/* EEPROM chip select. */
220 	EE_DATA_WRITE		= 0x04,	/* Data from the Tulip to EEPROM. */
221 	EE_WRITE_0		= 0x01,
222 	EE_WRITE_1		= 0x05,
223 	EE_DATA_READ		= 0x08,	/* Data from the EEPROM chip. */
224 	EE_ENB			= (0x4800 | EE_CS),
225 
226 	/* The EEPROM commands include the alway-set leading bit. */
227 	EE_READ_CMD		= 6,
228 
229 	/* RxMissed bits */
230 	RxMissedOver		= (1 << 16),
231 	RxMissedMask		= 0xffff,
232 
233 	/* SROM-related bits */
234 	SROMC0InfoLeaf		= 27,
235 	MediaBlockMask		= 0x3f,
236 	MediaCustomCSRs		= (1 << 6),
237 
238 	/* PCIPM bits */
239 	PM_Sleep		= (1 << 31),
240 	PM_Snooze		= (1 << 30),
241 	PM_Mask			= PM_Sleep | PM_Snooze,
242 
243 	/* SIAStatus bits */
244 	NWayState		= (1 << 14) | (1 << 13) | (1 << 12),
245 	NWayRestart		= (1 << 12),
246 	NonselPortActive	= (1 << 9),
247 	SelPortActive		= (1 << 8),
248 	LinkFailStatus		= (1 << 2),
249 	NetCxnErr		= (1 << 1),
250 };
251 
252 static const u32 de_intr_mask =
253 	IntrOK | IntrErr | RxIntr | RxEmpty | TxIntr | TxEmpty |
254 	LinkPass | LinkFail | PciErr;
255 
256 /*
257  * Set the programmable burst length to 4 longwords for all:
258  * DMA errors result without these values. Cache align 16 long.
259  */
260 static const u32 de_bus_mode = CacheAlign16 | BurstLen4 | DescSkipLen;
261 
262 struct de_srom_media_block {
263 	u8			opts;
264 	u16			csr13;
265 	u16			csr14;
266 	u16			csr15;
267 } __packed;
268 
269 struct de_srom_info_leaf {
270 	u16			default_media;
271 	u8			n_blocks;
272 	u8			unused;
273 } __packed;
274 
275 struct de_desc {
276 	__le32			opts1;
277 	__le32			opts2;
278 	__le32			addr1;
279 	__le32			addr2;
280 #if DSL
281 	__le32			skip[DSL];
282 #endif
283 };
284 
285 struct media_info {
286 	u16			type;	/* DE_MEDIA_xxx */
287 	u16			csr13;
288 	u16			csr14;
289 	u16			csr15;
290 };
291 
292 struct ring_info {
293 	struct sk_buff		*skb;
294 	dma_addr_t		mapping;
295 };
296 
297 struct de_private {
298 	unsigned		tx_head;
299 	unsigned		tx_tail;
300 	unsigned		rx_tail;
301 
302 	void			__iomem *regs;
303 	struct net_device	*dev;
304 	spinlock_t		lock;
305 
306 	struct de_desc		*rx_ring;
307 	struct de_desc		*tx_ring;
308 	struct ring_info	tx_skb[DE_TX_RING_SIZE];
309 	struct ring_info	rx_skb[DE_RX_RING_SIZE];
310 	unsigned		rx_buf_sz;
311 	dma_addr_t		ring_dma;
312 
313 	u32			msg_enable;
314 
315 	struct net_device_stats net_stats;
316 
317 	struct pci_dev		*pdev;
318 
319 	u16			setup_frame[DE_SETUP_FRAME_WORDS];
320 
321 	u32			media_type;
322 	u32			media_supported;
323 	u32			media_advertise;
324 	struct media_info	media[DE_MAX_MEDIA];
325 	struct timer_list	media_timer;
326 
327 	u8			*ee_data;
328 	unsigned		board_idx;
329 	unsigned		de21040 : 1;
330 	unsigned		media_lock : 1;
331 };
332 
333 
334 static void de_set_rx_mode (struct net_device *dev);
335 static void de_tx (struct de_private *de);
336 static void de_clean_rings (struct de_private *de);
337 static void de_media_interrupt (struct de_private *de, u32 status);
338 static void de21040_media_timer (unsigned long data);
339 static void de21041_media_timer (unsigned long data);
340 static unsigned int de_ok_to_advertise (struct de_private *de, u32 new_media);
341 
342 
343 static DEFINE_PCI_DEVICE_TABLE(de_pci_tbl) = {
344 	{ PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_TULIP,
345 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
346 	{ PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_TULIP_PLUS,
347 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 1 },
348 	{ },
349 };
350 MODULE_DEVICE_TABLE(pci, de_pci_tbl);
351 
352 static const char * const media_name[DE_MAX_MEDIA] = {
353 	"10baseT auto",
354 	"BNC",
355 	"AUI",
356 	"10baseT-HD",
357 	"10baseT-FD"
358 };
359 
360 /* 21040 transceiver register settings:
361  * TP AUTO(unused), BNC(unused), AUI, TP, TP FD*/
362 static u16 t21040_csr13[] = { 0, 0, 0x8F09, 0x8F01, 0x8F01, };
363 static u16 t21040_csr14[] = { 0, 0, 0x0705, 0xFFFF, 0xFFFD, };
364 static u16 t21040_csr15[] = { 0, 0, 0x0006, 0x0000, 0x0000, };
365 
366 /* 21041 transceiver register settings: TP AUTO, BNC, AUI, TP, TP FD*/
367 static u16 t21041_csr13[] = { 0xEF01, 0xEF09, 0xEF09, 0xEF01, 0xEF09, };
368 static u16 t21041_csr14[] = { 0xFFFF, 0xF7FD, 0xF7FD, 0x7F3F, 0x7F3D, };
369 /* If on-chip autonegotiation is broken, use half-duplex (FF3F) instead */
370 static u16 t21041_csr14_brk[] = { 0xFF3F, 0xF7FD, 0xF7FD, 0x7F3F, 0x7F3D, };
371 static u16 t21041_csr15[] = { 0x0008, 0x0006, 0x000E, 0x0008, 0x0008, };
372 
373 
374 #define dr32(reg)	ioread32(de->regs + (reg))
375 #define dw32(reg, val)	iowrite32((val), de->regs + (reg))
376 
377 
378 static void de_rx_err_acct (struct de_private *de, unsigned rx_tail,
379 			    u32 status, u32 len)
380 {
381 	netif_dbg(de, rx_err, de->dev,
382 		  "rx err, slot %d status 0x%x len %d\n",
383 		  rx_tail, status, len);
384 
385 	if ((status & 0x38000300) != 0x0300) {
386 		/* Ingore earlier buffers. */
387 		if ((status & 0xffff) != 0x7fff) {
388 			netif_warn(de, rx_err, de->dev,
389 				   "Oversized Ethernet frame spanned multiple buffers, status %08x!\n",
390 				   status);
391 			de->net_stats.rx_length_errors++;
392 		}
393 	} else if (status & RxError) {
394 		/* There was a fatal error. */
395 		de->net_stats.rx_errors++; /* end of a packet.*/
396 		if (status & 0x0890) de->net_stats.rx_length_errors++;
397 		if (status & RxErrCRC) de->net_stats.rx_crc_errors++;
398 		if (status & RxErrFIFO) de->net_stats.rx_fifo_errors++;
399 	}
400 }
401 
402 static void de_rx (struct de_private *de)
403 {
404 	unsigned rx_tail = de->rx_tail;
405 	unsigned rx_work = DE_RX_RING_SIZE;
406 	unsigned drop = 0;
407 	int rc;
408 
409 	while (--rx_work) {
410 		u32 status, len;
411 		dma_addr_t mapping;
412 		struct sk_buff *skb, *copy_skb;
413 		unsigned copying_skb, buflen;
414 
415 		skb = de->rx_skb[rx_tail].skb;
416 		BUG_ON(!skb);
417 		rmb();
418 		status = le32_to_cpu(de->rx_ring[rx_tail].opts1);
419 		if (status & DescOwn)
420 			break;
421 
422 		len = ((status >> 16) & 0x7ff) - 4;
423 		mapping = de->rx_skb[rx_tail].mapping;
424 
425 		if (unlikely(drop)) {
426 			de->net_stats.rx_dropped++;
427 			goto rx_next;
428 		}
429 
430 		if (unlikely((status & 0x38008300) != 0x0300)) {
431 			de_rx_err_acct(de, rx_tail, status, len);
432 			goto rx_next;
433 		}
434 
435 		copying_skb = (len <= rx_copybreak);
436 
437 		netif_dbg(de, rx_status, de->dev,
438 			  "rx slot %d status 0x%x len %d copying? %d\n",
439 			  rx_tail, status, len, copying_skb);
440 
441 		buflen = copying_skb ? (len + RX_OFFSET) : de->rx_buf_sz;
442 		copy_skb = netdev_alloc_skb(de->dev, buflen);
443 		if (unlikely(!copy_skb)) {
444 			de->net_stats.rx_dropped++;
445 			drop = 1;
446 			rx_work = 100;
447 			goto rx_next;
448 		}
449 
450 		if (!copying_skb) {
451 			pci_unmap_single(de->pdev, mapping,
452 					 buflen, PCI_DMA_FROMDEVICE);
453 			skb_put(skb, len);
454 
455 			mapping =
456 			de->rx_skb[rx_tail].mapping =
457 				pci_map_single(de->pdev, copy_skb->data,
458 					       buflen, PCI_DMA_FROMDEVICE);
459 			de->rx_skb[rx_tail].skb = copy_skb;
460 		} else {
461 			pci_dma_sync_single_for_cpu(de->pdev, mapping, len, PCI_DMA_FROMDEVICE);
462 			skb_reserve(copy_skb, RX_OFFSET);
463 			skb_copy_from_linear_data(skb, skb_put(copy_skb, len),
464 						  len);
465 			pci_dma_sync_single_for_device(de->pdev, mapping, len, PCI_DMA_FROMDEVICE);
466 
467 			/* We'll reuse the original ring buffer. */
468 			skb = copy_skb;
469 		}
470 
471 		skb->protocol = eth_type_trans (skb, de->dev);
472 
473 		de->net_stats.rx_packets++;
474 		de->net_stats.rx_bytes += skb->len;
475 		rc = netif_rx (skb);
476 		if (rc == NET_RX_DROP)
477 			drop = 1;
478 
479 rx_next:
480 		if (rx_tail == (DE_RX_RING_SIZE - 1))
481 			de->rx_ring[rx_tail].opts2 =
482 				cpu_to_le32(RingEnd | de->rx_buf_sz);
483 		else
484 			de->rx_ring[rx_tail].opts2 = cpu_to_le32(de->rx_buf_sz);
485 		de->rx_ring[rx_tail].addr1 = cpu_to_le32(mapping);
486 		wmb();
487 		de->rx_ring[rx_tail].opts1 = cpu_to_le32(DescOwn);
488 		rx_tail = NEXT_RX(rx_tail);
489 	}
490 
491 	if (!rx_work)
492 		netdev_warn(de->dev, "rx work limit reached\n");
493 
494 	de->rx_tail = rx_tail;
495 }
496 
497 static irqreturn_t de_interrupt (int irq, void *dev_instance)
498 {
499 	struct net_device *dev = dev_instance;
500 	struct de_private *de = netdev_priv(dev);
501 	u32 status;
502 
503 	status = dr32(MacStatus);
504 	if ((!(status & (IntrOK|IntrErr))) || (status == 0xFFFF))
505 		return IRQ_NONE;
506 
507 	netif_dbg(de, intr, dev, "intr, status %08x mode %08x desc %u/%u/%u\n",
508 		  status, dr32(MacMode),
509 		  de->rx_tail, de->tx_head, de->tx_tail);
510 
511 	dw32(MacStatus, status);
512 
513 	if (status & (RxIntr | RxEmpty)) {
514 		de_rx(de);
515 		if (status & RxEmpty)
516 			dw32(RxPoll, NormalRxPoll);
517 	}
518 
519 	spin_lock(&de->lock);
520 
521 	if (status & (TxIntr | TxEmpty))
522 		de_tx(de);
523 
524 	if (status & (LinkPass | LinkFail))
525 		de_media_interrupt(de, status);
526 
527 	spin_unlock(&de->lock);
528 
529 	if (status & PciErr) {
530 		u16 pci_status;
531 
532 		pci_read_config_word(de->pdev, PCI_STATUS, &pci_status);
533 		pci_write_config_word(de->pdev, PCI_STATUS, pci_status);
534 		netdev_err(de->dev,
535 			   "PCI bus error, status=%08x, PCI status=%04x\n",
536 			   status, pci_status);
537 	}
538 
539 	return IRQ_HANDLED;
540 }
541 
542 static void de_tx (struct de_private *de)
543 {
544 	unsigned tx_head = de->tx_head;
545 	unsigned tx_tail = de->tx_tail;
546 
547 	while (tx_tail != tx_head) {
548 		struct sk_buff *skb;
549 		u32 status;
550 
551 		rmb();
552 		status = le32_to_cpu(de->tx_ring[tx_tail].opts1);
553 		if (status & DescOwn)
554 			break;
555 
556 		skb = de->tx_skb[tx_tail].skb;
557 		BUG_ON(!skb);
558 		if (unlikely(skb == DE_DUMMY_SKB))
559 			goto next;
560 
561 		if (unlikely(skb == DE_SETUP_SKB)) {
562 			pci_unmap_single(de->pdev, de->tx_skb[tx_tail].mapping,
563 					 sizeof(de->setup_frame), PCI_DMA_TODEVICE);
564 			goto next;
565 		}
566 
567 		pci_unmap_single(de->pdev, de->tx_skb[tx_tail].mapping,
568 				 skb->len, PCI_DMA_TODEVICE);
569 
570 		if (status & LastFrag) {
571 			if (status & TxError) {
572 				netif_dbg(de, tx_err, de->dev,
573 					  "tx err, status 0x%x\n",
574 					  status);
575 				de->net_stats.tx_errors++;
576 				if (status & TxOWC)
577 					de->net_stats.tx_window_errors++;
578 				if (status & TxMaxCol)
579 					de->net_stats.tx_aborted_errors++;
580 				if (status & TxLinkFail)
581 					de->net_stats.tx_carrier_errors++;
582 				if (status & TxFIFOUnder)
583 					de->net_stats.tx_fifo_errors++;
584 			} else {
585 				de->net_stats.tx_packets++;
586 				de->net_stats.tx_bytes += skb->len;
587 				netif_dbg(de, tx_done, de->dev,
588 					  "tx done, slot %d\n", tx_tail);
589 			}
590 			dev_kfree_skb_irq(skb);
591 		}
592 
593 next:
594 		de->tx_skb[tx_tail].skb = NULL;
595 
596 		tx_tail = NEXT_TX(tx_tail);
597 	}
598 
599 	de->tx_tail = tx_tail;
600 
601 	if (netif_queue_stopped(de->dev) && (TX_BUFFS_AVAIL(de) > (DE_TX_RING_SIZE / 4)))
602 		netif_wake_queue(de->dev);
603 }
604 
605 static netdev_tx_t de_start_xmit (struct sk_buff *skb,
606 					struct net_device *dev)
607 {
608 	struct de_private *de = netdev_priv(dev);
609 	unsigned int entry, tx_free;
610 	u32 mapping, len, flags = FirstFrag | LastFrag;
611 	struct de_desc *txd;
612 
613 	spin_lock_irq(&de->lock);
614 
615 	tx_free = TX_BUFFS_AVAIL(de);
616 	if (tx_free == 0) {
617 		netif_stop_queue(dev);
618 		spin_unlock_irq(&de->lock);
619 		return NETDEV_TX_BUSY;
620 	}
621 	tx_free--;
622 
623 	entry = de->tx_head;
624 
625 	txd = &de->tx_ring[entry];
626 
627 	len = skb->len;
628 	mapping = pci_map_single(de->pdev, skb->data, len, PCI_DMA_TODEVICE);
629 	if (entry == (DE_TX_RING_SIZE - 1))
630 		flags |= RingEnd;
631 	if (!tx_free || (tx_free == (DE_TX_RING_SIZE / 2)))
632 		flags |= TxSwInt;
633 	flags |= len;
634 	txd->opts2 = cpu_to_le32(flags);
635 	txd->addr1 = cpu_to_le32(mapping);
636 
637 	de->tx_skb[entry].skb = skb;
638 	de->tx_skb[entry].mapping = mapping;
639 	wmb();
640 
641 	txd->opts1 = cpu_to_le32(DescOwn);
642 	wmb();
643 
644 	de->tx_head = NEXT_TX(entry);
645 	netif_dbg(de, tx_queued, dev, "tx queued, slot %d, skblen %d\n",
646 		  entry, skb->len);
647 
648 	if (tx_free == 0)
649 		netif_stop_queue(dev);
650 
651 	spin_unlock_irq(&de->lock);
652 
653 	/* Trigger an immediate transmit demand. */
654 	dw32(TxPoll, NormalTxPoll);
655 
656 	return NETDEV_TX_OK;
657 }
658 
659 /* Set or clear the multicast filter for this adaptor.
660    Note that we only use exclusion around actually queueing the
661    new frame, not around filling de->setup_frame.  This is non-deterministic
662    when re-entered but still correct. */
663 
664 #undef set_bit_le
665 #define set_bit_le(i,p) do { ((char *)(p))[(i)/8] |= (1<<((i)%8)); } while(0)
666 
667 static void build_setup_frame_hash(u16 *setup_frm, struct net_device *dev)
668 {
669 	struct de_private *de = netdev_priv(dev);
670 	u16 hash_table[32];
671 	struct netdev_hw_addr *ha;
672 	int i;
673 	u16 *eaddrs;
674 
675 	memset(hash_table, 0, sizeof(hash_table));
676 	set_bit_le(255, hash_table); 			/* Broadcast entry */
677 	/* This should work on big-endian machines as well. */
678 	netdev_for_each_mc_addr(ha, dev) {
679 		int index = ether_crc_le(ETH_ALEN, ha->addr) & 0x1ff;
680 
681 		set_bit_le(index, hash_table);
682 	}
683 
684 	for (i = 0; i < 32; i++) {
685 		*setup_frm++ = hash_table[i];
686 		*setup_frm++ = hash_table[i];
687 	}
688 	setup_frm = &de->setup_frame[13*6];
689 
690 	/* Fill the final entry with our physical address. */
691 	eaddrs = (u16 *)dev->dev_addr;
692 	*setup_frm++ = eaddrs[0]; *setup_frm++ = eaddrs[0];
693 	*setup_frm++ = eaddrs[1]; *setup_frm++ = eaddrs[1];
694 	*setup_frm++ = eaddrs[2]; *setup_frm++ = eaddrs[2];
695 }
696 
697 static void build_setup_frame_perfect(u16 *setup_frm, struct net_device *dev)
698 {
699 	struct de_private *de = netdev_priv(dev);
700 	struct netdev_hw_addr *ha;
701 	u16 *eaddrs;
702 
703 	/* We have <= 14 addresses so we can use the wonderful
704 	   16 address perfect filtering of the Tulip. */
705 	netdev_for_each_mc_addr(ha, dev) {
706 		eaddrs = (u16 *) ha->addr;
707 		*setup_frm++ = *eaddrs; *setup_frm++ = *eaddrs++;
708 		*setup_frm++ = *eaddrs; *setup_frm++ = *eaddrs++;
709 		*setup_frm++ = *eaddrs; *setup_frm++ = *eaddrs++;
710 	}
711 	/* Fill the unused entries with the broadcast address. */
712 	memset(setup_frm, 0xff, (15 - netdev_mc_count(dev)) * 12);
713 	setup_frm = &de->setup_frame[15*6];
714 
715 	/* Fill the final entry with our physical address. */
716 	eaddrs = (u16 *)dev->dev_addr;
717 	*setup_frm++ = eaddrs[0]; *setup_frm++ = eaddrs[0];
718 	*setup_frm++ = eaddrs[1]; *setup_frm++ = eaddrs[1];
719 	*setup_frm++ = eaddrs[2]; *setup_frm++ = eaddrs[2];
720 }
721 
722 
723 static void __de_set_rx_mode (struct net_device *dev)
724 {
725 	struct de_private *de = netdev_priv(dev);
726 	u32 macmode;
727 	unsigned int entry;
728 	u32 mapping;
729 	struct de_desc *txd;
730 	struct de_desc *dummy_txd = NULL;
731 
732 	macmode = dr32(MacMode) & ~(AcceptAllMulticast | AcceptAllPhys);
733 
734 	if (dev->flags & IFF_PROMISC) {	/* Set promiscuous. */
735 		macmode |= AcceptAllMulticast | AcceptAllPhys;
736 		goto out;
737 	}
738 
739 	if ((netdev_mc_count(dev) > 1000) || (dev->flags & IFF_ALLMULTI)) {
740 		/* Too many to filter well -- accept all multicasts. */
741 		macmode |= AcceptAllMulticast;
742 		goto out;
743 	}
744 
745 	/* Note that only the low-address shortword of setup_frame is valid!
746 	   The values are doubled for big-endian architectures. */
747 	if (netdev_mc_count(dev) > 14)	/* Must use a multicast hash table. */
748 		build_setup_frame_hash (de->setup_frame, dev);
749 	else
750 		build_setup_frame_perfect (de->setup_frame, dev);
751 
752 	/*
753 	 * Now add this frame to the Tx list.
754 	 */
755 
756 	entry = de->tx_head;
757 
758 	/* Avoid a chip errata by prefixing a dummy entry. */
759 	if (entry != 0) {
760 		de->tx_skb[entry].skb = DE_DUMMY_SKB;
761 
762 		dummy_txd = &de->tx_ring[entry];
763 		dummy_txd->opts2 = (entry == (DE_TX_RING_SIZE - 1)) ?
764 				   cpu_to_le32(RingEnd) : 0;
765 		dummy_txd->addr1 = 0;
766 
767 		/* Must set DescOwned later to avoid race with chip */
768 
769 		entry = NEXT_TX(entry);
770 	}
771 
772 	de->tx_skb[entry].skb = DE_SETUP_SKB;
773 	de->tx_skb[entry].mapping = mapping =
774 	    pci_map_single (de->pdev, de->setup_frame,
775 			    sizeof (de->setup_frame), PCI_DMA_TODEVICE);
776 
777 	/* Put the setup frame on the Tx list. */
778 	txd = &de->tx_ring[entry];
779 	if (entry == (DE_TX_RING_SIZE - 1))
780 		txd->opts2 = cpu_to_le32(SetupFrame | RingEnd | sizeof (de->setup_frame));
781 	else
782 		txd->opts2 = cpu_to_le32(SetupFrame | sizeof (de->setup_frame));
783 	txd->addr1 = cpu_to_le32(mapping);
784 	wmb();
785 
786 	txd->opts1 = cpu_to_le32(DescOwn);
787 	wmb();
788 
789 	if (dummy_txd) {
790 		dummy_txd->opts1 = cpu_to_le32(DescOwn);
791 		wmb();
792 	}
793 
794 	de->tx_head = NEXT_TX(entry);
795 
796 	if (TX_BUFFS_AVAIL(de) == 0)
797 		netif_stop_queue(dev);
798 
799 	/* Trigger an immediate transmit demand. */
800 	dw32(TxPoll, NormalTxPoll);
801 
802 out:
803 	if (macmode != dr32(MacMode))
804 		dw32(MacMode, macmode);
805 }
806 
807 static void de_set_rx_mode (struct net_device *dev)
808 {
809 	unsigned long flags;
810 	struct de_private *de = netdev_priv(dev);
811 
812 	spin_lock_irqsave (&de->lock, flags);
813 	__de_set_rx_mode(dev);
814 	spin_unlock_irqrestore (&de->lock, flags);
815 }
816 
817 static inline void de_rx_missed(struct de_private *de, u32 rx_missed)
818 {
819 	if (unlikely(rx_missed & RxMissedOver))
820 		de->net_stats.rx_missed_errors += RxMissedMask;
821 	else
822 		de->net_stats.rx_missed_errors += (rx_missed & RxMissedMask);
823 }
824 
825 static void __de_get_stats(struct de_private *de)
826 {
827 	u32 tmp = dr32(RxMissed); /* self-clearing */
828 
829 	de_rx_missed(de, tmp);
830 }
831 
832 static struct net_device_stats *de_get_stats(struct net_device *dev)
833 {
834 	struct de_private *de = netdev_priv(dev);
835 
836 	/* The chip only need report frame silently dropped. */
837 	spin_lock_irq(&de->lock);
838  	if (netif_running(dev) && netif_device_present(dev))
839  		__de_get_stats(de);
840 	spin_unlock_irq(&de->lock);
841 
842 	return &de->net_stats;
843 }
844 
845 static inline int de_is_running (struct de_private *de)
846 {
847 	return (dr32(MacStatus) & (RxState | TxState)) ? 1 : 0;
848 }
849 
850 static void de_stop_rxtx (struct de_private *de)
851 {
852 	u32 macmode;
853 	unsigned int i = 1300/100;
854 
855 	macmode = dr32(MacMode);
856 	if (macmode & RxTx) {
857 		dw32(MacMode, macmode & ~RxTx);
858 		dr32(MacMode);
859 	}
860 
861 	/* wait until in-flight frame completes.
862 	 * Max time @ 10BT: 1500*8b/10Mbps == 1200us (+ 100us margin)
863 	 * Typically expect this loop to end in < 50 us on 100BT.
864 	 */
865 	while (--i) {
866 		if (!de_is_running(de))
867 			return;
868 		udelay(100);
869 	}
870 
871 	netdev_warn(de->dev, "timeout expired, stopping DMA\n");
872 }
873 
874 static inline void de_start_rxtx (struct de_private *de)
875 {
876 	u32 macmode;
877 
878 	macmode = dr32(MacMode);
879 	if ((macmode & RxTx) != RxTx) {
880 		dw32(MacMode, macmode | RxTx);
881 		dr32(MacMode);
882 	}
883 }
884 
885 static void de_stop_hw (struct de_private *de)
886 {
887 
888 	udelay(5);
889 	dw32(IntrMask, 0);
890 
891 	de_stop_rxtx(de);
892 
893 	dw32(MacStatus, dr32(MacStatus));
894 
895 	udelay(10);
896 
897 	de->rx_tail = 0;
898 	de->tx_head = de->tx_tail = 0;
899 }
900 
901 static void de_link_up(struct de_private *de)
902 {
903 	if (!netif_carrier_ok(de->dev)) {
904 		netif_carrier_on(de->dev);
905 		netif_info(de, link, de->dev, "link up, media %s\n",
906 			   media_name[de->media_type]);
907 	}
908 }
909 
910 static void de_link_down(struct de_private *de)
911 {
912 	if (netif_carrier_ok(de->dev)) {
913 		netif_carrier_off(de->dev);
914 		netif_info(de, link, de->dev, "link down\n");
915 	}
916 }
917 
918 static void de_set_media (struct de_private *de)
919 {
920 	unsigned media = de->media_type;
921 	u32 macmode = dr32(MacMode);
922 
923 	if (de_is_running(de))
924 		netdev_warn(de->dev, "chip is running while changing media!\n");
925 
926 	if (de->de21040)
927 		dw32(CSR11, FULL_DUPLEX_MAGIC);
928 	dw32(CSR13, 0); /* Reset phy */
929 	dw32(CSR14, de->media[media].csr14);
930 	dw32(CSR15, de->media[media].csr15);
931 	dw32(CSR13, de->media[media].csr13);
932 
933 	/* must delay 10ms before writing to other registers,
934 	 * especially CSR6
935 	 */
936 	mdelay(10);
937 
938 	if (media == DE_MEDIA_TP_FD)
939 		macmode |= FullDuplex;
940 	else
941 		macmode &= ~FullDuplex;
942 
943 	netif_info(de, link, de->dev, "set link %s\n", media_name[media]);
944 	netif_info(de, hw, de->dev, "mode 0x%x, sia 0x%x,0x%x,0x%x,0x%x\n",
945 		   dr32(MacMode), dr32(SIAStatus),
946 		   dr32(CSR13), dr32(CSR14), dr32(CSR15));
947 	netif_info(de, hw, de->dev, "set mode 0x%x, set sia 0x%x,0x%x,0x%x\n",
948 		   macmode, de->media[media].csr13,
949 		   de->media[media].csr14, de->media[media].csr15);
950 	if (macmode != dr32(MacMode))
951 		dw32(MacMode, macmode);
952 }
953 
954 static void de_next_media (struct de_private *de, const u32 *media,
955 			   unsigned int n_media)
956 {
957 	unsigned int i;
958 
959 	for (i = 0; i < n_media; i++) {
960 		if (de_ok_to_advertise(de, media[i])) {
961 			de->media_type = media[i];
962 			return;
963 		}
964 	}
965 }
966 
967 static void de21040_media_timer (unsigned long data)
968 {
969 	struct de_private *de = (struct de_private *) data;
970 	struct net_device *dev = de->dev;
971 	u32 status = dr32(SIAStatus);
972 	unsigned int carrier;
973 	unsigned long flags;
974 
975 	carrier = (status & NetCxnErr) ? 0 : 1;
976 
977 	if (carrier) {
978 		if (de->media_type != DE_MEDIA_AUI && (status & LinkFailStatus))
979 			goto no_link_yet;
980 
981 		de->media_timer.expires = jiffies + DE_TIMER_LINK;
982 		add_timer(&de->media_timer);
983 		if (!netif_carrier_ok(dev))
984 			de_link_up(de);
985 		else
986 			netif_info(de, timer, dev, "%s link ok, status %x\n",
987 				   media_name[de->media_type], status);
988 		return;
989 	}
990 
991 	de_link_down(de);
992 
993 	if (de->media_lock)
994 		return;
995 
996 	if (de->media_type == DE_MEDIA_AUI) {
997 		static const u32 next_state = DE_MEDIA_TP;
998 		de_next_media(de, &next_state, 1);
999 	} else {
1000 		static const u32 next_state = DE_MEDIA_AUI;
1001 		de_next_media(de, &next_state, 1);
1002 	}
1003 
1004 	spin_lock_irqsave(&de->lock, flags);
1005 	de_stop_rxtx(de);
1006 	spin_unlock_irqrestore(&de->lock, flags);
1007 	de_set_media(de);
1008 	de_start_rxtx(de);
1009 
1010 no_link_yet:
1011 	de->media_timer.expires = jiffies + DE_TIMER_NO_LINK;
1012 	add_timer(&de->media_timer);
1013 
1014 	netif_info(de, timer, dev, "no link, trying media %s, status %x\n",
1015 		   media_name[de->media_type], status);
1016 }
1017 
1018 static unsigned int de_ok_to_advertise (struct de_private *de, u32 new_media)
1019 {
1020 	switch (new_media) {
1021 	case DE_MEDIA_TP_AUTO:
1022 		if (!(de->media_advertise & ADVERTISED_Autoneg))
1023 			return 0;
1024 		if (!(de->media_advertise & (ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full)))
1025 			return 0;
1026 		break;
1027 	case DE_MEDIA_BNC:
1028 		if (!(de->media_advertise & ADVERTISED_BNC))
1029 			return 0;
1030 		break;
1031 	case DE_MEDIA_AUI:
1032 		if (!(de->media_advertise & ADVERTISED_AUI))
1033 			return 0;
1034 		break;
1035 	case DE_MEDIA_TP:
1036 		if (!(de->media_advertise & ADVERTISED_10baseT_Half))
1037 			return 0;
1038 		break;
1039 	case DE_MEDIA_TP_FD:
1040 		if (!(de->media_advertise & ADVERTISED_10baseT_Full))
1041 			return 0;
1042 		break;
1043 	}
1044 
1045 	return 1;
1046 }
1047 
1048 static void de21041_media_timer (unsigned long data)
1049 {
1050 	struct de_private *de = (struct de_private *) data;
1051 	struct net_device *dev = de->dev;
1052 	u32 status = dr32(SIAStatus);
1053 	unsigned int carrier;
1054 	unsigned long flags;
1055 
1056 	/* clear port active bits */
1057 	dw32(SIAStatus, NonselPortActive | SelPortActive);
1058 
1059 	carrier = (status & NetCxnErr) ? 0 : 1;
1060 
1061 	if (carrier) {
1062 		if ((de->media_type == DE_MEDIA_TP_AUTO ||
1063 		     de->media_type == DE_MEDIA_TP ||
1064 		     de->media_type == DE_MEDIA_TP_FD) &&
1065 		    (status & LinkFailStatus))
1066 			goto no_link_yet;
1067 
1068 		de->media_timer.expires = jiffies + DE_TIMER_LINK;
1069 		add_timer(&de->media_timer);
1070 		if (!netif_carrier_ok(dev))
1071 			de_link_up(de);
1072 		else
1073 			netif_info(de, timer, dev,
1074 				   "%s link ok, mode %x status %x\n",
1075 				   media_name[de->media_type],
1076 				   dr32(MacMode), status);
1077 		return;
1078 	}
1079 
1080 	de_link_down(de);
1081 
1082 	/* if media type locked, don't switch media */
1083 	if (de->media_lock)
1084 		goto set_media;
1085 
1086 	/* if activity detected, use that as hint for new media type */
1087 	if (status & NonselPortActive) {
1088 		unsigned int have_media = 1;
1089 
1090 		/* if AUI/BNC selected, then activity is on TP port */
1091 		if (de->media_type == DE_MEDIA_AUI ||
1092 		    de->media_type == DE_MEDIA_BNC) {
1093 			if (de_ok_to_advertise(de, DE_MEDIA_TP_AUTO))
1094 				de->media_type = DE_MEDIA_TP_AUTO;
1095 			else
1096 				have_media = 0;
1097 		}
1098 
1099 		/* TP selected.  If there is only TP and BNC, then it's BNC */
1100 		else if (((de->media_supported & DE_AUI_BNC) == SUPPORTED_BNC) &&
1101 			 de_ok_to_advertise(de, DE_MEDIA_BNC))
1102 			de->media_type = DE_MEDIA_BNC;
1103 
1104 		/* TP selected.  If there is only TP and AUI, then it's AUI */
1105 		else if (((de->media_supported & DE_AUI_BNC) == SUPPORTED_AUI) &&
1106 			 de_ok_to_advertise(de, DE_MEDIA_AUI))
1107 			de->media_type = DE_MEDIA_AUI;
1108 
1109 		/* otherwise, ignore the hint */
1110 		else
1111 			have_media = 0;
1112 
1113 		if (have_media)
1114 			goto set_media;
1115 	}
1116 
1117 	/*
1118 	 * Absent or ambiguous activity hint, move to next advertised
1119 	 * media state.  If de->media_type is left unchanged, this
1120 	 * simply resets the PHY and reloads the current media settings.
1121 	 */
1122 	if (de->media_type == DE_MEDIA_AUI) {
1123 		static const u32 next_states[] = {
1124 			DE_MEDIA_BNC, DE_MEDIA_TP_AUTO
1125 		};
1126 		de_next_media(de, next_states, ARRAY_SIZE(next_states));
1127 	} else if (de->media_type == DE_MEDIA_BNC) {
1128 		static const u32 next_states[] = {
1129 			DE_MEDIA_TP_AUTO, DE_MEDIA_AUI
1130 		};
1131 		de_next_media(de, next_states, ARRAY_SIZE(next_states));
1132 	} else {
1133 		static const u32 next_states[] = {
1134 			DE_MEDIA_AUI, DE_MEDIA_BNC, DE_MEDIA_TP_AUTO
1135 		};
1136 		de_next_media(de, next_states, ARRAY_SIZE(next_states));
1137 	}
1138 
1139 set_media:
1140 	spin_lock_irqsave(&de->lock, flags);
1141 	de_stop_rxtx(de);
1142 	spin_unlock_irqrestore(&de->lock, flags);
1143 	de_set_media(de);
1144 	de_start_rxtx(de);
1145 
1146 no_link_yet:
1147 	de->media_timer.expires = jiffies + DE_TIMER_NO_LINK;
1148 	add_timer(&de->media_timer);
1149 
1150 	netif_info(de, timer, dev, "no link, trying media %s, status %x\n",
1151 		   media_name[de->media_type], status);
1152 }
1153 
1154 static void de_media_interrupt (struct de_private *de, u32 status)
1155 {
1156 	if (status & LinkPass) {
1157 		/* Ignore if current media is AUI or BNC and we can't use TP */
1158 		if ((de->media_type == DE_MEDIA_AUI ||
1159 		     de->media_type == DE_MEDIA_BNC) &&
1160 		    (de->media_lock ||
1161 		     !de_ok_to_advertise(de, DE_MEDIA_TP_AUTO)))
1162 			return;
1163 		/* If current media is not TP, change it to TP */
1164 		if ((de->media_type == DE_MEDIA_AUI ||
1165 		     de->media_type == DE_MEDIA_BNC)) {
1166 			de->media_type = DE_MEDIA_TP_AUTO;
1167 			de_stop_rxtx(de);
1168 			de_set_media(de);
1169 			de_start_rxtx(de);
1170 		}
1171 		de_link_up(de);
1172 		mod_timer(&de->media_timer, jiffies + DE_TIMER_LINK);
1173 		return;
1174 	}
1175 
1176 	BUG_ON(!(status & LinkFail));
1177 	/* Mark the link as down only if current media is TP */
1178 	if (netif_carrier_ok(de->dev) && de->media_type != DE_MEDIA_AUI &&
1179 	    de->media_type != DE_MEDIA_BNC) {
1180 		de_link_down(de);
1181 		mod_timer(&de->media_timer, jiffies + DE_TIMER_NO_LINK);
1182 	}
1183 }
1184 
1185 static int de_reset_mac (struct de_private *de)
1186 {
1187 	u32 status, tmp;
1188 
1189 	/*
1190 	 * Reset MAC.  de4x5.c and tulip.c examined for "advice"
1191 	 * in this area.
1192 	 */
1193 
1194 	if (dr32(BusMode) == 0xffffffff)
1195 		return -EBUSY;
1196 
1197 	/* Reset the chip, holding bit 0 set at least 50 PCI cycles. */
1198 	dw32 (BusMode, CmdReset);
1199 	mdelay (1);
1200 
1201 	dw32 (BusMode, de_bus_mode);
1202 	mdelay (1);
1203 
1204 	for (tmp = 0; tmp < 5; tmp++) {
1205 		dr32 (BusMode);
1206 		mdelay (1);
1207 	}
1208 
1209 	mdelay (1);
1210 
1211 	status = dr32(MacStatus);
1212 	if (status & (RxState | TxState))
1213 		return -EBUSY;
1214 	if (status == 0xffffffff)
1215 		return -ENODEV;
1216 	return 0;
1217 }
1218 
1219 static void de_adapter_wake (struct de_private *de)
1220 {
1221 	u32 pmctl;
1222 
1223 	if (de->de21040)
1224 		return;
1225 
1226 	pci_read_config_dword(de->pdev, PCIPM, &pmctl);
1227 	if (pmctl & PM_Mask) {
1228 		pmctl &= ~PM_Mask;
1229 		pci_write_config_dword(de->pdev, PCIPM, pmctl);
1230 
1231 		/* de4x5.c delays, so we do too */
1232 		msleep(10);
1233 	}
1234 }
1235 
1236 static void de_adapter_sleep (struct de_private *de)
1237 {
1238 	u32 pmctl;
1239 
1240 	if (de->de21040)
1241 		return;
1242 
1243 	dw32(CSR13, 0); /* Reset phy */
1244 	pci_read_config_dword(de->pdev, PCIPM, &pmctl);
1245 	pmctl |= PM_Sleep;
1246 	pci_write_config_dword(de->pdev, PCIPM, pmctl);
1247 }
1248 
1249 static int de_init_hw (struct de_private *de)
1250 {
1251 	struct net_device *dev = de->dev;
1252 	u32 macmode;
1253 	int rc;
1254 
1255 	de_adapter_wake(de);
1256 
1257 	macmode = dr32(MacMode) & ~MacModeClear;
1258 
1259 	rc = de_reset_mac(de);
1260 	if (rc)
1261 		return rc;
1262 
1263 	de_set_media(de); /* reset phy */
1264 
1265 	dw32(RxRingAddr, de->ring_dma);
1266 	dw32(TxRingAddr, de->ring_dma + (sizeof(struct de_desc) * DE_RX_RING_SIZE));
1267 
1268 	dw32(MacMode, RxTx | macmode);
1269 
1270 	dr32(RxMissed); /* self-clearing */
1271 
1272 	dw32(IntrMask, de_intr_mask);
1273 
1274 	de_set_rx_mode(dev);
1275 
1276 	return 0;
1277 }
1278 
1279 static int de_refill_rx (struct de_private *de)
1280 {
1281 	unsigned i;
1282 
1283 	for (i = 0; i < DE_RX_RING_SIZE; i++) {
1284 		struct sk_buff *skb;
1285 
1286 		skb = netdev_alloc_skb(de->dev, de->rx_buf_sz);
1287 		if (!skb)
1288 			goto err_out;
1289 
1290 		de->rx_skb[i].mapping = pci_map_single(de->pdev,
1291 			skb->data, de->rx_buf_sz, PCI_DMA_FROMDEVICE);
1292 		de->rx_skb[i].skb = skb;
1293 
1294 		de->rx_ring[i].opts1 = cpu_to_le32(DescOwn);
1295 		if (i == (DE_RX_RING_SIZE - 1))
1296 			de->rx_ring[i].opts2 =
1297 				cpu_to_le32(RingEnd | de->rx_buf_sz);
1298 		else
1299 			de->rx_ring[i].opts2 = cpu_to_le32(de->rx_buf_sz);
1300 		de->rx_ring[i].addr1 = cpu_to_le32(de->rx_skb[i].mapping);
1301 		de->rx_ring[i].addr2 = 0;
1302 	}
1303 
1304 	return 0;
1305 
1306 err_out:
1307 	de_clean_rings(de);
1308 	return -ENOMEM;
1309 }
1310 
1311 static int de_init_rings (struct de_private *de)
1312 {
1313 	memset(de->tx_ring, 0, sizeof(struct de_desc) * DE_TX_RING_SIZE);
1314 	de->tx_ring[DE_TX_RING_SIZE - 1].opts2 = cpu_to_le32(RingEnd);
1315 
1316 	de->rx_tail = 0;
1317 	de->tx_head = de->tx_tail = 0;
1318 
1319 	return de_refill_rx (de);
1320 }
1321 
1322 static int de_alloc_rings (struct de_private *de)
1323 {
1324 	de->rx_ring = pci_alloc_consistent(de->pdev, DE_RING_BYTES, &de->ring_dma);
1325 	if (!de->rx_ring)
1326 		return -ENOMEM;
1327 	de->tx_ring = &de->rx_ring[DE_RX_RING_SIZE];
1328 	return de_init_rings(de);
1329 }
1330 
1331 static void de_clean_rings (struct de_private *de)
1332 {
1333 	unsigned i;
1334 
1335 	memset(de->rx_ring, 0, sizeof(struct de_desc) * DE_RX_RING_SIZE);
1336 	de->rx_ring[DE_RX_RING_SIZE - 1].opts2 = cpu_to_le32(RingEnd);
1337 	wmb();
1338 	memset(de->tx_ring, 0, sizeof(struct de_desc) * DE_TX_RING_SIZE);
1339 	de->tx_ring[DE_TX_RING_SIZE - 1].opts2 = cpu_to_le32(RingEnd);
1340 	wmb();
1341 
1342 	for (i = 0; i < DE_RX_RING_SIZE; i++) {
1343 		if (de->rx_skb[i].skb) {
1344 			pci_unmap_single(de->pdev, de->rx_skb[i].mapping,
1345 					 de->rx_buf_sz, PCI_DMA_FROMDEVICE);
1346 			dev_kfree_skb(de->rx_skb[i].skb);
1347 		}
1348 	}
1349 
1350 	for (i = 0; i < DE_TX_RING_SIZE; i++) {
1351 		struct sk_buff *skb = de->tx_skb[i].skb;
1352 		if ((skb) && (skb != DE_DUMMY_SKB)) {
1353 			if (skb != DE_SETUP_SKB) {
1354 				de->net_stats.tx_dropped++;
1355 				pci_unmap_single(de->pdev,
1356 					de->tx_skb[i].mapping,
1357 					skb->len, PCI_DMA_TODEVICE);
1358 				dev_kfree_skb(skb);
1359 			} else {
1360 				pci_unmap_single(de->pdev,
1361 					de->tx_skb[i].mapping,
1362 					sizeof(de->setup_frame),
1363 					PCI_DMA_TODEVICE);
1364 			}
1365 		}
1366 	}
1367 
1368 	memset(&de->rx_skb, 0, sizeof(struct ring_info) * DE_RX_RING_SIZE);
1369 	memset(&de->tx_skb, 0, sizeof(struct ring_info) * DE_TX_RING_SIZE);
1370 }
1371 
1372 static void de_free_rings (struct de_private *de)
1373 {
1374 	de_clean_rings(de);
1375 	pci_free_consistent(de->pdev, DE_RING_BYTES, de->rx_ring, de->ring_dma);
1376 	de->rx_ring = NULL;
1377 	de->tx_ring = NULL;
1378 }
1379 
1380 static int de_open (struct net_device *dev)
1381 {
1382 	struct de_private *de = netdev_priv(dev);
1383 	int rc;
1384 
1385 	netif_dbg(de, ifup, dev, "enabling interface\n");
1386 
1387 	de->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
1388 
1389 	rc = de_alloc_rings(de);
1390 	if (rc) {
1391 		netdev_err(dev, "ring allocation failure, err=%d\n", rc);
1392 		return rc;
1393 	}
1394 
1395 	dw32(IntrMask, 0);
1396 
1397 	rc = request_irq(dev->irq, de_interrupt, IRQF_SHARED, dev->name, dev);
1398 	if (rc) {
1399 		netdev_err(dev, "IRQ %d request failure, err=%d\n",
1400 			   dev->irq, rc);
1401 		goto err_out_free;
1402 	}
1403 
1404 	rc = de_init_hw(de);
1405 	if (rc) {
1406 		netdev_err(dev, "h/w init failure, err=%d\n", rc);
1407 		goto err_out_free_irq;
1408 	}
1409 
1410 	netif_start_queue(dev);
1411 	mod_timer(&de->media_timer, jiffies + DE_TIMER_NO_LINK);
1412 
1413 	return 0;
1414 
1415 err_out_free_irq:
1416 	free_irq(dev->irq, dev);
1417 err_out_free:
1418 	de_free_rings(de);
1419 	return rc;
1420 }
1421 
1422 static int de_close (struct net_device *dev)
1423 {
1424 	struct de_private *de = netdev_priv(dev);
1425 	unsigned long flags;
1426 
1427 	netif_dbg(de, ifdown, dev, "disabling interface\n");
1428 
1429 	del_timer_sync(&de->media_timer);
1430 
1431 	spin_lock_irqsave(&de->lock, flags);
1432 	de_stop_hw(de);
1433 	netif_stop_queue(dev);
1434 	netif_carrier_off(dev);
1435 	spin_unlock_irqrestore(&de->lock, flags);
1436 
1437 	free_irq(dev->irq, dev);
1438 
1439 	de_free_rings(de);
1440 	de_adapter_sleep(de);
1441 	return 0;
1442 }
1443 
1444 static void de_tx_timeout (struct net_device *dev)
1445 {
1446 	struct de_private *de = netdev_priv(dev);
1447 
1448 	netdev_dbg(dev, "NIC status %08x mode %08x sia %08x desc %u/%u/%u\n",
1449 		   dr32(MacStatus), dr32(MacMode), dr32(SIAStatus),
1450 		   de->rx_tail, de->tx_head, de->tx_tail);
1451 
1452 	del_timer_sync(&de->media_timer);
1453 
1454 	disable_irq(dev->irq);
1455 	spin_lock_irq(&de->lock);
1456 
1457 	de_stop_hw(de);
1458 	netif_stop_queue(dev);
1459 	netif_carrier_off(dev);
1460 
1461 	spin_unlock_irq(&de->lock);
1462 	enable_irq(dev->irq);
1463 
1464 	/* Update the error counts. */
1465 	__de_get_stats(de);
1466 
1467 	synchronize_irq(dev->irq);
1468 	de_clean_rings(de);
1469 
1470 	de_init_rings(de);
1471 
1472 	de_init_hw(de);
1473 
1474 	netif_wake_queue(dev);
1475 }
1476 
1477 static void __de_get_regs(struct de_private *de, u8 *buf)
1478 {
1479 	int i;
1480 	u32 *rbuf = (u32 *)buf;
1481 
1482 	/* read all CSRs */
1483 	for (i = 0; i < DE_NUM_REGS; i++)
1484 		rbuf[i] = dr32(i * 8);
1485 
1486 	/* handle self-clearing RxMissed counter, CSR8 */
1487 	de_rx_missed(de, rbuf[8]);
1488 }
1489 
1490 static int __de_get_settings(struct de_private *de, struct ethtool_cmd *ecmd)
1491 {
1492 	ecmd->supported = de->media_supported;
1493 	ecmd->transceiver = XCVR_INTERNAL;
1494 	ecmd->phy_address = 0;
1495 	ecmd->advertising = de->media_advertise;
1496 
1497 	switch (de->media_type) {
1498 	case DE_MEDIA_AUI:
1499 		ecmd->port = PORT_AUI;
1500 		break;
1501 	case DE_MEDIA_BNC:
1502 		ecmd->port = PORT_BNC;
1503 		break;
1504 	default:
1505 		ecmd->port = PORT_TP;
1506 		break;
1507 	}
1508 
1509 	ethtool_cmd_speed_set(ecmd, 10);
1510 
1511 	if (dr32(MacMode) & FullDuplex)
1512 		ecmd->duplex = DUPLEX_FULL;
1513 	else
1514 		ecmd->duplex = DUPLEX_HALF;
1515 
1516 	if (de->media_lock)
1517 		ecmd->autoneg = AUTONEG_DISABLE;
1518 	else
1519 		ecmd->autoneg = AUTONEG_ENABLE;
1520 
1521 	/* ignore maxtxpkt, maxrxpkt for now */
1522 
1523 	return 0;
1524 }
1525 
1526 static int __de_set_settings(struct de_private *de, struct ethtool_cmd *ecmd)
1527 {
1528 	u32 new_media;
1529 	unsigned int media_lock;
1530 
1531 	if (ethtool_cmd_speed(ecmd) != 10)
1532 		return -EINVAL;
1533 	if (ecmd->duplex != DUPLEX_HALF && ecmd->duplex != DUPLEX_FULL)
1534 		return -EINVAL;
1535 	if (ecmd->port != PORT_TP && ecmd->port != PORT_AUI && ecmd->port != PORT_BNC)
1536 		return -EINVAL;
1537 	if (de->de21040 && ecmd->port == PORT_BNC)
1538 		return -EINVAL;
1539 	if (ecmd->transceiver != XCVR_INTERNAL)
1540 		return -EINVAL;
1541 	if (ecmd->autoneg != AUTONEG_DISABLE && ecmd->autoneg != AUTONEG_ENABLE)
1542 		return -EINVAL;
1543 	if (ecmd->advertising & ~de->media_supported)
1544 		return -EINVAL;
1545 	if (ecmd->autoneg == AUTONEG_ENABLE &&
1546 	    (!(ecmd->advertising & ADVERTISED_Autoneg)))
1547 		return -EINVAL;
1548 
1549 	switch (ecmd->port) {
1550 	case PORT_AUI:
1551 		new_media = DE_MEDIA_AUI;
1552 		if (!(ecmd->advertising & ADVERTISED_AUI))
1553 			return -EINVAL;
1554 		break;
1555 	case PORT_BNC:
1556 		new_media = DE_MEDIA_BNC;
1557 		if (!(ecmd->advertising & ADVERTISED_BNC))
1558 			return -EINVAL;
1559 		break;
1560 	default:
1561 		if (ecmd->autoneg == AUTONEG_ENABLE)
1562 			new_media = DE_MEDIA_TP_AUTO;
1563 		else if (ecmd->duplex == DUPLEX_FULL)
1564 			new_media = DE_MEDIA_TP_FD;
1565 		else
1566 			new_media = DE_MEDIA_TP;
1567 		if (!(ecmd->advertising & ADVERTISED_TP))
1568 			return -EINVAL;
1569 		if (!(ecmd->advertising & (ADVERTISED_10baseT_Full | ADVERTISED_10baseT_Half)))
1570 			return -EINVAL;
1571 		break;
1572 	}
1573 
1574 	media_lock = (ecmd->autoneg == AUTONEG_ENABLE) ? 0 : 1;
1575 
1576 	if ((new_media == de->media_type) &&
1577 	    (media_lock == de->media_lock) &&
1578 	    (ecmd->advertising == de->media_advertise))
1579 		return 0; /* nothing to change */
1580 
1581 	de_link_down(de);
1582 	mod_timer(&de->media_timer, jiffies + DE_TIMER_NO_LINK);
1583 	de_stop_rxtx(de);
1584 
1585 	de->media_type = new_media;
1586 	de->media_lock = media_lock;
1587 	de->media_advertise = ecmd->advertising;
1588 	de_set_media(de);
1589 	if (netif_running(de->dev))
1590 		de_start_rxtx(de);
1591 
1592 	return 0;
1593 }
1594 
1595 static void de_get_drvinfo (struct net_device *dev,struct ethtool_drvinfo *info)
1596 {
1597 	struct de_private *de = netdev_priv(dev);
1598 
1599 	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1600 	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1601 	strlcpy(info->bus_info, pci_name(de->pdev), sizeof(info->bus_info));
1602 	info->eedump_len = DE_EEPROM_SIZE;
1603 }
1604 
1605 static int de_get_regs_len(struct net_device *dev)
1606 {
1607 	return DE_REGS_SIZE;
1608 }
1609 
1610 static int de_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
1611 {
1612 	struct de_private *de = netdev_priv(dev);
1613 	int rc;
1614 
1615 	spin_lock_irq(&de->lock);
1616 	rc = __de_get_settings(de, ecmd);
1617 	spin_unlock_irq(&de->lock);
1618 
1619 	return rc;
1620 }
1621 
1622 static int de_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
1623 {
1624 	struct de_private *de = netdev_priv(dev);
1625 	int rc;
1626 
1627 	spin_lock_irq(&de->lock);
1628 	rc = __de_set_settings(de, ecmd);
1629 	spin_unlock_irq(&de->lock);
1630 
1631 	return rc;
1632 }
1633 
1634 static u32 de_get_msglevel(struct net_device *dev)
1635 {
1636 	struct de_private *de = netdev_priv(dev);
1637 
1638 	return de->msg_enable;
1639 }
1640 
1641 static void de_set_msglevel(struct net_device *dev, u32 msglvl)
1642 {
1643 	struct de_private *de = netdev_priv(dev);
1644 
1645 	de->msg_enable = msglvl;
1646 }
1647 
1648 static int de_get_eeprom(struct net_device *dev,
1649 			 struct ethtool_eeprom *eeprom, u8 *data)
1650 {
1651 	struct de_private *de = netdev_priv(dev);
1652 
1653 	if (!de->ee_data)
1654 		return -EOPNOTSUPP;
1655 	if ((eeprom->offset != 0) || (eeprom->magic != 0) ||
1656 	    (eeprom->len != DE_EEPROM_SIZE))
1657 		return -EINVAL;
1658 	memcpy(data, de->ee_data, eeprom->len);
1659 
1660 	return 0;
1661 }
1662 
1663 static int de_nway_reset(struct net_device *dev)
1664 {
1665 	struct de_private *de = netdev_priv(dev);
1666 	u32 status;
1667 
1668 	if (de->media_type != DE_MEDIA_TP_AUTO)
1669 		return -EINVAL;
1670 	if (netif_carrier_ok(de->dev))
1671 		de_link_down(de);
1672 
1673 	status = dr32(SIAStatus);
1674 	dw32(SIAStatus, (status & ~NWayState) | NWayRestart);
1675 	netif_info(de, link, dev, "link nway restart, status %x,%x\n",
1676 		   status, dr32(SIAStatus));
1677 	return 0;
1678 }
1679 
1680 static void de_get_regs(struct net_device *dev, struct ethtool_regs *regs,
1681 			void *data)
1682 {
1683 	struct de_private *de = netdev_priv(dev);
1684 
1685 	regs->version = (DE_REGS_VER << 2) | de->de21040;
1686 
1687 	spin_lock_irq(&de->lock);
1688 	__de_get_regs(de, data);
1689 	spin_unlock_irq(&de->lock);
1690 }
1691 
1692 static const struct ethtool_ops de_ethtool_ops = {
1693 	.get_link		= ethtool_op_get_link,
1694 	.get_drvinfo		= de_get_drvinfo,
1695 	.get_regs_len		= de_get_regs_len,
1696 	.get_settings		= de_get_settings,
1697 	.set_settings		= de_set_settings,
1698 	.get_msglevel		= de_get_msglevel,
1699 	.set_msglevel		= de_set_msglevel,
1700 	.get_eeprom		= de_get_eeprom,
1701 	.nway_reset		= de_nway_reset,
1702 	.get_regs		= de_get_regs,
1703 };
1704 
1705 static void __devinit de21040_get_mac_address (struct de_private *de)
1706 {
1707 	unsigned i;
1708 
1709 	dw32 (ROMCmd, 0);	/* Reset the pointer with a dummy write. */
1710 	udelay(5);
1711 
1712 	for (i = 0; i < 6; i++) {
1713 		int value, boguscnt = 100000;
1714 		do {
1715 			value = dr32(ROMCmd);
1716 			rmb();
1717 		} while (value < 0 && --boguscnt > 0);
1718 		de->dev->dev_addr[i] = value;
1719 		udelay(1);
1720 		if (boguscnt <= 0)
1721 			pr_warn("timeout reading 21040 MAC address byte %u\n",
1722 				i);
1723 	}
1724 }
1725 
1726 static void __devinit de21040_get_media_info(struct de_private *de)
1727 {
1728 	unsigned int i;
1729 
1730 	de->media_type = DE_MEDIA_TP;
1731 	de->media_supported |= SUPPORTED_TP | SUPPORTED_10baseT_Full |
1732 			       SUPPORTED_10baseT_Half | SUPPORTED_AUI;
1733 	de->media_advertise = de->media_supported;
1734 
1735 	for (i = 0; i < DE_MAX_MEDIA; i++) {
1736 		switch (i) {
1737 		case DE_MEDIA_AUI:
1738 		case DE_MEDIA_TP:
1739 		case DE_MEDIA_TP_FD:
1740 			de->media[i].type = i;
1741 			de->media[i].csr13 = t21040_csr13[i];
1742 			de->media[i].csr14 = t21040_csr14[i];
1743 			de->media[i].csr15 = t21040_csr15[i];
1744 			break;
1745 		default:
1746 			de->media[i].type = DE_MEDIA_INVALID;
1747 			break;
1748 		}
1749 	}
1750 }
1751 
1752 /* Note: this routine returns extra data bits for size detection. */
1753 static unsigned __devinit tulip_read_eeprom(void __iomem *regs, int location, int addr_len)
1754 {
1755 	int i;
1756 	unsigned retval = 0;
1757 	void __iomem *ee_addr = regs + ROMCmd;
1758 	int read_cmd = location | (EE_READ_CMD << addr_len);
1759 
1760 	writel(EE_ENB & ~EE_CS, ee_addr);
1761 	writel(EE_ENB, ee_addr);
1762 
1763 	/* Shift the read command bits out. */
1764 	for (i = 4 + addr_len; i >= 0; i--) {
1765 		short dataval = (read_cmd & (1 << i)) ? EE_DATA_WRITE : 0;
1766 		writel(EE_ENB | dataval, ee_addr);
1767 		readl(ee_addr);
1768 		writel(EE_ENB | dataval | EE_SHIFT_CLK, ee_addr);
1769 		readl(ee_addr);
1770 		retval = (retval << 1) | ((readl(ee_addr) & EE_DATA_READ) ? 1 : 0);
1771 	}
1772 	writel(EE_ENB, ee_addr);
1773 	readl(ee_addr);
1774 
1775 	for (i = 16; i > 0; i--) {
1776 		writel(EE_ENB | EE_SHIFT_CLK, ee_addr);
1777 		readl(ee_addr);
1778 		retval = (retval << 1) | ((readl(ee_addr) & EE_DATA_READ) ? 1 : 0);
1779 		writel(EE_ENB, ee_addr);
1780 		readl(ee_addr);
1781 	}
1782 
1783 	/* Terminate the EEPROM access. */
1784 	writel(EE_ENB & ~EE_CS, ee_addr);
1785 	return retval;
1786 }
1787 
1788 static void __devinit de21041_get_srom_info (struct de_private *de)
1789 {
1790 	unsigned i, sa_offset = 0, ofs;
1791 	u8 ee_data[DE_EEPROM_SIZE + 6] = {};
1792 	unsigned ee_addr_size = tulip_read_eeprom(de->regs, 0xff, 8) & 0x40000 ? 8 : 6;
1793 	struct de_srom_info_leaf *il;
1794 	void *bufp;
1795 
1796 	/* download entire eeprom */
1797 	for (i = 0; i < DE_EEPROM_WORDS; i++)
1798 		((__le16 *)ee_data)[i] =
1799 			cpu_to_le16(tulip_read_eeprom(de->regs, i, ee_addr_size));
1800 
1801 	/* DEC now has a specification but early board makers
1802 	   just put the address in the first EEPROM locations. */
1803 	/* This does  memcmp(eedata, eedata+16, 8) */
1804 
1805 #ifndef CONFIG_MIPS_COBALT
1806 
1807 	for (i = 0; i < 8; i ++)
1808 		if (ee_data[i] != ee_data[16+i])
1809 			sa_offset = 20;
1810 
1811 #endif
1812 
1813 	/* store MAC address */
1814 	for (i = 0; i < 6; i ++)
1815 		de->dev->dev_addr[i] = ee_data[i + sa_offset];
1816 
1817 	/* get offset of controller 0 info leaf.  ignore 2nd byte. */
1818 	ofs = ee_data[SROMC0InfoLeaf];
1819 	if (ofs >= (sizeof(ee_data) - sizeof(struct de_srom_info_leaf) - sizeof(struct de_srom_media_block)))
1820 		goto bad_srom;
1821 
1822 	/* get pointer to info leaf */
1823 	il = (struct de_srom_info_leaf *) &ee_data[ofs];
1824 
1825 	/* paranoia checks */
1826 	if (il->n_blocks == 0)
1827 		goto bad_srom;
1828 	if ((sizeof(ee_data) - ofs) <
1829 	    (sizeof(struct de_srom_info_leaf) + (sizeof(struct de_srom_media_block) * il->n_blocks)))
1830 		goto bad_srom;
1831 
1832 	/* get default media type */
1833 	switch (get_unaligned(&il->default_media)) {
1834 	case 0x0001:  de->media_type = DE_MEDIA_BNC; break;
1835 	case 0x0002:  de->media_type = DE_MEDIA_AUI; break;
1836 	case 0x0204:  de->media_type = DE_MEDIA_TP_FD; break;
1837 	default: de->media_type = DE_MEDIA_TP_AUTO; break;
1838 	}
1839 
1840 	if (netif_msg_probe(de))
1841 		pr_info("de%d: SROM leaf offset %u, default media %s\n",
1842 		       de->board_idx, ofs, media_name[de->media_type]);
1843 
1844 	/* init SIA register values to defaults */
1845 	for (i = 0; i < DE_MAX_MEDIA; i++) {
1846 		de->media[i].type = DE_MEDIA_INVALID;
1847 		de->media[i].csr13 = 0xffff;
1848 		de->media[i].csr14 = 0xffff;
1849 		de->media[i].csr15 = 0xffff;
1850 	}
1851 
1852 	/* parse media blocks to see what medias are supported,
1853 	 * and if any custom CSR values are provided
1854 	 */
1855 	bufp = ((void *)il) + sizeof(*il);
1856 	for (i = 0; i < il->n_blocks; i++) {
1857 		struct de_srom_media_block *ib = bufp;
1858 		unsigned idx;
1859 
1860 		/* index based on media type in media block */
1861 		switch(ib->opts & MediaBlockMask) {
1862 		case 0: /* 10baseT */
1863 			de->media_supported |= SUPPORTED_TP | SUPPORTED_10baseT_Half
1864 					  | SUPPORTED_Autoneg;
1865 			idx = DE_MEDIA_TP;
1866 			de->media[DE_MEDIA_TP_AUTO].type = DE_MEDIA_TP_AUTO;
1867 			break;
1868 		case 1: /* BNC */
1869 			de->media_supported |= SUPPORTED_BNC;
1870 			idx = DE_MEDIA_BNC;
1871 			break;
1872 		case 2: /* AUI */
1873 			de->media_supported |= SUPPORTED_AUI;
1874 			idx = DE_MEDIA_AUI;
1875 			break;
1876 		case 4: /* 10baseT-FD */
1877 			de->media_supported |= SUPPORTED_TP | SUPPORTED_10baseT_Full
1878 					  | SUPPORTED_Autoneg;
1879 			idx = DE_MEDIA_TP_FD;
1880 			de->media[DE_MEDIA_TP_AUTO].type = DE_MEDIA_TP_AUTO;
1881 			break;
1882 		default:
1883 			goto bad_srom;
1884 		}
1885 
1886 		de->media[idx].type = idx;
1887 
1888 		if (netif_msg_probe(de))
1889 			pr_info("de%d:   media block #%u: %s",
1890 				de->board_idx, i,
1891 				media_name[de->media[idx].type]);
1892 
1893 		bufp += sizeof (ib->opts);
1894 
1895 		if (ib->opts & MediaCustomCSRs) {
1896 			de->media[idx].csr13 = get_unaligned(&ib->csr13);
1897 			de->media[idx].csr14 = get_unaligned(&ib->csr14);
1898 			de->media[idx].csr15 = get_unaligned(&ib->csr15);
1899 			bufp += sizeof(ib->csr13) + sizeof(ib->csr14) +
1900 				sizeof(ib->csr15);
1901 
1902 			if (netif_msg_probe(de))
1903 				pr_cont(" (%x,%x,%x)\n",
1904 					de->media[idx].csr13,
1905 					de->media[idx].csr14,
1906 					de->media[idx].csr15);
1907 
1908 		} else {
1909 			if (netif_msg_probe(de))
1910 				pr_cont("\n");
1911 		}
1912 
1913 		if (bufp > ((void *)&ee_data[DE_EEPROM_SIZE - 3]))
1914 			break;
1915 	}
1916 
1917 	de->media_advertise = de->media_supported;
1918 
1919 fill_defaults:
1920 	/* fill in defaults, for cases where custom CSRs not used */
1921 	for (i = 0; i < DE_MAX_MEDIA; i++) {
1922 		if (de->media[i].csr13 == 0xffff)
1923 			de->media[i].csr13 = t21041_csr13[i];
1924 		if (de->media[i].csr14 == 0xffff) {
1925 			/* autonegotiation is broken at least on some chip
1926 			   revisions - rev. 0x21 works, 0x11 does not */
1927 			if (de->pdev->revision < 0x20)
1928 				de->media[i].csr14 = t21041_csr14_brk[i];
1929 			else
1930 				de->media[i].csr14 = t21041_csr14[i];
1931 		}
1932 		if (de->media[i].csr15 == 0xffff)
1933 			de->media[i].csr15 = t21041_csr15[i];
1934 	}
1935 
1936 	de->ee_data = kmemdup(&ee_data[0], DE_EEPROM_SIZE, GFP_KERNEL);
1937 
1938 	return;
1939 
1940 bad_srom:
1941 	/* for error cases, it's ok to assume we support all these */
1942 	for (i = 0; i < DE_MAX_MEDIA; i++)
1943 		de->media[i].type = i;
1944 	de->media_supported =
1945 		SUPPORTED_10baseT_Half |
1946 		SUPPORTED_10baseT_Full |
1947 		SUPPORTED_Autoneg |
1948 		SUPPORTED_TP |
1949 		SUPPORTED_AUI |
1950 		SUPPORTED_BNC;
1951 	goto fill_defaults;
1952 }
1953 
1954 static const struct net_device_ops de_netdev_ops = {
1955 	.ndo_open		= de_open,
1956 	.ndo_stop		= de_close,
1957 	.ndo_set_rx_mode	= de_set_rx_mode,
1958 	.ndo_start_xmit		= de_start_xmit,
1959 	.ndo_get_stats		= de_get_stats,
1960 	.ndo_tx_timeout 	= de_tx_timeout,
1961 	.ndo_change_mtu		= eth_change_mtu,
1962 	.ndo_set_mac_address 	= eth_mac_addr,
1963 	.ndo_validate_addr	= eth_validate_addr,
1964 };
1965 
1966 static int __devinit de_init_one (struct pci_dev *pdev,
1967 				  const struct pci_device_id *ent)
1968 {
1969 	struct net_device *dev;
1970 	struct de_private *de;
1971 	int rc;
1972 	void __iomem *regs;
1973 	unsigned long pciaddr;
1974 	static int board_idx = -1;
1975 
1976 	board_idx++;
1977 
1978 #ifndef MODULE
1979 	if (board_idx == 0)
1980 		pr_info("%s\n", version);
1981 #endif
1982 
1983 	/* allocate a new ethernet device structure, and fill in defaults */
1984 	dev = alloc_etherdev(sizeof(struct de_private));
1985 	if (!dev)
1986 		return -ENOMEM;
1987 
1988 	dev->netdev_ops = &de_netdev_ops;
1989 	SET_NETDEV_DEV(dev, &pdev->dev);
1990 	dev->ethtool_ops = &de_ethtool_ops;
1991 	dev->watchdog_timeo = TX_TIMEOUT;
1992 
1993 	de = netdev_priv(dev);
1994 	de->de21040 = ent->driver_data == 0 ? 1 : 0;
1995 	de->pdev = pdev;
1996 	de->dev = dev;
1997 	de->msg_enable = (debug < 0 ? DE_DEF_MSG_ENABLE : debug);
1998 	de->board_idx = board_idx;
1999 	spin_lock_init (&de->lock);
2000 	init_timer(&de->media_timer);
2001 	if (de->de21040)
2002 		de->media_timer.function = de21040_media_timer;
2003 	else
2004 		de->media_timer.function = de21041_media_timer;
2005 	de->media_timer.data = (unsigned long) de;
2006 
2007 	netif_carrier_off(dev);
2008 
2009 	/* wake up device, assign resources */
2010 	rc = pci_enable_device(pdev);
2011 	if (rc)
2012 		goto err_out_free;
2013 
2014 	/* reserve PCI resources to ensure driver atomicity */
2015 	rc = pci_request_regions(pdev, DRV_NAME);
2016 	if (rc)
2017 		goto err_out_disable;
2018 
2019 	/* check for invalid IRQ value */
2020 	if (pdev->irq < 2) {
2021 		rc = -EIO;
2022 		pr_err("invalid irq (%d) for pci dev %s\n",
2023 		       pdev->irq, pci_name(pdev));
2024 		goto err_out_res;
2025 	}
2026 
2027 	dev->irq = pdev->irq;
2028 
2029 	/* obtain and check validity of PCI I/O address */
2030 	pciaddr = pci_resource_start(pdev, 1);
2031 	if (!pciaddr) {
2032 		rc = -EIO;
2033 		pr_err("no MMIO resource for pci dev %s\n", pci_name(pdev));
2034 		goto err_out_res;
2035 	}
2036 	if (pci_resource_len(pdev, 1) < DE_REGS_SIZE) {
2037 		rc = -EIO;
2038 		pr_err("MMIO resource (%llx) too small on pci dev %s\n",
2039 		       (unsigned long long)pci_resource_len(pdev, 1),
2040 		       pci_name(pdev));
2041 		goto err_out_res;
2042 	}
2043 
2044 	/* remap CSR registers */
2045 	regs = ioremap_nocache(pciaddr, DE_REGS_SIZE);
2046 	if (!regs) {
2047 		rc = -EIO;
2048 		pr_err("Cannot map PCI MMIO (%llx@%lx) on pci dev %s\n",
2049 		       (unsigned long long)pci_resource_len(pdev, 1),
2050 		       pciaddr, pci_name(pdev));
2051 		goto err_out_res;
2052 	}
2053 	dev->base_addr = (unsigned long) regs;
2054 	de->regs = regs;
2055 
2056 	de_adapter_wake(de);
2057 
2058 	/* make sure hardware is not running */
2059 	rc = de_reset_mac(de);
2060 	if (rc) {
2061 		pr_err("Cannot reset MAC, pci dev %s\n", pci_name(pdev));
2062 		goto err_out_iomap;
2063 	}
2064 
2065 	/* get MAC address, initialize default media type and
2066 	 * get list of supported media
2067 	 */
2068 	if (de->de21040) {
2069 		de21040_get_mac_address(de);
2070 		de21040_get_media_info(de);
2071 	} else {
2072 		de21041_get_srom_info(de);
2073 	}
2074 
2075 	/* register new network interface with kernel */
2076 	rc = register_netdev(dev);
2077 	if (rc)
2078 		goto err_out_iomap;
2079 
2080 	/* print info about board and interface just registered */
2081 	netdev_info(dev, "%s at 0x%lx, %pM, IRQ %d\n",
2082 		    de->de21040 ? "21040" : "21041",
2083 		    dev->base_addr,
2084 		    dev->dev_addr,
2085 		    dev->irq);
2086 
2087 	pci_set_drvdata(pdev, dev);
2088 
2089 	/* enable busmastering */
2090 	pci_set_master(pdev);
2091 
2092 	/* put adapter to sleep */
2093 	de_adapter_sleep(de);
2094 
2095 	return 0;
2096 
2097 err_out_iomap:
2098 	kfree(de->ee_data);
2099 	iounmap(regs);
2100 err_out_res:
2101 	pci_release_regions(pdev);
2102 err_out_disable:
2103 	pci_disable_device(pdev);
2104 err_out_free:
2105 	free_netdev(dev);
2106 	return rc;
2107 }
2108 
2109 static void __devexit de_remove_one (struct pci_dev *pdev)
2110 {
2111 	struct net_device *dev = pci_get_drvdata(pdev);
2112 	struct de_private *de = netdev_priv(dev);
2113 
2114 	BUG_ON(!dev);
2115 	unregister_netdev(dev);
2116 	kfree(de->ee_data);
2117 	iounmap(de->regs);
2118 	pci_release_regions(pdev);
2119 	pci_disable_device(pdev);
2120 	pci_set_drvdata(pdev, NULL);
2121 	free_netdev(dev);
2122 }
2123 
2124 #ifdef CONFIG_PM
2125 
2126 static int de_suspend (struct pci_dev *pdev, pm_message_t state)
2127 {
2128 	struct net_device *dev = pci_get_drvdata (pdev);
2129 	struct de_private *de = netdev_priv(dev);
2130 
2131 	rtnl_lock();
2132 	if (netif_running (dev)) {
2133 		del_timer_sync(&de->media_timer);
2134 
2135 		disable_irq(dev->irq);
2136 		spin_lock_irq(&de->lock);
2137 
2138 		de_stop_hw(de);
2139 		netif_stop_queue(dev);
2140 		netif_device_detach(dev);
2141 		netif_carrier_off(dev);
2142 
2143 		spin_unlock_irq(&de->lock);
2144 		enable_irq(dev->irq);
2145 
2146 		/* Update the error counts. */
2147 		__de_get_stats(de);
2148 
2149 		synchronize_irq(dev->irq);
2150 		de_clean_rings(de);
2151 
2152 		de_adapter_sleep(de);
2153 		pci_disable_device(pdev);
2154 	} else {
2155 		netif_device_detach(dev);
2156 	}
2157 	rtnl_unlock();
2158 	return 0;
2159 }
2160 
2161 static int de_resume (struct pci_dev *pdev)
2162 {
2163 	struct net_device *dev = pci_get_drvdata (pdev);
2164 	struct de_private *de = netdev_priv(dev);
2165 	int retval = 0;
2166 
2167 	rtnl_lock();
2168 	if (netif_device_present(dev))
2169 		goto out;
2170 	if (!netif_running(dev))
2171 		goto out_attach;
2172 	if ((retval = pci_enable_device(pdev))) {
2173 		netdev_err(dev, "pci_enable_device failed in resume\n");
2174 		goto out;
2175 	}
2176 	pci_set_master(pdev);
2177 	de_init_rings(de);
2178 	de_init_hw(de);
2179 out_attach:
2180 	netif_device_attach(dev);
2181 out:
2182 	rtnl_unlock();
2183 	return 0;
2184 }
2185 
2186 #endif /* CONFIG_PM */
2187 
2188 static struct pci_driver de_driver = {
2189 	.name		= DRV_NAME,
2190 	.id_table	= de_pci_tbl,
2191 	.probe		= de_init_one,
2192 	.remove		= __devexit_p(de_remove_one),
2193 #ifdef CONFIG_PM
2194 	.suspend	= de_suspend,
2195 	.resume		= de_resume,
2196 #endif
2197 };
2198 
2199 static int __init de_init (void)
2200 {
2201 #ifdef MODULE
2202 	pr_info("%s\n", version);
2203 #endif
2204 	return pci_register_driver(&de_driver);
2205 }
2206 
2207 static void __exit de_exit (void)
2208 {
2209 	pci_unregister_driver (&de_driver);
2210 }
2211 
2212 module_init(de_init);
2213 module_exit(de_exit);
2214