1 /*
2  *      Davicom DM9000 Fast Ethernet driver for Linux.
3  * 	Copyright (C) 1997  Sten Wang
4  *
5  * 	This program is free software; you can redistribute it and/or
6  * 	modify it under the terms of the GNU General Public License
7  * 	as published by the Free Software Foundation; either version 2
8  * 	of the License, or (at your option) any later version.
9  *
10  * 	This program is distributed in the hope that it will be useful,
11  * 	but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * 	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * 	GNU General Public License for more details.
14  *
15  * (C) Copyright 1997-1998 DAVICOM Semiconductor,Inc. All Rights Reserved.
16  *
17  * Additional updates, Copyright:
18  *	Ben Dooks <ben@simtec.co.uk>
19  *	Sascha Hauer <s.hauer@pengutronix.de>
20  */
21 
22 #include <linux/module.h>
23 #include <linux/ioport.h>
24 #include <linux/netdevice.h>
25 #include <linux/etherdevice.h>
26 #include <linux/init.h>
27 #include <linux/interrupt.h>
28 #include <linux/skbuff.h>
29 #include <linux/spinlock.h>
30 #include <linux/crc32.h>
31 #include <linux/mii.h>
32 #include <linux/of.h>
33 #include <linux/of_net.h>
34 #include <linux/ethtool.h>
35 #include <linux/dm9000.h>
36 #include <linux/delay.h>
37 #include <linux/platform_device.h>
38 #include <linux/irq.h>
39 #include <linux/slab.h>
40 
41 #include <asm/delay.h>
42 #include <asm/irq.h>
43 #include <asm/io.h>
44 
45 #include "dm9000.h"
46 
47 /* Board/System/Debug information/definition ---------------- */
48 
49 #define DM9000_PHY		0x40	/* PHY address 0x01 */
50 
51 #define CARDNAME	"dm9000"
52 #define DRV_VERSION	"1.31"
53 
54 /*
55  * Transmit timeout, default 5 seconds.
56  */
57 static int watchdog = 5000;
58 module_param(watchdog, int, 0400);
59 MODULE_PARM_DESC(watchdog, "transmit timeout in milliseconds");
60 
61 /*
62  * Debug messages level
63  */
64 static int debug;
65 module_param(debug, int, 0644);
66 MODULE_PARM_DESC(debug, "dm9000 debug level (0-4)");
67 
68 /* DM9000 register address locking.
69  *
70  * The DM9000 uses an address register to control where data written
71  * to the data register goes. This means that the address register
72  * must be preserved over interrupts or similar calls.
73  *
74  * During interrupt and other critical calls, a spinlock is used to
75  * protect the system, but the calls themselves save the address
76  * in the address register in case they are interrupting another
77  * access to the device.
78  *
79  * For general accesses a lock is provided so that calls which are
80  * allowed to sleep are serialised so that the address register does
81  * not need to be saved. This lock also serves to serialise access
82  * to the EEPROM and PHY access registers which are shared between
83  * these two devices.
84  */
85 
86 /* The driver supports the original DM9000E, and now the two newer
87  * devices, DM9000A and DM9000B.
88  */
89 
90 enum dm9000_type {
91 	TYPE_DM9000E,	/* original DM9000 */
92 	TYPE_DM9000A,
93 	TYPE_DM9000B
94 };
95 
96 /* Structure/enum declaration ------------------------------- */
97 typedef struct board_info {
98 
99 	void __iomem	*io_addr;	/* Register I/O base address */
100 	void __iomem	*io_data;	/* Data I/O address */
101 	u16		 irq;		/* IRQ */
102 
103 	u16		tx_pkt_cnt;
104 	u16		queue_pkt_len;
105 	u16		queue_start_addr;
106 	u16		queue_ip_summed;
107 	u16		dbug_cnt;
108 	u8		io_mode;		/* 0:word, 2:byte */
109 	u8		phy_addr;
110 	u8		imr_all;
111 
112 	unsigned int	flags;
113 	unsigned int	in_suspend :1;
114 	unsigned int	wake_supported :1;
115 
116 	enum dm9000_type type;
117 
118 	void (*inblk)(void __iomem *port, void *data, int length);
119 	void (*outblk)(void __iomem *port, void *data, int length);
120 	void (*dumpblk)(void __iomem *port, int length);
121 
122 	struct device	*dev;	     /* parent device */
123 
124 	struct resource	*addr_res;   /* resources found */
125 	struct resource *data_res;
126 	struct resource	*addr_req;   /* resources requested */
127 	struct resource *data_req;
128 	struct resource *irq_res;
129 
130 	int		 irq_wake;
131 
132 	struct mutex	 addr_lock;	/* phy and eeprom access lock */
133 
134 	struct delayed_work phy_poll;
135 	struct net_device  *ndev;
136 
137 	spinlock_t	lock;
138 
139 	struct mii_if_info mii;
140 	u32		msg_enable;
141 	u32		wake_state;
142 
143 	int		ip_summed;
144 } board_info_t;
145 
146 /* debug code */
147 
148 #define dm9000_dbg(db, lev, msg...) do {		\
149 	if ((lev) < debug) {				\
150 		dev_dbg(db->dev, msg);			\
151 	}						\
152 } while (0)
153 
154 static inline board_info_t *to_dm9000_board(struct net_device *dev)
155 {
156 	return netdev_priv(dev);
157 }
158 
159 /* DM9000 network board routine ---------------------------- */
160 
161 /*
162  *   Read a byte from I/O port
163  */
164 static u8
165 ior(board_info_t * db, int reg)
166 {
167 	writeb(reg, db->io_addr);
168 	return readb(db->io_data);
169 }
170 
171 /*
172  *   Write a byte to I/O port
173  */
174 
175 static void
176 iow(board_info_t * db, int reg, int value)
177 {
178 	writeb(reg, db->io_addr);
179 	writeb(value, db->io_data);
180 }
181 
182 static void
183 dm9000_reset(board_info_t *db)
184 {
185 	dev_dbg(db->dev, "resetting device\n");
186 
187 	/* Reset DM9000, see DM9000 Application Notes V1.22 Jun 11, 2004 page 29
188 	 * The essential point is that we have to do a double reset, and the
189 	 * instruction is to set LBK into MAC internal loopback mode.
190 	 */
191 	iow(db, DM9000_NCR, 0x03);
192 	udelay(100); /* Application note says at least 20 us */
193 	if (ior(db, DM9000_NCR) & 1)
194 		dev_err(db->dev, "dm9000 did not respond to first reset\n");
195 
196 	iow(db, DM9000_NCR, 0);
197 	iow(db, DM9000_NCR, 0x03);
198 	udelay(100);
199 	if (ior(db, DM9000_NCR) & 1)
200 		dev_err(db->dev, "dm9000 did not respond to second reset\n");
201 }
202 
203 /* routines for sending block to chip */
204 
205 static void dm9000_outblk_8bit(void __iomem *reg, void *data, int count)
206 {
207 	iowrite8_rep(reg, data, count);
208 }
209 
210 static void dm9000_outblk_16bit(void __iomem *reg, void *data, int count)
211 {
212 	iowrite16_rep(reg, data, (count+1) >> 1);
213 }
214 
215 static void dm9000_outblk_32bit(void __iomem *reg, void *data, int count)
216 {
217 	iowrite32_rep(reg, data, (count+3) >> 2);
218 }
219 
220 /* input block from chip to memory */
221 
222 static void dm9000_inblk_8bit(void __iomem *reg, void *data, int count)
223 {
224 	ioread8_rep(reg, data, count);
225 }
226 
227 
228 static void dm9000_inblk_16bit(void __iomem *reg, void *data, int count)
229 {
230 	ioread16_rep(reg, data, (count+1) >> 1);
231 }
232 
233 static void dm9000_inblk_32bit(void __iomem *reg, void *data, int count)
234 {
235 	ioread32_rep(reg, data, (count+3) >> 2);
236 }
237 
238 /* dump block from chip to null */
239 
240 static void dm9000_dumpblk_8bit(void __iomem *reg, int count)
241 {
242 	int i;
243 	int tmp;
244 
245 	for (i = 0; i < count; i++)
246 		tmp = readb(reg);
247 }
248 
249 static void dm9000_dumpblk_16bit(void __iomem *reg, int count)
250 {
251 	int i;
252 	int tmp;
253 
254 	count = (count + 1) >> 1;
255 
256 	for (i = 0; i < count; i++)
257 		tmp = readw(reg);
258 }
259 
260 static void dm9000_dumpblk_32bit(void __iomem *reg, int count)
261 {
262 	int i;
263 	int tmp;
264 
265 	count = (count + 3) >> 2;
266 
267 	for (i = 0; i < count; i++)
268 		tmp = readl(reg);
269 }
270 
271 /*
272  * Sleep, either by using msleep() or if we are suspending, then
273  * use mdelay() to sleep.
274  */
275 static void dm9000_msleep(board_info_t *db, unsigned int ms)
276 {
277 	if (db->in_suspend)
278 		mdelay(ms);
279 	else
280 		msleep(ms);
281 }
282 
283 /* Read a word from phyxcer */
284 static int
285 dm9000_phy_read(struct net_device *dev, int phy_reg_unused, int reg)
286 {
287 	board_info_t *db = netdev_priv(dev);
288 	unsigned long flags;
289 	unsigned int reg_save;
290 	int ret;
291 
292 	mutex_lock(&db->addr_lock);
293 
294 	spin_lock_irqsave(&db->lock, flags);
295 
296 	/* Save previous register address */
297 	reg_save = readb(db->io_addr);
298 
299 	/* Fill the phyxcer register into REG_0C */
300 	iow(db, DM9000_EPAR, DM9000_PHY | reg);
301 
302 	/* Issue phyxcer read command */
303 	iow(db, DM9000_EPCR, EPCR_ERPRR | EPCR_EPOS);
304 
305 	writeb(reg_save, db->io_addr);
306 	spin_unlock_irqrestore(&db->lock, flags);
307 
308 	dm9000_msleep(db, 1);		/* Wait read complete */
309 
310 	spin_lock_irqsave(&db->lock, flags);
311 	reg_save = readb(db->io_addr);
312 
313 	iow(db, DM9000_EPCR, 0x0);	/* Clear phyxcer read command */
314 
315 	/* The read data keeps on REG_0D & REG_0E */
316 	ret = (ior(db, DM9000_EPDRH) << 8) | ior(db, DM9000_EPDRL);
317 
318 	/* restore the previous address */
319 	writeb(reg_save, db->io_addr);
320 	spin_unlock_irqrestore(&db->lock, flags);
321 
322 	mutex_unlock(&db->addr_lock);
323 
324 	dm9000_dbg(db, 5, "phy_read[%02x] -> %04x\n", reg, ret);
325 	return ret;
326 }
327 
328 /* Write a word to phyxcer */
329 static void
330 dm9000_phy_write(struct net_device *dev,
331 		 int phyaddr_unused, int reg, int value)
332 {
333 	board_info_t *db = netdev_priv(dev);
334 	unsigned long flags;
335 	unsigned long reg_save;
336 
337 	dm9000_dbg(db, 5, "phy_write[%02x] = %04x\n", reg, value);
338 	mutex_lock(&db->addr_lock);
339 
340 	spin_lock_irqsave(&db->lock, flags);
341 
342 	/* Save previous register address */
343 	reg_save = readb(db->io_addr);
344 
345 	/* Fill the phyxcer register into REG_0C */
346 	iow(db, DM9000_EPAR, DM9000_PHY | reg);
347 
348 	/* Fill the written data into REG_0D & REG_0E */
349 	iow(db, DM9000_EPDRL, value);
350 	iow(db, DM9000_EPDRH, value >> 8);
351 
352 	/* Issue phyxcer write command */
353 	iow(db, DM9000_EPCR, EPCR_EPOS | EPCR_ERPRW);
354 
355 	writeb(reg_save, db->io_addr);
356 	spin_unlock_irqrestore(&db->lock, flags);
357 
358 	dm9000_msleep(db, 1);		/* Wait write complete */
359 
360 	spin_lock_irqsave(&db->lock, flags);
361 	reg_save = readb(db->io_addr);
362 
363 	iow(db, DM9000_EPCR, 0x0);	/* Clear phyxcer write command */
364 
365 	/* restore the previous address */
366 	writeb(reg_save, db->io_addr);
367 
368 	spin_unlock_irqrestore(&db->lock, flags);
369 	mutex_unlock(&db->addr_lock);
370 }
371 
372 /* dm9000_set_io
373  *
374  * select the specified set of io routines to use with the
375  * device
376  */
377 
378 static void dm9000_set_io(struct board_info *db, int byte_width)
379 {
380 	/* use the size of the data resource to work out what IO
381 	 * routines we want to use
382 	 */
383 
384 	switch (byte_width) {
385 	case 1:
386 		db->dumpblk = dm9000_dumpblk_8bit;
387 		db->outblk  = dm9000_outblk_8bit;
388 		db->inblk   = dm9000_inblk_8bit;
389 		break;
390 
391 
392 	case 3:
393 		dev_dbg(db->dev, ": 3 byte IO, falling back to 16bit\n");
394 	case 2:
395 		db->dumpblk = dm9000_dumpblk_16bit;
396 		db->outblk  = dm9000_outblk_16bit;
397 		db->inblk   = dm9000_inblk_16bit;
398 		break;
399 
400 	case 4:
401 	default:
402 		db->dumpblk = dm9000_dumpblk_32bit;
403 		db->outblk  = dm9000_outblk_32bit;
404 		db->inblk   = dm9000_inblk_32bit;
405 		break;
406 	}
407 }
408 
409 static void dm9000_schedule_poll(board_info_t *db)
410 {
411 	if (db->type == TYPE_DM9000E)
412 		schedule_delayed_work(&db->phy_poll, HZ * 2);
413 }
414 
415 static int dm9000_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
416 {
417 	board_info_t *dm = to_dm9000_board(dev);
418 
419 	if (!netif_running(dev))
420 		return -EINVAL;
421 
422 	return generic_mii_ioctl(&dm->mii, if_mii(req), cmd, NULL);
423 }
424 
425 static unsigned int
426 dm9000_read_locked(board_info_t *db, int reg)
427 {
428 	unsigned long flags;
429 	unsigned int ret;
430 
431 	spin_lock_irqsave(&db->lock, flags);
432 	ret = ior(db, reg);
433 	spin_unlock_irqrestore(&db->lock, flags);
434 
435 	return ret;
436 }
437 
438 static int dm9000_wait_eeprom(board_info_t *db)
439 {
440 	unsigned int status;
441 	int timeout = 8;	/* wait max 8msec */
442 
443 	/* The DM9000 data sheets say we should be able to
444 	 * poll the ERRE bit in EPCR to wait for the EEPROM
445 	 * operation. From testing several chips, this bit
446 	 * does not seem to work.
447 	 *
448 	 * We attempt to use the bit, but fall back to the
449 	 * timeout (which is why we do not return an error
450 	 * on expiry) to say that the EEPROM operation has
451 	 * completed.
452 	 */
453 
454 	while (1) {
455 		status = dm9000_read_locked(db, DM9000_EPCR);
456 
457 		if ((status & EPCR_ERRE) == 0)
458 			break;
459 
460 		msleep(1);
461 
462 		if (timeout-- < 0) {
463 			dev_dbg(db->dev, "timeout waiting EEPROM\n");
464 			break;
465 		}
466 	}
467 
468 	return 0;
469 }
470 
471 /*
472  *  Read a word data from EEPROM
473  */
474 static void
475 dm9000_read_eeprom(board_info_t *db, int offset, u8 *to)
476 {
477 	unsigned long flags;
478 
479 	if (db->flags & DM9000_PLATF_NO_EEPROM) {
480 		to[0] = 0xff;
481 		to[1] = 0xff;
482 		return;
483 	}
484 
485 	mutex_lock(&db->addr_lock);
486 
487 	spin_lock_irqsave(&db->lock, flags);
488 
489 	iow(db, DM9000_EPAR, offset);
490 	iow(db, DM9000_EPCR, EPCR_ERPRR);
491 
492 	spin_unlock_irqrestore(&db->lock, flags);
493 
494 	dm9000_wait_eeprom(db);
495 
496 	/* delay for at-least 150uS */
497 	msleep(1);
498 
499 	spin_lock_irqsave(&db->lock, flags);
500 
501 	iow(db, DM9000_EPCR, 0x0);
502 
503 	to[0] = ior(db, DM9000_EPDRL);
504 	to[1] = ior(db, DM9000_EPDRH);
505 
506 	spin_unlock_irqrestore(&db->lock, flags);
507 
508 	mutex_unlock(&db->addr_lock);
509 }
510 
511 /*
512  * Write a word data to SROM
513  */
514 static void
515 dm9000_write_eeprom(board_info_t *db, int offset, u8 *data)
516 {
517 	unsigned long flags;
518 
519 	if (db->flags & DM9000_PLATF_NO_EEPROM)
520 		return;
521 
522 	mutex_lock(&db->addr_lock);
523 
524 	spin_lock_irqsave(&db->lock, flags);
525 	iow(db, DM9000_EPAR, offset);
526 	iow(db, DM9000_EPDRH, data[1]);
527 	iow(db, DM9000_EPDRL, data[0]);
528 	iow(db, DM9000_EPCR, EPCR_WEP | EPCR_ERPRW);
529 	spin_unlock_irqrestore(&db->lock, flags);
530 
531 	dm9000_wait_eeprom(db);
532 
533 	mdelay(1);	/* wait at least 150uS to clear */
534 
535 	spin_lock_irqsave(&db->lock, flags);
536 	iow(db, DM9000_EPCR, 0);
537 	spin_unlock_irqrestore(&db->lock, flags);
538 
539 	mutex_unlock(&db->addr_lock);
540 }
541 
542 /* ethtool ops */
543 
544 static void dm9000_get_drvinfo(struct net_device *dev,
545 			       struct ethtool_drvinfo *info)
546 {
547 	board_info_t *dm = to_dm9000_board(dev);
548 
549 	strlcpy(info->driver, CARDNAME, sizeof(info->driver));
550 	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
551 	strlcpy(info->bus_info, to_platform_device(dm->dev)->name,
552 		sizeof(info->bus_info));
553 }
554 
555 static u32 dm9000_get_msglevel(struct net_device *dev)
556 {
557 	board_info_t *dm = to_dm9000_board(dev);
558 
559 	return dm->msg_enable;
560 }
561 
562 static void dm9000_set_msglevel(struct net_device *dev, u32 value)
563 {
564 	board_info_t *dm = to_dm9000_board(dev);
565 
566 	dm->msg_enable = value;
567 }
568 
569 static int dm9000_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
570 {
571 	board_info_t *dm = to_dm9000_board(dev);
572 
573 	mii_ethtool_gset(&dm->mii, cmd);
574 	return 0;
575 }
576 
577 static int dm9000_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
578 {
579 	board_info_t *dm = to_dm9000_board(dev);
580 
581 	return mii_ethtool_sset(&dm->mii, cmd);
582 }
583 
584 static int dm9000_nway_reset(struct net_device *dev)
585 {
586 	board_info_t *dm = to_dm9000_board(dev);
587 	return mii_nway_restart(&dm->mii);
588 }
589 
590 static int dm9000_set_features(struct net_device *dev,
591 	netdev_features_t features)
592 {
593 	board_info_t *dm = to_dm9000_board(dev);
594 	netdev_features_t changed = dev->features ^ features;
595 	unsigned long flags;
596 
597 	if (!(changed & NETIF_F_RXCSUM))
598 		return 0;
599 
600 	spin_lock_irqsave(&dm->lock, flags);
601 	iow(dm, DM9000_RCSR, (features & NETIF_F_RXCSUM) ? RCSR_CSUM : 0);
602 	spin_unlock_irqrestore(&dm->lock, flags);
603 
604 	return 0;
605 }
606 
607 static u32 dm9000_get_link(struct net_device *dev)
608 {
609 	board_info_t *dm = to_dm9000_board(dev);
610 	u32 ret;
611 
612 	if (dm->flags & DM9000_PLATF_EXT_PHY)
613 		ret = mii_link_ok(&dm->mii);
614 	else
615 		ret = dm9000_read_locked(dm, DM9000_NSR) & NSR_LINKST ? 1 : 0;
616 
617 	return ret;
618 }
619 
620 #define DM_EEPROM_MAGIC		(0x444D394B)
621 
622 static int dm9000_get_eeprom_len(struct net_device *dev)
623 {
624 	return 128;
625 }
626 
627 static int dm9000_get_eeprom(struct net_device *dev,
628 			     struct ethtool_eeprom *ee, u8 *data)
629 {
630 	board_info_t *dm = to_dm9000_board(dev);
631 	int offset = ee->offset;
632 	int len = ee->len;
633 	int i;
634 
635 	/* EEPROM access is aligned to two bytes */
636 
637 	if ((len & 1) != 0 || (offset & 1) != 0)
638 		return -EINVAL;
639 
640 	if (dm->flags & DM9000_PLATF_NO_EEPROM)
641 		return -ENOENT;
642 
643 	ee->magic = DM_EEPROM_MAGIC;
644 
645 	for (i = 0; i < len; i += 2)
646 		dm9000_read_eeprom(dm, (offset + i) / 2, data + i);
647 
648 	return 0;
649 }
650 
651 static int dm9000_set_eeprom(struct net_device *dev,
652 			     struct ethtool_eeprom *ee, u8 *data)
653 {
654 	board_info_t *dm = to_dm9000_board(dev);
655 	int offset = ee->offset;
656 	int len = ee->len;
657 	int done;
658 
659 	/* EEPROM access is aligned to two bytes */
660 
661 	if (dm->flags & DM9000_PLATF_NO_EEPROM)
662 		return -ENOENT;
663 
664 	if (ee->magic != DM_EEPROM_MAGIC)
665 		return -EINVAL;
666 
667 	while (len > 0) {
668 		if (len & 1 || offset & 1) {
669 			int which = offset & 1;
670 			u8 tmp[2];
671 
672 			dm9000_read_eeprom(dm, offset / 2, tmp);
673 			tmp[which] = *data;
674 			dm9000_write_eeprom(dm, offset / 2, tmp);
675 
676 			done = 1;
677 		} else {
678 			dm9000_write_eeprom(dm, offset / 2, data);
679 			done = 2;
680 		}
681 
682 		data += done;
683 		offset += done;
684 		len -= done;
685 	}
686 
687 	return 0;
688 }
689 
690 static void dm9000_get_wol(struct net_device *dev, struct ethtool_wolinfo *w)
691 {
692 	board_info_t *dm = to_dm9000_board(dev);
693 
694 	memset(w, 0, sizeof(struct ethtool_wolinfo));
695 
696 	/* note, we could probably support wake-phy too */
697 	w->supported = dm->wake_supported ? WAKE_MAGIC : 0;
698 	w->wolopts = dm->wake_state;
699 }
700 
701 static int dm9000_set_wol(struct net_device *dev, struct ethtool_wolinfo *w)
702 {
703 	board_info_t *dm = to_dm9000_board(dev);
704 	unsigned long flags;
705 	u32 opts = w->wolopts;
706 	u32 wcr = 0;
707 
708 	if (!dm->wake_supported)
709 		return -EOPNOTSUPP;
710 
711 	if (opts & ~WAKE_MAGIC)
712 		return -EINVAL;
713 
714 	if (opts & WAKE_MAGIC)
715 		wcr |= WCR_MAGICEN;
716 
717 	mutex_lock(&dm->addr_lock);
718 
719 	spin_lock_irqsave(&dm->lock, flags);
720 	iow(dm, DM9000_WCR, wcr);
721 	spin_unlock_irqrestore(&dm->lock, flags);
722 
723 	mutex_unlock(&dm->addr_lock);
724 
725 	if (dm->wake_state != opts) {
726 		/* change in wol state, update IRQ state */
727 
728 		if (!dm->wake_state)
729 			irq_set_irq_wake(dm->irq_wake, 1);
730 		else if (dm->wake_state && !opts)
731 			irq_set_irq_wake(dm->irq_wake, 0);
732 	}
733 
734 	dm->wake_state = opts;
735 	return 0;
736 }
737 
738 static const struct ethtool_ops dm9000_ethtool_ops = {
739 	.get_drvinfo		= dm9000_get_drvinfo,
740 	.get_settings		= dm9000_get_settings,
741 	.set_settings		= dm9000_set_settings,
742 	.get_msglevel		= dm9000_get_msglevel,
743 	.set_msglevel		= dm9000_set_msglevel,
744 	.nway_reset		= dm9000_nway_reset,
745 	.get_link		= dm9000_get_link,
746 	.get_wol		= dm9000_get_wol,
747 	.set_wol		= dm9000_set_wol,
748  	.get_eeprom_len		= dm9000_get_eeprom_len,
749  	.get_eeprom		= dm9000_get_eeprom,
750  	.set_eeprom		= dm9000_set_eeprom,
751 };
752 
753 static void dm9000_show_carrier(board_info_t *db,
754 				unsigned carrier, unsigned nsr)
755 {
756 	int lpa;
757 	struct net_device *ndev = db->ndev;
758 	struct mii_if_info *mii = &db->mii;
759 	unsigned ncr = dm9000_read_locked(db, DM9000_NCR);
760 
761 	if (carrier) {
762 		lpa = mii->mdio_read(mii->dev, mii->phy_id, MII_LPA);
763 		dev_info(db->dev,
764 			 "%s: link up, %dMbps, %s-duplex, lpa 0x%04X\n",
765 			 ndev->name, (nsr & NSR_SPEED) ? 10 : 100,
766 			 (ncr & NCR_FDX) ? "full" : "half", lpa);
767 	} else {
768 		dev_info(db->dev, "%s: link down\n", ndev->name);
769 	}
770 }
771 
772 static void
773 dm9000_poll_work(struct work_struct *w)
774 {
775 	struct delayed_work *dw = to_delayed_work(w);
776 	board_info_t *db = container_of(dw, board_info_t, phy_poll);
777 	struct net_device *ndev = db->ndev;
778 
779 	if (db->flags & DM9000_PLATF_SIMPLE_PHY &&
780 	    !(db->flags & DM9000_PLATF_EXT_PHY)) {
781 		unsigned nsr = dm9000_read_locked(db, DM9000_NSR);
782 		unsigned old_carrier = netif_carrier_ok(ndev) ? 1 : 0;
783 		unsigned new_carrier;
784 
785 		new_carrier = (nsr & NSR_LINKST) ? 1 : 0;
786 
787 		if (old_carrier != new_carrier) {
788 			if (netif_msg_link(db))
789 				dm9000_show_carrier(db, new_carrier, nsr);
790 
791 			if (!new_carrier)
792 				netif_carrier_off(ndev);
793 			else
794 				netif_carrier_on(ndev);
795 		}
796 	} else
797 		mii_check_media(&db->mii, netif_msg_link(db), 0);
798 
799 	if (netif_running(ndev))
800 		dm9000_schedule_poll(db);
801 }
802 
803 /* dm9000_release_board
804  *
805  * release a board, and any mapped resources
806  */
807 
808 static void
809 dm9000_release_board(struct platform_device *pdev, struct board_info *db)
810 {
811 	/* unmap our resources */
812 
813 	iounmap(db->io_addr);
814 	iounmap(db->io_data);
815 
816 	/* release the resources */
817 
818 	release_resource(db->data_req);
819 	kfree(db->data_req);
820 
821 	release_resource(db->addr_req);
822 	kfree(db->addr_req);
823 }
824 
825 static unsigned char dm9000_type_to_char(enum dm9000_type type)
826 {
827 	switch (type) {
828 	case TYPE_DM9000E: return 'e';
829 	case TYPE_DM9000A: return 'a';
830 	case TYPE_DM9000B: return 'b';
831 	}
832 
833 	return '?';
834 }
835 
836 /*
837  *  Set DM9000 multicast address
838  */
839 static void
840 dm9000_hash_table_unlocked(struct net_device *dev)
841 {
842 	board_info_t *db = netdev_priv(dev);
843 	struct netdev_hw_addr *ha;
844 	int i, oft;
845 	u32 hash_val;
846 	u16 hash_table[4] = { 0, 0, 0, 0x8000 }; /* broadcast address */
847 	u8 rcr = RCR_DIS_LONG | RCR_DIS_CRC | RCR_RXEN;
848 
849 	dm9000_dbg(db, 1, "entering %s\n", __func__);
850 
851 	for (i = 0, oft = DM9000_PAR; i < 6; i++, oft++)
852 		iow(db, oft, dev->dev_addr[i]);
853 
854 	if (dev->flags & IFF_PROMISC)
855 		rcr |= RCR_PRMSC;
856 
857 	if (dev->flags & IFF_ALLMULTI)
858 		rcr |= RCR_ALL;
859 
860 	/* the multicast address in Hash Table : 64 bits */
861 	netdev_for_each_mc_addr(ha, dev) {
862 		hash_val = ether_crc_le(6, ha->addr) & 0x3f;
863 		hash_table[hash_val / 16] |= (u16) 1 << (hash_val % 16);
864 	}
865 
866 	/* Write the hash table to MAC MD table */
867 	for (i = 0, oft = DM9000_MAR; i < 4; i++) {
868 		iow(db, oft++, hash_table[i]);
869 		iow(db, oft++, hash_table[i] >> 8);
870 	}
871 
872 	iow(db, DM9000_RCR, rcr);
873 }
874 
875 static void
876 dm9000_hash_table(struct net_device *dev)
877 {
878 	board_info_t *db = netdev_priv(dev);
879 	unsigned long flags;
880 
881 	spin_lock_irqsave(&db->lock, flags);
882 	dm9000_hash_table_unlocked(dev);
883 	spin_unlock_irqrestore(&db->lock, flags);
884 }
885 
886 /*
887  * Initialize dm9000 board
888  */
889 static void
890 dm9000_init_dm9000(struct net_device *dev)
891 {
892 	board_info_t *db = netdev_priv(dev);
893 	unsigned int imr;
894 	unsigned int ncr;
895 
896 	dm9000_dbg(db, 1, "entering %s\n", __func__);
897 
898 	/* I/O mode */
899 	db->io_mode = ior(db, DM9000_ISR) >> 6;	/* ISR bit7:6 keeps I/O mode */
900 
901 	/* Checksum mode */
902 	if (dev->hw_features & NETIF_F_RXCSUM)
903 		iow(db, DM9000_RCSR,
904 			(dev->features & NETIF_F_RXCSUM) ? RCSR_CSUM : 0);
905 
906 	iow(db, DM9000_GPCR, GPCR_GEP_CNTL);	/* Let GPIO0 output */
907 	iow(db, DM9000_GPR, 0);
908 
909 	/* If we are dealing with DM9000B, some extra steps are required: a
910 	 * manual phy reset, and setting init params.
911 	 */
912 	if (db->type == TYPE_DM9000B) {
913 		dm9000_phy_write(dev, 0, MII_BMCR, BMCR_RESET);
914 		dm9000_phy_write(dev, 0, MII_DM_DSPCR, DSPCR_INIT_PARAM);
915 	}
916 
917 	ncr = (db->flags & DM9000_PLATF_EXT_PHY) ? NCR_EXT_PHY : 0;
918 
919 	/* if wol is needed, then always set NCR_WAKEEN otherwise we end
920 	 * up dumping the wake events if we disable this. There is already
921 	 * a wake-mask in DM9000_WCR */
922 	if (db->wake_supported)
923 		ncr |= NCR_WAKEEN;
924 
925 	iow(db, DM9000_NCR, ncr);
926 
927 	/* Program operating register */
928 	iow(db, DM9000_TCR, 0);	        /* TX Polling clear */
929 	iow(db, DM9000_BPTR, 0x3f);	/* Less 3Kb, 200us */
930 	iow(db, DM9000_FCR, 0xff);	/* Flow Control */
931 	iow(db, DM9000_SMCR, 0);        /* Special Mode */
932 	/* clear TX status */
933 	iow(db, DM9000_NSR, NSR_WAKEST | NSR_TX2END | NSR_TX1END);
934 	iow(db, DM9000_ISR, ISR_CLR_STATUS); /* Clear interrupt status */
935 
936 	/* Set address filter table */
937 	dm9000_hash_table_unlocked(dev);
938 
939 	imr = IMR_PAR | IMR_PTM | IMR_PRM;
940 	if (db->type != TYPE_DM9000E)
941 		imr |= IMR_LNKCHNG;
942 
943 	db->imr_all = imr;
944 
945 	/* Enable TX/RX interrupt mask */
946 	iow(db, DM9000_IMR, imr);
947 
948 	/* Init Driver variable */
949 	db->tx_pkt_cnt = 0;
950 	db->queue_pkt_len = 0;
951 	dev->trans_start = jiffies;
952 }
953 
954 /* Our watchdog timed out. Called by the networking layer */
955 static void dm9000_timeout(struct net_device *dev)
956 {
957 	board_info_t *db = netdev_priv(dev);
958 	u8 reg_save;
959 	unsigned long flags;
960 
961 	/* Save previous register address */
962 	spin_lock_irqsave(&db->lock, flags);
963 	reg_save = readb(db->io_addr);
964 
965 	netif_stop_queue(dev);
966 	dm9000_reset(db);
967 	dm9000_init_dm9000(dev);
968 	/* We can accept TX packets again */
969 	dev->trans_start = jiffies; /* prevent tx timeout */
970 	netif_wake_queue(dev);
971 
972 	/* Restore previous register address */
973 	writeb(reg_save, db->io_addr);
974 	spin_unlock_irqrestore(&db->lock, flags);
975 }
976 
977 static void dm9000_send_packet(struct net_device *dev,
978 			       int ip_summed,
979 			       u16 pkt_len)
980 {
981 	board_info_t *dm = to_dm9000_board(dev);
982 
983 	/* The DM9000 is not smart enough to leave fragmented packets alone. */
984 	if (dm->ip_summed != ip_summed) {
985 		if (ip_summed == CHECKSUM_NONE)
986 			iow(dm, DM9000_TCCR, 0);
987 		else
988 			iow(dm, DM9000_TCCR, TCCR_IP | TCCR_UDP | TCCR_TCP);
989 		dm->ip_summed = ip_summed;
990 	}
991 
992 	/* Set TX length to DM9000 */
993 	iow(dm, DM9000_TXPLL, pkt_len);
994 	iow(dm, DM9000_TXPLH, pkt_len >> 8);
995 
996 	/* Issue TX polling command */
997 	iow(dm, DM9000_TCR, TCR_TXREQ);	/* Cleared after TX complete */
998 }
999 
1000 /*
1001  *  Hardware start transmission.
1002  *  Send a packet to media from the upper layer.
1003  */
1004 static int
1005 dm9000_start_xmit(struct sk_buff *skb, struct net_device *dev)
1006 {
1007 	unsigned long flags;
1008 	board_info_t *db = netdev_priv(dev);
1009 
1010 	dm9000_dbg(db, 3, "%s:\n", __func__);
1011 
1012 	if (db->tx_pkt_cnt > 1)
1013 		return NETDEV_TX_BUSY;
1014 
1015 	spin_lock_irqsave(&db->lock, flags);
1016 
1017 	/* Move data to DM9000 TX RAM */
1018 	writeb(DM9000_MWCMD, db->io_addr);
1019 
1020 	(db->outblk)(db->io_data, skb->data, skb->len);
1021 	dev->stats.tx_bytes += skb->len;
1022 
1023 	db->tx_pkt_cnt++;
1024 	/* TX control: First packet immediately send, second packet queue */
1025 	if (db->tx_pkt_cnt == 1) {
1026 		dm9000_send_packet(dev, skb->ip_summed, skb->len);
1027 	} else {
1028 		/* Second packet */
1029 		db->queue_pkt_len = skb->len;
1030 		db->queue_ip_summed = skb->ip_summed;
1031 		netif_stop_queue(dev);
1032 	}
1033 
1034 	spin_unlock_irqrestore(&db->lock, flags);
1035 
1036 	/* free this SKB */
1037 	dev_kfree_skb(skb);
1038 
1039 	return NETDEV_TX_OK;
1040 }
1041 
1042 /*
1043  * DM9000 interrupt handler
1044  * receive the packet to upper layer, free the transmitted packet
1045  */
1046 
1047 static void dm9000_tx_done(struct net_device *dev, board_info_t *db)
1048 {
1049 	int tx_status = ior(db, DM9000_NSR);	/* Got TX status */
1050 
1051 	if (tx_status & (NSR_TX2END | NSR_TX1END)) {
1052 		/* One packet sent complete */
1053 		db->tx_pkt_cnt--;
1054 		dev->stats.tx_packets++;
1055 
1056 		if (netif_msg_tx_done(db))
1057 			dev_dbg(db->dev, "tx done, NSR %02x\n", tx_status);
1058 
1059 		/* Queue packet check & send */
1060 		if (db->tx_pkt_cnt > 0)
1061 			dm9000_send_packet(dev, db->queue_ip_summed,
1062 					   db->queue_pkt_len);
1063 		netif_wake_queue(dev);
1064 	}
1065 }
1066 
1067 struct dm9000_rxhdr {
1068 	u8	RxPktReady;
1069 	u8	RxStatus;
1070 	__le16	RxLen;
1071 } __packed;
1072 
1073 /*
1074  *  Received a packet and pass to upper layer
1075  */
1076 static void
1077 dm9000_rx(struct net_device *dev)
1078 {
1079 	board_info_t *db = netdev_priv(dev);
1080 	struct dm9000_rxhdr rxhdr;
1081 	struct sk_buff *skb;
1082 	u8 rxbyte, *rdptr;
1083 	bool GoodPacket;
1084 	int RxLen;
1085 
1086 	/* Check packet ready or not */
1087 	do {
1088 		ior(db, DM9000_MRCMDX);	/* Dummy read */
1089 
1090 		/* Get most updated data */
1091 		rxbyte = readb(db->io_data);
1092 
1093 		/* Status check: this byte must be 0 or 1 */
1094 		if (rxbyte & DM9000_PKT_ERR) {
1095 			dev_warn(db->dev, "status check fail: %d\n", rxbyte);
1096 			iow(db, DM9000_RCR, 0x00);	/* Stop Device */
1097 			iow(db, DM9000_ISR, IMR_PAR);	/* Stop INT request */
1098 			return;
1099 		}
1100 
1101 		if (!(rxbyte & DM9000_PKT_RDY))
1102 			return;
1103 
1104 		/* A packet ready now  & Get status/length */
1105 		GoodPacket = true;
1106 		writeb(DM9000_MRCMD, db->io_addr);
1107 
1108 		(db->inblk)(db->io_data, &rxhdr, sizeof(rxhdr));
1109 
1110 		RxLen = le16_to_cpu(rxhdr.RxLen);
1111 
1112 		if (netif_msg_rx_status(db))
1113 			dev_dbg(db->dev, "RX: status %02x, length %04x\n",
1114 				rxhdr.RxStatus, RxLen);
1115 
1116 		/* Packet Status check */
1117 		if (RxLen < 0x40) {
1118 			GoodPacket = false;
1119 			if (netif_msg_rx_err(db))
1120 				dev_dbg(db->dev, "RX: Bad Packet (runt)\n");
1121 		}
1122 
1123 		if (RxLen > DM9000_PKT_MAX) {
1124 			dev_dbg(db->dev, "RST: RX Len:%x\n", RxLen);
1125 		}
1126 
1127 		/* rxhdr.RxStatus is identical to RSR register. */
1128 		if (rxhdr.RxStatus & (RSR_FOE | RSR_CE | RSR_AE |
1129 				      RSR_PLE | RSR_RWTO |
1130 				      RSR_LCS | RSR_RF)) {
1131 			GoodPacket = false;
1132 			if (rxhdr.RxStatus & RSR_FOE) {
1133 				if (netif_msg_rx_err(db))
1134 					dev_dbg(db->dev, "fifo error\n");
1135 				dev->stats.rx_fifo_errors++;
1136 			}
1137 			if (rxhdr.RxStatus & RSR_CE) {
1138 				if (netif_msg_rx_err(db))
1139 					dev_dbg(db->dev, "crc error\n");
1140 				dev->stats.rx_crc_errors++;
1141 			}
1142 			if (rxhdr.RxStatus & RSR_RF) {
1143 				if (netif_msg_rx_err(db))
1144 					dev_dbg(db->dev, "length error\n");
1145 				dev->stats.rx_length_errors++;
1146 			}
1147 		}
1148 
1149 		/* Move data from DM9000 */
1150 		if (GoodPacket &&
1151 		    ((skb = netdev_alloc_skb(dev, RxLen + 4)) != NULL)) {
1152 			skb_reserve(skb, 2);
1153 			rdptr = (u8 *) skb_put(skb, RxLen - 4);
1154 
1155 			/* Read received packet from RX SRAM */
1156 
1157 			(db->inblk)(db->io_data, rdptr, RxLen);
1158 			dev->stats.rx_bytes += RxLen;
1159 
1160 			/* Pass to upper layer */
1161 			skb->protocol = eth_type_trans(skb, dev);
1162 			if (dev->features & NETIF_F_RXCSUM) {
1163 				if ((((rxbyte & 0x1c) << 3) & rxbyte) == 0)
1164 					skb->ip_summed = CHECKSUM_UNNECESSARY;
1165 				else
1166 					skb_checksum_none_assert(skb);
1167 			}
1168 			netif_rx(skb);
1169 			dev->stats.rx_packets++;
1170 
1171 		} else {
1172 			/* need to dump the packet's data */
1173 
1174 			(db->dumpblk)(db->io_data, RxLen);
1175 		}
1176 	} while (rxbyte & DM9000_PKT_RDY);
1177 }
1178 
1179 static irqreturn_t dm9000_interrupt(int irq, void *dev_id)
1180 {
1181 	struct net_device *dev = dev_id;
1182 	board_info_t *db = netdev_priv(dev);
1183 	int int_status;
1184 	unsigned long flags;
1185 	u8 reg_save;
1186 
1187 	dm9000_dbg(db, 3, "entering %s\n", __func__);
1188 
1189 	/* A real interrupt coming */
1190 
1191 	/* holders of db->lock must always block IRQs */
1192 	spin_lock_irqsave(&db->lock, flags);
1193 
1194 	/* Save previous register address */
1195 	reg_save = readb(db->io_addr);
1196 
1197 	/* Disable all interrupts */
1198 	iow(db, DM9000_IMR, IMR_PAR);
1199 
1200 	/* Got DM9000 interrupt status */
1201 	int_status = ior(db, DM9000_ISR);	/* Got ISR */
1202 	iow(db, DM9000_ISR, int_status);	/* Clear ISR status */
1203 
1204 	if (netif_msg_intr(db))
1205 		dev_dbg(db->dev, "interrupt status %02x\n", int_status);
1206 
1207 	/* Received the coming packet */
1208 	if (int_status & ISR_PRS)
1209 		dm9000_rx(dev);
1210 
1211 	/* Trnasmit Interrupt check */
1212 	if (int_status & ISR_PTS)
1213 		dm9000_tx_done(dev, db);
1214 
1215 	if (db->type != TYPE_DM9000E) {
1216 		if (int_status & ISR_LNKCHNG) {
1217 			/* fire a link-change request */
1218 			schedule_delayed_work(&db->phy_poll, 1);
1219 		}
1220 	}
1221 
1222 	/* Re-enable interrupt mask */
1223 	iow(db, DM9000_IMR, db->imr_all);
1224 
1225 	/* Restore previous register address */
1226 	writeb(reg_save, db->io_addr);
1227 
1228 	spin_unlock_irqrestore(&db->lock, flags);
1229 
1230 	return IRQ_HANDLED;
1231 }
1232 
1233 static irqreturn_t dm9000_wol_interrupt(int irq, void *dev_id)
1234 {
1235 	struct net_device *dev = dev_id;
1236 	board_info_t *db = netdev_priv(dev);
1237 	unsigned long flags;
1238 	unsigned nsr, wcr;
1239 
1240 	spin_lock_irqsave(&db->lock, flags);
1241 
1242 	nsr = ior(db, DM9000_NSR);
1243 	wcr = ior(db, DM9000_WCR);
1244 
1245 	dev_dbg(db->dev, "%s: NSR=0x%02x, WCR=0x%02x\n", __func__, nsr, wcr);
1246 
1247 	if (nsr & NSR_WAKEST) {
1248 		/* clear, so we can avoid */
1249 		iow(db, DM9000_NSR, NSR_WAKEST);
1250 
1251 		if (wcr & WCR_LINKST)
1252 			dev_info(db->dev, "wake by link status change\n");
1253 		if (wcr & WCR_SAMPLEST)
1254 			dev_info(db->dev, "wake by sample packet\n");
1255 		if (wcr & WCR_MAGICST )
1256 			dev_info(db->dev, "wake by magic packet\n");
1257 		if (!(wcr & (WCR_LINKST | WCR_SAMPLEST | WCR_MAGICST)))
1258 			dev_err(db->dev, "wake signalled with no reason? "
1259 				"NSR=0x%02x, WSR=0x%02x\n", nsr, wcr);
1260 
1261 	}
1262 
1263 	spin_unlock_irqrestore(&db->lock, flags);
1264 
1265 	return (nsr & NSR_WAKEST) ? IRQ_HANDLED : IRQ_NONE;
1266 }
1267 
1268 #ifdef CONFIG_NET_POLL_CONTROLLER
1269 /*
1270  *Used by netconsole
1271  */
1272 static void dm9000_poll_controller(struct net_device *dev)
1273 {
1274 	disable_irq(dev->irq);
1275 	dm9000_interrupt(dev->irq, dev);
1276 	enable_irq(dev->irq);
1277 }
1278 #endif
1279 
1280 /*
1281  *  Open the interface.
1282  *  The interface is opened whenever "ifconfig" actives it.
1283  */
1284 static int
1285 dm9000_open(struct net_device *dev)
1286 {
1287 	board_info_t *db = netdev_priv(dev);
1288 	unsigned long irqflags = db->irq_res->flags & IRQF_TRIGGER_MASK;
1289 
1290 	if (netif_msg_ifup(db))
1291 		dev_dbg(db->dev, "enabling %s\n", dev->name);
1292 
1293 	/* If there is no IRQ type specified, default to something that
1294 	 * may work, and tell the user that this is a problem */
1295 
1296 	if (irqflags == IRQF_TRIGGER_NONE)
1297 		dev_warn(db->dev, "WARNING: no IRQ resource flags set.\n");
1298 
1299 	irqflags |= IRQF_SHARED;
1300 
1301 	/* GPIO0 on pre-activate PHY, Reg 1F is not set by reset */
1302 	iow(db, DM9000_GPR, 0);	/* REG_1F bit0 activate phyxcer */
1303 	mdelay(1); /* delay needs by DM9000B */
1304 
1305 	/* Initialize DM9000 board */
1306 	dm9000_reset(db);
1307 	dm9000_init_dm9000(dev);
1308 
1309 	if (request_irq(dev->irq, dm9000_interrupt, irqflags, dev->name, dev))
1310 		return -EAGAIN;
1311 
1312 	/* Init driver variable */
1313 	db->dbug_cnt = 0;
1314 
1315 	mii_check_media(&db->mii, netif_msg_link(db), 1);
1316 	netif_start_queue(dev);
1317 
1318 	dm9000_schedule_poll(db);
1319 
1320 	return 0;
1321 }
1322 
1323 static void
1324 dm9000_shutdown(struct net_device *dev)
1325 {
1326 	board_info_t *db = netdev_priv(dev);
1327 
1328 	/* RESET device */
1329 	dm9000_phy_write(dev, 0, MII_BMCR, BMCR_RESET);	/* PHY RESET */
1330 	iow(db, DM9000_GPR, 0x01);	/* Power-Down PHY */
1331 	iow(db, DM9000_IMR, IMR_PAR);	/* Disable all interrupt */
1332 	iow(db, DM9000_RCR, 0x00);	/* Disable RX */
1333 }
1334 
1335 /*
1336  * Stop the interface.
1337  * The interface is stopped when it is brought.
1338  */
1339 static int
1340 dm9000_stop(struct net_device *ndev)
1341 {
1342 	board_info_t *db = netdev_priv(ndev);
1343 
1344 	if (netif_msg_ifdown(db))
1345 		dev_dbg(db->dev, "shutting down %s\n", ndev->name);
1346 
1347 	cancel_delayed_work_sync(&db->phy_poll);
1348 
1349 	netif_stop_queue(ndev);
1350 	netif_carrier_off(ndev);
1351 
1352 	/* free interrupt */
1353 	free_irq(ndev->irq, ndev);
1354 
1355 	dm9000_shutdown(ndev);
1356 
1357 	return 0;
1358 }
1359 
1360 static const struct net_device_ops dm9000_netdev_ops = {
1361 	.ndo_open		= dm9000_open,
1362 	.ndo_stop		= dm9000_stop,
1363 	.ndo_start_xmit		= dm9000_start_xmit,
1364 	.ndo_tx_timeout		= dm9000_timeout,
1365 	.ndo_set_rx_mode	= dm9000_hash_table,
1366 	.ndo_do_ioctl		= dm9000_ioctl,
1367 	.ndo_change_mtu		= eth_change_mtu,
1368 	.ndo_set_features	= dm9000_set_features,
1369 	.ndo_validate_addr	= eth_validate_addr,
1370 	.ndo_set_mac_address	= eth_mac_addr,
1371 #ifdef CONFIG_NET_POLL_CONTROLLER
1372 	.ndo_poll_controller	= dm9000_poll_controller,
1373 #endif
1374 };
1375 
1376 static struct dm9000_plat_data *dm9000_parse_dt(struct device *dev)
1377 {
1378 	struct dm9000_plat_data *pdata;
1379 	struct device_node *np = dev->of_node;
1380 	const void *mac_addr;
1381 
1382 	if (!IS_ENABLED(CONFIG_OF) || !np)
1383 		return NULL;
1384 
1385 	pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
1386 	if (!pdata)
1387 		return ERR_PTR(-ENOMEM);
1388 
1389 	if (of_find_property(np, "davicom,ext-phy", NULL))
1390 		pdata->flags |= DM9000_PLATF_EXT_PHY;
1391 	if (of_find_property(np, "davicom,no-eeprom", NULL))
1392 		pdata->flags |= DM9000_PLATF_NO_EEPROM;
1393 
1394 	mac_addr = of_get_mac_address(np);
1395 	if (mac_addr)
1396 		memcpy(pdata->dev_addr, mac_addr, sizeof(pdata->dev_addr));
1397 
1398 	return pdata;
1399 }
1400 
1401 /*
1402  * Search DM9000 board, allocate space and register it
1403  */
1404 static int
1405 dm9000_probe(struct platform_device *pdev)
1406 {
1407 	struct dm9000_plat_data *pdata = dev_get_platdata(&pdev->dev);
1408 	struct board_info *db;	/* Point a board information structure */
1409 	struct net_device *ndev;
1410 	const unsigned char *mac_src;
1411 	int ret = 0;
1412 	int iosize;
1413 	int i;
1414 	u32 id_val;
1415 
1416 	if (!pdata) {
1417 		pdata = dm9000_parse_dt(&pdev->dev);
1418 		if (IS_ERR(pdata))
1419 			return PTR_ERR(pdata);
1420 	}
1421 
1422 	/* Init network device */
1423 	ndev = alloc_etherdev(sizeof(struct board_info));
1424 	if (!ndev)
1425 		return -ENOMEM;
1426 
1427 	SET_NETDEV_DEV(ndev, &pdev->dev);
1428 
1429 	dev_dbg(&pdev->dev, "dm9000_probe()\n");
1430 
1431 	/* setup board info structure */
1432 	db = netdev_priv(ndev);
1433 
1434 	db->dev = &pdev->dev;
1435 	db->ndev = ndev;
1436 
1437 	spin_lock_init(&db->lock);
1438 	mutex_init(&db->addr_lock);
1439 
1440 	INIT_DELAYED_WORK(&db->phy_poll, dm9000_poll_work);
1441 
1442 	db->addr_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1443 	db->data_res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1444 	db->irq_res  = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
1445 
1446 	if (db->addr_res == NULL || db->data_res == NULL ||
1447 	    db->irq_res == NULL) {
1448 		dev_err(db->dev, "insufficient resources\n");
1449 		ret = -ENOENT;
1450 		goto out;
1451 	}
1452 
1453 	db->irq_wake = platform_get_irq(pdev, 1);
1454 	if (db->irq_wake >= 0) {
1455 		dev_dbg(db->dev, "wakeup irq %d\n", db->irq_wake);
1456 
1457 		ret = request_irq(db->irq_wake, dm9000_wol_interrupt,
1458 				  IRQF_SHARED, dev_name(db->dev), ndev);
1459 		if (ret) {
1460 			dev_err(db->dev, "cannot get wakeup irq (%d)\n", ret);
1461 		} else {
1462 
1463 			/* test to see if irq is really wakeup capable */
1464 			ret = irq_set_irq_wake(db->irq_wake, 1);
1465 			if (ret) {
1466 				dev_err(db->dev, "irq %d cannot set wakeup (%d)\n",
1467 					db->irq_wake, ret);
1468 				ret = 0;
1469 			} else {
1470 				irq_set_irq_wake(db->irq_wake, 0);
1471 				db->wake_supported = 1;
1472 			}
1473 		}
1474 	}
1475 
1476 	iosize = resource_size(db->addr_res);
1477 	db->addr_req = request_mem_region(db->addr_res->start, iosize,
1478 					  pdev->name);
1479 
1480 	if (db->addr_req == NULL) {
1481 		dev_err(db->dev, "cannot claim address reg area\n");
1482 		ret = -EIO;
1483 		goto out;
1484 	}
1485 
1486 	db->io_addr = ioremap(db->addr_res->start, iosize);
1487 
1488 	if (db->io_addr == NULL) {
1489 		dev_err(db->dev, "failed to ioremap address reg\n");
1490 		ret = -EINVAL;
1491 		goto out;
1492 	}
1493 
1494 	iosize = resource_size(db->data_res);
1495 	db->data_req = request_mem_region(db->data_res->start, iosize,
1496 					  pdev->name);
1497 
1498 	if (db->data_req == NULL) {
1499 		dev_err(db->dev, "cannot claim data reg area\n");
1500 		ret = -EIO;
1501 		goto out;
1502 	}
1503 
1504 	db->io_data = ioremap(db->data_res->start, iosize);
1505 
1506 	if (db->io_data == NULL) {
1507 		dev_err(db->dev, "failed to ioremap data reg\n");
1508 		ret = -EINVAL;
1509 		goto out;
1510 	}
1511 
1512 	/* fill in parameters for net-dev structure */
1513 	ndev->base_addr = (unsigned long)db->io_addr;
1514 	ndev->irq	= db->irq_res->start;
1515 
1516 	/* ensure at least we have a default set of IO routines */
1517 	dm9000_set_io(db, iosize);
1518 
1519 	/* check to see if anything is being over-ridden */
1520 	if (pdata != NULL) {
1521 		/* check to see if the driver wants to over-ride the
1522 		 * default IO width */
1523 
1524 		if (pdata->flags & DM9000_PLATF_8BITONLY)
1525 			dm9000_set_io(db, 1);
1526 
1527 		if (pdata->flags & DM9000_PLATF_16BITONLY)
1528 			dm9000_set_io(db, 2);
1529 
1530 		if (pdata->flags & DM9000_PLATF_32BITONLY)
1531 			dm9000_set_io(db, 4);
1532 
1533 		/* check to see if there are any IO routine
1534 		 * over-rides */
1535 
1536 		if (pdata->inblk != NULL)
1537 			db->inblk = pdata->inblk;
1538 
1539 		if (pdata->outblk != NULL)
1540 			db->outblk = pdata->outblk;
1541 
1542 		if (pdata->dumpblk != NULL)
1543 			db->dumpblk = pdata->dumpblk;
1544 
1545 		db->flags = pdata->flags;
1546 	}
1547 
1548 #ifdef CONFIG_DM9000_FORCE_SIMPLE_PHY_POLL
1549 	db->flags |= DM9000_PLATF_SIMPLE_PHY;
1550 #endif
1551 
1552 	/* Fixing bug on dm9000_probe, takeover dm9000_reset(db),
1553 	 * Need 'NCR_MAC_LBK' bit to indeed stable our DM9000 fifo
1554 	 * while probe stage.
1555 	 */
1556 
1557 	iow(db, DM9000_NCR, NCR_MAC_LBK | NCR_RST);
1558 
1559 	/* try multiple times, DM9000 sometimes gets the read wrong */
1560 	for (i = 0; i < 8; i++) {
1561 		id_val  = ior(db, DM9000_VIDL);
1562 		id_val |= (u32)ior(db, DM9000_VIDH) << 8;
1563 		id_val |= (u32)ior(db, DM9000_PIDL) << 16;
1564 		id_val |= (u32)ior(db, DM9000_PIDH) << 24;
1565 
1566 		if (id_val == DM9000_ID)
1567 			break;
1568 		dev_err(db->dev, "read wrong id 0x%08x\n", id_val);
1569 	}
1570 
1571 	if (id_val != DM9000_ID) {
1572 		dev_err(db->dev, "wrong id: 0x%08x\n", id_val);
1573 		ret = -ENODEV;
1574 		goto out;
1575 	}
1576 
1577 	/* Identify what type of DM9000 we are working on */
1578 
1579 	id_val = ior(db, DM9000_CHIPR);
1580 	dev_dbg(db->dev, "dm9000 revision 0x%02x\n", id_val);
1581 
1582 	switch (id_val) {
1583 	case CHIPR_DM9000A:
1584 		db->type = TYPE_DM9000A;
1585 		break;
1586 	case CHIPR_DM9000B:
1587 		db->type = TYPE_DM9000B;
1588 		break;
1589 	default:
1590 		dev_dbg(db->dev, "ID %02x => defaulting to DM9000E\n", id_val);
1591 		db->type = TYPE_DM9000E;
1592 	}
1593 
1594 	/* dm9000a/b are capable of hardware checksum offload */
1595 	if (db->type == TYPE_DM9000A || db->type == TYPE_DM9000B) {
1596 		ndev->hw_features = NETIF_F_RXCSUM | NETIF_F_IP_CSUM;
1597 		ndev->features |= ndev->hw_features;
1598 	}
1599 
1600 	/* from this point we assume that we have found a DM9000 */
1601 
1602 	/* driver system function */
1603 	ether_setup(ndev);
1604 
1605 	ndev->netdev_ops	= &dm9000_netdev_ops;
1606 	ndev->watchdog_timeo	= msecs_to_jiffies(watchdog);
1607 	ndev->ethtool_ops	= &dm9000_ethtool_ops;
1608 
1609 	db->msg_enable       = NETIF_MSG_LINK;
1610 	db->mii.phy_id_mask  = 0x1f;
1611 	db->mii.reg_num_mask = 0x1f;
1612 	db->mii.force_media  = 0;
1613 	db->mii.full_duplex  = 0;
1614 	db->mii.dev	     = ndev;
1615 	db->mii.mdio_read    = dm9000_phy_read;
1616 	db->mii.mdio_write   = dm9000_phy_write;
1617 
1618 	mac_src = "eeprom";
1619 
1620 	/* try reading the node address from the attached EEPROM */
1621 	for (i = 0; i < 6; i += 2)
1622 		dm9000_read_eeprom(db, i / 2, ndev->dev_addr+i);
1623 
1624 	if (!is_valid_ether_addr(ndev->dev_addr) && pdata != NULL) {
1625 		mac_src = "platform data";
1626 		memcpy(ndev->dev_addr, pdata->dev_addr, 6);
1627 	}
1628 
1629 	if (!is_valid_ether_addr(ndev->dev_addr)) {
1630 		/* try reading from mac */
1631 
1632 		mac_src = "chip";
1633 		for (i = 0; i < 6; i++)
1634 			ndev->dev_addr[i] = ior(db, i+DM9000_PAR);
1635 	}
1636 
1637 	if (!is_valid_ether_addr(ndev->dev_addr)) {
1638 		dev_warn(db->dev, "%s: Invalid ethernet MAC address. Please "
1639 			 "set using ifconfig\n", ndev->name);
1640 
1641 		eth_hw_addr_random(ndev);
1642 		mac_src = "random";
1643 	}
1644 
1645 
1646 	platform_set_drvdata(pdev, ndev);
1647 	ret = register_netdev(ndev);
1648 
1649 	if (ret == 0)
1650 		printk(KERN_INFO "%s: dm9000%c at %p,%p IRQ %d MAC: %pM (%s)\n",
1651 		       ndev->name, dm9000_type_to_char(db->type),
1652 		       db->io_addr, db->io_data, ndev->irq,
1653 		       ndev->dev_addr, mac_src);
1654 	return 0;
1655 
1656 out:
1657 	dev_err(db->dev, "not found (%d).\n", ret);
1658 
1659 	dm9000_release_board(pdev, db);
1660 	free_netdev(ndev);
1661 
1662 	return ret;
1663 }
1664 
1665 static int
1666 dm9000_drv_suspend(struct device *dev)
1667 {
1668 	struct platform_device *pdev = to_platform_device(dev);
1669 	struct net_device *ndev = platform_get_drvdata(pdev);
1670 	board_info_t *db;
1671 
1672 	if (ndev) {
1673 		db = netdev_priv(ndev);
1674 		db->in_suspend = 1;
1675 
1676 		if (!netif_running(ndev))
1677 			return 0;
1678 
1679 		netif_device_detach(ndev);
1680 
1681 		/* only shutdown if not using WoL */
1682 		if (!db->wake_state)
1683 			dm9000_shutdown(ndev);
1684 	}
1685 	return 0;
1686 }
1687 
1688 static int
1689 dm9000_drv_resume(struct device *dev)
1690 {
1691 	struct platform_device *pdev = to_platform_device(dev);
1692 	struct net_device *ndev = platform_get_drvdata(pdev);
1693 	board_info_t *db = netdev_priv(ndev);
1694 
1695 	if (ndev) {
1696 		if (netif_running(ndev)) {
1697 			/* reset if we were not in wake mode to ensure if
1698 			 * the device was powered off it is in a known state */
1699 			if (!db->wake_state) {
1700 				dm9000_reset(db);
1701 				dm9000_init_dm9000(ndev);
1702 			}
1703 
1704 			netif_device_attach(ndev);
1705 		}
1706 
1707 		db->in_suspend = 0;
1708 	}
1709 	return 0;
1710 }
1711 
1712 static const struct dev_pm_ops dm9000_drv_pm_ops = {
1713 	.suspend	= dm9000_drv_suspend,
1714 	.resume		= dm9000_drv_resume,
1715 };
1716 
1717 static int
1718 dm9000_drv_remove(struct platform_device *pdev)
1719 {
1720 	struct net_device *ndev = platform_get_drvdata(pdev);
1721 
1722 	unregister_netdev(ndev);
1723 	dm9000_release_board(pdev, netdev_priv(ndev));
1724 	free_netdev(ndev);		/* free device structure */
1725 
1726 	dev_dbg(&pdev->dev, "released and freed device\n");
1727 	return 0;
1728 }
1729 
1730 #ifdef CONFIG_OF
1731 static const struct of_device_id dm9000_of_matches[] = {
1732 	{ .compatible = "davicom,dm9000", },
1733 	{ /* sentinel */ }
1734 };
1735 MODULE_DEVICE_TABLE(of, dm9000_of_matches);
1736 #endif
1737 
1738 static struct platform_driver dm9000_driver = {
1739 	.driver	= {
1740 		.name    = "dm9000",
1741 		.owner	 = THIS_MODULE,
1742 		.pm	 = &dm9000_drv_pm_ops,
1743 		.of_match_table = of_match_ptr(dm9000_of_matches),
1744 	},
1745 	.probe   = dm9000_probe,
1746 	.remove  = dm9000_drv_remove,
1747 };
1748 
1749 module_platform_driver(dm9000_driver);
1750 
1751 MODULE_AUTHOR("Sascha Hauer, Ben Dooks");
1752 MODULE_DESCRIPTION("Davicom DM9000 network driver");
1753 MODULE_LICENSE("GPL");
1754 MODULE_ALIAS("platform:dm9000");
1755