1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Davicom DM9000 Fast Ethernet driver for Linux. 4 * Copyright (C) 1997 Sten Wang 5 * 6 * (C) Copyright 1997-1998 DAVICOM Semiconductor,Inc. All Rights Reserved. 7 * 8 * Additional updates, Copyright: 9 * Ben Dooks <ben@simtec.co.uk> 10 * Sascha Hauer <s.hauer@pengutronix.de> 11 */ 12 13 #include <linux/module.h> 14 #include <linux/ioport.h> 15 #include <linux/netdevice.h> 16 #include <linux/etherdevice.h> 17 #include <linux/interrupt.h> 18 #include <linux/skbuff.h> 19 #include <linux/spinlock.h> 20 #include <linux/crc32.h> 21 #include <linux/mii.h> 22 #include <linux/of.h> 23 #include <linux/of_net.h> 24 #include <linux/ethtool.h> 25 #include <linux/dm9000.h> 26 #include <linux/delay.h> 27 #include <linux/platform_device.h> 28 #include <linux/irq.h> 29 #include <linux/slab.h> 30 #include <linux/regulator/consumer.h> 31 #include <linux/gpio.h> 32 #include <linux/of_gpio.h> 33 34 #include <asm/delay.h> 35 #include <asm/irq.h> 36 #include <asm/io.h> 37 38 #include "dm9000.h" 39 40 /* Board/System/Debug information/definition ---------------- */ 41 42 #define DM9000_PHY 0x40 /* PHY address 0x01 */ 43 44 #define CARDNAME "dm9000" 45 #define DRV_VERSION "1.31" 46 47 /* 48 * Transmit timeout, default 5 seconds. 49 */ 50 static int watchdog = 5000; 51 module_param(watchdog, int, 0400); 52 MODULE_PARM_DESC(watchdog, "transmit timeout in milliseconds"); 53 54 /* 55 * Debug messages level 56 */ 57 static int debug; 58 module_param(debug, int, 0644); 59 MODULE_PARM_DESC(debug, "dm9000 debug level (0-6)"); 60 61 /* DM9000 register address locking. 62 * 63 * The DM9000 uses an address register to control where data written 64 * to the data register goes. This means that the address register 65 * must be preserved over interrupts or similar calls. 66 * 67 * During interrupt and other critical calls, a spinlock is used to 68 * protect the system, but the calls themselves save the address 69 * in the address register in case they are interrupting another 70 * access to the device. 71 * 72 * For general accesses a lock is provided so that calls which are 73 * allowed to sleep are serialised so that the address register does 74 * not need to be saved. This lock also serves to serialise access 75 * to the EEPROM and PHY access registers which are shared between 76 * these two devices. 77 */ 78 79 /* The driver supports the original DM9000E, and now the two newer 80 * devices, DM9000A and DM9000B. 81 */ 82 83 enum dm9000_type { 84 TYPE_DM9000E, /* original DM9000 */ 85 TYPE_DM9000A, 86 TYPE_DM9000B 87 }; 88 89 /* Structure/enum declaration ------------------------------- */ 90 struct board_info { 91 92 void __iomem *io_addr; /* Register I/O base address */ 93 void __iomem *io_data; /* Data I/O address */ 94 u16 irq; /* IRQ */ 95 96 u16 tx_pkt_cnt; 97 u16 queue_pkt_len; 98 u16 queue_start_addr; 99 u16 queue_ip_summed; 100 u16 dbug_cnt; 101 u8 io_mode; /* 0:word, 2:byte */ 102 u8 phy_addr; 103 u8 imr_all; 104 105 unsigned int flags; 106 unsigned int in_timeout:1; 107 unsigned int in_suspend:1; 108 unsigned int wake_supported:1; 109 110 enum dm9000_type type; 111 112 void (*inblk)(void __iomem *port, void *data, int length); 113 void (*outblk)(void __iomem *port, void *data, int length); 114 void (*dumpblk)(void __iomem *port, int length); 115 116 struct device *dev; /* parent device */ 117 118 struct resource *addr_res; /* resources found */ 119 struct resource *data_res; 120 struct resource *addr_req; /* resources requested */ 121 struct resource *data_req; 122 123 int irq_wake; 124 125 struct mutex addr_lock; /* phy and eeprom access lock */ 126 127 struct delayed_work phy_poll; 128 struct net_device *ndev; 129 130 spinlock_t lock; 131 132 struct mii_if_info mii; 133 u32 msg_enable; 134 u32 wake_state; 135 136 int ip_summed; 137 }; 138 139 /* debug code */ 140 141 #define dm9000_dbg(db, lev, msg...) do { \ 142 if ((lev) < debug) { \ 143 dev_dbg(db->dev, msg); \ 144 } \ 145 } while (0) 146 147 static inline struct board_info *to_dm9000_board(struct net_device *dev) 148 { 149 return netdev_priv(dev); 150 } 151 152 /* DM9000 network board routine ---------------------------- */ 153 154 /* 155 * Read a byte from I/O port 156 */ 157 static u8 158 ior(struct board_info *db, int reg) 159 { 160 writeb(reg, db->io_addr); 161 return readb(db->io_data); 162 } 163 164 /* 165 * Write a byte to I/O port 166 */ 167 168 static void 169 iow(struct board_info *db, int reg, int value) 170 { 171 writeb(reg, db->io_addr); 172 writeb(value, db->io_data); 173 } 174 175 static void 176 dm9000_reset(struct board_info *db) 177 { 178 dev_dbg(db->dev, "resetting device\n"); 179 180 /* Reset DM9000, see DM9000 Application Notes V1.22 Jun 11, 2004 page 29 181 * The essential point is that we have to do a double reset, and the 182 * instruction is to set LBK into MAC internal loopback mode. 183 */ 184 iow(db, DM9000_NCR, NCR_RST | NCR_MAC_LBK); 185 udelay(100); /* Application note says at least 20 us */ 186 if (ior(db, DM9000_NCR) & 1) 187 dev_err(db->dev, "dm9000 did not respond to first reset\n"); 188 189 iow(db, DM9000_NCR, 0); 190 iow(db, DM9000_NCR, NCR_RST | NCR_MAC_LBK); 191 udelay(100); 192 if (ior(db, DM9000_NCR) & 1) 193 dev_err(db->dev, "dm9000 did not respond to second reset\n"); 194 } 195 196 /* routines for sending block to chip */ 197 198 static void dm9000_outblk_8bit(void __iomem *reg, void *data, int count) 199 { 200 iowrite8_rep(reg, data, count); 201 } 202 203 static void dm9000_outblk_16bit(void __iomem *reg, void *data, int count) 204 { 205 iowrite16_rep(reg, data, (count+1) >> 1); 206 } 207 208 static void dm9000_outblk_32bit(void __iomem *reg, void *data, int count) 209 { 210 iowrite32_rep(reg, data, (count+3) >> 2); 211 } 212 213 /* input block from chip to memory */ 214 215 static void dm9000_inblk_8bit(void __iomem *reg, void *data, int count) 216 { 217 ioread8_rep(reg, data, count); 218 } 219 220 221 static void dm9000_inblk_16bit(void __iomem *reg, void *data, int count) 222 { 223 ioread16_rep(reg, data, (count+1) >> 1); 224 } 225 226 static void dm9000_inblk_32bit(void __iomem *reg, void *data, int count) 227 { 228 ioread32_rep(reg, data, (count+3) >> 2); 229 } 230 231 /* dump block from chip to null */ 232 233 static void dm9000_dumpblk_8bit(void __iomem *reg, int count) 234 { 235 int i; 236 int tmp; 237 238 for (i = 0; i < count; i++) 239 tmp = readb(reg); 240 } 241 242 static void dm9000_dumpblk_16bit(void __iomem *reg, int count) 243 { 244 int i; 245 int tmp; 246 247 count = (count + 1) >> 1; 248 249 for (i = 0; i < count; i++) 250 tmp = readw(reg); 251 } 252 253 static void dm9000_dumpblk_32bit(void __iomem *reg, int count) 254 { 255 int i; 256 int tmp; 257 258 count = (count + 3) >> 2; 259 260 for (i = 0; i < count; i++) 261 tmp = readl(reg); 262 } 263 264 /* 265 * Sleep, either by using msleep() or if we are suspending, then 266 * use mdelay() to sleep. 267 */ 268 static void dm9000_msleep(struct board_info *db, unsigned int ms) 269 { 270 if (db->in_suspend || db->in_timeout) 271 mdelay(ms); 272 else 273 msleep(ms); 274 } 275 276 /* Read a word from phyxcer */ 277 static int 278 dm9000_phy_read(struct net_device *dev, int phy_reg_unused, int reg) 279 { 280 struct board_info *db = netdev_priv(dev); 281 unsigned long flags; 282 unsigned int reg_save; 283 int ret; 284 285 mutex_lock(&db->addr_lock); 286 287 spin_lock_irqsave(&db->lock, flags); 288 289 /* Save previous register address */ 290 reg_save = readb(db->io_addr); 291 292 /* Fill the phyxcer register into REG_0C */ 293 iow(db, DM9000_EPAR, DM9000_PHY | reg); 294 295 /* Issue phyxcer read command */ 296 iow(db, DM9000_EPCR, EPCR_ERPRR | EPCR_EPOS); 297 298 writeb(reg_save, db->io_addr); 299 spin_unlock_irqrestore(&db->lock, flags); 300 301 dm9000_msleep(db, 1); /* Wait read complete */ 302 303 spin_lock_irqsave(&db->lock, flags); 304 reg_save = readb(db->io_addr); 305 306 iow(db, DM9000_EPCR, 0x0); /* Clear phyxcer read command */ 307 308 /* The read data keeps on REG_0D & REG_0E */ 309 ret = (ior(db, DM9000_EPDRH) << 8) | ior(db, DM9000_EPDRL); 310 311 /* restore the previous address */ 312 writeb(reg_save, db->io_addr); 313 spin_unlock_irqrestore(&db->lock, flags); 314 315 mutex_unlock(&db->addr_lock); 316 317 dm9000_dbg(db, 5, "phy_read[%02x] -> %04x\n", reg, ret); 318 return ret; 319 } 320 321 /* Write a word to phyxcer */ 322 static void 323 dm9000_phy_write(struct net_device *dev, 324 int phyaddr_unused, int reg, int value) 325 { 326 struct board_info *db = netdev_priv(dev); 327 unsigned long flags; 328 unsigned long reg_save; 329 330 dm9000_dbg(db, 5, "phy_write[%02x] = %04x\n", reg, value); 331 if (!db->in_timeout) 332 mutex_lock(&db->addr_lock); 333 334 spin_lock_irqsave(&db->lock, flags); 335 336 /* Save previous register address */ 337 reg_save = readb(db->io_addr); 338 339 /* Fill the phyxcer register into REG_0C */ 340 iow(db, DM9000_EPAR, DM9000_PHY | reg); 341 342 /* Fill the written data into REG_0D & REG_0E */ 343 iow(db, DM9000_EPDRL, value); 344 iow(db, DM9000_EPDRH, value >> 8); 345 346 /* Issue phyxcer write command */ 347 iow(db, DM9000_EPCR, EPCR_EPOS | EPCR_ERPRW); 348 349 writeb(reg_save, db->io_addr); 350 spin_unlock_irqrestore(&db->lock, flags); 351 352 dm9000_msleep(db, 1); /* Wait write complete */ 353 354 spin_lock_irqsave(&db->lock, flags); 355 reg_save = readb(db->io_addr); 356 357 iow(db, DM9000_EPCR, 0x0); /* Clear phyxcer write command */ 358 359 /* restore the previous address */ 360 writeb(reg_save, db->io_addr); 361 362 spin_unlock_irqrestore(&db->lock, flags); 363 if (!db->in_timeout) 364 mutex_unlock(&db->addr_lock); 365 } 366 367 /* dm9000_set_io 368 * 369 * select the specified set of io routines to use with the 370 * device 371 */ 372 373 static void dm9000_set_io(struct board_info *db, int byte_width) 374 { 375 /* use the size of the data resource to work out what IO 376 * routines we want to use 377 */ 378 379 switch (byte_width) { 380 case 1: 381 db->dumpblk = dm9000_dumpblk_8bit; 382 db->outblk = dm9000_outblk_8bit; 383 db->inblk = dm9000_inblk_8bit; 384 break; 385 386 387 case 3: 388 dev_dbg(db->dev, ": 3 byte IO, falling back to 16bit\n"); 389 /* fall through */ 390 case 2: 391 db->dumpblk = dm9000_dumpblk_16bit; 392 db->outblk = dm9000_outblk_16bit; 393 db->inblk = dm9000_inblk_16bit; 394 break; 395 396 case 4: 397 default: 398 db->dumpblk = dm9000_dumpblk_32bit; 399 db->outblk = dm9000_outblk_32bit; 400 db->inblk = dm9000_inblk_32bit; 401 break; 402 } 403 } 404 405 static void dm9000_schedule_poll(struct board_info *db) 406 { 407 if (db->type == TYPE_DM9000E) 408 schedule_delayed_work(&db->phy_poll, HZ * 2); 409 } 410 411 static int dm9000_ioctl(struct net_device *dev, struct ifreq *req, int cmd) 412 { 413 struct board_info *dm = to_dm9000_board(dev); 414 415 if (!netif_running(dev)) 416 return -EINVAL; 417 418 return generic_mii_ioctl(&dm->mii, if_mii(req), cmd, NULL); 419 } 420 421 static unsigned int 422 dm9000_read_locked(struct board_info *db, int reg) 423 { 424 unsigned long flags; 425 unsigned int ret; 426 427 spin_lock_irqsave(&db->lock, flags); 428 ret = ior(db, reg); 429 spin_unlock_irqrestore(&db->lock, flags); 430 431 return ret; 432 } 433 434 static int dm9000_wait_eeprom(struct board_info *db) 435 { 436 unsigned int status; 437 int timeout = 8; /* wait max 8msec */ 438 439 /* The DM9000 data sheets say we should be able to 440 * poll the ERRE bit in EPCR to wait for the EEPROM 441 * operation. From testing several chips, this bit 442 * does not seem to work. 443 * 444 * We attempt to use the bit, but fall back to the 445 * timeout (which is why we do not return an error 446 * on expiry) to say that the EEPROM operation has 447 * completed. 448 */ 449 450 while (1) { 451 status = dm9000_read_locked(db, DM9000_EPCR); 452 453 if ((status & EPCR_ERRE) == 0) 454 break; 455 456 msleep(1); 457 458 if (timeout-- < 0) { 459 dev_dbg(db->dev, "timeout waiting EEPROM\n"); 460 break; 461 } 462 } 463 464 return 0; 465 } 466 467 /* 468 * Read a word data from EEPROM 469 */ 470 static void 471 dm9000_read_eeprom(struct board_info *db, int offset, u8 *to) 472 { 473 unsigned long flags; 474 475 if (db->flags & DM9000_PLATF_NO_EEPROM) { 476 to[0] = 0xff; 477 to[1] = 0xff; 478 return; 479 } 480 481 mutex_lock(&db->addr_lock); 482 483 spin_lock_irqsave(&db->lock, flags); 484 485 iow(db, DM9000_EPAR, offset); 486 iow(db, DM9000_EPCR, EPCR_ERPRR); 487 488 spin_unlock_irqrestore(&db->lock, flags); 489 490 dm9000_wait_eeprom(db); 491 492 /* delay for at-least 150uS */ 493 msleep(1); 494 495 spin_lock_irqsave(&db->lock, flags); 496 497 iow(db, DM9000_EPCR, 0x0); 498 499 to[0] = ior(db, DM9000_EPDRL); 500 to[1] = ior(db, DM9000_EPDRH); 501 502 spin_unlock_irqrestore(&db->lock, flags); 503 504 mutex_unlock(&db->addr_lock); 505 } 506 507 /* 508 * Write a word data to SROM 509 */ 510 static void 511 dm9000_write_eeprom(struct board_info *db, int offset, u8 *data) 512 { 513 unsigned long flags; 514 515 if (db->flags & DM9000_PLATF_NO_EEPROM) 516 return; 517 518 mutex_lock(&db->addr_lock); 519 520 spin_lock_irqsave(&db->lock, flags); 521 iow(db, DM9000_EPAR, offset); 522 iow(db, DM9000_EPDRH, data[1]); 523 iow(db, DM9000_EPDRL, data[0]); 524 iow(db, DM9000_EPCR, EPCR_WEP | EPCR_ERPRW); 525 spin_unlock_irqrestore(&db->lock, flags); 526 527 dm9000_wait_eeprom(db); 528 529 mdelay(1); /* wait at least 150uS to clear */ 530 531 spin_lock_irqsave(&db->lock, flags); 532 iow(db, DM9000_EPCR, 0); 533 spin_unlock_irqrestore(&db->lock, flags); 534 535 mutex_unlock(&db->addr_lock); 536 } 537 538 /* ethtool ops */ 539 540 static void dm9000_get_drvinfo(struct net_device *dev, 541 struct ethtool_drvinfo *info) 542 { 543 struct board_info *dm = to_dm9000_board(dev); 544 545 strlcpy(info->driver, CARDNAME, sizeof(info->driver)); 546 strlcpy(info->version, DRV_VERSION, sizeof(info->version)); 547 strlcpy(info->bus_info, to_platform_device(dm->dev)->name, 548 sizeof(info->bus_info)); 549 } 550 551 static u32 dm9000_get_msglevel(struct net_device *dev) 552 { 553 struct board_info *dm = to_dm9000_board(dev); 554 555 return dm->msg_enable; 556 } 557 558 static void dm9000_set_msglevel(struct net_device *dev, u32 value) 559 { 560 struct board_info *dm = to_dm9000_board(dev); 561 562 dm->msg_enable = value; 563 } 564 565 static int dm9000_get_link_ksettings(struct net_device *dev, 566 struct ethtool_link_ksettings *cmd) 567 { 568 struct board_info *dm = to_dm9000_board(dev); 569 570 mii_ethtool_get_link_ksettings(&dm->mii, cmd); 571 return 0; 572 } 573 574 static int dm9000_set_link_ksettings(struct net_device *dev, 575 const struct ethtool_link_ksettings *cmd) 576 { 577 struct board_info *dm = to_dm9000_board(dev); 578 579 return mii_ethtool_set_link_ksettings(&dm->mii, cmd); 580 } 581 582 static int dm9000_nway_reset(struct net_device *dev) 583 { 584 struct board_info *dm = to_dm9000_board(dev); 585 return mii_nway_restart(&dm->mii); 586 } 587 588 static int dm9000_set_features(struct net_device *dev, 589 netdev_features_t features) 590 { 591 struct board_info *dm = to_dm9000_board(dev); 592 netdev_features_t changed = dev->features ^ features; 593 unsigned long flags; 594 595 if (!(changed & NETIF_F_RXCSUM)) 596 return 0; 597 598 spin_lock_irqsave(&dm->lock, flags); 599 iow(dm, DM9000_RCSR, (features & NETIF_F_RXCSUM) ? RCSR_CSUM : 0); 600 spin_unlock_irqrestore(&dm->lock, flags); 601 602 return 0; 603 } 604 605 static u32 dm9000_get_link(struct net_device *dev) 606 { 607 struct board_info *dm = to_dm9000_board(dev); 608 u32 ret; 609 610 if (dm->flags & DM9000_PLATF_EXT_PHY) 611 ret = mii_link_ok(&dm->mii); 612 else 613 ret = dm9000_read_locked(dm, DM9000_NSR) & NSR_LINKST ? 1 : 0; 614 615 return ret; 616 } 617 618 #define DM_EEPROM_MAGIC (0x444D394B) 619 620 static int dm9000_get_eeprom_len(struct net_device *dev) 621 { 622 return 128; 623 } 624 625 static int dm9000_get_eeprom(struct net_device *dev, 626 struct ethtool_eeprom *ee, u8 *data) 627 { 628 struct board_info *dm = to_dm9000_board(dev); 629 int offset = ee->offset; 630 int len = ee->len; 631 int i; 632 633 /* EEPROM access is aligned to two bytes */ 634 635 if ((len & 1) != 0 || (offset & 1) != 0) 636 return -EINVAL; 637 638 if (dm->flags & DM9000_PLATF_NO_EEPROM) 639 return -ENOENT; 640 641 ee->magic = DM_EEPROM_MAGIC; 642 643 for (i = 0; i < len; i += 2) 644 dm9000_read_eeprom(dm, (offset + i) / 2, data + i); 645 646 return 0; 647 } 648 649 static int dm9000_set_eeprom(struct net_device *dev, 650 struct ethtool_eeprom *ee, u8 *data) 651 { 652 struct board_info *dm = to_dm9000_board(dev); 653 int offset = ee->offset; 654 int len = ee->len; 655 int done; 656 657 /* EEPROM access is aligned to two bytes */ 658 659 if (dm->flags & DM9000_PLATF_NO_EEPROM) 660 return -ENOENT; 661 662 if (ee->magic != DM_EEPROM_MAGIC) 663 return -EINVAL; 664 665 while (len > 0) { 666 if (len & 1 || offset & 1) { 667 int which = offset & 1; 668 u8 tmp[2]; 669 670 dm9000_read_eeprom(dm, offset / 2, tmp); 671 tmp[which] = *data; 672 dm9000_write_eeprom(dm, offset / 2, tmp); 673 674 done = 1; 675 } else { 676 dm9000_write_eeprom(dm, offset / 2, data); 677 done = 2; 678 } 679 680 data += done; 681 offset += done; 682 len -= done; 683 } 684 685 return 0; 686 } 687 688 static void dm9000_get_wol(struct net_device *dev, struct ethtool_wolinfo *w) 689 { 690 struct board_info *dm = to_dm9000_board(dev); 691 692 memset(w, 0, sizeof(struct ethtool_wolinfo)); 693 694 /* note, we could probably support wake-phy too */ 695 w->supported = dm->wake_supported ? WAKE_MAGIC : 0; 696 w->wolopts = dm->wake_state; 697 } 698 699 static int dm9000_set_wol(struct net_device *dev, struct ethtool_wolinfo *w) 700 { 701 struct board_info *dm = to_dm9000_board(dev); 702 unsigned long flags; 703 u32 opts = w->wolopts; 704 u32 wcr = 0; 705 706 if (!dm->wake_supported) 707 return -EOPNOTSUPP; 708 709 if (opts & ~WAKE_MAGIC) 710 return -EINVAL; 711 712 if (opts & WAKE_MAGIC) 713 wcr |= WCR_MAGICEN; 714 715 mutex_lock(&dm->addr_lock); 716 717 spin_lock_irqsave(&dm->lock, flags); 718 iow(dm, DM9000_WCR, wcr); 719 spin_unlock_irqrestore(&dm->lock, flags); 720 721 mutex_unlock(&dm->addr_lock); 722 723 if (dm->wake_state != opts) { 724 /* change in wol state, update IRQ state */ 725 726 if (!dm->wake_state) 727 irq_set_irq_wake(dm->irq_wake, 1); 728 else if (dm->wake_state && !opts) 729 irq_set_irq_wake(dm->irq_wake, 0); 730 } 731 732 dm->wake_state = opts; 733 return 0; 734 } 735 736 static const struct ethtool_ops dm9000_ethtool_ops = { 737 .get_drvinfo = dm9000_get_drvinfo, 738 .get_msglevel = dm9000_get_msglevel, 739 .set_msglevel = dm9000_set_msglevel, 740 .nway_reset = dm9000_nway_reset, 741 .get_link = dm9000_get_link, 742 .get_wol = dm9000_get_wol, 743 .set_wol = dm9000_set_wol, 744 .get_eeprom_len = dm9000_get_eeprom_len, 745 .get_eeprom = dm9000_get_eeprom, 746 .set_eeprom = dm9000_set_eeprom, 747 .get_link_ksettings = dm9000_get_link_ksettings, 748 .set_link_ksettings = dm9000_set_link_ksettings, 749 }; 750 751 static void dm9000_show_carrier(struct board_info *db, 752 unsigned carrier, unsigned nsr) 753 { 754 int lpa; 755 struct net_device *ndev = db->ndev; 756 struct mii_if_info *mii = &db->mii; 757 unsigned ncr = dm9000_read_locked(db, DM9000_NCR); 758 759 if (carrier) { 760 lpa = mii->mdio_read(mii->dev, mii->phy_id, MII_LPA); 761 dev_info(db->dev, 762 "%s: link up, %dMbps, %s-duplex, lpa 0x%04X\n", 763 ndev->name, (nsr & NSR_SPEED) ? 10 : 100, 764 (ncr & NCR_FDX) ? "full" : "half", lpa); 765 } else { 766 dev_info(db->dev, "%s: link down\n", ndev->name); 767 } 768 } 769 770 static void 771 dm9000_poll_work(struct work_struct *w) 772 { 773 struct delayed_work *dw = to_delayed_work(w); 774 struct board_info *db = container_of(dw, struct board_info, phy_poll); 775 struct net_device *ndev = db->ndev; 776 777 if (db->flags & DM9000_PLATF_SIMPLE_PHY && 778 !(db->flags & DM9000_PLATF_EXT_PHY)) { 779 unsigned nsr = dm9000_read_locked(db, DM9000_NSR); 780 unsigned old_carrier = netif_carrier_ok(ndev) ? 1 : 0; 781 unsigned new_carrier; 782 783 new_carrier = (nsr & NSR_LINKST) ? 1 : 0; 784 785 if (old_carrier != new_carrier) { 786 if (netif_msg_link(db)) 787 dm9000_show_carrier(db, new_carrier, nsr); 788 789 if (!new_carrier) 790 netif_carrier_off(ndev); 791 else 792 netif_carrier_on(ndev); 793 } 794 } else 795 mii_check_media(&db->mii, netif_msg_link(db), 0); 796 797 if (netif_running(ndev)) 798 dm9000_schedule_poll(db); 799 } 800 801 /* dm9000_release_board 802 * 803 * release a board, and any mapped resources 804 */ 805 806 static void 807 dm9000_release_board(struct platform_device *pdev, struct board_info *db) 808 { 809 /* unmap our resources */ 810 811 iounmap(db->io_addr); 812 iounmap(db->io_data); 813 814 /* release the resources */ 815 816 if (db->data_req) 817 release_resource(db->data_req); 818 kfree(db->data_req); 819 820 if (db->addr_req) 821 release_resource(db->addr_req); 822 kfree(db->addr_req); 823 } 824 825 static unsigned char dm9000_type_to_char(enum dm9000_type type) 826 { 827 switch (type) { 828 case TYPE_DM9000E: return 'e'; 829 case TYPE_DM9000A: return 'a'; 830 case TYPE_DM9000B: return 'b'; 831 } 832 833 return '?'; 834 } 835 836 /* 837 * Set DM9000 multicast address 838 */ 839 static void 840 dm9000_hash_table_unlocked(struct net_device *dev) 841 { 842 struct board_info *db = netdev_priv(dev); 843 struct netdev_hw_addr *ha; 844 int i, oft; 845 u32 hash_val; 846 u16 hash_table[4] = { 0, 0, 0, 0x8000 }; /* broadcast address */ 847 u8 rcr = RCR_DIS_LONG | RCR_DIS_CRC | RCR_RXEN; 848 849 dm9000_dbg(db, 1, "entering %s\n", __func__); 850 851 for (i = 0, oft = DM9000_PAR; i < 6; i++, oft++) 852 iow(db, oft, dev->dev_addr[i]); 853 854 if (dev->flags & IFF_PROMISC) 855 rcr |= RCR_PRMSC; 856 857 if (dev->flags & IFF_ALLMULTI) 858 rcr |= RCR_ALL; 859 860 /* the multicast address in Hash Table : 64 bits */ 861 netdev_for_each_mc_addr(ha, dev) { 862 hash_val = ether_crc_le(6, ha->addr) & 0x3f; 863 hash_table[hash_val / 16] |= (u16) 1 << (hash_val % 16); 864 } 865 866 /* Write the hash table to MAC MD table */ 867 for (i = 0, oft = DM9000_MAR; i < 4; i++) { 868 iow(db, oft++, hash_table[i]); 869 iow(db, oft++, hash_table[i] >> 8); 870 } 871 872 iow(db, DM9000_RCR, rcr); 873 } 874 875 static void 876 dm9000_hash_table(struct net_device *dev) 877 { 878 struct board_info *db = netdev_priv(dev); 879 unsigned long flags; 880 881 spin_lock_irqsave(&db->lock, flags); 882 dm9000_hash_table_unlocked(dev); 883 spin_unlock_irqrestore(&db->lock, flags); 884 } 885 886 static void 887 dm9000_mask_interrupts(struct board_info *db) 888 { 889 iow(db, DM9000_IMR, IMR_PAR); 890 } 891 892 static void 893 dm9000_unmask_interrupts(struct board_info *db) 894 { 895 iow(db, DM9000_IMR, db->imr_all); 896 } 897 898 /* 899 * Initialize dm9000 board 900 */ 901 static void 902 dm9000_init_dm9000(struct net_device *dev) 903 { 904 struct board_info *db = netdev_priv(dev); 905 unsigned int imr; 906 unsigned int ncr; 907 908 dm9000_dbg(db, 1, "entering %s\n", __func__); 909 910 dm9000_reset(db); 911 dm9000_mask_interrupts(db); 912 913 /* I/O mode */ 914 db->io_mode = ior(db, DM9000_ISR) >> 6; /* ISR bit7:6 keeps I/O mode */ 915 916 /* Checksum mode */ 917 if (dev->hw_features & NETIF_F_RXCSUM) 918 iow(db, DM9000_RCSR, 919 (dev->features & NETIF_F_RXCSUM) ? RCSR_CSUM : 0); 920 921 iow(db, DM9000_GPCR, GPCR_GEP_CNTL); /* Let GPIO0 output */ 922 iow(db, DM9000_GPR, 0); 923 924 /* If we are dealing with DM9000B, some extra steps are required: a 925 * manual phy reset, and setting init params. 926 */ 927 if (db->type == TYPE_DM9000B) { 928 dm9000_phy_write(dev, 0, MII_BMCR, BMCR_RESET); 929 dm9000_phy_write(dev, 0, MII_DM_DSPCR, DSPCR_INIT_PARAM); 930 } 931 932 ncr = (db->flags & DM9000_PLATF_EXT_PHY) ? NCR_EXT_PHY : 0; 933 934 /* if wol is needed, then always set NCR_WAKEEN otherwise we end 935 * up dumping the wake events if we disable this. There is already 936 * a wake-mask in DM9000_WCR */ 937 if (db->wake_supported) 938 ncr |= NCR_WAKEEN; 939 940 iow(db, DM9000_NCR, ncr); 941 942 /* Program operating register */ 943 iow(db, DM9000_TCR, 0); /* TX Polling clear */ 944 iow(db, DM9000_BPTR, 0x3f); /* Less 3Kb, 200us */ 945 iow(db, DM9000_FCR, 0xff); /* Flow Control */ 946 iow(db, DM9000_SMCR, 0); /* Special Mode */ 947 /* clear TX status */ 948 iow(db, DM9000_NSR, NSR_WAKEST | NSR_TX2END | NSR_TX1END); 949 iow(db, DM9000_ISR, ISR_CLR_STATUS); /* Clear interrupt status */ 950 951 /* Set address filter table */ 952 dm9000_hash_table_unlocked(dev); 953 954 imr = IMR_PAR | IMR_PTM | IMR_PRM; 955 if (db->type != TYPE_DM9000E) 956 imr |= IMR_LNKCHNG; 957 958 db->imr_all = imr; 959 960 /* Init Driver variable */ 961 db->tx_pkt_cnt = 0; 962 db->queue_pkt_len = 0; 963 netif_trans_update(dev); 964 } 965 966 /* Our watchdog timed out. Called by the networking layer */ 967 static void dm9000_timeout(struct net_device *dev, unsigned int txqueue) 968 { 969 struct board_info *db = netdev_priv(dev); 970 u8 reg_save; 971 unsigned long flags; 972 973 /* Save previous register address */ 974 spin_lock_irqsave(&db->lock, flags); 975 db->in_timeout = 1; 976 reg_save = readb(db->io_addr); 977 978 netif_stop_queue(dev); 979 dm9000_init_dm9000(dev); 980 dm9000_unmask_interrupts(db); 981 /* We can accept TX packets again */ 982 netif_trans_update(dev); /* prevent tx timeout */ 983 netif_wake_queue(dev); 984 985 /* Restore previous register address */ 986 writeb(reg_save, db->io_addr); 987 db->in_timeout = 0; 988 spin_unlock_irqrestore(&db->lock, flags); 989 } 990 991 static void dm9000_send_packet(struct net_device *dev, 992 int ip_summed, 993 u16 pkt_len) 994 { 995 struct board_info *dm = to_dm9000_board(dev); 996 997 /* The DM9000 is not smart enough to leave fragmented packets alone. */ 998 if (dm->ip_summed != ip_summed) { 999 if (ip_summed == CHECKSUM_NONE) 1000 iow(dm, DM9000_TCCR, 0); 1001 else 1002 iow(dm, DM9000_TCCR, TCCR_IP | TCCR_UDP | TCCR_TCP); 1003 dm->ip_summed = ip_summed; 1004 } 1005 1006 /* Set TX length to DM9000 */ 1007 iow(dm, DM9000_TXPLL, pkt_len); 1008 iow(dm, DM9000_TXPLH, pkt_len >> 8); 1009 1010 /* Issue TX polling command */ 1011 iow(dm, DM9000_TCR, TCR_TXREQ); /* Cleared after TX complete */ 1012 } 1013 1014 /* 1015 * Hardware start transmission. 1016 * Send a packet to media from the upper layer. 1017 */ 1018 static int 1019 dm9000_start_xmit(struct sk_buff *skb, struct net_device *dev) 1020 { 1021 unsigned long flags; 1022 struct board_info *db = netdev_priv(dev); 1023 1024 dm9000_dbg(db, 3, "%s:\n", __func__); 1025 1026 if (db->tx_pkt_cnt > 1) 1027 return NETDEV_TX_BUSY; 1028 1029 spin_lock_irqsave(&db->lock, flags); 1030 1031 /* Move data to DM9000 TX RAM */ 1032 writeb(DM9000_MWCMD, db->io_addr); 1033 1034 (db->outblk)(db->io_data, skb->data, skb->len); 1035 dev->stats.tx_bytes += skb->len; 1036 1037 db->tx_pkt_cnt++; 1038 /* TX control: First packet immediately send, second packet queue */ 1039 if (db->tx_pkt_cnt == 1) { 1040 dm9000_send_packet(dev, skb->ip_summed, skb->len); 1041 } else { 1042 /* Second packet */ 1043 db->queue_pkt_len = skb->len; 1044 db->queue_ip_summed = skb->ip_summed; 1045 netif_stop_queue(dev); 1046 } 1047 1048 spin_unlock_irqrestore(&db->lock, flags); 1049 1050 /* free this SKB */ 1051 dev_consume_skb_any(skb); 1052 1053 return NETDEV_TX_OK; 1054 } 1055 1056 /* 1057 * DM9000 interrupt handler 1058 * receive the packet to upper layer, free the transmitted packet 1059 */ 1060 1061 static void dm9000_tx_done(struct net_device *dev, struct board_info *db) 1062 { 1063 int tx_status = ior(db, DM9000_NSR); /* Got TX status */ 1064 1065 if (tx_status & (NSR_TX2END | NSR_TX1END)) { 1066 /* One packet sent complete */ 1067 db->tx_pkt_cnt--; 1068 dev->stats.tx_packets++; 1069 1070 if (netif_msg_tx_done(db)) 1071 dev_dbg(db->dev, "tx done, NSR %02x\n", tx_status); 1072 1073 /* Queue packet check & send */ 1074 if (db->tx_pkt_cnt > 0) 1075 dm9000_send_packet(dev, db->queue_ip_summed, 1076 db->queue_pkt_len); 1077 netif_wake_queue(dev); 1078 } 1079 } 1080 1081 struct dm9000_rxhdr { 1082 u8 RxPktReady; 1083 u8 RxStatus; 1084 __le16 RxLen; 1085 } __packed; 1086 1087 /* 1088 * Received a packet and pass to upper layer 1089 */ 1090 static void 1091 dm9000_rx(struct net_device *dev) 1092 { 1093 struct board_info *db = netdev_priv(dev); 1094 struct dm9000_rxhdr rxhdr; 1095 struct sk_buff *skb; 1096 u8 rxbyte, *rdptr; 1097 bool GoodPacket; 1098 int RxLen; 1099 1100 /* Check packet ready or not */ 1101 do { 1102 ior(db, DM9000_MRCMDX); /* Dummy read */ 1103 1104 /* Get most updated data */ 1105 rxbyte = readb(db->io_data); 1106 1107 /* Status check: this byte must be 0 or 1 */ 1108 if (rxbyte & DM9000_PKT_ERR) { 1109 dev_warn(db->dev, "status check fail: %d\n", rxbyte); 1110 iow(db, DM9000_RCR, 0x00); /* Stop Device */ 1111 return; 1112 } 1113 1114 if (!(rxbyte & DM9000_PKT_RDY)) 1115 return; 1116 1117 /* A packet ready now & Get status/length */ 1118 GoodPacket = true; 1119 writeb(DM9000_MRCMD, db->io_addr); 1120 1121 (db->inblk)(db->io_data, &rxhdr, sizeof(rxhdr)); 1122 1123 RxLen = le16_to_cpu(rxhdr.RxLen); 1124 1125 if (netif_msg_rx_status(db)) 1126 dev_dbg(db->dev, "RX: status %02x, length %04x\n", 1127 rxhdr.RxStatus, RxLen); 1128 1129 /* Packet Status check */ 1130 if (RxLen < 0x40) { 1131 GoodPacket = false; 1132 if (netif_msg_rx_err(db)) 1133 dev_dbg(db->dev, "RX: Bad Packet (runt)\n"); 1134 } 1135 1136 if (RxLen > DM9000_PKT_MAX) { 1137 dev_dbg(db->dev, "RST: RX Len:%x\n", RxLen); 1138 } 1139 1140 /* rxhdr.RxStatus is identical to RSR register. */ 1141 if (rxhdr.RxStatus & (RSR_FOE | RSR_CE | RSR_AE | 1142 RSR_PLE | RSR_RWTO | 1143 RSR_LCS | RSR_RF)) { 1144 GoodPacket = false; 1145 if (rxhdr.RxStatus & RSR_FOE) { 1146 if (netif_msg_rx_err(db)) 1147 dev_dbg(db->dev, "fifo error\n"); 1148 dev->stats.rx_fifo_errors++; 1149 } 1150 if (rxhdr.RxStatus & RSR_CE) { 1151 if (netif_msg_rx_err(db)) 1152 dev_dbg(db->dev, "crc error\n"); 1153 dev->stats.rx_crc_errors++; 1154 } 1155 if (rxhdr.RxStatus & RSR_RF) { 1156 if (netif_msg_rx_err(db)) 1157 dev_dbg(db->dev, "length error\n"); 1158 dev->stats.rx_length_errors++; 1159 } 1160 } 1161 1162 /* Move data from DM9000 */ 1163 if (GoodPacket && 1164 ((skb = netdev_alloc_skb(dev, RxLen + 4)) != NULL)) { 1165 skb_reserve(skb, 2); 1166 rdptr = skb_put(skb, RxLen - 4); 1167 1168 /* Read received packet from RX SRAM */ 1169 1170 (db->inblk)(db->io_data, rdptr, RxLen); 1171 dev->stats.rx_bytes += RxLen; 1172 1173 /* Pass to upper layer */ 1174 skb->protocol = eth_type_trans(skb, dev); 1175 if (dev->features & NETIF_F_RXCSUM) { 1176 if ((((rxbyte & 0x1c) << 3) & rxbyte) == 0) 1177 skb->ip_summed = CHECKSUM_UNNECESSARY; 1178 else 1179 skb_checksum_none_assert(skb); 1180 } 1181 netif_rx(skb); 1182 dev->stats.rx_packets++; 1183 1184 } else { 1185 /* need to dump the packet's data */ 1186 1187 (db->dumpblk)(db->io_data, RxLen); 1188 } 1189 } while (rxbyte & DM9000_PKT_RDY); 1190 } 1191 1192 static irqreturn_t dm9000_interrupt(int irq, void *dev_id) 1193 { 1194 struct net_device *dev = dev_id; 1195 struct board_info *db = netdev_priv(dev); 1196 int int_status; 1197 unsigned long flags; 1198 u8 reg_save; 1199 1200 dm9000_dbg(db, 3, "entering %s\n", __func__); 1201 1202 /* A real interrupt coming */ 1203 1204 /* holders of db->lock must always block IRQs */ 1205 spin_lock_irqsave(&db->lock, flags); 1206 1207 /* Save previous register address */ 1208 reg_save = readb(db->io_addr); 1209 1210 dm9000_mask_interrupts(db); 1211 /* Got DM9000 interrupt status */ 1212 int_status = ior(db, DM9000_ISR); /* Got ISR */ 1213 iow(db, DM9000_ISR, int_status); /* Clear ISR status */ 1214 1215 if (netif_msg_intr(db)) 1216 dev_dbg(db->dev, "interrupt status %02x\n", int_status); 1217 1218 /* Received the coming packet */ 1219 if (int_status & ISR_PRS) 1220 dm9000_rx(dev); 1221 1222 /* Transmit Interrupt check */ 1223 if (int_status & ISR_PTS) 1224 dm9000_tx_done(dev, db); 1225 1226 if (db->type != TYPE_DM9000E) { 1227 if (int_status & ISR_LNKCHNG) { 1228 /* fire a link-change request */ 1229 schedule_delayed_work(&db->phy_poll, 1); 1230 } 1231 } 1232 1233 dm9000_unmask_interrupts(db); 1234 /* Restore previous register address */ 1235 writeb(reg_save, db->io_addr); 1236 1237 spin_unlock_irqrestore(&db->lock, flags); 1238 1239 return IRQ_HANDLED; 1240 } 1241 1242 static irqreturn_t dm9000_wol_interrupt(int irq, void *dev_id) 1243 { 1244 struct net_device *dev = dev_id; 1245 struct board_info *db = netdev_priv(dev); 1246 unsigned long flags; 1247 unsigned nsr, wcr; 1248 1249 spin_lock_irqsave(&db->lock, flags); 1250 1251 nsr = ior(db, DM9000_NSR); 1252 wcr = ior(db, DM9000_WCR); 1253 1254 dev_dbg(db->dev, "%s: NSR=0x%02x, WCR=0x%02x\n", __func__, nsr, wcr); 1255 1256 if (nsr & NSR_WAKEST) { 1257 /* clear, so we can avoid */ 1258 iow(db, DM9000_NSR, NSR_WAKEST); 1259 1260 if (wcr & WCR_LINKST) 1261 dev_info(db->dev, "wake by link status change\n"); 1262 if (wcr & WCR_SAMPLEST) 1263 dev_info(db->dev, "wake by sample packet\n"); 1264 if (wcr & WCR_MAGICST) 1265 dev_info(db->dev, "wake by magic packet\n"); 1266 if (!(wcr & (WCR_LINKST | WCR_SAMPLEST | WCR_MAGICST))) 1267 dev_err(db->dev, "wake signalled with no reason? " 1268 "NSR=0x%02x, WSR=0x%02x\n", nsr, wcr); 1269 } 1270 1271 spin_unlock_irqrestore(&db->lock, flags); 1272 1273 return (nsr & NSR_WAKEST) ? IRQ_HANDLED : IRQ_NONE; 1274 } 1275 1276 #ifdef CONFIG_NET_POLL_CONTROLLER 1277 /* 1278 *Used by netconsole 1279 */ 1280 static void dm9000_poll_controller(struct net_device *dev) 1281 { 1282 disable_irq(dev->irq); 1283 dm9000_interrupt(dev->irq, dev); 1284 enable_irq(dev->irq); 1285 } 1286 #endif 1287 1288 /* 1289 * Open the interface. 1290 * The interface is opened whenever "ifconfig" actives it. 1291 */ 1292 static int 1293 dm9000_open(struct net_device *dev) 1294 { 1295 struct board_info *db = netdev_priv(dev); 1296 unsigned int irq_flags = irq_get_trigger_type(dev->irq); 1297 1298 if (netif_msg_ifup(db)) 1299 dev_dbg(db->dev, "enabling %s\n", dev->name); 1300 1301 /* If there is no IRQ type specified, tell the user that this is a 1302 * problem 1303 */ 1304 if (irq_flags == IRQF_TRIGGER_NONE) 1305 dev_warn(db->dev, "WARNING: no IRQ resource flags set.\n"); 1306 1307 irq_flags |= IRQF_SHARED; 1308 1309 /* GPIO0 on pre-activate PHY, Reg 1F is not set by reset */ 1310 iow(db, DM9000_GPR, 0); /* REG_1F bit0 activate phyxcer */ 1311 mdelay(1); /* delay needs by DM9000B */ 1312 1313 /* Initialize DM9000 board */ 1314 dm9000_init_dm9000(dev); 1315 1316 if (request_irq(dev->irq, dm9000_interrupt, irq_flags, dev->name, dev)) 1317 return -EAGAIN; 1318 /* Now that we have an interrupt handler hooked up we can unmask 1319 * our interrupts 1320 */ 1321 dm9000_unmask_interrupts(db); 1322 1323 /* Init driver variable */ 1324 db->dbug_cnt = 0; 1325 1326 mii_check_media(&db->mii, netif_msg_link(db), 1); 1327 netif_start_queue(dev); 1328 1329 /* Poll initial link status */ 1330 schedule_delayed_work(&db->phy_poll, 1); 1331 1332 return 0; 1333 } 1334 1335 static void 1336 dm9000_shutdown(struct net_device *dev) 1337 { 1338 struct board_info *db = netdev_priv(dev); 1339 1340 /* RESET device */ 1341 dm9000_phy_write(dev, 0, MII_BMCR, BMCR_RESET); /* PHY RESET */ 1342 iow(db, DM9000_GPR, 0x01); /* Power-Down PHY */ 1343 dm9000_mask_interrupts(db); 1344 iow(db, DM9000_RCR, 0x00); /* Disable RX */ 1345 } 1346 1347 /* 1348 * Stop the interface. 1349 * The interface is stopped when it is brought. 1350 */ 1351 static int 1352 dm9000_stop(struct net_device *ndev) 1353 { 1354 struct board_info *db = netdev_priv(ndev); 1355 1356 if (netif_msg_ifdown(db)) 1357 dev_dbg(db->dev, "shutting down %s\n", ndev->name); 1358 1359 cancel_delayed_work_sync(&db->phy_poll); 1360 1361 netif_stop_queue(ndev); 1362 netif_carrier_off(ndev); 1363 1364 /* free interrupt */ 1365 free_irq(ndev->irq, ndev); 1366 1367 dm9000_shutdown(ndev); 1368 1369 return 0; 1370 } 1371 1372 static const struct net_device_ops dm9000_netdev_ops = { 1373 .ndo_open = dm9000_open, 1374 .ndo_stop = dm9000_stop, 1375 .ndo_start_xmit = dm9000_start_xmit, 1376 .ndo_tx_timeout = dm9000_timeout, 1377 .ndo_set_rx_mode = dm9000_hash_table, 1378 .ndo_do_ioctl = dm9000_ioctl, 1379 .ndo_set_features = dm9000_set_features, 1380 .ndo_validate_addr = eth_validate_addr, 1381 .ndo_set_mac_address = eth_mac_addr, 1382 #ifdef CONFIG_NET_POLL_CONTROLLER 1383 .ndo_poll_controller = dm9000_poll_controller, 1384 #endif 1385 }; 1386 1387 static struct dm9000_plat_data *dm9000_parse_dt(struct device *dev) 1388 { 1389 struct dm9000_plat_data *pdata; 1390 struct device_node *np = dev->of_node; 1391 const void *mac_addr; 1392 1393 if (!IS_ENABLED(CONFIG_OF) || !np) 1394 return ERR_PTR(-ENXIO); 1395 1396 pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL); 1397 if (!pdata) 1398 return ERR_PTR(-ENOMEM); 1399 1400 if (of_find_property(np, "davicom,ext-phy", NULL)) 1401 pdata->flags |= DM9000_PLATF_EXT_PHY; 1402 if (of_find_property(np, "davicom,no-eeprom", NULL)) 1403 pdata->flags |= DM9000_PLATF_NO_EEPROM; 1404 1405 mac_addr = of_get_mac_address(np); 1406 if (!IS_ERR(mac_addr)) 1407 ether_addr_copy(pdata->dev_addr, mac_addr); 1408 1409 return pdata; 1410 } 1411 1412 /* 1413 * Search DM9000 board, allocate space and register it 1414 */ 1415 static int 1416 dm9000_probe(struct platform_device *pdev) 1417 { 1418 struct dm9000_plat_data *pdata = dev_get_platdata(&pdev->dev); 1419 struct board_info *db; /* Point a board information structure */ 1420 struct net_device *ndev; 1421 struct device *dev = &pdev->dev; 1422 const unsigned char *mac_src; 1423 int ret = 0; 1424 int iosize; 1425 int i; 1426 u32 id_val; 1427 int reset_gpios; 1428 enum of_gpio_flags flags; 1429 struct regulator *power; 1430 bool inv_mac_addr = false; 1431 1432 power = devm_regulator_get(dev, "vcc"); 1433 if (IS_ERR(power)) { 1434 if (PTR_ERR(power) == -EPROBE_DEFER) 1435 return -EPROBE_DEFER; 1436 dev_dbg(dev, "no regulator provided\n"); 1437 } else { 1438 ret = regulator_enable(power); 1439 if (ret != 0) { 1440 dev_err(dev, 1441 "Failed to enable power regulator: %d\n", ret); 1442 return ret; 1443 } 1444 dev_dbg(dev, "regulator enabled\n"); 1445 } 1446 1447 reset_gpios = of_get_named_gpio_flags(dev->of_node, "reset-gpios", 0, 1448 &flags); 1449 if (gpio_is_valid(reset_gpios)) { 1450 ret = devm_gpio_request_one(dev, reset_gpios, flags, 1451 "dm9000_reset"); 1452 if (ret) { 1453 dev_err(dev, "failed to request reset gpio %d: %d\n", 1454 reset_gpios, ret); 1455 return -ENODEV; 1456 } 1457 1458 /* According to manual PWRST# Low Period Min 1ms */ 1459 msleep(2); 1460 gpio_set_value(reset_gpios, 1); 1461 /* Needs 3ms to read eeprom when PWRST is deasserted */ 1462 msleep(4); 1463 } 1464 1465 if (!pdata) { 1466 pdata = dm9000_parse_dt(&pdev->dev); 1467 if (IS_ERR(pdata)) 1468 return PTR_ERR(pdata); 1469 } 1470 1471 /* Init network device */ 1472 ndev = alloc_etherdev(sizeof(struct board_info)); 1473 if (!ndev) 1474 return -ENOMEM; 1475 1476 SET_NETDEV_DEV(ndev, &pdev->dev); 1477 1478 dev_dbg(&pdev->dev, "dm9000_probe()\n"); 1479 1480 /* setup board info structure */ 1481 db = netdev_priv(ndev); 1482 1483 db->dev = &pdev->dev; 1484 db->ndev = ndev; 1485 1486 spin_lock_init(&db->lock); 1487 mutex_init(&db->addr_lock); 1488 1489 INIT_DELAYED_WORK(&db->phy_poll, dm9000_poll_work); 1490 1491 db->addr_res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1492 db->data_res = platform_get_resource(pdev, IORESOURCE_MEM, 1); 1493 1494 if (!db->addr_res || !db->data_res) { 1495 dev_err(db->dev, "insufficient resources addr=%p data=%p\n", 1496 db->addr_res, db->data_res); 1497 ret = -ENOENT; 1498 goto out; 1499 } 1500 1501 ndev->irq = platform_get_irq(pdev, 0); 1502 if (ndev->irq < 0) { 1503 ret = ndev->irq; 1504 goto out; 1505 } 1506 1507 db->irq_wake = platform_get_irq(pdev, 1); 1508 if (db->irq_wake >= 0) { 1509 dev_dbg(db->dev, "wakeup irq %d\n", db->irq_wake); 1510 1511 ret = request_irq(db->irq_wake, dm9000_wol_interrupt, 1512 IRQF_SHARED, dev_name(db->dev), ndev); 1513 if (ret) { 1514 dev_err(db->dev, "cannot get wakeup irq (%d)\n", ret); 1515 } else { 1516 1517 /* test to see if irq is really wakeup capable */ 1518 ret = irq_set_irq_wake(db->irq_wake, 1); 1519 if (ret) { 1520 dev_err(db->dev, "irq %d cannot set wakeup (%d)\n", 1521 db->irq_wake, ret); 1522 ret = 0; 1523 } else { 1524 irq_set_irq_wake(db->irq_wake, 0); 1525 db->wake_supported = 1; 1526 } 1527 } 1528 } 1529 1530 iosize = resource_size(db->addr_res); 1531 db->addr_req = request_mem_region(db->addr_res->start, iosize, 1532 pdev->name); 1533 1534 if (db->addr_req == NULL) { 1535 dev_err(db->dev, "cannot claim address reg area\n"); 1536 ret = -EIO; 1537 goto out; 1538 } 1539 1540 db->io_addr = ioremap(db->addr_res->start, iosize); 1541 1542 if (db->io_addr == NULL) { 1543 dev_err(db->dev, "failed to ioremap address reg\n"); 1544 ret = -EINVAL; 1545 goto out; 1546 } 1547 1548 iosize = resource_size(db->data_res); 1549 db->data_req = request_mem_region(db->data_res->start, iosize, 1550 pdev->name); 1551 1552 if (db->data_req == NULL) { 1553 dev_err(db->dev, "cannot claim data reg area\n"); 1554 ret = -EIO; 1555 goto out; 1556 } 1557 1558 db->io_data = ioremap(db->data_res->start, iosize); 1559 1560 if (db->io_data == NULL) { 1561 dev_err(db->dev, "failed to ioremap data reg\n"); 1562 ret = -EINVAL; 1563 goto out; 1564 } 1565 1566 /* fill in parameters for net-dev structure */ 1567 ndev->base_addr = (unsigned long)db->io_addr; 1568 1569 /* ensure at least we have a default set of IO routines */ 1570 dm9000_set_io(db, iosize); 1571 1572 /* check to see if anything is being over-ridden */ 1573 if (pdata != NULL) { 1574 /* check to see if the driver wants to over-ride the 1575 * default IO width */ 1576 1577 if (pdata->flags & DM9000_PLATF_8BITONLY) 1578 dm9000_set_io(db, 1); 1579 1580 if (pdata->flags & DM9000_PLATF_16BITONLY) 1581 dm9000_set_io(db, 2); 1582 1583 if (pdata->flags & DM9000_PLATF_32BITONLY) 1584 dm9000_set_io(db, 4); 1585 1586 /* check to see if there are any IO routine 1587 * over-rides */ 1588 1589 if (pdata->inblk != NULL) 1590 db->inblk = pdata->inblk; 1591 1592 if (pdata->outblk != NULL) 1593 db->outblk = pdata->outblk; 1594 1595 if (pdata->dumpblk != NULL) 1596 db->dumpblk = pdata->dumpblk; 1597 1598 db->flags = pdata->flags; 1599 } 1600 1601 #ifdef CONFIG_DM9000_FORCE_SIMPLE_PHY_POLL 1602 db->flags |= DM9000_PLATF_SIMPLE_PHY; 1603 #endif 1604 1605 dm9000_reset(db); 1606 1607 /* try multiple times, DM9000 sometimes gets the read wrong */ 1608 for (i = 0; i < 8; i++) { 1609 id_val = ior(db, DM9000_VIDL); 1610 id_val |= (u32)ior(db, DM9000_VIDH) << 8; 1611 id_val |= (u32)ior(db, DM9000_PIDL) << 16; 1612 id_val |= (u32)ior(db, DM9000_PIDH) << 24; 1613 1614 if (id_val == DM9000_ID) 1615 break; 1616 dev_err(db->dev, "read wrong id 0x%08x\n", id_val); 1617 } 1618 1619 if (id_val != DM9000_ID) { 1620 dev_err(db->dev, "wrong id: 0x%08x\n", id_val); 1621 ret = -ENODEV; 1622 goto out; 1623 } 1624 1625 /* Identify what type of DM9000 we are working on */ 1626 1627 id_val = ior(db, DM9000_CHIPR); 1628 dev_dbg(db->dev, "dm9000 revision 0x%02x\n", id_val); 1629 1630 switch (id_val) { 1631 case CHIPR_DM9000A: 1632 db->type = TYPE_DM9000A; 1633 break; 1634 case CHIPR_DM9000B: 1635 db->type = TYPE_DM9000B; 1636 break; 1637 default: 1638 dev_dbg(db->dev, "ID %02x => defaulting to DM9000E\n", id_val); 1639 db->type = TYPE_DM9000E; 1640 } 1641 1642 /* dm9000a/b are capable of hardware checksum offload */ 1643 if (db->type == TYPE_DM9000A || db->type == TYPE_DM9000B) { 1644 ndev->hw_features = NETIF_F_RXCSUM | NETIF_F_IP_CSUM; 1645 ndev->features |= ndev->hw_features; 1646 } 1647 1648 /* from this point we assume that we have found a DM9000 */ 1649 1650 ndev->netdev_ops = &dm9000_netdev_ops; 1651 ndev->watchdog_timeo = msecs_to_jiffies(watchdog); 1652 ndev->ethtool_ops = &dm9000_ethtool_ops; 1653 1654 db->msg_enable = NETIF_MSG_LINK; 1655 db->mii.phy_id_mask = 0x1f; 1656 db->mii.reg_num_mask = 0x1f; 1657 db->mii.force_media = 0; 1658 db->mii.full_duplex = 0; 1659 db->mii.dev = ndev; 1660 db->mii.mdio_read = dm9000_phy_read; 1661 db->mii.mdio_write = dm9000_phy_write; 1662 1663 mac_src = "eeprom"; 1664 1665 /* try reading the node address from the attached EEPROM */ 1666 for (i = 0; i < 6; i += 2) 1667 dm9000_read_eeprom(db, i / 2, ndev->dev_addr+i); 1668 1669 if (!is_valid_ether_addr(ndev->dev_addr) && pdata != NULL) { 1670 mac_src = "platform data"; 1671 memcpy(ndev->dev_addr, pdata->dev_addr, ETH_ALEN); 1672 } 1673 1674 if (!is_valid_ether_addr(ndev->dev_addr)) { 1675 /* try reading from mac */ 1676 1677 mac_src = "chip"; 1678 for (i = 0; i < 6; i++) 1679 ndev->dev_addr[i] = ior(db, i+DM9000_PAR); 1680 } 1681 1682 if (!is_valid_ether_addr(ndev->dev_addr)) { 1683 inv_mac_addr = true; 1684 eth_hw_addr_random(ndev); 1685 mac_src = "random"; 1686 } 1687 1688 1689 platform_set_drvdata(pdev, ndev); 1690 ret = register_netdev(ndev); 1691 1692 if (ret == 0) { 1693 if (inv_mac_addr) 1694 dev_warn(db->dev, "%s: Invalid ethernet MAC address. Please set using ip\n", 1695 ndev->name); 1696 printk(KERN_INFO "%s: dm9000%c at %p,%p IRQ %d MAC: %pM (%s)\n", 1697 ndev->name, dm9000_type_to_char(db->type), 1698 db->io_addr, db->io_data, ndev->irq, 1699 ndev->dev_addr, mac_src); 1700 } 1701 return 0; 1702 1703 out: 1704 dev_err(db->dev, "not found (%d).\n", ret); 1705 1706 dm9000_release_board(pdev, db); 1707 free_netdev(ndev); 1708 1709 return ret; 1710 } 1711 1712 static int 1713 dm9000_drv_suspend(struct device *dev) 1714 { 1715 struct net_device *ndev = dev_get_drvdata(dev); 1716 struct board_info *db; 1717 1718 if (ndev) { 1719 db = netdev_priv(ndev); 1720 db->in_suspend = 1; 1721 1722 if (!netif_running(ndev)) 1723 return 0; 1724 1725 netif_device_detach(ndev); 1726 1727 /* only shutdown if not using WoL */ 1728 if (!db->wake_state) 1729 dm9000_shutdown(ndev); 1730 } 1731 return 0; 1732 } 1733 1734 static int 1735 dm9000_drv_resume(struct device *dev) 1736 { 1737 struct net_device *ndev = dev_get_drvdata(dev); 1738 struct board_info *db = netdev_priv(ndev); 1739 1740 if (ndev) { 1741 if (netif_running(ndev)) { 1742 /* reset if we were not in wake mode to ensure if 1743 * the device was powered off it is in a known state */ 1744 if (!db->wake_state) { 1745 dm9000_init_dm9000(ndev); 1746 dm9000_unmask_interrupts(db); 1747 } 1748 1749 netif_device_attach(ndev); 1750 } 1751 1752 db->in_suspend = 0; 1753 } 1754 return 0; 1755 } 1756 1757 static const struct dev_pm_ops dm9000_drv_pm_ops = { 1758 .suspend = dm9000_drv_suspend, 1759 .resume = dm9000_drv_resume, 1760 }; 1761 1762 static int 1763 dm9000_drv_remove(struct platform_device *pdev) 1764 { 1765 struct net_device *ndev = platform_get_drvdata(pdev); 1766 1767 unregister_netdev(ndev); 1768 dm9000_release_board(pdev, netdev_priv(ndev)); 1769 free_netdev(ndev); /* free device structure */ 1770 1771 dev_dbg(&pdev->dev, "released and freed device\n"); 1772 return 0; 1773 } 1774 1775 #ifdef CONFIG_OF 1776 static const struct of_device_id dm9000_of_matches[] = { 1777 { .compatible = "davicom,dm9000", }, 1778 { /* sentinel */ } 1779 }; 1780 MODULE_DEVICE_TABLE(of, dm9000_of_matches); 1781 #endif 1782 1783 static struct platform_driver dm9000_driver = { 1784 .driver = { 1785 .name = "dm9000", 1786 .pm = &dm9000_drv_pm_ops, 1787 .of_match_table = of_match_ptr(dm9000_of_matches), 1788 }, 1789 .probe = dm9000_probe, 1790 .remove = dm9000_drv_remove, 1791 }; 1792 1793 module_platform_driver(dm9000_driver); 1794 1795 MODULE_AUTHOR("Sascha Hauer, Ben Dooks"); 1796 MODULE_DESCRIPTION("Davicom DM9000 network driver"); 1797 MODULE_LICENSE("GPL"); 1798 MODULE_ALIAS("platform:dm9000"); 1799