1 /* de2104x.c: A Linux PCI Ethernet driver for Intel/Digital 21040/1 chips. */ 2 /* 3 Copyright 2001,2003 Jeff Garzik <jgarzik@pobox.com> 4 5 Copyright 1994, 1995 Digital Equipment Corporation. [de4x5.c] 6 Written/copyright 1994-2001 by Donald Becker. [tulip.c] 7 8 This software may be used and distributed according to the terms of 9 the GNU General Public License (GPL), incorporated herein by reference. 10 Drivers based on or derived from this code fall under the GPL and must 11 retain the authorship, copyright and license notice. This file is not 12 a complete program and may only be used when the entire operating 13 system is licensed under the GPL. 14 15 See the file COPYING in this distribution for more information. 16 17 TODO, in rough priority order: 18 * Support forcing media type with a module parameter, 19 like dl2k.c/sundance.c 20 * Constants (module parms?) for Rx work limit 21 * Complete reset on PciErr 22 * Jumbo frames / dev->change_mtu 23 * Adjust Rx FIFO threshold and Max Rx DMA burst on Rx FIFO error 24 * Adjust Tx FIFO threshold and Max Tx DMA burst on Tx FIFO error 25 * Implement Tx software interrupt mitigation via 26 Tx descriptor bit 27 28 */ 29 30 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 31 32 #define DRV_NAME "de2104x" 33 #define DRV_VERSION "0.7" 34 #define DRV_RELDATE "Mar 17, 2004" 35 36 #include <linux/module.h> 37 #include <linux/kernel.h> 38 #include <linux/netdevice.h> 39 #include <linux/etherdevice.h> 40 #include <linux/init.h> 41 #include <linux/interrupt.h> 42 #include <linux/pci.h> 43 #include <linux/delay.h> 44 #include <linux/ethtool.h> 45 #include <linux/compiler.h> 46 #include <linux/rtnetlink.h> 47 #include <linux/crc32.h> 48 #include <linux/slab.h> 49 50 #include <asm/io.h> 51 #include <asm/irq.h> 52 #include <asm/uaccess.h> 53 #include <asm/unaligned.h> 54 55 /* These identify the driver base version and may not be removed. */ 56 static char version[] = 57 "PCI Ethernet driver v" DRV_VERSION " (" DRV_RELDATE ")"; 58 59 MODULE_AUTHOR("Jeff Garzik <jgarzik@pobox.com>"); 60 MODULE_DESCRIPTION("Intel/Digital 21040/1 series PCI Ethernet driver"); 61 MODULE_LICENSE("GPL"); 62 MODULE_VERSION(DRV_VERSION); 63 64 static int debug = -1; 65 module_param (debug, int, 0); 66 MODULE_PARM_DESC (debug, "de2104x bitmapped message enable number"); 67 68 /* Set the copy breakpoint for the copy-only-tiny-buffer Rx structure. */ 69 #if defined(__alpha__) || defined(__arm__) || defined(__hppa__) || \ 70 defined(CONFIG_SPARC) || defined(__ia64__) || \ 71 defined(__sh__) || defined(__mips__) 72 static int rx_copybreak = 1518; 73 #else 74 static int rx_copybreak = 100; 75 #endif 76 module_param (rx_copybreak, int, 0); 77 MODULE_PARM_DESC (rx_copybreak, "de2104x Breakpoint at which Rx packets are copied"); 78 79 #define DE_DEF_MSG_ENABLE (NETIF_MSG_DRV | \ 80 NETIF_MSG_PROBE | \ 81 NETIF_MSG_LINK | \ 82 NETIF_MSG_IFDOWN | \ 83 NETIF_MSG_IFUP | \ 84 NETIF_MSG_RX_ERR | \ 85 NETIF_MSG_TX_ERR) 86 87 /* Descriptor skip length in 32 bit longwords. */ 88 #ifndef CONFIG_DE2104X_DSL 89 #define DSL 0 90 #else 91 #define DSL CONFIG_DE2104X_DSL 92 #endif 93 94 #define DE_RX_RING_SIZE 64 95 #define DE_TX_RING_SIZE 64 96 #define DE_RING_BYTES \ 97 ((sizeof(struct de_desc) * DE_RX_RING_SIZE) + \ 98 (sizeof(struct de_desc) * DE_TX_RING_SIZE)) 99 #define NEXT_TX(N) (((N) + 1) & (DE_TX_RING_SIZE - 1)) 100 #define NEXT_RX(N) (((N) + 1) & (DE_RX_RING_SIZE - 1)) 101 #define TX_BUFFS_AVAIL(CP) \ 102 (((CP)->tx_tail <= (CP)->tx_head) ? \ 103 (CP)->tx_tail + (DE_TX_RING_SIZE - 1) - (CP)->tx_head : \ 104 (CP)->tx_tail - (CP)->tx_head - 1) 105 106 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/ 107 #define RX_OFFSET 2 108 109 #define DE_SETUP_SKB ((struct sk_buff *) 1) 110 #define DE_DUMMY_SKB ((struct sk_buff *) 2) 111 #define DE_SETUP_FRAME_WORDS 96 112 #define DE_EEPROM_WORDS 256 113 #define DE_EEPROM_SIZE (DE_EEPROM_WORDS * sizeof(u16)) 114 #define DE_MAX_MEDIA 5 115 116 #define DE_MEDIA_TP_AUTO 0 117 #define DE_MEDIA_BNC 1 118 #define DE_MEDIA_AUI 2 119 #define DE_MEDIA_TP 3 120 #define DE_MEDIA_TP_FD 4 121 #define DE_MEDIA_INVALID DE_MAX_MEDIA 122 #define DE_MEDIA_FIRST 0 123 #define DE_MEDIA_LAST (DE_MAX_MEDIA - 1) 124 #define DE_AUI_BNC (SUPPORTED_AUI | SUPPORTED_BNC) 125 126 #define DE_TIMER_LINK (60 * HZ) 127 #define DE_TIMER_NO_LINK (5 * HZ) 128 129 #define DE_NUM_REGS 16 130 #define DE_REGS_SIZE (DE_NUM_REGS * sizeof(u32)) 131 #define DE_REGS_VER 1 132 133 /* Time in jiffies before concluding the transmitter is hung. */ 134 #define TX_TIMEOUT (6*HZ) 135 136 /* This is a mysterious value that can be written to CSR11 in the 21040 (only) 137 to support a pre-NWay full-duplex signaling mechanism using short frames. 138 No one knows what it should be, but if left at its default value some 139 10base2(!) packets trigger a full-duplex-request interrupt. */ 140 #define FULL_DUPLEX_MAGIC 0x6969 141 142 enum { 143 /* NIC registers */ 144 BusMode = 0x00, 145 TxPoll = 0x08, 146 RxPoll = 0x10, 147 RxRingAddr = 0x18, 148 TxRingAddr = 0x20, 149 MacStatus = 0x28, 150 MacMode = 0x30, 151 IntrMask = 0x38, 152 RxMissed = 0x40, 153 ROMCmd = 0x48, 154 CSR11 = 0x58, 155 SIAStatus = 0x60, 156 CSR13 = 0x68, 157 CSR14 = 0x70, 158 CSR15 = 0x78, 159 PCIPM = 0x40, 160 161 /* BusMode bits */ 162 CmdReset = (1 << 0), 163 CacheAlign16 = 0x00008000, 164 BurstLen4 = 0x00000400, 165 DescSkipLen = (DSL << 2), 166 167 /* Rx/TxPoll bits */ 168 NormalTxPoll = (1 << 0), 169 NormalRxPoll = (1 << 0), 170 171 /* Tx/Rx descriptor status bits */ 172 DescOwn = (1 << 31), 173 RxError = (1 << 15), 174 RxErrLong = (1 << 7), 175 RxErrCRC = (1 << 1), 176 RxErrFIFO = (1 << 0), 177 RxErrRunt = (1 << 11), 178 RxErrFrame = (1 << 14), 179 RingEnd = (1 << 25), 180 FirstFrag = (1 << 29), 181 LastFrag = (1 << 30), 182 TxError = (1 << 15), 183 TxFIFOUnder = (1 << 1), 184 TxLinkFail = (1 << 2) | (1 << 10) | (1 << 11), 185 TxMaxCol = (1 << 8), 186 TxOWC = (1 << 9), 187 TxJabber = (1 << 14), 188 SetupFrame = (1 << 27), 189 TxSwInt = (1 << 31), 190 191 /* MacStatus bits */ 192 IntrOK = (1 << 16), 193 IntrErr = (1 << 15), 194 RxIntr = (1 << 6), 195 RxEmpty = (1 << 7), 196 TxIntr = (1 << 0), 197 TxEmpty = (1 << 2), 198 PciErr = (1 << 13), 199 TxState = (1 << 22) | (1 << 21) | (1 << 20), 200 RxState = (1 << 19) | (1 << 18) | (1 << 17), 201 LinkFail = (1 << 12), 202 LinkPass = (1 << 4), 203 RxStopped = (1 << 8), 204 TxStopped = (1 << 1), 205 206 /* MacMode bits */ 207 TxEnable = (1 << 13), 208 RxEnable = (1 << 1), 209 RxTx = TxEnable | RxEnable, 210 FullDuplex = (1 << 9), 211 AcceptAllMulticast = (1 << 7), 212 AcceptAllPhys = (1 << 6), 213 BOCnt = (1 << 5), 214 MacModeClear = (1<<12) | (1<<11) | (1<<10) | (1<<8) | (1<<3) | 215 RxTx | BOCnt | AcceptAllPhys | AcceptAllMulticast, 216 217 /* ROMCmd bits */ 218 EE_SHIFT_CLK = 0x02, /* EEPROM shift clock. */ 219 EE_CS = 0x01, /* EEPROM chip select. */ 220 EE_DATA_WRITE = 0x04, /* Data from the Tulip to EEPROM. */ 221 EE_WRITE_0 = 0x01, 222 EE_WRITE_1 = 0x05, 223 EE_DATA_READ = 0x08, /* Data from the EEPROM chip. */ 224 EE_ENB = (0x4800 | EE_CS), 225 226 /* The EEPROM commands include the alway-set leading bit. */ 227 EE_READ_CMD = 6, 228 229 /* RxMissed bits */ 230 RxMissedOver = (1 << 16), 231 RxMissedMask = 0xffff, 232 233 /* SROM-related bits */ 234 SROMC0InfoLeaf = 27, 235 MediaBlockMask = 0x3f, 236 MediaCustomCSRs = (1 << 6), 237 238 /* PCIPM bits */ 239 PM_Sleep = (1 << 31), 240 PM_Snooze = (1 << 30), 241 PM_Mask = PM_Sleep | PM_Snooze, 242 243 /* SIAStatus bits */ 244 NWayState = (1 << 14) | (1 << 13) | (1 << 12), 245 NWayRestart = (1 << 12), 246 NonselPortActive = (1 << 9), 247 SelPortActive = (1 << 8), 248 LinkFailStatus = (1 << 2), 249 NetCxnErr = (1 << 1), 250 }; 251 252 static const u32 de_intr_mask = 253 IntrOK | IntrErr | RxIntr | RxEmpty | TxIntr | TxEmpty | 254 LinkPass | LinkFail | PciErr; 255 256 /* 257 * Set the programmable burst length to 4 longwords for all: 258 * DMA errors result without these values. Cache align 16 long. 259 */ 260 static const u32 de_bus_mode = CacheAlign16 | BurstLen4 | DescSkipLen; 261 262 struct de_srom_media_block { 263 u8 opts; 264 u16 csr13; 265 u16 csr14; 266 u16 csr15; 267 } __packed; 268 269 struct de_srom_info_leaf { 270 u16 default_media; 271 u8 n_blocks; 272 u8 unused; 273 } __packed; 274 275 struct de_desc { 276 __le32 opts1; 277 __le32 opts2; 278 __le32 addr1; 279 __le32 addr2; 280 #if DSL 281 __le32 skip[DSL]; 282 #endif 283 }; 284 285 struct media_info { 286 u16 type; /* DE_MEDIA_xxx */ 287 u16 csr13; 288 u16 csr14; 289 u16 csr15; 290 }; 291 292 struct ring_info { 293 struct sk_buff *skb; 294 dma_addr_t mapping; 295 }; 296 297 struct de_private { 298 unsigned tx_head; 299 unsigned tx_tail; 300 unsigned rx_tail; 301 302 void __iomem *regs; 303 struct net_device *dev; 304 spinlock_t lock; 305 306 struct de_desc *rx_ring; 307 struct de_desc *tx_ring; 308 struct ring_info tx_skb[DE_TX_RING_SIZE]; 309 struct ring_info rx_skb[DE_RX_RING_SIZE]; 310 unsigned rx_buf_sz; 311 dma_addr_t ring_dma; 312 313 u32 msg_enable; 314 315 struct net_device_stats net_stats; 316 317 struct pci_dev *pdev; 318 319 u16 setup_frame[DE_SETUP_FRAME_WORDS]; 320 321 u32 media_type; 322 u32 media_supported; 323 u32 media_advertise; 324 struct media_info media[DE_MAX_MEDIA]; 325 struct timer_list media_timer; 326 327 u8 *ee_data; 328 unsigned board_idx; 329 unsigned de21040 : 1; 330 unsigned media_lock : 1; 331 }; 332 333 334 static void de_set_rx_mode (struct net_device *dev); 335 static void de_tx (struct de_private *de); 336 static void de_clean_rings (struct de_private *de); 337 static void de_media_interrupt (struct de_private *de, u32 status); 338 static void de21040_media_timer (unsigned long data); 339 static void de21041_media_timer (unsigned long data); 340 static unsigned int de_ok_to_advertise (struct de_private *de, u32 new_media); 341 342 343 static DEFINE_PCI_DEVICE_TABLE(de_pci_tbl) = { 344 { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_TULIP, 345 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 }, 346 { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_TULIP_PLUS, 347 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 1 }, 348 { }, 349 }; 350 MODULE_DEVICE_TABLE(pci, de_pci_tbl); 351 352 static const char * const media_name[DE_MAX_MEDIA] = { 353 "10baseT auto", 354 "BNC", 355 "AUI", 356 "10baseT-HD", 357 "10baseT-FD" 358 }; 359 360 /* 21040 transceiver register settings: 361 * TP AUTO(unused), BNC(unused), AUI, TP, TP FD*/ 362 static u16 t21040_csr13[] = { 0, 0, 0x8F09, 0x8F01, 0x8F01, }; 363 static u16 t21040_csr14[] = { 0, 0, 0x0705, 0xFFFF, 0xFFFD, }; 364 static u16 t21040_csr15[] = { 0, 0, 0x0006, 0x0000, 0x0000, }; 365 366 /* 21041 transceiver register settings: TP AUTO, BNC, AUI, TP, TP FD*/ 367 static u16 t21041_csr13[] = { 0xEF01, 0xEF09, 0xEF09, 0xEF01, 0xEF09, }; 368 static u16 t21041_csr14[] = { 0xFFFF, 0xF7FD, 0xF7FD, 0x7F3F, 0x7F3D, }; 369 /* If on-chip autonegotiation is broken, use half-duplex (FF3F) instead */ 370 static u16 t21041_csr14_brk[] = { 0xFF3F, 0xF7FD, 0xF7FD, 0x7F3F, 0x7F3D, }; 371 static u16 t21041_csr15[] = { 0x0008, 0x0006, 0x000E, 0x0008, 0x0008, }; 372 373 374 #define dr32(reg) ioread32(de->regs + (reg)) 375 #define dw32(reg, val) iowrite32((val), de->regs + (reg)) 376 377 378 static void de_rx_err_acct (struct de_private *de, unsigned rx_tail, 379 u32 status, u32 len) 380 { 381 netif_dbg(de, rx_err, de->dev, 382 "rx err, slot %d status 0x%x len %d\n", 383 rx_tail, status, len); 384 385 if ((status & 0x38000300) != 0x0300) { 386 /* Ingore earlier buffers. */ 387 if ((status & 0xffff) != 0x7fff) { 388 netif_warn(de, rx_err, de->dev, 389 "Oversized Ethernet frame spanned multiple buffers, status %08x!\n", 390 status); 391 de->net_stats.rx_length_errors++; 392 } 393 } else if (status & RxError) { 394 /* There was a fatal error. */ 395 de->net_stats.rx_errors++; /* end of a packet.*/ 396 if (status & 0x0890) de->net_stats.rx_length_errors++; 397 if (status & RxErrCRC) de->net_stats.rx_crc_errors++; 398 if (status & RxErrFIFO) de->net_stats.rx_fifo_errors++; 399 } 400 } 401 402 static void de_rx (struct de_private *de) 403 { 404 unsigned rx_tail = de->rx_tail; 405 unsigned rx_work = DE_RX_RING_SIZE; 406 unsigned drop = 0; 407 int rc; 408 409 while (--rx_work) { 410 u32 status, len; 411 dma_addr_t mapping; 412 struct sk_buff *skb, *copy_skb; 413 unsigned copying_skb, buflen; 414 415 skb = de->rx_skb[rx_tail].skb; 416 BUG_ON(!skb); 417 rmb(); 418 status = le32_to_cpu(de->rx_ring[rx_tail].opts1); 419 if (status & DescOwn) 420 break; 421 422 len = ((status >> 16) & 0x7ff) - 4; 423 mapping = de->rx_skb[rx_tail].mapping; 424 425 if (unlikely(drop)) { 426 de->net_stats.rx_dropped++; 427 goto rx_next; 428 } 429 430 if (unlikely((status & 0x38008300) != 0x0300)) { 431 de_rx_err_acct(de, rx_tail, status, len); 432 goto rx_next; 433 } 434 435 copying_skb = (len <= rx_copybreak); 436 437 netif_dbg(de, rx_status, de->dev, 438 "rx slot %d status 0x%x len %d copying? %d\n", 439 rx_tail, status, len, copying_skb); 440 441 buflen = copying_skb ? (len + RX_OFFSET) : de->rx_buf_sz; 442 copy_skb = netdev_alloc_skb(de->dev, buflen); 443 if (unlikely(!copy_skb)) { 444 de->net_stats.rx_dropped++; 445 drop = 1; 446 rx_work = 100; 447 goto rx_next; 448 } 449 450 if (!copying_skb) { 451 pci_unmap_single(de->pdev, mapping, 452 buflen, PCI_DMA_FROMDEVICE); 453 skb_put(skb, len); 454 455 mapping = 456 de->rx_skb[rx_tail].mapping = 457 pci_map_single(de->pdev, copy_skb->data, 458 buflen, PCI_DMA_FROMDEVICE); 459 de->rx_skb[rx_tail].skb = copy_skb; 460 } else { 461 pci_dma_sync_single_for_cpu(de->pdev, mapping, len, PCI_DMA_FROMDEVICE); 462 skb_reserve(copy_skb, RX_OFFSET); 463 skb_copy_from_linear_data(skb, skb_put(copy_skb, len), 464 len); 465 pci_dma_sync_single_for_device(de->pdev, mapping, len, PCI_DMA_FROMDEVICE); 466 467 /* We'll reuse the original ring buffer. */ 468 skb = copy_skb; 469 } 470 471 skb->protocol = eth_type_trans (skb, de->dev); 472 473 de->net_stats.rx_packets++; 474 de->net_stats.rx_bytes += skb->len; 475 rc = netif_rx (skb); 476 if (rc == NET_RX_DROP) 477 drop = 1; 478 479 rx_next: 480 if (rx_tail == (DE_RX_RING_SIZE - 1)) 481 de->rx_ring[rx_tail].opts2 = 482 cpu_to_le32(RingEnd | de->rx_buf_sz); 483 else 484 de->rx_ring[rx_tail].opts2 = cpu_to_le32(de->rx_buf_sz); 485 de->rx_ring[rx_tail].addr1 = cpu_to_le32(mapping); 486 wmb(); 487 de->rx_ring[rx_tail].opts1 = cpu_to_le32(DescOwn); 488 rx_tail = NEXT_RX(rx_tail); 489 } 490 491 if (!rx_work) 492 netdev_warn(de->dev, "rx work limit reached\n"); 493 494 de->rx_tail = rx_tail; 495 } 496 497 static irqreturn_t de_interrupt (int irq, void *dev_instance) 498 { 499 struct net_device *dev = dev_instance; 500 struct de_private *de = netdev_priv(dev); 501 u32 status; 502 503 status = dr32(MacStatus); 504 if ((!(status & (IntrOK|IntrErr))) || (status == 0xFFFF)) 505 return IRQ_NONE; 506 507 netif_dbg(de, intr, dev, "intr, status %08x mode %08x desc %u/%u/%u\n", 508 status, dr32(MacMode), 509 de->rx_tail, de->tx_head, de->tx_tail); 510 511 dw32(MacStatus, status); 512 513 if (status & (RxIntr | RxEmpty)) { 514 de_rx(de); 515 if (status & RxEmpty) 516 dw32(RxPoll, NormalRxPoll); 517 } 518 519 spin_lock(&de->lock); 520 521 if (status & (TxIntr | TxEmpty)) 522 de_tx(de); 523 524 if (status & (LinkPass | LinkFail)) 525 de_media_interrupt(de, status); 526 527 spin_unlock(&de->lock); 528 529 if (status & PciErr) { 530 u16 pci_status; 531 532 pci_read_config_word(de->pdev, PCI_STATUS, &pci_status); 533 pci_write_config_word(de->pdev, PCI_STATUS, pci_status); 534 netdev_err(de->dev, 535 "PCI bus error, status=%08x, PCI status=%04x\n", 536 status, pci_status); 537 } 538 539 return IRQ_HANDLED; 540 } 541 542 static void de_tx (struct de_private *de) 543 { 544 unsigned tx_head = de->tx_head; 545 unsigned tx_tail = de->tx_tail; 546 547 while (tx_tail != tx_head) { 548 struct sk_buff *skb; 549 u32 status; 550 551 rmb(); 552 status = le32_to_cpu(de->tx_ring[tx_tail].opts1); 553 if (status & DescOwn) 554 break; 555 556 skb = de->tx_skb[tx_tail].skb; 557 BUG_ON(!skb); 558 if (unlikely(skb == DE_DUMMY_SKB)) 559 goto next; 560 561 if (unlikely(skb == DE_SETUP_SKB)) { 562 pci_unmap_single(de->pdev, de->tx_skb[tx_tail].mapping, 563 sizeof(de->setup_frame), PCI_DMA_TODEVICE); 564 goto next; 565 } 566 567 pci_unmap_single(de->pdev, de->tx_skb[tx_tail].mapping, 568 skb->len, PCI_DMA_TODEVICE); 569 570 if (status & LastFrag) { 571 if (status & TxError) { 572 netif_dbg(de, tx_err, de->dev, 573 "tx err, status 0x%x\n", 574 status); 575 de->net_stats.tx_errors++; 576 if (status & TxOWC) 577 de->net_stats.tx_window_errors++; 578 if (status & TxMaxCol) 579 de->net_stats.tx_aborted_errors++; 580 if (status & TxLinkFail) 581 de->net_stats.tx_carrier_errors++; 582 if (status & TxFIFOUnder) 583 de->net_stats.tx_fifo_errors++; 584 } else { 585 de->net_stats.tx_packets++; 586 de->net_stats.tx_bytes += skb->len; 587 netif_dbg(de, tx_done, de->dev, 588 "tx done, slot %d\n", tx_tail); 589 } 590 dev_kfree_skb_irq(skb); 591 } 592 593 next: 594 de->tx_skb[tx_tail].skb = NULL; 595 596 tx_tail = NEXT_TX(tx_tail); 597 } 598 599 de->tx_tail = tx_tail; 600 601 if (netif_queue_stopped(de->dev) && (TX_BUFFS_AVAIL(de) > (DE_TX_RING_SIZE / 4))) 602 netif_wake_queue(de->dev); 603 } 604 605 static netdev_tx_t de_start_xmit (struct sk_buff *skb, 606 struct net_device *dev) 607 { 608 struct de_private *de = netdev_priv(dev); 609 unsigned int entry, tx_free; 610 u32 mapping, len, flags = FirstFrag | LastFrag; 611 struct de_desc *txd; 612 613 spin_lock_irq(&de->lock); 614 615 tx_free = TX_BUFFS_AVAIL(de); 616 if (tx_free == 0) { 617 netif_stop_queue(dev); 618 spin_unlock_irq(&de->lock); 619 return NETDEV_TX_BUSY; 620 } 621 tx_free--; 622 623 entry = de->tx_head; 624 625 txd = &de->tx_ring[entry]; 626 627 len = skb->len; 628 mapping = pci_map_single(de->pdev, skb->data, len, PCI_DMA_TODEVICE); 629 if (entry == (DE_TX_RING_SIZE - 1)) 630 flags |= RingEnd; 631 if (!tx_free || (tx_free == (DE_TX_RING_SIZE / 2))) 632 flags |= TxSwInt; 633 flags |= len; 634 txd->opts2 = cpu_to_le32(flags); 635 txd->addr1 = cpu_to_le32(mapping); 636 637 de->tx_skb[entry].skb = skb; 638 de->tx_skb[entry].mapping = mapping; 639 wmb(); 640 641 txd->opts1 = cpu_to_le32(DescOwn); 642 wmb(); 643 644 de->tx_head = NEXT_TX(entry); 645 netif_dbg(de, tx_queued, dev, "tx queued, slot %d, skblen %d\n", 646 entry, skb->len); 647 648 if (tx_free == 0) 649 netif_stop_queue(dev); 650 651 spin_unlock_irq(&de->lock); 652 653 /* Trigger an immediate transmit demand. */ 654 dw32(TxPoll, NormalTxPoll); 655 656 return NETDEV_TX_OK; 657 } 658 659 /* Set or clear the multicast filter for this adaptor. 660 Note that we only use exclusion around actually queueing the 661 new frame, not around filling de->setup_frame. This is non-deterministic 662 when re-entered but still correct. */ 663 664 #undef set_bit_le 665 #define set_bit_le(i,p) do { ((char *)(p))[(i)/8] |= (1<<((i)%8)); } while(0) 666 667 static void build_setup_frame_hash(u16 *setup_frm, struct net_device *dev) 668 { 669 struct de_private *de = netdev_priv(dev); 670 u16 hash_table[32]; 671 struct netdev_hw_addr *ha; 672 int i; 673 u16 *eaddrs; 674 675 memset(hash_table, 0, sizeof(hash_table)); 676 set_bit_le(255, hash_table); /* Broadcast entry */ 677 /* This should work on big-endian machines as well. */ 678 netdev_for_each_mc_addr(ha, dev) { 679 int index = ether_crc_le(ETH_ALEN, ha->addr) & 0x1ff; 680 681 set_bit_le(index, hash_table); 682 } 683 684 for (i = 0; i < 32; i++) { 685 *setup_frm++ = hash_table[i]; 686 *setup_frm++ = hash_table[i]; 687 } 688 setup_frm = &de->setup_frame[13*6]; 689 690 /* Fill the final entry with our physical address. */ 691 eaddrs = (u16 *)dev->dev_addr; 692 *setup_frm++ = eaddrs[0]; *setup_frm++ = eaddrs[0]; 693 *setup_frm++ = eaddrs[1]; *setup_frm++ = eaddrs[1]; 694 *setup_frm++ = eaddrs[2]; *setup_frm++ = eaddrs[2]; 695 } 696 697 static void build_setup_frame_perfect(u16 *setup_frm, struct net_device *dev) 698 { 699 struct de_private *de = netdev_priv(dev); 700 struct netdev_hw_addr *ha; 701 u16 *eaddrs; 702 703 /* We have <= 14 addresses so we can use the wonderful 704 16 address perfect filtering of the Tulip. */ 705 netdev_for_each_mc_addr(ha, dev) { 706 eaddrs = (u16 *) ha->addr; 707 *setup_frm++ = *eaddrs; *setup_frm++ = *eaddrs++; 708 *setup_frm++ = *eaddrs; *setup_frm++ = *eaddrs++; 709 *setup_frm++ = *eaddrs; *setup_frm++ = *eaddrs++; 710 } 711 /* Fill the unused entries with the broadcast address. */ 712 memset(setup_frm, 0xff, (15 - netdev_mc_count(dev)) * 12); 713 setup_frm = &de->setup_frame[15*6]; 714 715 /* Fill the final entry with our physical address. */ 716 eaddrs = (u16 *)dev->dev_addr; 717 *setup_frm++ = eaddrs[0]; *setup_frm++ = eaddrs[0]; 718 *setup_frm++ = eaddrs[1]; *setup_frm++ = eaddrs[1]; 719 *setup_frm++ = eaddrs[2]; *setup_frm++ = eaddrs[2]; 720 } 721 722 723 static void __de_set_rx_mode (struct net_device *dev) 724 { 725 struct de_private *de = netdev_priv(dev); 726 u32 macmode; 727 unsigned int entry; 728 u32 mapping; 729 struct de_desc *txd; 730 struct de_desc *dummy_txd = NULL; 731 732 macmode = dr32(MacMode) & ~(AcceptAllMulticast | AcceptAllPhys); 733 734 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */ 735 macmode |= AcceptAllMulticast | AcceptAllPhys; 736 goto out; 737 } 738 739 if ((netdev_mc_count(dev) > 1000) || (dev->flags & IFF_ALLMULTI)) { 740 /* Too many to filter well -- accept all multicasts. */ 741 macmode |= AcceptAllMulticast; 742 goto out; 743 } 744 745 /* Note that only the low-address shortword of setup_frame is valid! 746 The values are doubled for big-endian architectures. */ 747 if (netdev_mc_count(dev) > 14) /* Must use a multicast hash table. */ 748 build_setup_frame_hash (de->setup_frame, dev); 749 else 750 build_setup_frame_perfect (de->setup_frame, dev); 751 752 /* 753 * Now add this frame to the Tx list. 754 */ 755 756 entry = de->tx_head; 757 758 /* Avoid a chip errata by prefixing a dummy entry. */ 759 if (entry != 0) { 760 de->tx_skb[entry].skb = DE_DUMMY_SKB; 761 762 dummy_txd = &de->tx_ring[entry]; 763 dummy_txd->opts2 = (entry == (DE_TX_RING_SIZE - 1)) ? 764 cpu_to_le32(RingEnd) : 0; 765 dummy_txd->addr1 = 0; 766 767 /* Must set DescOwned later to avoid race with chip */ 768 769 entry = NEXT_TX(entry); 770 } 771 772 de->tx_skb[entry].skb = DE_SETUP_SKB; 773 de->tx_skb[entry].mapping = mapping = 774 pci_map_single (de->pdev, de->setup_frame, 775 sizeof (de->setup_frame), PCI_DMA_TODEVICE); 776 777 /* Put the setup frame on the Tx list. */ 778 txd = &de->tx_ring[entry]; 779 if (entry == (DE_TX_RING_SIZE - 1)) 780 txd->opts2 = cpu_to_le32(SetupFrame | RingEnd | sizeof (de->setup_frame)); 781 else 782 txd->opts2 = cpu_to_le32(SetupFrame | sizeof (de->setup_frame)); 783 txd->addr1 = cpu_to_le32(mapping); 784 wmb(); 785 786 txd->opts1 = cpu_to_le32(DescOwn); 787 wmb(); 788 789 if (dummy_txd) { 790 dummy_txd->opts1 = cpu_to_le32(DescOwn); 791 wmb(); 792 } 793 794 de->tx_head = NEXT_TX(entry); 795 796 if (TX_BUFFS_AVAIL(de) == 0) 797 netif_stop_queue(dev); 798 799 /* Trigger an immediate transmit demand. */ 800 dw32(TxPoll, NormalTxPoll); 801 802 out: 803 if (macmode != dr32(MacMode)) 804 dw32(MacMode, macmode); 805 } 806 807 static void de_set_rx_mode (struct net_device *dev) 808 { 809 unsigned long flags; 810 struct de_private *de = netdev_priv(dev); 811 812 spin_lock_irqsave (&de->lock, flags); 813 __de_set_rx_mode(dev); 814 spin_unlock_irqrestore (&de->lock, flags); 815 } 816 817 static inline void de_rx_missed(struct de_private *de, u32 rx_missed) 818 { 819 if (unlikely(rx_missed & RxMissedOver)) 820 de->net_stats.rx_missed_errors += RxMissedMask; 821 else 822 de->net_stats.rx_missed_errors += (rx_missed & RxMissedMask); 823 } 824 825 static void __de_get_stats(struct de_private *de) 826 { 827 u32 tmp = dr32(RxMissed); /* self-clearing */ 828 829 de_rx_missed(de, tmp); 830 } 831 832 static struct net_device_stats *de_get_stats(struct net_device *dev) 833 { 834 struct de_private *de = netdev_priv(dev); 835 836 /* The chip only need report frame silently dropped. */ 837 spin_lock_irq(&de->lock); 838 if (netif_running(dev) && netif_device_present(dev)) 839 __de_get_stats(de); 840 spin_unlock_irq(&de->lock); 841 842 return &de->net_stats; 843 } 844 845 static inline int de_is_running (struct de_private *de) 846 { 847 return (dr32(MacStatus) & (RxState | TxState)) ? 1 : 0; 848 } 849 850 static void de_stop_rxtx (struct de_private *de) 851 { 852 u32 macmode; 853 unsigned int i = 1300/100; 854 855 macmode = dr32(MacMode); 856 if (macmode & RxTx) { 857 dw32(MacMode, macmode & ~RxTx); 858 dr32(MacMode); 859 } 860 861 /* wait until in-flight frame completes. 862 * Max time @ 10BT: 1500*8b/10Mbps == 1200us (+ 100us margin) 863 * Typically expect this loop to end in < 50 us on 100BT. 864 */ 865 while (--i) { 866 if (!de_is_running(de)) 867 return; 868 udelay(100); 869 } 870 871 netdev_warn(de->dev, "timeout expired, stopping DMA\n"); 872 } 873 874 static inline void de_start_rxtx (struct de_private *de) 875 { 876 u32 macmode; 877 878 macmode = dr32(MacMode); 879 if ((macmode & RxTx) != RxTx) { 880 dw32(MacMode, macmode | RxTx); 881 dr32(MacMode); 882 } 883 } 884 885 static void de_stop_hw (struct de_private *de) 886 { 887 888 udelay(5); 889 dw32(IntrMask, 0); 890 891 de_stop_rxtx(de); 892 893 dw32(MacStatus, dr32(MacStatus)); 894 895 udelay(10); 896 897 de->rx_tail = 0; 898 de->tx_head = de->tx_tail = 0; 899 } 900 901 static void de_link_up(struct de_private *de) 902 { 903 if (!netif_carrier_ok(de->dev)) { 904 netif_carrier_on(de->dev); 905 netif_info(de, link, de->dev, "link up, media %s\n", 906 media_name[de->media_type]); 907 } 908 } 909 910 static void de_link_down(struct de_private *de) 911 { 912 if (netif_carrier_ok(de->dev)) { 913 netif_carrier_off(de->dev); 914 netif_info(de, link, de->dev, "link down\n"); 915 } 916 } 917 918 static void de_set_media (struct de_private *de) 919 { 920 unsigned media = de->media_type; 921 u32 macmode = dr32(MacMode); 922 923 if (de_is_running(de)) 924 netdev_warn(de->dev, "chip is running while changing media!\n"); 925 926 if (de->de21040) 927 dw32(CSR11, FULL_DUPLEX_MAGIC); 928 dw32(CSR13, 0); /* Reset phy */ 929 dw32(CSR14, de->media[media].csr14); 930 dw32(CSR15, de->media[media].csr15); 931 dw32(CSR13, de->media[media].csr13); 932 933 /* must delay 10ms before writing to other registers, 934 * especially CSR6 935 */ 936 mdelay(10); 937 938 if (media == DE_MEDIA_TP_FD) 939 macmode |= FullDuplex; 940 else 941 macmode &= ~FullDuplex; 942 943 netif_info(de, link, de->dev, "set link %s\n", media_name[media]); 944 netif_info(de, hw, de->dev, "mode 0x%x, sia 0x%x,0x%x,0x%x,0x%x\n", 945 dr32(MacMode), dr32(SIAStatus), 946 dr32(CSR13), dr32(CSR14), dr32(CSR15)); 947 netif_info(de, hw, de->dev, "set mode 0x%x, set sia 0x%x,0x%x,0x%x\n", 948 macmode, de->media[media].csr13, 949 de->media[media].csr14, de->media[media].csr15); 950 if (macmode != dr32(MacMode)) 951 dw32(MacMode, macmode); 952 } 953 954 static void de_next_media (struct de_private *de, const u32 *media, 955 unsigned int n_media) 956 { 957 unsigned int i; 958 959 for (i = 0; i < n_media; i++) { 960 if (de_ok_to_advertise(de, media[i])) { 961 de->media_type = media[i]; 962 return; 963 } 964 } 965 } 966 967 static void de21040_media_timer (unsigned long data) 968 { 969 struct de_private *de = (struct de_private *) data; 970 struct net_device *dev = de->dev; 971 u32 status = dr32(SIAStatus); 972 unsigned int carrier; 973 unsigned long flags; 974 975 carrier = (status & NetCxnErr) ? 0 : 1; 976 977 if (carrier) { 978 if (de->media_type != DE_MEDIA_AUI && (status & LinkFailStatus)) 979 goto no_link_yet; 980 981 de->media_timer.expires = jiffies + DE_TIMER_LINK; 982 add_timer(&de->media_timer); 983 if (!netif_carrier_ok(dev)) 984 de_link_up(de); 985 else 986 netif_info(de, timer, dev, "%s link ok, status %x\n", 987 media_name[de->media_type], status); 988 return; 989 } 990 991 de_link_down(de); 992 993 if (de->media_lock) 994 return; 995 996 if (de->media_type == DE_MEDIA_AUI) { 997 static const u32 next_state = DE_MEDIA_TP; 998 de_next_media(de, &next_state, 1); 999 } else { 1000 static const u32 next_state = DE_MEDIA_AUI; 1001 de_next_media(de, &next_state, 1); 1002 } 1003 1004 spin_lock_irqsave(&de->lock, flags); 1005 de_stop_rxtx(de); 1006 spin_unlock_irqrestore(&de->lock, flags); 1007 de_set_media(de); 1008 de_start_rxtx(de); 1009 1010 no_link_yet: 1011 de->media_timer.expires = jiffies + DE_TIMER_NO_LINK; 1012 add_timer(&de->media_timer); 1013 1014 netif_info(de, timer, dev, "no link, trying media %s, status %x\n", 1015 media_name[de->media_type], status); 1016 } 1017 1018 static unsigned int de_ok_to_advertise (struct de_private *de, u32 new_media) 1019 { 1020 switch (new_media) { 1021 case DE_MEDIA_TP_AUTO: 1022 if (!(de->media_advertise & ADVERTISED_Autoneg)) 1023 return 0; 1024 if (!(de->media_advertise & (ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full))) 1025 return 0; 1026 break; 1027 case DE_MEDIA_BNC: 1028 if (!(de->media_advertise & ADVERTISED_BNC)) 1029 return 0; 1030 break; 1031 case DE_MEDIA_AUI: 1032 if (!(de->media_advertise & ADVERTISED_AUI)) 1033 return 0; 1034 break; 1035 case DE_MEDIA_TP: 1036 if (!(de->media_advertise & ADVERTISED_10baseT_Half)) 1037 return 0; 1038 break; 1039 case DE_MEDIA_TP_FD: 1040 if (!(de->media_advertise & ADVERTISED_10baseT_Full)) 1041 return 0; 1042 break; 1043 } 1044 1045 return 1; 1046 } 1047 1048 static void de21041_media_timer (unsigned long data) 1049 { 1050 struct de_private *de = (struct de_private *) data; 1051 struct net_device *dev = de->dev; 1052 u32 status = dr32(SIAStatus); 1053 unsigned int carrier; 1054 unsigned long flags; 1055 1056 /* clear port active bits */ 1057 dw32(SIAStatus, NonselPortActive | SelPortActive); 1058 1059 carrier = (status & NetCxnErr) ? 0 : 1; 1060 1061 if (carrier) { 1062 if ((de->media_type == DE_MEDIA_TP_AUTO || 1063 de->media_type == DE_MEDIA_TP || 1064 de->media_type == DE_MEDIA_TP_FD) && 1065 (status & LinkFailStatus)) 1066 goto no_link_yet; 1067 1068 de->media_timer.expires = jiffies + DE_TIMER_LINK; 1069 add_timer(&de->media_timer); 1070 if (!netif_carrier_ok(dev)) 1071 de_link_up(de); 1072 else 1073 netif_info(de, timer, dev, 1074 "%s link ok, mode %x status %x\n", 1075 media_name[de->media_type], 1076 dr32(MacMode), status); 1077 return; 1078 } 1079 1080 de_link_down(de); 1081 1082 /* if media type locked, don't switch media */ 1083 if (de->media_lock) 1084 goto set_media; 1085 1086 /* if activity detected, use that as hint for new media type */ 1087 if (status & NonselPortActive) { 1088 unsigned int have_media = 1; 1089 1090 /* if AUI/BNC selected, then activity is on TP port */ 1091 if (de->media_type == DE_MEDIA_AUI || 1092 de->media_type == DE_MEDIA_BNC) { 1093 if (de_ok_to_advertise(de, DE_MEDIA_TP_AUTO)) 1094 de->media_type = DE_MEDIA_TP_AUTO; 1095 else 1096 have_media = 0; 1097 } 1098 1099 /* TP selected. If there is only TP and BNC, then it's BNC */ 1100 else if (((de->media_supported & DE_AUI_BNC) == SUPPORTED_BNC) && 1101 de_ok_to_advertise(de, DE_MEDIA_BNC)) 1102 de->media_type = DE_MEDIA_BNC; 1103 1104 /* TP selected. If there is only TP and AUI, then it's AUI */ 1105 else if (((de->media_supported & DE_AUI_BNC) == SUPPORTED_AUI) && 1106 de_ok_to_advertise(de, DE_MEDIA_AUI)) 1107 de->media_type = DE_MEDIA_AUI; 1108 1109 /* otherwise, ignore the hint */ 1110 else 1111 have_media = 0; 1112 1113 if (have_media) 1114 goto set_media; 1115 } 1116 1117 /* 1118 * Absent or ambiguous activity hint, move to next advertised 1119 * media state. If de->media_type is left unchanged, this 1120 * simply resets the PHY and reloads the current media settings. 1121 */ 1122 if (de->media_type == DE_MEDIA_AUI) { 1123 static const u32 next_states[] = { 1124 DE_MEDIA_BNC, DE_MEDIA_TP_AUTO 1125 }; 1126 de_next_media(de, next_states, ARRAY_SIZE(next_states)); 1127 } else if (de->media_type == DE_MEDIA_BNC) { 1128 static const u32 next_states[] = { 1129 DE_MEDIA_TP_AUTO, DE_MEDIA_AUI 1130 }; 1131 de_next_media(de, next_states, ARRAY_SIZE(next_states)); 1132 } else { 1133 static const u32 next_states[] = { 1134 DE_MEDIA_AUI, DE_MEDIA_BNC, DE_MEDIA_TP_AUTO 1135 }; 1136 de_next_media(de, next_states, ARRAY_SIZE(next_states)); 1137 } 1138 1139 set_media: 1140 spin_lock_irqsave(&de->lock, flags); 1141 de_stop_rxtx(de); 1142 spin_unlock_irqrestore(&de->lock, flags); 1143 de_set_media(de); 1144 de_start_rxtx(de); 1145 1146 no_link_yet: 1147 de->media_timer.expires = jiffies + DE_TIMER_NO_LINK; 1148 add_timer(&de->media_timer); 1149 1150 netif_info(de, timer, dev, "no link, trying media %s, status %x\n", 1151 media_name[de->media_type], status); 1152 } 1153 1154 static void de_media_interrupt (struct de_private *de, u32 status) 1155 { 1156 if (status & LinkPass) { 1157 /* Ignore if current media is AUI or BNC and we can't use TP */ 1158 if ((de->media_type == DE_MEDIA_AUI || 1159 de->media_type == DE_MEDIA_BNC) && 1160 (de->media_lock || 1161 !de_ok_to_advertise(de, DE_MEDIA_TP_AUTO))) 1162 return; 1163 /* If current media is not TP, change it to TP */ 1164 if ((de->media_type == DE_MEDIA_AUI || 1165 de->media_type == DE_MEDIA_BNC)) { 1166 de->media_type = DE_MEDIA_TP_AUTO; 1167 de_stop_rxtx(de); 1168 de_set_media(de); 1169 de_start_rxtx(de); 1170 } 1171 de_link_up(de); 1172 mod_timer(&de->media_timer, jiffies + DE_TIMER_LINK); 1173 return; 1174 } 1175 1176 BUG_ON(!(status & LinkFail)); 1177 /* Mark the link as down only if current media is TP */ 1178 if (netif_carrier_ok(de->dev) && de->media_type != DE_MEDIA_AUI && 1179 de->media_type != DE_MEDIA_BNC) { 1180 de_link_down(de); 1181 mod_timer(&de->media_timer, jiffies + DE_TIMER_NO_LINK); 1182 } 1183 } 1184 1185 static int de_reset_mac (struct de_private *de) 1186 { 1187 u32 status, tmp; 1188 1189 /* 1190 * Reset MAC. de4x5.c and tulip.c examined for "advice" 1191 * in this area. 1192 */ 1193 1194 if (dr32(BusMode) == 0xffffffff) 1195 return -EBUSY; 1196 1197 /* Reset the chip, holding bit 0 set at least 50 PCI cycles. */ 1198 dw32 (BusMode, CmdReset); 1199 mdelay (1); 1200 1201 dw32 (BusMode, de_bus_mode); 1202 mdelay (1); 1203 1204 for (tmp = 0; tmp < 5; tmp++) { 1205 dr32 (BusMode); 1206 mdelay (1); 1207 } 1208 1209 mdelay (1); 1210 1211 status = dr32(MacStatus); 1212 if (status & (RxState | TxState)) 1213 return -EBUSY; 1214 if (status == 0xffffffff) 1215 return -ENODEV; 1216 return 0; 1217 } 1218 1219 static void de_adapter_wake (struct de_private *de) 1220 { 1221 u32 pmctl; 1222 1223 if (de->de21040) 1224 return; 1225 1226 pci_read_config_dword(de->pdev, PCIPM, &pmctl); 1227 if (pmctl & PM_Mask) { 1228 pmctl &= ~PM_Mask; 1229 pci_write_config_dword(de->pdev, PCIPM, pmctl); 1230 1231 /* de4x5.c delays, so we do too */ 1232 msleep(10); 1233 } 1234 } 1235 1236 static void de_adapter_sleep (struct de_private *de) 1237 { 1238 u32 pmctl; 1239 1240 if (de->de21040) 1241 return; 1242 1243 dw32(CSR13, 0); /* Reset phy */ 1244 pci_read_config_dword(de->pdev, PCIPM, &pmctl); 1245 pmctl |= PM_Sleep; 1246 pci_write_config_dword(de->pdev, PCIPM, pmctl); 1247 } 1248 1249 static int de_init_hw (struct de_private *de) 1250 { 1251 struct net_device *dev = de->dev; 1252 u32 macmode; 1253 int rc; 1254 1255 de_adapter_wake(de); 1256 1257 macmode = dr32(MacMode) & ~MacModeClear; 1258 1259 rc = de_reset_mac(de); 1260 if (rc) 1261 return rc; 1262 1263 de_set_media(de); /* reset phy */ 1264 1265 dw32(RxRingAddr, de->ring_dma); 1266 dw32(TxRingAddr, de->ring_dma + (sizeof(struct de_desc) * DE_RX_RING_SIZE)); 1267 1268 dw32(MacMode, RxTx | macmode); 1269 1270 dr32(RxMissed); /* self-clearing */ 1271 1272 dw32(IntrMask, de_intr_mask); 1273 1274 de_set_rx_mode(dev); 1275 1276 return 0; 1277 } 1278 1279 static int de_refill_rx (struct de_private *de) 1280 { 1281 unsigned i; 1282 1283 for (i = 0; i < DE_RX_RING_SIZE; i++) { 1284 struct sk_buff *skb; 1285 1286 skb = netdev_alloc_skb(de->dev, de->rx_buf_sz); 1287 if (!skb) 1288 goto err_out; 1289 1290 de->rx_skb[i].mapping = pci_map_single(de->pdev, 1291 skb->data, de->rx_buf_sz, PCI_DMA_FROMDEVICE); 1292 de->rx_skb[i].skb = skb; 1293 1294 de->rx_ring[i].opts1 = cpu_to_le32(DescOwn); 1295 if (i == (DE_RX_RING_SIZE - 1)) 1296 de->rx_ring[i].opts2 = 1297 cpu_to_le32(RingEnd | de->rx_buf_sz); 1298 else 1299 de->rx_ring[i].opts2 = cpu_to_le32(de->rx_buf_sz); 1300 de->rx_ring[i].addr1 = cpu_to_le32(de->rx_skb[i].mapping); 1301 de->rx_ring[i].addr2 = 0; 1302 } 1303 1304 return 0; 1305 1306 err_out: 1307 de_clean_rings(de); 1308 return -ENOMEM; 1309 } 1310 1311 static int de_init_rings (struct de_private *de) 1312 { 1313 memset(de->tx_ring, 0, sizeof(struct de_desc) * DE_TX_RING_SIZE); 1314 de->tx_ring[DE_TX_RING_SIZE - 1].opts2 = cpu_to_le32(RingEnd); 1315 1316 de->rx_tail = 0; 1317 de->tx_head = de->tx_tail = 0; 1318 1319 return de_refill_rx (de); 1320 } 1321 1322 static int de_alloc_rings (struct de_private *de) 1323 { 1324 de->rx_ring = pci_alloc_consistent(de->pdev, DE_RING_BYTES, &de->ring_dma); 1325 if (!de->rx_ring) 1326 return -ENOMEM; 1327 de->tx_ring = &de->rx_ring[DE_RX_RING_SIZE]; 1328 return de_init_rings(de); 1329 } 1330 1331 static void de_clean_rings (struct de_private *de) 1332 { 1333 unsigned i; 1334 1335 memset(de->rx_ring, 0, sizeof(struct de_desc) * DE_RX_RING_SIZE); 1336 de->rx_ring[DE_RX_RING_SIZE - 1].opts2 = cpu_to_le32(RingEnd); 1337 wmb(); 1338 memset(de->tx_ring, 0, sizeof(struct de_desc) * DE_TX_RING_SIZE); 1339 de->tx_ring[DE_TX_RING_SIZE - 1].opts2 = cpu_to_le32(RingEnd); 1340 wmb(); 1341 1342 for (i = 0; i < DE_RX_RING_SIZE; i++) { 1343 if (de->rx_skb[i].skb) { 1344 pci_unmap_single(de->pdev, de->rx_skb[i].mapping, 1345 de->rx_buf_sz, PCI_DMA_FROMDEVICE); 1346 dev_kfree_skb(de->rx_skb[i].skb); 1347 } 1348 } 1349 1350 for (i = 0; i < DE_TX_RING_SIZE; i++) { 1351 struct sk_buff *skb = de->tx_skb[i].skb; 1352 if ((skb) && (skb != DE_DUMMY_SKB)) { 1353 if (skb != DE_SETUP_SKB) { 1354 de->net_stats.tx_dropped++; 1355 pci_unmap_single(de->pdev, 1356 de->tx_skb[i].mapping, 1357 skb->len, PCI_DMA_TODEVICE); 1358 dev_kfree_skb(skb); 1359 } else { 1360 pci_unmap_single(de->pdev, 1361 de->tx_skb[i].mapping, 1362 sizeof(de->setup_frame), 1363 PCI_DMA_TODEVICE); 1364 } 1365 } 1366 } 1367 1368 memset(&de->rx_skb, 0, sizeof(struct ring_info) * DE_RX_RING_SIZE); 1369 memset(&de->tx_skb, 0, sizeof(struct ring_info) * DE_TX_RING_SIZE); 1370 } 1371 1372 static void de_free_rings (struct de_private *de) 1373 { 1374 de_clean_rings(de); 1375 pci_free_consistent(de->pdev, DE_RING_BYTES, de->rx_ring, de->ring_dma); 1376 de->rx_ring = NULL; 1377 de->tx_ring = NULL; 1378 } 1379 1380 static int de_open (struct net_device *dev) 1381 { 1382 struct de_private *de = netdev_priv(dev); 1383 int rc; 1384 1385 netif_dbg(de, ifup, dev, "enabling interface\n"); 1386 1387 de->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32); 1388 1389 rc = de_alloc_rings(de); 1390 if (rc) { 1391 netdev_err(dev, "ring allocation failure, err=%d\n", rc); 1392 return rc; 1393 } 1394 1395 dw32(IntrMask, 0); 1396 1397 rc = request_irq(dev->irq, de_interrupt, IRQF_SHARED, dev->name, dev); 1398 if (rc) { 1399 netdev_err(dev, "IRQ %d request failure, err=%d\n", 1400 dev->irq, rc); 1401 goto err_out_free; 1402 } 1403 1404 rc = de_init_hw(de); 1405 if (rc) { 1406 netdev_err(dev, "h/w init failure, err=%d\n", rc); 1407 goto err_out_free_irq; 1408 } 1409 1410 netif_start_queue(dev); 1411 mod_timer(&de->media_timer, jiffies + DE_TIMER_NO_LINK); 1412 1413 return 0; 1414 1415 err_out_free_irq: 1416 free_irq(dev->irq, dev); 1417 err_out_free: 1418 de_free_rings(de); 1419 return rc; 1420 } 1421 1422 static int de_close (struct net_device *dev) 1423 { 1424 struct de_private *de = netdev_priv(dev); 1425 unsigned long flags; 1426 1427 netif_dbg(de, ifdown, dev, "disabling interface\n"); 1428 1429 del_timer_sync(&de->media_timer); 1430 1431 spin_lock_irqsave(&de->lock, flags); 1432 de_stop_hw(de); 1433 netif_stop_queue(dev); 1434 netif_carrier_off(dev); 1435 spin_unlock_irqrestore(&de->lock, flags); 1436 1437 free_irq(dev->irq, dev); 1438 1439 de_free_rings(de); 1440 de_adapter_sleep(de); 1441 return 0; 1442 } 1443 1444 static void de_tx_timeout (struct net_device *dev) 1445 { 1446 struct de_private *de = netdev_priv(dev); 1447 1448 netdev_dbg(dev, "NIC status %08x mode %08x sia %08x desc %u/%u/%u\n", 1449 dr32(MacStatus), dr32(MacMode), dr32(SIAStatus), 1450 de->rx_tail, de->tx_head, de->tx_tail); 1451 1452 del_timer_sync(&de->media_timer); 1453 1454 disable_irq(dev->irq); 1455 spin_lock_irq(&de->lock); 1456 1457 de_stop_hw(de); 1458 netif_stop_queue(dev); 1459 netif_carrier_off(dev); 1460 1461 spin_unlock_irq(&de->lock); 1462 enable_irq(dev->irq); 1463 1464 /* Update the error counts. */ 1465 __de_get_stats(de); 1466 1467 synchronize_irq(dev->irq); 1468 de_clean_rings(de); 1469 1470 de_init_rings(de); 1471 1472 de_init_hw(de); 1473 1474 netif_wake_queue(dev); 1475 } 1476 1477 static void __de_get_regs(struct de_private *de, u8 *buf) 1478 { 1479 int i; 1480 u32 *rbuf = (u32 *)buf; 1481 1482 /* read all CSRs */ 1483 for (i = 0; i < DE_NUM_REGS; i++) 1484 rbuf[i] = dr32(i * 8); 1485 1486 /* handle self-clearing RxMissed counter, CSR8 */ 1487 de_rx_missed(de, rbuf[8]); 1488 } 1489 1490 static int __de_get_settings(struct de_private *de, struct ethtool_cmd *ecmd) 1491 { 1492 ecmd->supported = de->media_supported; 1493 ecmd->transceiver = XCVR_INTERNAL; 1494 ecmd->phy_address = 0; 1495 ecmd->advertising = de->media_advertise; 1496 1497 switch (de->media_type) { 1498 case DE_MEDIA_AUI: 1499 ecmd->port = PORT_AUI; 1500 break; 1501 case DE_MEDIA_BNC: 1502 ecmd->port = PORT_BNC; 1503 break; 1504 default: 1505 ecmd->port = PORT_TP; 1506 break; 1507 } 1508 1509 ethtool_cmd_speed_set(ecmd, 10); 1510 1511 if (dr32(MacMode) & FullDuplex) 1512 ecmd->duplex = DUPLEX_FULL; 1513 else 1514 ecmd->duplex = DUPLEX_HALF; 1515 1516 if (de->media_lock) 1517 ecmd->autoneg = AUTONEG_DISABLE; 1518 else 1519 ecmd->autoneg = AUTONEG_ENABLE; 1520 1521 /* ignore maxtxpkt, maxrxpkt for now */ 1522 1523 return 0; 1524 } 1525 1526 static int __de_set_settings(struct de_private *de, struct ethtool_cmd *ecmd) 1527 { 1528 u32 new_media; 1529 unsigned int media_lock; 1530 1531 if (ethtool_cmd_speed(ecmd) != 10) 1532 return -EINVAL; 1533 if (ecmd->duplex != DUPLEX_HALF && ecmd->duplex != DUPLEX_FULL) 1534 return -EINVAL; 1535 if (ecmd->port != PORT_TP && ecmd->port != PORT_AUI && ecmd->port != PORT_BNC) 1536 return -EINVAL; 1537 if (de->de21040 && ecmd->port == PORT_BNC) 1538 return -EINVAL; 1539 if (ecmd->transceiver != XCVR_INTERNAL) 1540 return -EINVAL; 1541 if (ecmd->autoneg != AUTONEG_DISABLE && ecmd->autoneg != AUTONEG_ENABLE) 1542 return -EINVAL; 1543 if (ecmd->advertising & ~de->media_supported) 1544 return -EINVAL; 1545 if (ecmd->autoneg == AUTONEG_ENABLE && 1546 (!(ecmd->advertising & ADVERTISED_Autoneg))) 1547 return -EINVAL; 1548 1549 switch (ecmd->port) { 1550 case PORT_AUI: 1551 new_media = DE_MEDIA_AUI; 1552 if (!(ecmd->advertising & ADVERTISED_AUI)) 1553 return -EINVAL; 1554 break; 1555 case PORT_BNC: 1556 new_media = DE_MEDIA_BNC; 1557 if (!(ecmd->advertising & ADVERTISED_BNC)) 1558 return -EINVAL; 1559 break; 1560 default: 1561 if (ecmd->autoneg == AUTONEG_ENABLE) 1562 new_media = DE_MEDIA_TP_AUTO; 1563 else if (ecmd->duplex == DUPLEX_FULL) 1564 new_media = DE_MEDIA_TP_FD; 1565 else 1566 new_media = DE_MEDIA_TP; 1567 if (!(ecmd->advertising & ADVERTISED_TP)) 1568 return -EINVAL; 1569 if (!(ecmd->advertising & (ADVERTISED_10baseT_Full | ADVERTISED_10baseT_Half))) 1570 return -EINVAL; 1571 break; 1572 } 1573 1574 media_lock = (ecmd->autoneg == AUTONEG_ENABLE) ? 0 : 1; 1575 1576 if ((new_media == de->media_type) && 1577 (media_lock == de->media_lock) && 1578 (ecmd->advertising == de->media_advertise)) 1579 return 0; /* nothing to change */ 1580 1581 de_link_down(de); 1582 mod_timer(&de->media_timer, jiffies + DE_TIMER_NO_LINK); 1583 de_stop_rxtx(de); 1584 1585 de->media_type = new_media; 1586 de->media_lock = media_lock; 1587 de->media_advertise = ecmd->advertising; 1588 de_set_media(de); 1589 if (netif_running(de->dev)) 1590 de_start_rxtx(de); 1591 1592 return 0; 1593 } 1594 1595 static void de_get_drvinfo (struct net_device *dev,struct ethtool_drvinfo *info) 1596 { 1597 struct de_private *de = netdev_priv(dev); 1598 1599 strlcpy(info->driver, DRV_NAME, sizeof(info->driver)); 1600 strlcpy(info->version, DRV_VERSION, sizeof(info->version)); 1601 strlcpy(info->bus_info, pci_name(de->pdev), sizeof(info->bus_info)); 1602 info->eedump_len = DE_EEPROM_SIZE; 1603 } 1604 1605 static int de_get_regs_len(struct net_device *dev) 1606 { 1607 return DE_REGS_SIZE; 1608 } 1609 1610 static int de_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd) 1611 { 1612 struct de_private *de = netdev_priv(dev); 1613 int rc; 1614 1615 spin_lock_irq(&de->lock); 1616 rc = __de_get_settings(de, ecmd); 1617 spin_unlock_irq(&de->lock); 1618 1619 return rc; 1620 } 1621 1622 static int de_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd) 1623 { 1624 struct de_private *de = netdev_priv(dev); 1625 int rc; 1626 1627 spin_lock_irq(&de->lock); 1628 rc = __de_set_settings(de, ecmd); 1629 spin_unlock_irq(&de->lock); 1630 1631 return rc; 1632 } 1633 1634 static u32 de_get_msglevel(struct net_device *dev) 1635 { 1636 struct de_private *de = netdev_priv(dev); 1637 1638 return de->msg_enable; 1639 } 1640 1641 static void de_set_msglevel(struct net_device *dev, u32 msglvl) 1642 { 1643 struct de_private *de = netdev_priv(dev); 1644 1645 de->msg_enable = msglvl; 1646 } 1647 1648 static int de_get_eeprom(struct net_device *dev, 1649 struct ethtool_eeprom *eeprom, u8 *data) 1650 { 1651 struct de_private *de = netdev_priv(dev); 1652 1653 if (!de->ee_data) 1654 return -EOPNOTSUPP; 1655 if ((eeprom->offset != 0) || (eeprom->magic != 0) || 1656 (eeprom->len != DE_EEPROM_SIZE)) 1657 return -EINVAL; 1658 memcpy(data, de->ee_data, eeprom->len); 1659 1660 return 0; 1661 } 1662 1663 static int de_nway_reset(struct net_device *dev) 1664 { 1665 struct de_private *de = netdev_priv(dev); 1666 u32 status; 1667 1668 if (de->media_type != DE_MEDIA_TP_AUTO) 1669 return -EINVAL; 1670 if (netif_carrier_ok(de->dev)) 1671 de_link_down(de); 1672 1673 status = dr32(SIAStatus); 1674 dw32(SIAStatus, (status & ~NWayState) | NWayRestart); 1675 netif_info(de, link, dev, "link nway restart, status %x,%x\n", 1676 status, dr32(SIAStatus)); 1677 return 0; 1678 } 1679 1680 static void de_get_regs(struct net_device *dev, struct ethtool_regs *regs, 1681 void *data) 1682 { 1683 struct de_private *de = netdev_priv(dev); 1684 1685 regs->version = (DE_REGS_VER << 2) | de->de21040; 1686 1687 spin_lock_irq(&de->lock); 1688 __de_get_regs(de, data); 1689 spin_unlock_irq(&de->lock); 1690 } 1691 1692 static const struct ethtool_ops de_ethtool_ops = { 1693 .get_link = ethtool_op_get_link, 1694 .get_drvinfo = de_get_drvinfo, 1695 .get_regs_len = de_get_regs_len, 1696 .get_settings = de_get_settings, 1697 .set_settings = de_set_settings, 1698 .get_msglevel = de_get_msglevel, 1699 .set_msglevel = de_set_msglevel, 1700 .get_eeprom = de_get_eeprom, 1701 .nway_reset = de_nway_reset, 1702 .get_regs = de_get_regs, 1703 }; 1704 1705 static void __devinit de21040_get_mac_address (struct de_private *de) 1706 { 1707 unsigned i; 1708 1709 dw32 (ROMCmd, 0); /* Reset the pointer with a dummy write. */ 1710 udelay(5); 1711 1712 for (i = 0; i < 6; i++) { 1713 int value, boguscnt = 100000; 1714 do { 1715 value = dr32(ROMCmd); 1716 rmb(); 1717 } while (value < 0 && --boguscnt > 0); 1718 de->dev->dev_addr[i] = value; 1719 udelay(1); 1720 if (boguscnt <= 0) 1721 pr_warn("timeout reading 21040 MAC address byte %u\n", 1722 i); 1723 } 1724 } 1725 1726 static void __devinit de21040_get_media_info(struct de_private *de) 1727 { 1728 unsigned int i; 1729 1730 de->media_type = DE_MEDIA_TP; 1731 de->media_supported |= SUPPORTED_TP | SUPPORTED_10baseT_Full | 1732 SUPPORTED_10baseT_Half | SUPPORTED_AUI; 1733 de->media_advertise = de->media_supported; 1734 1735 for (i = 0; i < DE_MAX_MEDIA; i++) { 1736 switch (i) { 1737 case DE_MEDIA_AUI: 1738 case DE_MEDIA_TP: 1739 case DE_MEDIA_TP_FD: 1740 de->media[i].type = i; 1741 de->media[i].csr13 = t21040_csr13[i]; 1742 de->media[i].csr14 = t21040_csr14[i]; 1743 de->media[i].csr15 = t21040_csr15[i]; 1744 break; 1745 default: 1746 de->media[i].type = DE_MEDIA_INVALID; 1747 break; 1748 } 1749 } 1750 } 1751 1752 /* Note: this routine returns extra data bits for size detection. */ 1753 static unsigned __devinit tulip_read_eeprom(void __iomem *regs, int location, int addr_len) 1754 { 1755 int i; 1756 unsigned retval = 0; 1757 void __iomem *ee_addr = regs + ROMCmd; 1758 int read_cmd = location | (EE_READ_CMD << addr_len); 1759 1760 writel(EE_ENB & ~EE_CS, ee_addr); 1761 writel(EE_ENB, ee_addr); 1762 1763 /* Shift the read command bits out. */ 1764 for (i = 4 + addr_len; i >= 0; i--) { 1765 short dataval = (read_cmd & (1 << i)) ? EE_DATA_WRITE : 0; 1766 writel(EE_ENB | dataval, ee_addr); 1767 readl(ee_addr); 1768 writel(EE_ENB | dataval | EE_SHIFT_CLK, ee_addr); 1769 readl(ee_addr); 1770 retval = (retval << 1) | ((readl(ee_addr) & EE_DATA_READ) ? 1 : 0); 1771 } 1772 writel(EE_ENB, ee_addr); 1773 readl(ee_addr); 1774 1775 for (i = 16; i > 0; i--) { 1776 writel(EE_ENB | EE_SHIFT_CLK, ee_addr); 1777 readl(ee_addr); 1778 retval = (retval << 1) | ((readl(ee_addr) & EE_DATA_READ) ? 1 : 0); 1779 writel(EE_ENB, ee_addr); 1780 readl(ee_addr); 1781 } 1782 1783 /* Terminate the EEPROM access. */ 1784 writel(EE_ENB & ~EE_CS, ee_addr); 1785 return retval; 1786 } 1787 1788 static void __devinit de21041_get_srom_info (struct de_private *de) 1789 { 1790 unsigned i, sa_offset = 0, ofs; 1791 u8 ee_data[DE_EEPROM_SIZE + 6] = {}; 1792 unsigned ee_addr_size = tulip_read_eeprom(de->regs, 0xff, 8) & 0x40000 ? 8 : 6; 1793 struct de_srom_info_leaf *il; 1794 void *bufp; 1795 1796 /* download entire eeprom */ 1797 for (i = 0; i < DE_EEPROM_WORDS; i++) 1798 ((__le16 *)ee_data)[i] = 1799 cpu_to_le16(tulip_read_eeprom(de->regs, i, ee_addr_size)); 1800 1801 /* DEC now has a specification but early board makers 1802 just put the address in the first EEPROM locations. */ 1803 /* This does memcmp(eedata, eedata+16, 8) */ 1804 1805 #ifndef CONFIG_MIPS_COBALT 1806 1807 for (i = 0; i < 8; i ++) 1808 if (ee_data[i] != ee_data[16+i]) 1809 sa_offset = 20; 1810 1811 #endif 1812 1813 /* store MAC address */ 1814 for (i = 0; i < 6; i ++) 1815 de->dev->dev_addr[i] = ee_data[i + sa_offset]; 1816 1817 /* get offset of controller 0 info leaf. ignore 2nd byte. */ 1818 ofs = ee_data[SROMC0InfoLeaf]; 1819 if (ofs >= (sizeof(ee_data) - sizeof(struct de_srom_info_leaf) - sizeof(struct de_srom_media_block))) 1820 goto bad_srom; 1821 1822 /* get pointer to info leaf */ 1823 il = (struct de_srom_info_leaf *) &ee_data[ofs]; 1824 1825 /* paranoia checks */ 1826 if (il->n_blocks == 0) 1827 goto bad_srom; 1828 if ((sizeof(ee_data) - ofs) < 1829 (sizeof(struct de_srom_info_leaf) + (sizeof(struct de_srom_media_block) * il->n_blocks))) 1830 goto bad_srom; 1831 1832 /* get default media type */ 1833 switch (get_unaligned(&il->default_media)) { 1834 case 0x0001: de->media_type = DE_MEDIA_BNC; break; 1835 case 0x0002: de->media_type = DE_MEDIA_AUI; break; 1836 case 0x0204: de->media_type = DE_MEDIA_TP_FD; break; 1837 default: de->media_type = DE_MEDIA_TP_AUTO; break; 1838 } 1839 1840 if (netif_msg_probe(de)) 1841 pr_info("de%d: SROM leaf offset %u, default media %s\n", 1842 de->board_idx, ofs, media_name[de->media_type]); 1843 1844 /* init SIA register values to defaults */ 1845 for (i = 0; i < DE_MAX_MEDIA; i++) { 1846 de->media[i].type = DE_MEDIA_INVALID; 1847 de->media[i].csr13 = 0xffff; 1848 de->media[i].csr14 = 0xffff; 1849 de->media[i].csr15 = 0xffff; 1850 } 1851 1852 /* parse media blocks to see what medias are supported, 1853 * and if any custom CSR values are provided 1854 */ 1855 bufp = ((void *)il) + sizeof(*il); 1856 for (i = 0; i < il->n_blocks; i++) { 1857 struct de_srom_media_block *ib = bufp; 1858 unsigned idx; 1859 1860 /* index based on media type in media block */ 1861 switch(ib->opts & MediaBlockMask) { 1862 case 0: /* 10baseT */ 1863 de->media_supported |= SUPPORTED_TP | SUPPORTED_10baseT_Half 1864 | SUPPORTED_Autoneg; 1865 idx = DE_MEDIA_TP; 1866 de->media[DE_MEDIA_TP_AUTO].type = DE_MEDIA_TP_AUTO; 1867 break; 1868 case 1: /* BNC */ 1869 de->media_supported |= SUPPORTED_BNC; 1870 idx = DE_MEDIA_BNC; 1871 break; 1872 case 2: /* AUI */ 1873 de->media_supported |= SUPPORTED_AUI; 1874 idx = DE_MEDIA_AUI; 1875 break; 1876 case 4: /* 10baseT-FD */ 1877 de->media_supported |= SUPPORTED_TP | SUPPORTED_10baseT_Full 1878 | SUPPORTED_Autoneg; 1879 idx = DE_MEDIA_TP_FD; 1880 de->media[DE_MEDIA_TP_AUTO].type = DE_MEDIA_TP_AUTO; 1881 break; 1882 default: 1883 goto bad_srom; 1884 } 1885 1886 de->media[idx].type = idx; 1887 1888 if (netif_msg_probe(de)) 1889 pr_info("de%d: media block #%u: %s", 1890 de->board_idx, i, 1891 media_name[de->media[idx].type]); 1892 1893 bufp += sizeof (ib->opts); 1894 1895 if (ib->opts & MediaCustomCSRs) { 1896 de->media[idx].csr13 = get_unaligned(&ib->csr13); 1897 de->media[idx].csr14 = get_unaligned(&ib->csr14); 1898 de->media[idx].csr15 = get_unaligned(&ib->csr15); 1899 bufp += sizeof(ib->csr13) + sizeof(ib->csr14) + 1900 sizeof(ib->csr15); 1901 1902 if (netif_msg_probe(de)) 1903 pr_cont(" (%x,%x,%x)\n", 1904 de->media[idx].csr13, 1905 de->media[idx].csr14, 1906 de->media[idx].csr15); 1907 1908 } else { 1909 if (netif_msg_probe(de)) 1910 pr_cont("\n"); 1911 } 1912 1913 if (bufp > ((void *)&ee_data[DE_EEPROM_SIZE - 3])) 1914 break; 1915 } 1916 1917 de->media_advertise = de->media_supported; 1918 1919 fill_defaults: 1920 /* fill in defaults, for cases where custom CSRs not used */ 1921 for (i = 0; i < DE_MAX_MEDIA; i++) { 1922 if (de->media[i].csr13 == 0xffff) 1923 de->media[i].csr13 = t21041_csr13[i]; 1924 if (de->media[i].csr14 == 0xffff) { 1925 /* autonegotiation is broken at least on some chip 1926 revisions - rev. 0x21 works, 0x11 does not */ 1927 if (de->pdev->revision < 0x20) 1928 de->media[i].csr14 = t21041_csr14_brk[i]; 1929 else 1930 de->media[i].csr14 = t21041_csr14[i]; 1931 } 1932 if (de->media[i].csr15 == 0xffff) 1933 de->media[i].csr15 = t21041_csr15[i]; 1934 } 1935 1936 de->ee_data = kmemdup(&ee_data[0], DE_EEPROM_SIZE, GFP_KERNEL); 1937 1938 return; 1939 1940 bad_srom: 1941 /* for error cases, it's ok to assume we support all these */ 1942 for (i = 0; i < DE_MAX_MEDIA; i++) 1943 de->media[i].type = i; 1944 de->media_supported = 1945 SUPPORTED_10baseT_Half | 1946 SUPPORTED_10baseT_Full | 1947 SUPPORTED_Autoneg | 1948 SUPPORTED_TP | 1949 SUPPORTED_AUI | 1950 SUPPORTED_BNC; 1951 goto fill_defaults; 1952 } 1953 1954 static const struct net_device_ops de_netdev_ops = { 1955 .ndo_open = de_open, 1956 .ndo_stop = de_close, 1957 .ndo_set_rx_mode = de_set_rx_mode, 1958 .ndo_start_xmit = de_start_xmit, 1959 .ndo_get_stats = de_get_stats, 1960 .ndo_tx_timeout = de_tx_timeout, 1961 .ndo_change_mtu = eth_change_mtu, 1962 .ndo_set_mac_address = eth_mac_addr, 1963 .ndo_validate_addr = eth_validate_addr, 1964 }; 1965 1966 static int __devinit de_init_one (struct pci_dev *pdev, 1967 const struct pci_device_id *ent) 1968 { 1969 struct net_device *dev; 1970 struct de_private *de; 1971 int rc; 1972 void __iomem *regs; 1973 unsigned long pciaddr; 1974 static int board_idx = -1; 1975 1976 board_idx++; 1977 1978 #ifndef MODULE 1979 if (board_idx == 0) 1980 pr_info("%s\n", version); 1981 #endif 1982 1983 /* allocate a new ethernet device structure, and fill in defaults */ 1984 dev = alloc_etherdev(sizeof(struct de_private)); 1985 if (!dev) 1986 return -ENOMEM; 1987 1988 dev->netdev_ops = &de_netdev_ops; 1989 SET_NETDEV_DEV(dev, &pdev->dev); 1990 dev->ethtool_ops = &de_ethtool_ops; 1991 dev->watchdog_timeo = TX_TIMEOUT; 1992 1993 de = netdev_priv(dev); 1994 de->de21040 = ent->driver_data == 0 ? 1 : 0; 1995 de->pdev = pdev; 1996 de->dev = dev; 1997 de->msg_enable = (debug < 0 ? DE_DEF_MSG_ENABLE : debug); 1998 de->board_idx = board_idx; 1999 spin_lock_init (&de->lock); 2000 init_timer(&de->media_timer); 2001 if (de->de21040) 2002 de->media_timer.function = de21040_media_timer; 2003 else 2004 de->media_timer.function = de21041_media_timer; 2005 de->media_timer.data = (unsigned long) de; 2006 2007 netif_carrier_off(dev); 2008 2009 /* wake up device, assign resources */ 2010 rc = pci_enable_device(pdev); 2011 if (rc) 2012 goto err_out_free; 2013 2014 /* reserve PCI resources to ensure driver atomicity */ 2015 rc = pci_request_regions(pdev, DRV_NAME); 2016 if (rc) 2017 goto err_out_disable; 2018 2019 /* check for invalid IRQ value */ 2020 if (pdev->irq < 2) { 2021 rc = -EIO; 2022 pr_err("invalid irq (%d) for pci dev %s\n", 2023 pdev->irq, pci_name(pdev)); 2024 goto err_out_res; 2025 } 2026 2027 dev->irq = pdev->irq; 2028 2029 /* obtain and check validity of PCI I/O address */ 2030 pciaddr = pci_resource_start(pdev, 1); 2031 if (!pciaddr) { 2032 rc = -EIO; 2033 pr_err("no MMIO resource for pci dev %s\n", pci_name(pdev)); 2034 goto err_out_res; 2035 } 2036 if (pci_resource_len(pdev, 1) < DE_REGS_SIZE) { 2037 rc = -EIO; 2038 pr_err("MMIO resource (%llx) too small on pci dev %s\n", 2039 (unsigned long long)pci_resource_len(pdev, 1), 2040 pci_name(pdev)); 2041 goto err_out_res; 2042 } 2043 2044 /* remap CSR registers */ 2045 regs = ioremap_nocache(pciaddr, DE_REGS_SIZE); 2046 if (!regs) { 2047 rc = -EIO; 2048 pr_err("Cannot map PCI MMIO (%llx@%lx) on pci dev %s\n", 2049 (unsigned long long)pci_resource_len(pdev, 1), 2050 pciaddr, pci_name(pdev)); 2051 goto err_out_res; 2052 } 2053 dev->base_addr = (unsigned long) regs; 2054 de->regs = regs; 2055 2056 de_adapter_wake(de); 2057 2058 /* make sure hardware is not running */ 2059 rc = de_reset_mac(de); 2060 if (rc) { 2061 pr_err("Cannot reset MAC, pci dev %s\n", pci_name(pdev)); 2062 goto err_out_iomap; 2063 } 2064 2065 /* get MAC address, initialize default media type and 2066 * get list of supported media 2067 */ 2068 if (de->de21040) { 2069 de21040_get_mac_address(de); 2070 de21040_get_media_info(de); 2071 } else { 2072 de21041_get_srom_info(de); 2073 } 2074 2075 /* register new network interface with kernel */ 2076 rc = register_netdev(dev); 2077 if (rc) 2078 goto err_out_iomap; 2079 2080 /* print info about board and interface just registered */ 2081 netdev_info(dev, "%s at 0x%lx, %pM, IRQ %d\n", 2082 de->de21040 ? "21040" : "21041", 2083 dev->base_addr, 2084 dev->dev_addr, 2085 dev->irq); 2086 2087 pci_set_drvdata(pdev, dev); 2088 2089 /* enable busmastering */ 2090 pci_set_master(pdev); 2091 2092 /* put adapter to sleep */ 2093 de_adapter_sleep(de); 2094 2095 return 0; 2096 2097 err_out_iomap: 2098 kfree(de->ee_data); 2099 iounmap(regs); 2100 err_out_res: 2101 pci_release_regions(pdev); 2102 err_out_disable: 2103 pci_disable_device(pdev); 2104 err_out_free: 2105 free_netdev(dev); 2106 return rc; 2107 } 2108 2109 static void __devexit de_remove_one (struct pci_dev *pdev) 2110 { 2111 struct net_device *dev = pci_get_drvdata(pdev); 2112 struct de_private *de = netdev_priv(dev); 2113 2114 BUG_ON(!dev); 2115 unregister_netdev(dev); 2116 kfree(de->ee_data); 2117 iounmap(de->regs); 2118 pci_release_regions(pdev); 2119 pci_disable_device(pdev); 2120 pci_set_drvdata(pdev, NULL); 2121 free_netdev(dev); 2122 } 2123 2124 #ifdef CONFIG_PM 2125 2126 static int de_suspend (struct pci_dev *pdev, pm_message_t state) 2127 { 2128 struct net_device *dev = pci_get_drvdata (pdev); 2129 struct de_private *de = netdev_priv(dev); 2130 2131 rtnl_lock(); 2132 if (netif_running (dev)) { 2133 del_timer_sync(&de->media_timer); 2134 2135 disable_irq(dev->irq); 2136 spin_lock_irq(&de->lock); 2137 2138 de_stop_hw(de); 2139 netif_stop_queue(dev); 2140 netif_device_detach(dev); 2141 netif_carrier_off(dev); 2142 2143 spin_unlock_irq(&de->lock); 2144 enable_irq(dev->irq); 2145 2146 /* Update the error counts. */ 2147 __de_get_stats(de); 2148 2149 synchronize_irq(dev->irq); 2150 de_clean_rings(de); 2151 2152 de_adapter_sleep(de); 2153 pci_disable_device(pdev); 2154 } else { 2155 netif_device_detach(dev); 2156 } 2157 rtnl_unlock(); 2158 return 0; 2159 } 2160 2161 static int de_resume (struct pci_dev *pdev) 2162 { 2163 struct net_device *dev = pci_get_drvdata (pdev); 2164 struct de_private *de = netdev_priv(dev); 2165 int retval = 0; 2166 2167 rtnl_lock(); 2168 if (netif_device_present(dev)) 2169 goto out; 2170 if (!netif_running(dev)) 2171 goto out_attach; 2172 if ((retval = pci_enable_device(pdev))) { 2173 netdev_err(dev, "pci_enable_device failed in resume\n"); 2174 goto out; 2175 } 2176 pci_set_master(pdev); 2177 de_init_rings(de); 2178 de_init_hw(de); 2179 out_attach: 2180 netif_device_attach(dev); 2181 out: 2182 rtnl_unlock(); 2183 return 0; 2184 } 2185 2186 #endif /* CONFIG_PM */ 2187 2188 static struct pci_driver de_driver = { 2189 .name = DRV_NAME, 2190 .id_table = de_pci_tbl, 2191 .probe = de_init_one, 2192 .remove = __devexit_p(de_remove_one), 2193 #ifdef CONFIG_PM 2194 .suspend = de_suspend, 2195 .resume = de_resume, 2196 #endif 2197 }; 2198 2199 static int __init de_init (void) 2200 { 2201 #ifdef MODULE 2202 pr_info("%s\n", version); 2203 #endif 2204 return pci_register_driver(&de_driver); 2205 } 2206 2207 static void __exit de_exit (void) 2208 { 2209 pci_unregister_driver (&de_driver); 2210 } 2211 2212 module_init(de_init); 2213 module_exit(de_exit); 2214