1 /*
2  *      Davicom DM9000 Fast Ethernet driver for Linux.
3  * 	Copyright (C) 1997  Sten Wang
4  *
5  * 	This program is free software; you can redistribute it and/or
6  * 	modify it under the terms of the GNU General Public License
7  * 	as published by the Free Software Foundation; either version 2
8  * 	of the License, or (at your option) any later version.
9  *
10  * 	This program is distributed in the hope that it will be useful,
11  * 	but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * 	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * 	GNU General Public License for more details.
14  *
15  * (C) Copyright 1997-1998 DAVICOM Semiconductor,Inc. All Rights Reserved.
16  *
17  * Additional updates, Copyright:
18  *	Ben Dooks <ben@simtec.co.uk>
19  *	Sascha Hauer <s.hauer@pengutronix.de>
20  */
21 
22 #include <linux/module.h>
23 #include <linux/ioport.h>
24 #include <linux/netdevice.h>
25 #include <linux/etherdevice.h>
26 #include <linux/init.h>
27 #include <linux/interrupt.h>
28 #include <linux/skbuff.h>
29 #include <linux/spinlock.h>
30 #include <linux/crc32.h>
31 #include <linux/mii.h>
32 #include <linux/ethtool.h>
33 #include <linux/dm9000.h>
34 #include <linux/delay.h>
35 #include <linux/platform_device.h>
36 #include <linux/irq.h>
37 #include <linux/slab.h>
38 
39 #include <asm/delay.h>
40 #include <asm/irq.h>
41 #include <asm/io.h>
42 
43 #include "dm9000.h"
44 
45 /* Board/System/Debug information/definition ---------------- */
46 
47 #define DM9000_PHY		0x40	/* PHY address 0x01 */
48 
49 #define CARDNAME	"dm9000"
50 #define DRV_VERSION	"1.31"
51 
52 /*
53  * Transmit timeout, default 5 seconds.
54  */
55 static int watchdog = 5000;
56 module_param(watchdog, int, 0400);
57 MODULE_PARM_DESC(watchdog, "transmit timeout in milliseconds");
58 
59 /*
60  * Debug messages level
61  */
62 static int debug;
63 module_param(debug, int, 0644);
64 MODULE_PARM_DESC(debug, "dm9000 debug level (0-4)");
65 
66 /* DM9000 register address locking.
67  *
68  * The DM9000 uses an address register to control where data written
69  * to the data register goes. This means that the address register
70  * must be preserved over interrupts or similar calls.
71  *
72  * During interrupt and other critical calls, a spinlock is used to
73  * protect the system, but the calls themselves save the address
74  * in the address register in case they are interrupting another
75  * access to the device.
76  *
77  * For general accesses a lock is provided so that calls which are
78  * allowed to sleep are serialised so that the address register does
79  * not need to be saved. This lock also serves to serialise access
80  * to the EEPROM and PHY access registers which are shared between
81  * these two devices.
82  */
83 
84 /* The driver supports the original DM9000E, and now the two newer
85  * devices, DM9000A and DM9000B.
86  */
87 
88 enum dm9000_type {
89 	TYPE_DM9000E,	/* original DM9000 */
90 	TYPE_DM9000A,
91 	TYPE_DM9000B
92 };
93 
94 /* Structure/enum declaration ------------------------------- */
95 typedef struct board_info {
96 
97 	void __iomem	*io_addr;	/* Register I/O base address */
98 	void __iomem	*io_data;	/* Data I/O address */
99 	u16		 irq;		/* IRQ */
100 
101 	u16		tx_pkt_cnt;
102 	u16		queue_pkt_len;
103 	u16		queue_start_addr;
104 	u16		queue_ip_summed;
105 	u16		dbug_cnt;
106 	u8		io_mode;		/* 0:word, 2:byte */
107 	u8		phy_addr;
108 	u8		imr_all;
109 
110 	unsigned int	flags;
111 	unsigned int	in_suspend :1;
112 	unsigned int	wake_supported :1;
113 
114 	enum dm9000_type type;
115 
116 	void (*inblk)(void __iomem *port, void *data, int length);
117 	void (*outblk)(void __iomem *port, void *data, int length);
118 	void (*dumpblk)(void __iomem *port, int length);
119 
120 	struct device	*dev;	     /* parent device */
121 
122 	struct resource	*addr_res;   /* resources found */
123 	struct resource *data_res;
124 	struct resource	*addr_req;   /* resources requested */
125 	struct resource *data_req;
126 	struct resource *irq_res;
127 
128 	int		 irq_wake;
129 
130 	struct mutex	 addr_lock;	/* phy and eeprom access lock */
131 
132 	struct delayed_work phy_poll;
133 	struct net_device  *ndev;
134 
135 	spinlock_t	lock;
136 
137 	struct mii_if_info mii;
138 	u32		msg_enable;
139 	u32		wake_state;
140 
141 	int		ip_summed;
142 } board_info_t;
143 
144 /* debug code */
145 
146 #define dm9000_dbg(db, lev, msg...) do {		\
147 	if ((lev) < debug) {				\
148 		dev_dbg(db->dev, msg);			\
149 	}						\
150 } while (0)
151 
152 static inline board_info_t *to_dm9000_board(struct net_device *dev)
153 {
154 	return netdev_priv(dev);
155 }
156 
157 /* DM9000 network board routine ---------------------------- */
158 
159 static void
160 dm9000_reset(board_info_t * db)
161 {
162 	dev_dbg(db->dev, "resetting device\n");
163 
164 	/* RESET device */
165 	writeb(DM9000_NCR, db->io_addr);
166 	udelay(200);
167 	writeb(NCR_RST, db->io_data);
168 	udelay(200);
169 }
170 
171 /*
172  *   Read a byte from I/O port
173  */
174 static u8
175 ior(board_info_t * db, int reg)
176 {
177 	writeb(reg, db->io_addr);
178 	return readb(db->io_data);
179 }
180 
181 /*
182  *   Write a byte to I/O port
183  */
184 
185 static void
186 iow(board_info_t * db, int reg, int value)
187 {
188 	writeb(reg, db->io_addr);
189 	writeb(value, db->io_data);
190 }
191 
192 /* routines for sending block to chip */
193 
194 static void dm9000_outblk_8bit(void __iomem *reg, void *data, int count)
195 {
196 	iowrite8_rep(reg, data, count);
197 }
198 
199 static void dm9000_outblk_16bit(void __iomem *reg, void *data, int count)
200 {
201 	iowrite16_rep(reg, data, (count+1) >> 1);
202 }
203 
204 static void dm9000_outblk_32bit(void __iomem *reg, void *data, int count)
205 {
206 	iowrite32_rep(reg, data, (count+3) >> 2);
207 }
208 
209 /* input block from chip to memory */
210 
211 static void dm9000_inblk_8bit(void __iomem *reg, void *data, int count)
212 {
213 	ioread8_rep(reg, data, count);
214 }
215 
216 
217 static void dm9000_inblk_16bit(void __iomem *reg, void *data, int count)
218 {
219 	ioread16_rep(reg, data, (count+1) >> 1);
220 }
221 
222 static void dm9000_inblk_32bit(void __iomem *reg, void *data, int count)
223 {
224 	ioread32_rep(reg, data, (count+3) >> 2);
225 }
226 
227 /* dump block from chip to null */
228 
229 static void dm9000_dumpblk_8bit(void __iomem *reg, int count)
230 {
231 	int i;
232 	int tmp;
233 
234 	for (i = 0; i < count; i++)
235 		tmp = readb(reg);
236 }
237 
238 static void dm9000_dumpblk_16bit(void __iomem *reg, int count)
239 {
240 	int i;
241 	int tmp;
242 
243 	count = (count + 1) >> 1;
244 
245 	for (i = 0; i < count; i++)
246 		tmp = readw(reg);
247 }
248 
249 static void dm9000_dumpblk_32bit(void __iomem *reg, int count)
250 {
251 	int i;
252 	int tmp;
253 
254 	count = (count + 3) >> 2;
255 
256 	for (i = 0; i < count; i++)
257 		tmp = readl(reg);
258 }
259 
260 /*
261  * Sleep, either by using msleep() or if we are suspending, then
262  * use mdelay() to sleep.
263  */
264 static void dm9000_msleep(board_info_t *db, unsigned int ms)
265 {
266 	if (db->in_suspend)
267 		mdelay(ms);
268 	else
269 		msleep(ms);
270 }
271 
272 /* Read a word from phyxcer */
273 static int
274 dm9000_phy_read(struct net_device *dev, int phy_reg_unused, int reg)
275 {
276 	board_info_t *db = netdev_priv(dev);
277 	unsigned long flags;
278 	unsigned int reg_save;
279 	int ret;
280 
281 	mutex_lock(&db->addr_lock);
282 
283 	spin_lock_irqsave(&db->lock, flags);
284 
285 	/* Save previous register address */
286 	reg_save = readb(db->io_addr);
287 
288 	/* Fill the phyxcer register into REG_0C */
289 	iow(db, DM9000_EPAR, DM9000_PHY | reg);
290 
291 	/* Issue phyxcer read command */
292 	iow(db, DM9000_EPCR, EPCR_ERPRR | EPCR_EPOS);
293 
294 	writeb(reg_save, db->io_addr);
295 	spin_unlock_irqrestore(&db->lock, flags);
296 
297 	dm9000_msleep(db, 1);		/* Wait read complete */
298 
299 	spin_lock_irqsave(&db->lock, flags);
300 	reg_save = readb(db->io_addr);
301 
302 	iow(db, DM9000_EPCR, 0x0);	/* Clear phyxcer read command */
303 
304 	/* The read data keeps on REG_0D & REG_0E */
305 	ret = (ior(db, DM9000_EPDRH) << 8) | ior(db, DM9000_EPDRL);
306 
307 	/* restore the previous address */
308 	writeb(reg_save, db->io_addr);
309 	spin_unlock_irqrestore(&db->lock, flags);
310 
311 	mutex_unlock(&db->addr_lock);
312 
313 	dm9000_dbg(db, 5, "phy_read[%02x] -> %04x\n", reg, ret);
314 	return ret;
315 }
316 
317 /* Write a word to phyxcer */
318 static void
319 dm9000_phy_write(struct net_device *dev,
320 		 int phyaddr_unused, int reg, int value)
321 {
322 	board_info_t *db = netdev_priv(dev);
323 	unsigned long flags;
324 	unsigned long reg_save;
325 
326 	dm9000_dbg(db, 5, "phy_write[%02x] = %04x\n", reg, value);
327 	mutex_lock(&db->addr_lock);
328 
329 	spin_lock_irqsave(&db->lock, flags);
330 
331 	/* Save previous register address */
332 	reg_save = readb(db->io_addr);
333 
334 	/* Fill the phyxcer register into REG_0C */
335 	iow(db, DM9000_EPAR, DM9000_PHY | reg);
336 
337 	/* Fill the written data into REG_0D & REG_0E */
338 	iow(db, DM9000_EPDRL, value);
339 	iow(db, DM9000_EPDRH, value >> 8);
340 
341 	/* Issue phyxcer write command */
342 	iow(db, DM9000_EPCR, EPCR_EPOS | EPCR_ERPRW);
343 
344 	writeb(reg_save, db->io_addr);
345 	spin_unlock_irqrestore(&db->lock, flags);
346 
347 	dm9000_msleep(db, 1);		/* Wait write complete */
348 
349 	spin_lock_irqsave(&db->lock, flags);
350 	reg_save = readb(db->io_addr);
351 
352 	iow(db, DM9000_EPCR, 0x0);	/* Clear phyxcer write command */
353 
354 	/* restore the previous address */
355 	writeb(reg_save, db->io_addr);
356 
357 	spin_unlock_irqrestore(&db->lock, flags);
358 	mutex_unlock(&db->addr_lock);
359 }
360 
361 /* dm9000_set_io
362  *
363  * select the specified set of io routines to use with the
364  * device
365  */
366 
367 static void dm9000_set_io(struct board_info *db, int byte_width)
368 {
369 	/* use the size of the data resource to work out what IO
370 	 * routines we want to use
371 	 */
372 
373 	switch (byte_width) {
374 	case 1:
375 		db->dumpblk = dm9000_dumpblk_8bit;
376 		db->outblk  = dm9000_outblk_8bit;
377 		db->inblk   = dm9000_inblk_8bit;
378 		break;
379 
380 
381 	case 3:
382 		dev_dbg(db->dev, ": 3 byte IO, falling back to 16bit\n");
383 	case 2:
384 		db->dumpblk = dm9000_dumpblk_16bit;
385 		db->outblk  = dm9000_outblk_16bit;
386 		db->inblk   = dm9000_inblk_16bit;
387 		break;
388 
389 	case 4:
390 	default:
391 		db->dumpblk = dm9000_dumpblk_32bit;
392 		db->outblk  = dm9000_outblk_32bit;
393 		db->inblk   = dm9000_inblk_32bit;
394 		break;
395 	}
396 }
397 
398 static void dm9000_schedule_poll(board_info_t *db)
399 {
400 	if (db->type == TYPE_DM9000E)
401 		schedule_delayed_work(&db->phy_poll, HZ * 2);
402 }
403 
404 static int dm9000_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
405 {
406 	board_info_t *dm = to_dm9000_board(dev);
407 
408 	if (!netif_running(dev))
409 		return -EINVAL;
410 
411 	return generic_mii_ioctl(&dm->mii, if_mii(req), cmd, NULL);
412 }
413 
414 static unsigned int
415 dm9000_read_locked(board_info_t *db, int reg)
416 {
417 	unsigned long flags;
418 	unsigned int ret;
419 
420 	spin_lock_irqsave(&db->lock, flags);
421 	ret = ior(db, reg);
422 	spin_unlock_irqrestore(&db->lock, flags);
423 
424 	return ret;
425 }
426 
427 static int dm9000_wait_eeprom(board_info_t *db)
428 {
429 	unsigned int status;
430 	int timeout = 8;	/* wait max 8msec */
431 
432 	/* The DM9000 data sheets say we should be able to
433 	 * poll the ERRE bit in EPCR to wait for the EEPROM
434 	 * operation. From testing several chips, this bit
435 	 * does not seem to work.
436 	 *
437 	 * We attempt to use the bit, but fall back to the
438 	 * timeout (which is why we do not return an error
439 	 * on expiry) to say that the EEPROM operation has
440 	 * completed.
441 	 */
442 
443 	while (1) {
444 		status = dm9000_read_locked(db, DM9000_EPCR);
445 
446 		if ((status & EPCR_ERRE) == 0)
447 			break;
448 
449 		msleep(1);
450 
451 		if (timeout-- < 0) {
452 			dev_dbg(db->dev, "timeout waiting EEPROM\n");
453 			break;
454 		}
455 	}
456 
457 	return 0;
458 }
459 
460 /*
461  *  Read a word data from EEPROM
462  */
463 static void
464 dm9000_read_eeprom(board_info_t *db, int offset, u8 *to)
465 {
466 	unsigned long flags;
467 
468 	if (db->flags & DM9000_PLATF_NO_EEPROM) {
469 		to[0] = 0xff;
470 		to[1] = 0xff;
471 		return;
472 	}
473 
474 	mutex_lock(&db->addr_lock);
475 
476 	spin_lock_irqsave(&db->lock, flags);
477 
478 	iow(db, DM9000_EPAR, offset);
479 	iow(db, DM9000_EPCR, EPCR_ERPRR);
480 
481 	spin_unlock_irqrestore(&db->lock, flags);
482 
483 	dm9000_wait_eeprom(db);
484 
485 	/* delay for at-least 150uS */
486 	msleep(1);
487 
488 	spin_lock_irqsave(&db->lock, flags);
489 
490 	iow(db, DM9000_EPCR, 0x0);
491 
492 	to[0] = ior(db, DM9000_EPDRL);
493 	to[1] = ior(db, DM9000_EPDRH);
494 
495 	spin_unlock_irqrestore(&db->lock, flags);
496 
497 	mutex_unlock(&db->addr_lock);
498 }
499 
500 /*
501  * Write a word data to SROM
502  */
503 static void
504 dm9000_write_eeprom(board_info_t *db, int offset, u8 *data)
505 {
506 	unsigned long flags;
507 
508 	if (db->flags & DM9000_PLATF_NO_EEPROM)
509 		return;
510 
511 	mutex_lock(&db->addr_lock);
512 
513 	spin_lock_irqsave(&db->lock, flags);
514 	iow(db, DM9000_EPAR, offset);
515 	iow(db, DM9000_EPDRH, data[1]);
516 	iow(db, DM9000_EPDRL, data[0]);
517 	iow(db, DM9000_EPCR, EPCR_WEP | EPCR_ERPRW);
518 	spin_unlock_irqrestore(&db->lock, flags);
519 
520 	dm9000_wait_eeprom(db);
521 
522 	mdelay(1);	/* wait at least 150uS to clear */
523 
524 	spin_lock_irqsave(&db->lock, flags);
525 	iow(db, DM9000_EPCR, 0);
526 	spin_unlock_irqrestore(&db->lock, flags);
527 
528 	mutex_unlock(&db->addr_lock);
529 }
530 
531 /* ethtool ops */
532 
533 static void dm9000_get_drvinfo(struct net_device *dev,
534 			       struct ethtool_drvinfo *info)
535 {
536 	board_info_t *dm = to_dm9000_board(dev);
537 
538 	strlcpy(info->driver, CARDNAME, sizeof(info->driver));
539 	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
540 	strlcpy(info->bus_info, to_platform_device(dm->dev)->name,
541 		sizeof(info->bus_info));
542 }
543 
544 static u32 dm9000_get_msglevel(struct net_device *dev)
545 {
546 	board_info_t *dm = to_dm9000_board(dev);
547 
548 	return dm->msg_enable;
549 }
550 
551 static void dm9000_set_msglevel(struct net_device *dev, u32 value)
552 {
553 	board_info_t *dm = to_dm9000_board(dev);
554 
555 	dm->msg_enable = value;
556 }
557 
558 static int dm9000_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
559 {
560 	board_info_t *dm = to_dm9000_board(dev);
561 
562 	mii_ethtool_gset(&dm->mii, cmd);
563 	return 0;
564 }
565 
566 static int dm9000_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
567 {
568 	board_info_t *dm = to_dm9000_board(dev);
569 
570 	return mii_ethtool_sset(&dm->mii, cmd);
571 }
572 
573 static int dm9000_nway_reset(struct net_device *dev)
574 {
575 	board_info_t *dm = to_dm9000_board(dev);
576 	return mii_nway_restart(&dm->mii);
577 }
578 
579 static int dm9000_set_features(struct net_device *dev,
580 	netdev_features_t features)
581 {
582 	board_info_t *dm = to_dm9000_board(dev);
583 	netdev_features_t changed = dev->features ^ features;
584 	unsigned long flags;
585 
586 	if (!(changed & NETIF_F_RXCSUM))
587 		return 0;
588 
589 	spin_lock_irqsave(&dm->lock, flags);
590 	iow(dm, DM9000_RCSR, (features & NETIF_F_RXCSUM) ? RCSR_CSUM : 0);
591 	spin_unlock_irqrestore(&dm->lock, flags);
592 
593 	return 0;
594 }
595 
596 static u32 dm9000_get_link(struct net_device *dev)
597 {
598 	board_info_t *dm = to_dm9000_board(dev);
599 	u32 ret;
600 
601 	if (dm->flags & DM9000_PLATF_EXT_PHY)
602 		ret = mii_link_ok(&dm->mii);
603 	else
604 		ret = dm9000_read_locked(dm, DM9000_NSR) & NSR_LINKST ? 1 : 0;
605 
606 	return ret;
607 }
608 
609 #define DM_EEPROM_MAGIC		(0x444D394B)
610 
611 static int dm9000_get_eeprom_len(struct net_device *dev)
612 {
613 	return 128;
614 }
615 
616 static int dm9000_get_eeprom(struct net_device *dev,
617 			     struct ethtool_eeprom *ee, u8 *data)
618 {
619 	board_info_t *dm = to_dm9000_board(dev);
620 	int offset = ee->offset;
621 	int len = ee->len;
622 	int i;
623 
624 	/* EEPROM access is aligned to two bytes */
625 
626 	if ((len & 1) != 0 || (offset & 1) != 0)
627 		return -EINVAL;
628 
629 	if (dm->flags & DM9000_PLATF_NO_EEPROM)
630 		return -ENOENT;
631 
632 	ee->magic = DM_EEPROM_MAGIC;
633 
634 	for (i = 0; i < len; i += 2)
635 		dm9000_read_eeprom(dm, (offset + i) / 2, data + i);
636 
637 	return 0;
638 }
639 
640 static int dm9000_set_eeprom(struct net_device *dev,
641 			     struct ethtool_eeprom *ee, u8 *data)
642 {
643 	board_info_t *dm = to_dm9000_board(dev);
644 	int offset = ee->offset;
645 	int len = ee->len;
646 	int done;
647 
648 	/* EEPROM access is aligned to two bytes */
649 
650 	if (dm->flags & DM9000_PLATF_NO_EEPROM)
651 		return -ENOENT;
652 
653 	if (ee->magic != DM_EEPROM_MAGIC)
654 		return -EINVAL;
655 
656 	while (len > 0) {
657 		if (len & 1 || offset & 1) {
658 			int which = offset & 1;
659 			u8 tmp[2];
660 
661 			dm9000_read_eeprom(dm, offset / 2, tmp);
662 			tmp[which] = *data;
663 			dm9000_write_eeprom(dm, offset / 2, tmp);
664 
665 			done = 1;
666 		} else {
667 			dm9000_write_eeprom(dm, offset / 2, data);
668 			done = 2;
669 		}
670 
671 		data += done;
672 		offset += done;
673 		len -= done;
674 	}
675 
676 	return 0;
677 }
678 
679 static void dm9000_get_wol(struct net_device *dev, struct ethtool_wolinfo *w)
680 {
681 	board_info_t *dm = to_dm9000_board(dev);
682 
683 	memset(w, 0, sizeof(struct ethtool_wolinfo));
684 
685 	/* note, we could probably support wake-phy too */
686 	w->supported = dm->wake_supported ? WAKE_MAGIC : 0;
687 	w->wolopts = dm->wake_state;
688 }
689 
690 static int dm9000_set_wol(struct net_device *dev, struct ethtool_wolinfo *w)
691 {
692 	board_info_t *dm = to_dm9000_board(dev);
693 	unsigned long flags;
694 	u32 opts = w->wolopts;
695 	u32 wcr = 0;
696 
697 	if (!dm->wake_supported)
698 		return -EOPNOTSUPP;
699 
700 	if (opts & ~WAKE_MAGIC)
701 		return -EINVAL;
702 
703 	if (opts & WAKE_MAGIC)
704 		wcr |= WCR_MAGICEN;
705 
706 	mutex_lock(&dm->addr_lock);
707 
708 	spin_lock_irqsave(&dm->lock, flags);
709 	iow(dm, DM9000_WCR, wcr);
710 	spin_unlock_irqrestore(&dm->lock, flags);
711 
712 	mutex_unlock(&dm->addr_lock);
713 
714 	if (dm->wake_state != opts) {
715 		/* change in wol state, update IRQ state */
716 
717 		if (!dm->wake_state)
718 			irq_set_irq_wake(dm->irq_wake, 1);
719 		else if (dm->wake_state && !opts)
720 			irq_set_irq_wake(dm->irq_wake, 0);
721 	}
722 
723 	dm->wake_state = opts;
724 	return 0;
725 }
726 
727 static const struct ethtool_ops dm9000_ethtool_ops = {
728 	.get_drvinfo		= dm9000_get_drvinfo,
729 	.get_settings		= dm9000_get_settings,
730 	.set_settings		= dm9000_set_settings,
731 	.get_msglevel		= dm9000_get_msglevel,
732 	.set_msglevel		= dm9000_set_msglevel,
733 	.nway_reset		= dm9000_nway_reset,
734 	.get_link		= dm9000_get_link,
735 	.get_wol		= dm9000_get_wol,
736 	.set_wol		= dm9000_set_wol,
737  	.get_eeprom_len		= dm9000_get_eeprom_len,
738  	.get_eeprom		= dm9000_get_eeprom,
739  	.set_eeprom		= dm9000_set_eeprom,
740 };
741 
742 static void dm9000_show_carrier(board_info_t *db,
743 				unsigned carrier, unsigned nsr)
744 {
745 	struct net_device *ndev = db->ndev;
746 	unsigned ncr = dm9000_read_locked(db, DM9000_NCR);
747 
748 	if (carrier)
749 		dev_info(db->dev, "%s: link up, %dMbps, %s-duplex, no LPA\n",
750 			 ndev->name, (nsr & NSR_SPEED) ? 10 : 100,
751 			 (ncr & NCR_FDX) ? "full" : "half");
752 	else
753 		dev_info(db->dev, "%s: link down\n", ndev->name);
754 }
755 
756 static void
757 dm9000_poll_work(struct work_struct *w)
758 {
759 	struct delayed_work *dw = to_delayed_work(w);
760 	board_info_t *db = container_of(dw, board_info_t, phy_poll);
761 	struct net_device *ndev = db->ndev;
762 
763 	if (db->flags & DM9000_PLATF_SIMPLE_PHY &&
764 	    !(db->flags & DM9000_PLATF_EXT_PHY)) {
765 		unsigned nsr = dm9000_read_locked(db, DM9000_NSR);
766 		unsigned old_carrier = netif_carrier_ok(ndev) ? 1 : 0;
767 		unsigned new_carrier;
768 
769 		new_carrier = (nsr & NSR_LINKST) ? 1 : 0;
770 
771 		if (old_carrier != new_carrier) {
772 			if (netif_msg_link(db))
773 				dm9000_show_carrier(db, new_carrier, nsr);
774 
775 			if (!new_carrier)
776 				netif_carrier_off(ndev);
777 			else
778 				netif_carrier_on(ndev);
779 		}
780 	} else
781 		mii_check_media(&db->mii, netif_msg_link(db), 0);
782 
783 	if (netif_running(ndev))
784 		dm9000_schedule_poll(db);
785 }
786 
787 /* dm9000_release_board
788  *
789  * release a board, and any mapped resources
790  */
791 
792 static void
793 dm9000_release_board(struct platform_device *pdev, struct board_info *db)
794 {
795 	/* unmap our resources */
796 
797 	iounmap(db->io_addr);
798 	iounmap(db->io_data);
799 
800 	/* release the resources */
801 
802 	release_resource(db->data_req);
803 	kfree(db->data_req);
804 
805 	release_resource(db->addr_req);
806 	kfree(db->addr_req);
807 }
808 
809 static unsigned char dm9000_type_to_char(enum dm9000_type type)
810 {
811 	switch (type) {
812 	case TYPE_DM9000E: return 'e';
813 	case TYPE_DM9000A: return 'a';
814 	case TYPE_DM9000B: return 'b';
815 	}
816 
817 	return '?';
818 }
819 
820 /*
821  *  Set DM9000 multicast address
822  */
823 static void
824 dm9000_hash_table_unlocked(struct net_device *dev)
825 {
826 	board_info_t *db = netdev_priv(dev);
827 	struct netdev_hw_addr *ha;
828 	int i, oft;
829 	u32 hash_val;
830 	u16 hash_table[4];
831 	u8 rcr = RCR_DIS_LONG | RCR_DIS_CRC | RCR_RXEN;
832 
833 	dm9000_dbg(db, 1, "entering %s\n", __func__);
834 
835 	for (i = 0, oft = DM9000_PAR; i < 6; i++, oft++)
836 		iow(db, oft, dev->dev_addr[i]);
837 
838 	/* Clear Hash Table */
839 	for (i = 0; i < 4; i++)
840 		hash_table[i] = 0x0;
841 
842 	/* broadcast address */
843 	hash_table[3] = 0x8000;
844 
845 	if (dev->flags & IFF_PROMISC)
846 		rcr |= RCR_PRMSC;
847 
848 	if (dev->flags & IFF_ALLMULTI)
849 		rcr |= RCR_ALL;
850 
851 	/* the multicast address in Hash Table : 64 bits */
852 	netdev_for_each_mc_addr(ha, dev) {
853 		hash_val = ether_crc_le(6, ha->addr) & 0x3f;
854 		hash_table[hash_val / 16] |= (u16) 1 << (hash_val % 16);
855 	}
856 
857 	/* Write the hash table to MAC MD table */
858 	for (i = 0, oft = DM9000_MAR; i < 4; i++) {
859 		iow(db, oft++, hash_table[i]);
860 		iow(db, oft++, hash_table[i] >> 8);
861 	}
862 
863 	iow(db, DM9000_RCR, rcr);
864 }
865 
866 static void
867 dm9000_hash_table(struct net_device *dev)
868 {
869 	board_info_t *db = netdev_priv(dev);
870 	unsigned long flags;
871 
872 	spin_lock_irqsave(&db->lock, flags);
873 	dm9000_hash_table_unlocked(dev);
874 	spin_unlock_irqrestore(&db->lock, flags);
875 }
876 
877 /*
878  * Initialize dm9000 board
879  */
880 static void
881 dm9000_init_dm9000(struct net_device *dev)
882 {
883 	board_info_t *db = netdev_priv(dev);
884 	unsigned int imr;
885 	unsigned int ncr;
886 
887 	dm9000_dbg(db, 1, "entering %s\n", __func__);
888 
889 	/* I/O mode */
890 	db->io_mode = ior(db, DM9000_ISR) >> 6;	/* ISR bit7:6 keeps I/O mode */
891 
892 	/* Checksum mode */
893 	if (dev->hw_features & NETIF_F_RXCSUM)
894 		iow(db, DM9000_RCSR,
895 			(dev->features & NETIF_F_RXCSUM) ? RCSR_CSUM : 0);
896 
897 	iow(db, DM9000_GPCR, GPCR_GEP_CNTL);	/* Let GPIO0 output */
898 
899 	dm9000_phy_write(dev, 0, MII_BMCR, BMCR_RESET); /* PHY RESET */
900 	dm9000_phy_write(dev, 0, MII_DM_DSPCR, DSPCR_INIT_PARAM); /* Init */
901 
902 	ncr = (db->flags & DM9000_PLATF_EXT_PHY) ? NCR_EXT_PHY : 0;
903 
904 	/* if wol is needed, then always set NCR_WAKEEN otherwise we end
905 	 * up dumping the wake events if we disable this. There is already
906 	 * a wake-mask in DM9000_WCR */
907 	if (db->wake_supported)
908 		ncr |= NCR_WAKEEN;
909 
910 	iow(db, DM9000_NCR, ncr);
911 
912 	/* Program operating register */
913 	iow(db, DM9000_TCR, 0);	        /* TX Polling clear */
914 	iow(db, DM9000_BPTR, 0x3f);	/* Less 3Kb, 200us */
915 	iow(db, DM9000_FCR, 0xff);	/* Flow Control */
916 	iow(db, DM9000_SMCR, 0);        /* Special Mode */
917 	/* clear TX status */
918 	iow(db, DM9000_NSR, NSR_WAKEST | NSR_TX2END | NSR_TX1END);
919 	iow(db, DM9000_ISR, ISR_CLR_STATUS); /* Clear interrupt status */
920 
921 	/* Set address filter table */
922 	dm9000_hash_table_unlocked(dev);
923 
924 	imr = IMR_PAR | IMR_PTM | IMR_PRM;
925 	if (db->type != TYPE_DM9000E)
926 		imr |= IMR_LNKCHNG;
927 
928 	db->imr_all = imr;
929 
930 	/* Enable TX/RX interrupt mask */
931 	iow(db, DM9000_IMR, imr);
932 
933 	/* Init Driver variable */
934 	db->tx_pkt_cnt = 0;
935 	db->queue_pkt_len = 0;
936 	dev->trans_start = jiffies;
937 }
938 
939 /* Our watchdog timed out. Called by the networking layer */
940 static void dm9000_timeout(struct net_device *dev)
941 {
942 	board_info_t *db = netdev_priv(dev);
943 	u8 reg_save;
944 	unsigned long flags;
945 
946 	/* Save previous register address */
947 	spin_lock_irqsave(&db->lock, flags);
948 	reg_save = readb(db->io_addr);
949 
950 	netif_stop_queue(dev);
951 	dm9000_reset(db);
952 	dm9000_init_dm9000(dev);
953 	/* We can accept TX packets again */
954 	dev->trans_start = jiffies; /* prevent tx timeout */
955 	netif_wake_queue(dev);
956 
957 	/* Restore previous register address */
958 	writeb(reg_save, db->io_addr);
959 	spin_unlock_irqrestore(&db->lock, flags);
960 }
961 
962 static void dm9000_send_packet(struct net_device *dev,
963 			       int ip_summed,
964 			       u16 pkt_len)
965 {
966 	board_info_t *dm = to_dm9000_board(dev);
967 
968 	/* The DM9000 is not smart enough to leave fragmented packets alone. */
969 	if (dm->ip_summed != ip_summed) {
970 		if (ip_summed == CHECKSUM_NONE)
971 			iow(dm, DM9000_TCCR, 0);
972 		else
973 			iow(dm, DM9000_TCCR, TCCR_IP | TCCR_UDP | TCCR_TCP);
974 		dm->ip_summed = ip_summed;
975 	}
976 
977 	/* Set TX length to DM9000 */
978 	iow(dm, DM9000_TXPLL, pkt_len);
979 	iow(dm, DM9000_TXPLH, pkt_len >> 8);
980 
981 	/* Issue TX polling command */
982 	iow(dm, DM9000_TCR, TCR_TXREQ);	/* Cleared after TX complete */
983 }
984 
985 /*
986  *  Hardware start transmission.
987  *  Send a packet to media from the upper layer.
988  */
989 static int
990 dm9000_start_xmit(struct sk_buff *skb, struct net_device *dev)
991 {
992 	unsigned long flags;
993 	board_info_t *db = netdev_priv(dev);
994 
995 	dm9000_dbg(db, 3, "%s:\n", __func__);
996 
997 	if (db->tx_pkt_cnt > 1)
998 		return NETDEV_TX_BUSY;
999 
1000 	spin_lock_irqsave(&db->lock, flags);
1001 
1002 	/* Move data to DM9000 TX RAM */
1003 	writeb(DM9000_MWCMD, db->io_addr);
1004 
1005 	(db->outblk)(db->io_data, skb->data, skb->len);
1006 	dev->stats.tx_bytes += skb->len;
1007 
1008 	db->tx_pkt_cnt++;
1009 	/* TX control: First packet immediately send, second packet queue */
1010 	if (db->tx_pkt_cnt == 1) {
1011 		dm9000_send_packet(dev, skb->ip_summed, skb->len);
1012 	} else {
1013 		/* Second packet */
1014 		db->queue_pkt_len = skb->len;
1015 		db->queue_ip_summed = skb->ip_summed;
1016 		netif_stop_queue(dev);
1017 	}
1018 
1019 	spin_unlock_irqrestore(&db->lock, flags);
1020 
1021 	/* free this SKB */
1022 	dev_kfree_skb(skb);
1023 
1024 	return NETDEV_TX_OK;
1025 }
1026 
1027 /*
1028  * DM9000 interrupt handler
1029  * receive the packet to upper layer, free the transmitted packet
1030  */
1031 
1032 static void dm9000_tx_done(struct net_device *dev, board_info_t *db)
1033 {
1034 	int tx_status = ior(db, DM9000_NSR);	/* Got TX status */
1035 
1036 	if (tx_status & (NSR_TX2END | NSR_TX1END)) {
1037 		/* One packet sent complete */
1038 		db->tx_pkt_cnt--;
1039 		dev->stats.tx_packets++;
1040 
1041 		if (netif_msg_tx_done(db))
1042 			dev_dbg(db->dev, "tx done, NSR %02x\n", tx_status);
1043 
1044 		/* Queue packet check & send */
1045 		if (db->tx_pkt_cnt > 0)
1046 			dm9000_send_packet(dev, db->queue_ip_summed,
1047 					   db->queue_pkt_len);
1048 		netif_wake_queue(dev);
1049 	}
1050 }
1051 
1052 struct dm9000_rxhdr {
1053 	u8	RxPktReady;
1054 	u8	RxStatus;
1055 	__le16	RxLen;
1056 } __packed;
1057 
1058 /*
1059  *  Received a packet and pass to upper layer
1060  */
1061 static void
1062 dm9000_rx(struct net_device *dev)
1063 {
1064 	board_info_t *db = netdev_priv(dev);
1065 	struct dm9000_rxhdr rxhdr;
1066 	struct sk_buff *skb;
1067 	u8 rxbyte, *rdptr;
1068 	bool GoodPacket;
1069 	int RxLen;
1070 
1071 	/* Check packet ready or not */
1072 	do {
1073 		ior(db, DM9000_MRCMDX);	/* Dummy read */
1074 
1075 		/* Get most updated data */
1076 		rxbyte = readb(db->io_data);
1077 
1078 		/* Status check: this byte must be 0 or 1 */
1079 		if (rxbyte & DM9000_PKT_ERR) {
1080 			dev_warn(db->dev, "status check fail: %d\n", rxbyte);
1081 			iow(db, DM9000_RCR, 0x00);	/* Stop Device */
1082 			iow(db, DM9000_ISR, IMR_PAR);	/* Stop INT request */
1083 			return;
1084 		}
1085 
1086 		if (!(rxbyte & DM9000_PKT_RDY))
1087 			return;
1088 
1089 		/* A packet ready now  & Get status/length */
1090 		GoodPacket = true;
1091 		writeb(DM9000_MRCMD, db->io_addr);
1092 
1093 		(db->inblk)(db->io_data, &rxhdr, sizeof(rxhdr));
1094 
1095 		RxLen = le16_to_cpu(rxhdr.RxLen);
1096 
1097 		if (netif_msg_rx_status(db))
1098 			dev_dbg(db->dev, "RX: status %02x, length %04x\n",
1099 				rxhdr.RxStatus, RxLen);
1100 
1101 		/* Packet Status check */
1102 		if (RxLen < 0x40) {
1103 			GoodPacket = false;
1104 			if (netif_msg_rx_err(db))
1105 				dev_dbg(db->dev, "RX: Bad Packet (runt)\n");
1106 		}
1107 
1108 		if (RxLen > DM9000_PKT_MAX) {
1109 			dev_dbg(db->dev, "RST: RX Len:%x\n", RxLen);
1110 		}
1111 
1112 		/* rxhdr.RxStatus is identical to RSR register. */
1113 		if (rxhdr.RxStatus & (RSR_FOE | RSR_CE | RSR_AE |
1114 				      RSR_PLE | RSR_RWTO |
1115 				      RSR_LCS | RSR_RF)) {
1116 			GoodPacket = false;
1117 			if (rxhdr.RxStatus & RSR_FOE) {
1118 				if (netif_msg_rx_err(db))
1119 					dev_dbg(db->dev, "fifo error\n");
1120 				dev->stats.rx_fifo_errors++;
1121 			}
1122 			if (rxhdr.RxStatus & RSR_CE) {
1123 				if (netif_msg_rx_err(db))
1124 					dev_dbg(db->dev, "crc error\n");
1125 				dev->stats.rx_crc_errors++;
1126 			}
1127 			if (rxhdr.RxStatus & RSR_RF) {
1128 				if (netif_msg_rx_err(db))
1129 					dev_dbg(db->dev, "length error\n");
1130 				dev->stats.rx_length_errors++;
1131 			}
1132 		}
1133 
1134 		/* Move data from DM9000 */
1135 		if (GoodPacket &&
1136 		    ((skb = netdev_alloc_skb(dev, RxLen + 4)) != NULL)) {
1137 			skb_reserve(skb, 2);
1138 			rdptr = (u8 *) skb_put(skb, RxLen - 4);
1139 
1140 			/* Read received packet from RX SRAM */
1141 
1142 			(db->inblk)(db->io_data, rdptr, RxLen);
1143 			dev->stats.rx_bytes += RxLen;
1144 
1145 			/* Pass to upper layer */
1146 			skb->protocol = eth_type_trans(skb, dev);
1147 			if (dev->features & NETIF_F_RXCSUM) {
1148 				if ((((rxbyte & 0x1c) << 3) & rxbyte) == 0)
1149 					skb->ip_summed = CHECKSUM_UNNECESSARY;
1150 				else
1151 					skb_checksum_none_assert(skb);
1152 			}
1153 			netif_rx(skb);
1154 			dev->stats.rx_packets++;
1155 
1156 		} else {
1157 			/* need to dump the packet's data */
1158 
1159 			(db->dumpblk)(db->io_data, RxLen);
1160 		}
1161 	} while (rxbyte & DM9000_PKT_RDY);
1162 }
1163 
1164 static irqreturn_t dm9000_interrupt(int irq, void *dev_id)
1165 {
1166 	struct net_device *dev = dev_id;
1167 	board_info_t *db = netdev_priv(dev);
1168 	int int_status;
1169 	unsigned long flags;
1170 	u8 reg_save;
1171 
1172 	dm9000_dbg(db, 3, "entering %s\n", __func__);
1173 
1174 	/* A real interrupt coming */
1175 
1176 	/* holders of db->lock must always block IRQs */
1177 	spin_lock_irqsave(&db->lock, flags);
1178 
1179 	/* Save previous register address */
1180 	reg_save = readb(db->io_addr);
1181 
1182 	/* Disable all interrupts */
1183 	iow(db, DM9000_IMR, IMR_PAR);
1184 
1185 	/* Got DM9000 interrupt status */
1186 	int_status = ior(db, DM9000_ISR);	/* Got ISR */
1187 	iow(db, DM9000_ISR, int_status);	/* Clear ISR status */
1188 
1189 	if (netif_msg_intr(db))
1190 		dev_dbg(db->dev, "interrupt status %02x\n", int_status);
1191 
1192 	/* Received the coming packet */
1193 	if (int_status & ISR_PRS)
1194 		dm9000_rx(dev);
1195 
1196 	/* Trnasmit Interrupt check */
1197 	if (int_status & ISR_PTS)
1198 		dm9000_tx_done(dev, db);
1199 
1200 	if (db->type != TYPE_DM9000E) {
1201 		if (int_status & ISR_LNKCHNG) {
1202 			/* fire a link-change request */
1203 			schedule_delayed_work(&db->phy_poll, 1);
1204 		}
1205 	}
1206 
1207 	/* Re-enable interrupt mask */
1208 	iow(db, DM9000_IMR, db->imr_all);
1209 
1210 	/* Restore previous register address */
1211 	writeb(reg_save, db->io_addr);
1212 
1213 	spin_unlock_irqrestore(&db->lock, flags);
1214 
1215 	return IRQ_HANDLED;
1216 }
1217 
1218 static irqreturn_t dm9000_wol_interrupt(int irq, void *dev_id)
1219 {
1220 	struct net_device *dev = dev_id;
1221 	board_info_t *db = netdev_priv(dev);
1222 	unsigned long flags;
1223 	unsigned nsr, wcr;
1224 
1225 	spin_lock_irqsave(&db->lock, flags);
1226 
1227 	nsr = ior(db, DM9000_NSR);
1228 	wcr = ior(db, DM9000_WCR);
1229 
1230 	dev_dbg(db->dev, "%s: NSR=0x%02x, WCR=0x%02x\n", __func__, nsr, wcr);
1231 
1232 	if (nsr & NSR_WAKEST) {
1233 		/* clear, so we can avoid */
1234 		iow(db, DM9000_NSR, NSR_WAKEST);
1235 
1236 		if (wcr & WCR_LINKST)
1237 			dev_info(db->dev, "wake by link status change\n");
1238 		if (wcr & WCR_SAMPLEST)
1239 			dev_info(db->dev, "wake by sample packet\n");
1240 		if (wcr & WCR_MAGICST )
1241 			dev_info(db->dev, "wake by magic packet\n");
1242 		if (!(wcr & (WCR_LINKST | WCR_SAMPLEST | WCR_MAGICST)))
1243 			dev_err(db->dev, "wake signalled with no reason? "
1244 				"NSR=0x%02x, WSR=0x%02x\n", nsr, wcr);
1245 
1246 	}
1247 
1248 	spin_unlock_irqrestore(&db->lock, flags);
1249 
1250 	return (nsr & NSR_WAKEST) ? IRQ_HANDLED : IRQ_NONE;
1251 }
1252 
1253 #ifdef CONFIG_NET_POLL_CONTROLLER
1254 /*
1255  *Used by netconsole
1256  */
1257 static void dm9000_poll_controller(struct net_device *dev)
1258 {
1259 	disable_irq(dev->irq);
1260 	dm9000_interrupt(dev->irq, dev);
1261 	enable_irq(dev->irq);
1262 }
1263 #endif
1264 
1265 /*
1266  *  Open the interface.
1267  *  The interface is opened whenever "ifconfig" actives it.
1268  */
1269 static int
1270 dm9000_open(struct net_device *dev)
1271 {
1272 	board_info_t *db = netdev_priv(dev);
1273 	unsigned long irqflags = db->irq_res->flags & IRQF_TRIGGER_MASK;
1274 
1275 	if (netif_msg_ifup(db))
1276 		dev_dbg(db->dev, "enabling %s\n", dev->name);
1277 
1278 	/* If there is no IRQ type specified, default to something that
1279 	 * may work, and tell the user that this is a problem */
1280 
1281 	if (irqflags == IRQF_TRIGGER_NONE)
1282 		dev_warn(db->dev, "WARNING: no IRQ resource flags set.\n");
1283 
1284 	irqflags |= IRQF_SHARED;
1285 
1286 	/* GPIO0 on pre-activate PHY, Reg 1F is not set by reset */
1287 	iow(db, DM9000_GPR, 0);	/* REG_1F bit0 activate phyxcer */
1288 	mdelay(1); /* delay needs by DM9000B */
1289 
1290 	/* Initialize DM9000 board */
1291 	dm9000_reset(db);
1292 	dm9000_init_dm9000(dev);
1293 
1294 	if (request_irq(dev->irq, dm9000_interrupt, irqflags, dev->name, dev))
1295 		return -EAGAIN;
1296 
1297 	/* Init driver variable */
1298 	db->dbug_cnt = 0;
1299 
1300 	mii_check_media(&db->mii, netif_msg_link(db), 1);
1301 	netif_start_queue(dev);
1302 
1303 	dm9000_schedule_poll(db);
1304 
1305 	return 0;
1306 }
1307 
1308 static void
1309 dm9000_shutdown(struct net_device *dev)
1310 {
1311 	board_info_t *db = netdev_priv(dev);
1312 
1313 	/* RESET device */
1314 	dm9000_phy_write(dev, 0, MII_BMCR, BMCR_RESET);	/* PHY RESET */
1315 	iow(db, DM9000_GPR, 0x01);	/* Power-Down PHY */
1316 	iow(db, DM9000_IMR, IMR_PAR);	/* Disable all interrupt */
1317 	iow(db, DM9000_RCR, 0x00);	/* Disable RX */
1318 }
1319 
1320 /*
1321  * Stop the interface.
1322  * The interface is stopped when it is brought.
1323  */
1324 static int
1325 dm9000_stop(struct net_device *ndev)
1326 {
1327 	board_info_t *db = netdev_priv(ndev);
1328 
1329 	if (netif_msg_ifdown(db))
1330 		dev_dbg(db->dev, "shutting down %s\n", ndev->name);
1331 
1332 	cancel_delayed_work_sync(&db->phy_poll);
1333 
1334 	netif_stop_queue(ndev);
1335 	netif_carrier_off(ndev);
1336 
1337 	/* free interrupt */
1338 	free_irq(ndev->irq, ndev);
1339 
1340 	dm9000_shutdown(ndev);
1341 
1342 	return 0;
1343 }
1344 
1345 static const struct net_device_ops dm9000_netdev_ops = {
1346 	.ndo_open		= dm9000_open,
1347 	.ndo_stop		= dm9000_stop,
1348 	.ndo_start_xmit		= dm9000_start_xmit,
1349 	.ndo_tx_timeout		= dm9000_timeout,
1350 	.ndo_set_rx_mode	= dm9000_hash_table,
1351 	.ndo_do_ioctl		= dm9000_ioctl,
1352 	.ndo_change_mtu		= eth_change_mtu,
1353 	.ndo_set_features	= dm9000_set_features,
1354 	.ndo_validate_addr	= eth_validate_addr,
1355 	.ndo_set_mac_address	= eth_mac_addr,
1356 #ifdef CONFIG_NET_POLL_CONTROLLER
1357 	.ndo_poll_controller	= dm9000_poll_controller,
1358 #endif
1359 };
1360 
1361 /*
1362  * Search DM9000 board, allocate space and register it
1363  */
1364 static int
1365 dm9000_probe(struct platform_device *pdev)
1366 {
1367 	struct dm9000_plat_data *pdata = pdev->dev.platform_data;
1368 	struct board_info *db;	/* Point a board information structure */
1369 	struct net_device *ndev;
1370 	const unsigned char *mac_src;
1371 	int ret = 0;
1372 	int iosize;
1373 	int i;
1374 	u32 id_val;
1375 
1376 	/* Init network device */
1377 	ndev = alloc_etherdev(sizeof(struct board_info));
1378 	if (!ndev)
1379 		return -ENOMEM;
1380 
1381 	SET_NETDEV_DEV(ndev, &pdev->dev);
1382 
1383 	dev_dbg(&pdev->dev, "dm9000_probe()\n");
1384 
1385 	/* setup board info structure */
1386 	db = netdev_priv(ndev);
1387 
1388 	db->dev = &pdev->dev;
1389 	db->ndev = ndev;
1390 
1391 	spin_lock_init(&db->lock);
1392 	mutex_init(&db->addr_lock);
1393 
1394 	INIT_DELAYED_WORK(&db->phy_poll, dm9000_poll_work);
1395 
1396 	db->addr_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1397 	db->data_res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1398 	db->irq_res  = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
1399 
1400 	if (db->addr_res == NULL || db->data_res == NULL ||
1401 	    db->irq_res == NULL) {
1402 		dev_err(db->dev, "insufficient resources\n");
1403 		ret = -ENOENT;
1404 		goto out;
1405 	}
1406 
1407 	db->irq_wake = platform_get_irq(pdev, 1);
1408 	if (db->irq_wake >= 0) {
1409 		dev_dbg(db->dev, "wakeup irq %d\n", db->irq_wake);
1410 
1411 		ret = request_irq(db->irq_wake, dm9000_wol_interrupt,
1412 				  IRQF_SHARED, dev_name(db->dev), ndev);
1413 		if (ret) {
1414 			dev_err(db->dev, "cannot get wakeup irq (%d)\n", ret);
1415 		} else {
1416 
1417 			/* test to see if irq is really wakeup capable */
1418 			ret = irq_set_irq_wake(db->irq_wake, 1);
1419 			if (ret) {
1420 				dev_err(db->dev, "irq %d cannot set wakeup (%d)\n",
1421 					db->irq_wake, ret);
1422 				ret = 0;
1423 			} else {
1424 				irq_set_irq_wake(db->irq_wake, 0);
1425 				db->wake_supported = 1;
1426 			}
1427 		}
1428 	}
1429 
1430 	iosize = resource_size(db->addr_res);
1431 	db->addr_req = request_mem_region(db->addr_res->start, iosize,
1432 					  pdev->name);
1433 
1434 	if (db->addr_req == NULL) {
1435 		dev_err(db->dev, "cannot claim address reg area\n");
1436 		ret = -EIO;
1437 		goto out;
1438 	}
1439 
1440 	db->io_addr = ioremap(db->addr_res->start, iosize);
1441 
1442 	if (db->io_addr == NULL) {
1443 		dev_err(db->dev, "failed to ioremap address reg\n");
1444 		ret = -EINVAL;
1445 		goto out;
1446 	}
1447 
1448 	iosize = resource_size(db->data_res);
1449 	db->data_req = request_mem_region(db->data_res->start, iosize,
1450 					  pdev->name);
1451 
1452 	if (db->data_req == NULL) {
1453 		dev_err(db->dev, "cannot claim data reg area\n");
1454 		ret = -EIO;
1455 		goto out;
1456 	}
1457 
1458 	db->io_data = ioremap(db->data_res->start, iosize);
1459 
1460 	if (db->io_data == NULL) {
1461 		dev_err(db->dev, "failed to ioremap data reg\n");
1462 		ret = -EINVAL;
1463 		goto out;
1464 	}
1465 
1466 	/* fill in parameters for net-dev structure */
1467 	ndev->base_addr = (unsigned long)db->io_addr;
1468 	ndev->irq	= db->irq_res->start;
1469 
1470 	/* ensure at least we have a default set of IO routines */
1471 	dm9000_set_io(db, iosize);
1472 
1473 	/* check to see if anything is being over-ridden */
1474 	if (pdata != NULL) {
1475 		/* check to see if the driver wants to over-ride the
1476 		 * default IO width */
1477 
1478 		if (pdata->flags & DM9000_PLATF_8BITONLY)
1479 			dm9000_set_io(db, 1);
1480 
1481 		if (pdata->flags & DM9000_PLATF_16BITONLY)
1482 			dm9000_set_io(db, 2);
1483 
1484 		if (pdata->flags & DM9000_PLATF_32BITONLY)
1485 			dm9000_set_io(db, 4);
1486 
1487 		/* check to see if there are any IO routine
1488 		 * over-rides */
1489 
1490 		if (pdata->inblk != NULL)
1491 			db->inblk = pdata->inblk;
1492 
1493 		if (pdata->outblk != NULL)
1494 			db->outblk = pdata->outblk;
1495 
1496 		if (pdata->dumpblk != NULL)
1497 			db->dumpblk = pdata->dumpblk;
1498 
1499 		db->flags = pdata->flags;
1500 	}
1501 
1502 #ifdef CONFIG_DM9000_FORCE_SIMPLE_PHY_POLL
1503 	db->flags |= DM9000_PLATF_SIMPLE_PHY;
1504 #endif
1505 
1506 	/* Fixing bug on dm9000_probe, takeover dm9000_reset(db),
1507 	 * Need 'NCR_MAC_LBK' bit to indeed stable our DM9000 fifo
1508 	 * while probe stage.
1509 	 */
1510 
1511 	iow(db, DM9000_NCR, NCR_MAC_LBK | NCR_RST);
1512 
1513 	/* try multiple times, DM9000 sometimes gets the read wrong */
1514 	for (i = 0; i < 8; i++) {
1515 		id_val  = ior(db, DM9000_VIDL);
1516 		id_val |= (u32)ior(db, DM9000_VIDH) << 8;
1517 		id_val |= (u32)ior(db, DM9000_PIDL) << 16;
1518 		id_val |= (u32)ior(db, DM9000_PIDH) << 24;
1519 
1520 		if (id_val == DM9000_ID)
1521 			break;
1522 		dev_err(db->dev, "read wrong id 0x%08x\n", id_val);
1523 	}
1524 
1525 	if (id_val != DM9000_ID) {
1526 		dev_err(db->dev, "wrong id: 0x%08x\n", id_val);
1527 		ret = -ENODEV;
1528 		goto out;
1529 	}
1530 
1531 	/* Identify what type of DM9000 we are working on */
1532 
1533 	id_val = ior(db, DM9000_CHIPR);
1534 	dev_dbg(db->dev, "dm9000 revision 0x%02x\n", id_val);
1535 
1536 	switch (id_val) {
1537 	case CHIPR_DM9000A:
1538 		db->type = TYPE_DM9000A;
1539 		break;
1540 	case CHIPR_DM9000B:
1541 		db->type = TYPE_DM9000B;
1542 		break;
1543 	default:
1544 		dev_dbg(db->dev, "ID %02x => defaulting to DM9000E\n", id_val);
1545 		db->type = TYPE_DM9000E;
1546 	}
1547 
1548 	/* dm9000a/b are capable of hardware checksum offload */
1549 	if (db->type == TYPE_DM9000A || db->type == TYPE_DM9000B) {
1550 		ndev->hw_features = NETIF_F_RXCSUM | NETIF_F_IP_CSUM;
1551 		ndev->features |= ndev->hw_features;
1552 	}
1553 
1554 	/* from this point we assume that we have found a DM9000 */
1555 
1556 	/* driver system function */
1557 	ether_setup(ndev);
1558 
1559 	ndev->netdev_ops	= &dm9000_netdev_ops;
1560 	ndev->watchdog_timeo	= msecs_to_jiffies(watchdog);
1561 	ndev->ethtool_ops	= &dm9000_ethtool_ops;
1562 
1563 	db->msg_enable       = NETIF_MSG_LINK;
1564 	db->mii.phy_id_mask  = 0x1f;
1565 	db->mii.reg_num_mask = 0x1f;
1566 	db->mii.force_media  = 0;
1567 	db->mii.full_duplex  = 0;
1568 	db->mii.dev	     = ndev;
1569 	db->mii.mdio_read    = dm9000_phy_read;
1570 	db->mii.mdio_write   = dm9000_phy_write;
1571 
1572 	mac_src = "eeprom";
1573 
1574 	/* try reading the node address from the attached EEPROM */
1575 	for (i = 0; i < 6; i += 2)
1576 		dm9000_read_eeprom(db, i / 2, ndev->dev_addr+i);
1577 
1578 	if (!is_valid_ether_addr(ndev->dev_addr) && pdata != NULL) {
1579 		mac_src = "platform data";
1580 		memcpy(ndev->dev_addr, pdata->dev_addr, 6);
1581 	}
1582 
1583 	if (!is_valid_ether_addr(ndev->dev_addr)) {
1584 		/* try reading from mac */
1585 
1586 		mac_src = "chip";
1587 		for (i = 0; i < 6; i++)
1588 			ndev->dev_addr[i] = ior(db, i+DM9000_PAR);
1589 	}
1590 
1591 	if (!is_valid_ether_addr(ndev->dev_addr)) {
1592 		dev_warn(db->dev, "%s: Invalid ethernet MAC address. Please "
1593 			 "set using ifconfig\n", ndev->name);
1594 
1595 		eth_hw_addr_random(ndev);
1596 		mac_src = "random";
1597 	}
1598 
1599 
1600 	platform_set_drvdata(pdev, ndev);
1601 	ret = register_netdev(ndev);
1602 
1603 	if (ret == 0)
1604 		printk(KERN_INFO "%s: dm9000%c at %p,%p IRQ %d MAC: %pM (%s)\n",
1605 		       ndev->name, dm9000_type_to_char(db->type),
1606 		       db->io_addr, db->io_data, ndev->irq,
1607 		       ndev->dev_addr, mac_src);
1608 	return 0;
1609 
1610 out:
1611 	dev_err(db->dev, "not found (%d).\n", ret);
1612 
1613 	dm9000_release_board(pdev, db);
1614 	free_netdev(ndev);
1615 
1616 	return ret;
1617 }
1618 
1619 static int
1620 dm9000_drv_suspend(struct device *dev)
1621 {
1622 	struct platform_device *pdev = to_platform_device(dev);
1623 	struct net_device *ndev = platform_get_drvdata(pdev);
1624 	board_info_t *db;
1625 
1626 	if (ndev) {
1627 		db = netdev_priv(ndev);
1628 		db->in_suspend = 1;
1629 
1630 		if (!netif_running(ndev))
1631 			return 0;
1632 
1633 		netif_device_detach(ndev);
1634 
1635 		/* only shutdown if not using WoL */
1636 		if (!db->wake_state)
1637 			dm9000_shutdown(ndev);
1638 	}
1639 	return 0;
1640 }
1641 
1642 static int
1643 dm9000_drv_resume(struct device *dev)
1644 {
1645 	struct platform_device *pdev = to_platform_device(dev);
1646 	struct net_device *ndev = platform_get_drvdata(pdev);
1647 	board_info_t *db = netdev_priv(ndev);
1648 
1649 	if (ndev) {
1650 		if (netif_running(ndev)) {
1651 			/* reset if we were not in wake mode to ensure if
1652 			 * the device was powered off it is in a known state */
1653 			if (!db->wake_state) {
1654 				dm9000_reset(db);
1655 				dm9000_init_dm9000(ndev);
1656 			}
1657 
1658 			netif_device_attach(ndev);
1659 		}
1660 
1661 		db->in_suspend = 0;
1662 	}
1663 	return 0;
1664 }
1665 
1666 static const struct dev_pm_ops dm9000_drv_pm_ops = {
1667 	.suspend	= dm9000_drv_suspend,
1668 	.resume		= dm9000_drv_resume,
1669 };
1670 
1671 static int
1672 dm9000_drv_remove(struct platform_device *pdev)
1673 {
1674 	struct net_device *ndev = platform_get_drvdata(pdev);
1675 
1676 	platform_set_drvdata(pdev, NULL);
1677 
1678 	unregister_netdev(ndev);
1679 	dm9000_release_board(pdev, netdev_priv(ndev));
1680 	free_netdev(ndev);		/* free device structure */
1681 
1682 	dev_dbg(&pdev->dev, "released and freed device\n");
1683 	return 0;
1684 }
1685 
1686 static struct platform_driver dm9000_driver = {
1687 	.driver	= {
1688 		.name    = "dm9000",
1689 		.owner	 = THIS_MODULE,
1690 		.pm	 = &dm9000_drv_pm_ops,
1691 	},
1692 	.probe   = dm9000_probe,
1693 	.remove  = dm9000_drv_remove,
1694 };
1695 
1696 module_platform_driver(dm9000_driver);
1697 
1698 MODULE_AUTHOR("Sascha Hauer, Ben Dooks");
1699 MODULE_DESCRIPTION("Davicom DM9000 network driver");
1700 MODULE_LICENSE("GPL");
1701 MODULE_ALIAS("platform:dm9000");
1702