1 /* 2 * Davicom DM9000 Fast Ethernet driver for Linux. 3 * Copyright (C) 1997 Sten Wang 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License 7 * as published by the Free Software Foundation; either version 2 8 * of the License, or (at your option) any later version. 9 * 10 * This program is distributed in the hope that it will be useful, 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 * GNU General Public License for more details. 14 * 15 * (C) Copyright 1997-1998 DAVICOM Semiconductor,Inc. All Rights Reserved. 16 * 17 * Additional updates, Copyright: 18 * Ben Dooks <ben@simtec.co.uk> 19 * Sascha Hauer <s.hauer@pengutronix.de> 20 */ 21 22 #include <linux/module.h> 23 #include <linux/ioport.h> 24 #include <linux/netdevice.h> 25 #include <linux/etherdevice.h> 26 #include <linux/interrupt.h> 27 #include <linux/skbuff.h> 28 #include <linux/spinlock.h> 29 #include <linux/crc32.h> 30 #include <linux/mii.h> 31 #include <linux/of.h> 32 #include <linux/of_net.h> 33 #include <linux/ethtool.h> 34 #include <linux/dm9000.h> 35 #include <linux/delay.h> 36 #include <linux/platform_device.h> 37 #include <linux/irq.h> 38 #include <linux/slab.h> 39 #include <linux/regulator/consumer.h> 40 #include <linux/gpio.h> 41 #include <linux/of_gpio.h> 42 43 #include <asm/delay.h> 44 #include <asm/irq.h> 45 #include <asm/io.h> 46 47 #include "dm9000.h" 48 49 /* Board/System/Debug information/definition ---------------- */ 50 51 #define DM9000_PHY 0x40 /* PHY address 0x01 */ 52 53 #define CARDNAME "dm9000" 54 #define DRV_VERSION "1.31" 55 56 /* 57 * Transmit timeout, default 5 seconds. 58 */ 59 static int watchdog = 5000; 60 module_param(watchdog, int, 0400); 61 MODULE_PARM_DESC(watchdog, "transmit timeout in milliseconds"); 62 63 /* 64 * Debug messages level 65 */ 66 static int debug; 67 module_param(debug, int, 0644); 68 MODULE_PARM_DESC(debug, "dm9000 debug level (0-4)"); 69 70 /* DM9000 register address locking. 71 * 72 * The DM9000 uses an address register to control where data written 73 * to the data register goes. This means that the address register 74 * must be preserved over interrupts or similar calls. 75 * 76 * During interrupt and other critical calls, a spinlock is used to 77 * protect the system, but the calls themselves save the address 78 * in the address register in case they are interrupting another 79 * access to the device. 80 * 81 * For general accesses a lock is provided so that calls which are 82 * allowed to sleep are serialised so that the address register does 83 * not need to be saved. This lock also serves to serialise access 84 * to the EEPROM and PHY access registers which are shared between 85 * these two devices. 86 */ 87 88 /* The driver supports the original DM9000E, and now the two newer 89 * devices, DM9000A and DM9000B. 90 */ 91 92 enum dm9000_type { 93 TYPE_DM9000E, /* original DM9000 */ 94 TYPE_DM9000A, 95 TYPE_DM9000B 96 }; 97 98 /* Structure/enum declaration ------------------------------- */ 99 struct board_info { 100 101 void __iomem *io_addr; /* Register I/O base address */ 102 void __iomem *io_data; /* Data I/O address */ 103 u16 irq; /* IRQ */ 104 105 u16 tx_pkt_cnt; 106 u16 queue_pkt_len; 107 u16 queue_start_addr; 108 u16 queue_ip_summed; 109 u16 dbug_cnt; 110 u8 io_mode; /* 0:word, 2:byte */ 111 u8 phy_addr; 112 u8 imr_all; 113 114 unsigned int flags; 115 unsigned int in_timeout:1; 116 unsigned int in_suspend:1; 117 unsigned int wake_supported:1; 118 119 enum dm9000_type type; 120 121 void (*inblk)(void __iomem *port, void *data, int length); 122 void (*outblk)(void __iomem *port, void *data, int length); 123 void (*dumpblk)(void __iomem *port, int length); 124 125 struct device *dev; /* parent device */ 126 127 struct resource *addr_res; /* resources found */ 128 struct resource *data_res; 129 struct resource *addr_req; /* resources requested */ 130 struct resource *data_req; 131 struct resource *irq_res; 132 133 int irq_wake; 134 135 struct mutex addr_lock; /* phy and eeprom access lock */ 136 137 struct delayed_work phy_poll; 138 struct net_device *ndev; 139 140 spinlock_t lock; 141 142 struct mii_if_info mii; 143 u32 msg_enable; 144 u32 wake_state; 145 146 int ip_summed; 147 }; 148 149 /* debug code */ 150 151 #define dm9000_dbg(db, lev, msg...) do { \ 152 if ((lev) < debug) { \ 153 dev_dbg(db->dev, msg); \ 154 } \ 155 } while (0) 156 157 static inline struct board_info *to_dm9000_board(struct net_device *dev) 158 { 159 return netdev_priv(dev); 160 } 161 162 /* DM9000 network board routine ---------------------------- */ 163 164 /* 165 * Read a byte from I/O port 166 */ 167 static u8 168 ior(struct board_info *db, int reg) 169 { 170 writeb(reg, db->io_addr); 171 return readb(db->io_data); 172 } 173 174 /* 175 * Write a byte to I/O port 176 */ 177 178 static void 179 iow(struct board_info *db, int reg, int value) 180 { 181 writeb(reg, db->io_addr); 182 writeb(value, db->io_data); 183 } 184 185 static void 186 dm9000_reset(struct board_info *db) 187 { 188 dev_dbg(db->dev, "resetting device\n"); 189 190 /* Reset DM9000, see DM9000 Application Notes V1.22 Jun 11, 2004 page 29 191 * The essential point is that we have to do a double reset, and the 192 * instruction is to set LBK into MAC internal loopback mode. 193 */ 194 iow(db, DM9000_NCR, NCR_RST | NCR_MAC_LBK); 195 udelay(100); /* Application note says at least 20 us */ 196 if (ior(db, DM9000_NCR) & 1) 197 dev_err(db->dev, "dm9000 did not respond to first reset\n"); 198 199 iow(db, DM9000_NCR, 0); 200 iow(db, DM9000_NCR, NCR_RST | NCR_MAC_LBK); 201 udelay(100); 202 if (ior(db, DM9000_NCR) & 1) 203 dev_err(db->dev, "dm9000 did not respond to second reset\n"); 204 } 205 206 /* routines for sending block to chip */ 207 208 static void dm9000_outblk_8bit(void __iomem *reg, void *data, int count) 209 { 210 iowrite8_rep(reg, data, count); 211 } 212 213 static void dm9000_outblk_16bit(void __iomem *reg, void *data, int count) 214 { 215 iowrite16_rep(reg, data, (count+1) >> 1); 216 } 217 218 static void dm9000_outblk_32bit(void __iomem *reg, void *data, int count) 219 { 220 iowrite32_rep(reg, data, (count+3) >> 2); 221 } 222 223 /* input block from chip to memory */ 224 225 static void dm9000_inblk_8bit(void __iomem *reg, void *data, int count) 226 { 227 ioread8_rep(reg, data, count); 228 } 229 230 231 static void dm9000_inblk_16bit(void __iomem *reg, void *data, int count) 232 { 233 ioread16_rep(reg, data, (count+1) >> 1); 234 } 235 236 static void dm9000_inblk_32bit(void __iomem *reg, void *data, int count) 237 { 238 ioread32_rep(reg, data, (count+3) >> 2); 239 } 240 241 /* dump block from chip to null */ 242 243 static void dm9000_dumpblk_8bit(void __iomem *reg, int count) 244 { 245 int i; 246 int tmp; 247 248 for (i = 0; i < count; i++) 249 tmp = readb(reg); 250 } 251 252 static void dm9000_dumpblk_16bit(void __iomem *reg, int count) 253 { 254 int i; 255 int tmp; 256 257 count = (count + 1) >> 1; 258 259 for (i = 0; i < count; i++) 260 tmp = readw(reg); 261 } 262 263 static void dm9000_dumpblk_32bit(void __iomem *reg, int count) 264 { 265 int i; 266 int tmp; 267 268 count = (count + 3) >> 2; 269 270 for (i = 0; i < count; i++) 271 tmp = readl(reg); 272 } 273 274 /* 275 * Sleep, either by using msleep() or if we are suspending, then 276 * use mdelay() to sleep. 277 */ 278 static void dm9000_msleep(struct board_info *db, unsigned int ms) 279 { 280 if (db->in_suspend || db->in_timeout) 281 mdelay(ms); 282 else 283 msleep(ms); 284 } 285 286 /* Read a word from phyxcer */ 287 static int 288 dm9000_phy_read(struct net_device *dev, int phy_reg_unused, int reg) 289 { 290 struct board_info *db = netdev_priv(dev); 291 unsigned long flags; 292 unsigned int reg_save; 293 int ret; 294 295 mutex_lock(&db->addr_lock); 296 297 spin_lock_irqsave(&db->lock, flags); 298 299 /* Save previous register address */ 300 reg_save = readb(db->io_addr); 301 302 /* Fill the phyxcer register into REG_0C */ 303 iow(db, DM9000_EPAR, DM9000_PHY | reg); 304 305 /* Issue phyxcer read command */ 306 iow(db, DM9000_EPCR, EPCR_ERPRR | EPCR_EPOS); 307 308 writeb(reg_save, db->io_addr); 309 spin_unlock_irqrestore(&db->lock, flags); 310 311 dm9000_msleep(db, 1); /* Wait read complete */ 312 313 spin_lock_irqsave(&db->lock, flags); 314 reg_save = readb(db->io_addr); 315 316 iow(db, DM9000_EPCR, 0x0); /* Clear phyxcer read command */ 317 318 /* The read data keeps on REG_0D & REG_0E */ 319 ret = (ior(db, DM9000_EPDRH) << 8) | ior(db, DM9000_EPDRL); 320 321 /* restore the previous address */ 322 writeb(reg_save, db->io_addr); 323 spin_unlock_irqrestore(&db->lock, flags); 324 325 mutex_unlock(&db->addr_lock); 326 327 dm9000_dbg(db, 5, "phy_read[%02x] -> %04x\n", reg, ret); 328 return ret; 329 } 330 331 /* Write a word to phyxcer */ 332 static void 333 dm9000_phy_write(struct net_device *dev, 334 int phyaddr_unused, int reg, int value) 335 { 336 struct board_info *db = netdev_priv(dev); 337 unsigned long flags; 338 unsigned long reg_save; 339 340 dm9000_dbg(db, 5, "phy_write[%02x] = %04x\n", reg, value); 341 if (!db->in_timeout) 342 mutex_lock(&db->addr_lock); 343 344 spin_lock_irqsave(&db->lock, flags); 345 346 /* Save previous register address */ 347 reg_save = readb(db->io_addr); 348 349 /* Fill the phyxcer register into REG_0C */ 350 iow(db, DM9000_EPAR, DM9000_PHY | reg); 351 352 /* Fill the written data into REG_0D & REG_0E */ 353 iow(db, DM9000_EPDRL, value); 354 iow(db, DM9000_EPDRH, value >> 8); 355 356 /* Issue phyxcer write command */ 357 iow(db, DM9000_EPCR, EPCR_EPOS | EPCR_ERPRW); 358 359 writeb(reg_save, db->io_addr); 360 spin_unlock_irqrestore(&db->lock, flags); 361 362 dm9000_msleep(db, 1); /* Wait write complete */ 363 364 spin_lock_irqsave(&db->lock, flags); 365 reg_save = readb(db->io_addr); 366 367 iow(db, DM9000_EPCR, 0x0); /* Clear phyxcer write command */ 368 369 /* restore the previous address */ 370 writeb(reg_save, db->io_addr); 371 372 spin_unlock_irqrestore(&db->lock, flags); 373 if (!db->in_timeout) 374 mutex_unlock(&db->addr_lock); 375 } 376 377 /* dm9000_set_io 378 * 379 * select the specified set of io routines to use with the 380 * device 381 */ 382 383 static void dm9000_set_io(struct board_info *db, int byte_width) 384 { 385 /* use the size of the data resource to work out what IO 386 * routines we want to use 387 */ 388 389 switch (byte_width) { 390 case 1: 391 db->dumpblk = dm9000_dumpblk_8bit; 392 db->outblk = dm9000_outblk_8bit; 393 db->inblk = dm9000_inblk_8bit; 394 break; 395 396 397 case 3: 398 dev_dbg(db->dev, ": 3 byte IO, falling back to 16bit\n"); 399 case 2: 400 db->dumpblk = dm9000_dumpblk_16bit; 401 db->outblk = dm9000_outblk_16bit; 402 db->inblk = dm9000_inblk_16bit; 403 break; 404 405 case 4: 406 default: 407 db->dumpblk = dm9000_dumpblk_32bit; 408 db->outblk = dm9000_outblk_32bit; 409 db->inblk = dm9000_inblk_32bit; 410 break; 411 } 412 } 413 414 static void dm9000_schedule_poll(struct board_info *db) 415 { 416 if (db->type == TYPE_DM9000E) 417 schedule_delayed_work(&db->phy_poll, HZ * 2); 418 } 419 420 static int dm9000_ioctl(struct net_device *dev, struct ifreq *req, int cmd) 421 { 422 struct board_info *dm = to_dm9000_board(dev); 423 424 if (!netif_running(dev)) 425 return -EINVAL; 426 427 return generic_mii_ioctl(&dm->mii, if_mii(req), cmd, NULL); 428 } 429 430 static unsigned int 431 dm9000_read_locked(struct board_info *db, int reg) 432 { 433 unsigned long flags; 434 unsigned int ret; 435 436 spin_lock_irqsave(&db->lock, flags); 437 ret = ior(db, reg); 438 spin_unlock_irqrestore(&db->lock, flags); 439 440 return ret; 441 } 442 443 static int dm9000_wait_eeprom(struct board_info *db) 444 { 445 unsigned int status; 446 int timeout = 8; /* wait max 8msec */ 447 448 /* The DM9000 data sheets say we should be able to 449 * poll the ERRE bit in EPCR to wait for the EEPROM 450 * operation. From testing several chips, this bit 451 * does not seem to work. 452 * 453 * We attempt to use the bit, but fall back to the 454 * timeout (which is why we do not return an error 455 * on expiry) to say that the EEPROM operation has 456 * completed. 457 */ 458 459 while (1) { 460 status = dm9000_read_locked(db, DM9000_EPCR); 461 462 if ((status & EPCR_ERRE) == 0) 463 break; 464 465 msleep(1); 466 467 if (timeout-- < 0) { 468 dev_dbg(db->dev, "timeout waiting EEPROM\n"); 469 break; 470 } 471 } 472 473 return 0; 474 } 475 476 /* 477 * Read a word data from EEPROM 478 */ 479 static void 480 dm9000_read_eeprom(struct board_info *db, int offset, u8 *to) 481 { 482 unsigned long flags; 483 484 if (db->flags & DM9000_PLATF_NO_EEPROM) { 485 to[0] = 0xff; 486 to[1] = 0xff; 487 return; 488 } 489 490 mutex_lock(&db->addr_lock); 491 492 spin_lock_irqsave(&db->lock, flags); 493 494 iow(db, DM9000_EPAR, offset); 495 iow(db, DM9000_EPCR, EPCR_ERPRR); 496 497 spin_unlock_irqrestore(&db->lock, flags); 498 499 dm9000_wait_eeprom(db); 500 501 /* delay for at-least 150uS */ 502 msleep(1); 503 504 spin_lock_irqsave(&db->lock, flags); 505 506 iow(db, DM9000_EPCR, 0x0); 507 508 to[0] = ior(db, DM9000_EPDRL); 509 to[1] = ior(db, DM9000_EPDRH); 510 511 spin_unlock_irqrestore(&db->lock, flags); 512 513 mutex_unlock(&db->addr_lock); 514 } 515 516 /* 517 * Write a word data to SROM 518 */ 519 static void 520 dm9000_write_eeprom(struct board_info *db, int offset, u8 *data) 521 { 522 unsigned long flags; 523 524 if (db->flags & DM9000_PLATF_NO_EEPROM) 525 return; 526 527 mutex_lock(&db->addr_lock); 528 529 spin_lock_irqsave(&db->lock, flags); 530 iow(db, DM9000_EPAR, offset); 531 iow(db, DM9000_EPDRH, data[1]); 532 iow(db, DM9000_EPDRL, data[0]); 533 iow(db, DM9000_EPCR, EPCR_WEP | EPCR_ERPRW); 534 spin_unlock_irqrestore(&db->lock, flags); 535 536 dm9000_wait_eeprom(db); 537 538 mdelay(1); /* wait at least 150uS to clear */ 539 540 spin_lock_irqsave(&db->lock, flags); 541 iow(db, DM9000_EPCR, 0); 542 spin_unlock_irqrestore(&db->lock, flags); 543 544 mutex_unlock(&db->addr_lock); 545 } 546 547 /* ethtool ops */ 548 549 static void dm9000_get_drvinfo(struct net_device *dev, 550 struct ethtool_drvinfo *info) 551 { 552 struct board_info *dm = to_dm9000_board(dev); 553 554 strlcpy(info->driver, CARDNAME, sizeof(info->driver)); 555 strlcpy(info->version, DRV_VERSION, sizeof(info->version)); 556 strlcpy(info->bus_info, to_platform_device(dm->dev)->name, 557 sizeof(info->bus_info)); 558 } 559 560 static u32 dm9000_get_msglevel(struct net_device *dev) 561 { 562 struct board_info *dm = to_dm9000_board(dev); 563 564 return dm->msg_enable; 565 } 566 567 static void dm9000_set_msglevel(struct net_device *dev, u32 value) 568 { 569 struct board_info *dm = to_dm9000_board(dev); 570 571 dm->msg_enable = value; 572 } 573 574 static int dm9000_get_settings(struct net_device *dev, struct ethtool_cmd *cmd) 575 { 576 struct board_info *dm = to_dm9000_board(dev); 577 578 mii_ethtool_gset(&dm->mii, cmd); 579 return 0; 580 } 581 582 static int dm9000_set_settings(struct net_device *dev, struct ethtool_cmd *cmd) 583 { 584 struct board_info *dm = to_dm9000_board(dev); 585 586 return mii_ethtool_sset(&dm->mii, cmd); 587 } 588 589 static int dm9000_nway_reset(struct net_device *dev) 590 { 591 struct board_info *dm = to_dm9000_board(dev); 592 return mii_nway_restart(&dm->mii); 593 } 594 595 static int dm9000_set_features(struct net_device *dev, 596 netdev_features_t features) 597 { 598 struct board_info *dm = to_dm9000_board(dev); 599 netdev_features_t changed = dev->features ^ features; 600 unsigned long flags; 601 602 if (!(changed & NETIF_F_RXCSUM)) 603 return 0; 604 605 spin_lock_irqsave(&dm->lock, flags); 606 iow(dm, DM9000_RCSR, (features & NETIF_F_RXCSUM) ? RCSR_CSUM : 0); 607 spin_unlock_irqrestore(&dm->lock, flags); 608 609 return 0; 610 } 611 612 static u32 dm9000_get_link(struct net_device *dev) 613 { 614 struct board_info *dm = to_dm9000_board(dev); 615 u32 ret; 616 617 if (dm->flags & DM9000_PLATF_EXT_PHY) 618 ret = mii_link_ok(&dm->mii); 619 else 620 ret = dm9000_read_locked(dm, DM9000_NSR) & NSR_LINKST ? 1 : 0; 621 622 return ret; 623 } 624 625 #define DM_EEPROM_MAGIC (0x444D394B) 626 627 static int dm9000_get_eeprom_len(struct net_device *dev) 628 { 629 return 128; 630 } 631 632 static int dm9000_get_eeprom(struct net_device *dev, 633 struct ethtool_eeprom *ee, u8 *data) 634 { 635 struct board_info *dm = to_dm9000_board(dev); 636 int offset = ee->offset; 637 int len = ee->len; 638 int i; 639 640 /* EEPROM access is aligned to two bytes */ 641 642 if ((len & 1) != 0 || (offset & 1) != 0) 643 return -EINVAL; 644 645 if (dm->flags & DM9000_PLATF_NO_EEPROM) 646 return -ENOENT; 647 648 ee->magic = DM_EEPROM_MAGIC; 649 650 for (i = 0; i < len; i += 2) 651 dm9000_read_eeprom(dm, (offset + i) / 2, data + i); 652 653 return 0; 654 } 655 656 static int dm9000_set_eeprom(struct net_device *dev, 657 struct ethtool_eeprom *ee, u8 *data) 658 { 659 struct board_info *dm = to_dm9000_board(dev); 660 int offset = ee->offset; 661 int len = ee->len; 662 int done; 663 664 /* EEPROM access is aligned to two bytes */ 665 666 if (dm->flags & DM9000_PLATF_NO_EEPROM) 667 return -ENOENT; 668 669 if (ee->magic != DM_EEPROM_MAGIC) 670 return -EINVAL; 671 672 while (len > 0) { 673 if (len & 1 || offset & 1) { 674 int which = offset & 1; 675 u8 tmp[2]; 676 677 dm9000_read_eeprom(dm, offset / 2, tmp); 678 tmp[which] = *data; 679 dm9000_write_eeprom(dm, offset / 2, tmp); 680 681 done = 1; 682 } else { 683 dm9000_write_eeprom(dm, offset / 2, data); 684 done = 2; 685 } 686 687 data += done; 688 offset += done; 689 len -= done; 690 } 691 692 return 0; 693 } 694 695 static void dm9000_get_wol(struct net_device *dev, struct ethtool_wolinfo *w) 696 { 697 struct board_info *dm = to_dm9000_board(dev); 698 699 memset(w, 0, sizeof(struct ethtool_wolinfo)); 700 701 /* note, we could probably support wake-phy too */ 702 w->supported = dm->wake_supported ? WAKE_MAGIC : 0; 703 w->wolopts = dm->wake_state; 704 } 705 706 static int dm9000_set_wol(struct net_device *dev, struct ethtool_wolinfo *w) 707 { 708 struct board_info *dm = to_dm9000_board(dev); 709 unsigned long flags; 710 u32 opts = w->wolopts; 711 u32 wcr = 0; 712 713 if (!dm->wake_supported) 714 return -EOPNOTSUPP; 715 716 if (opts & ~WAKE_MAGIC) 717 return -EINVAL; 718 719 if (opts & WAKE_MAGIC) 720 wcr |= WCR_MAGICEN; 721 722 mutex_lock(&dm->addr_lock); 723 724 spin_lock_irqsave(&dm->lock, flags); 725 iow(dm, DM9000_WCR, wcr); 726 spin_unlock_irqrestore(&dm->lock, flags); 727 728 mutex_unlock(&dm->addr_lock); 729 730 if (dm->wake_state != opts) { 731 /* change in wol state, update IRQ state */ 732 733 if (!dm->wake_state) 734 irq_set_irq_wake(dm->irq_wake, 1); 735 else if (dm->wake_state && !opts) 736 irq_set_irq_wake(dm->irq_wake, 0); 737 } 738 739 dm->wake_state = opts; 740 return 0; 741 } 742 743 static const struct ethtool_ops dm9000_ethtool_ops = { 744 .get_drvinfo = dm9000_get_drvinfo, 745 .get_settings = dm9000_get_settings, 746 .set_settings = dm9000_set_settings, 747 .get_msglevel = dm9000_get_msglevel, 748 .set_msglevel = dm9000_set_msglevel, 749 .nway_reset = dm9000_nway_reset, 750 .get_link = dm9000_get_link, 751 .get_wol = dm9000_get_wol, 752 .set_wol = dm9000_set_wol, 753 .get_eeprom_len = dm9000_get_eeprom_len, 754 .get_eeprom = dm9000_get_eeprom, 755 .set_eeprom = dm9000_set_eeprom, 756 }; 757 758 static void dm9000_show_carrier(struct board_info *db, 759 unsigned carrier, unsigned nsr) 760 { 761 int lpa; 762 struct net_device *ndev = db->ndev; 763 struct mii_if_info *mii = &db->mii; 764 unsigned ncr = dm9000_read_locked(db, DM9000_NCR); 765 766 if (carrier) { 767 lpa = mii->mdio_read(mii->dev, mii->phy_id, MII_LPA); 768 dev_info(db->dev, 769 "%s: link up, %dMbps, %s-duplex, lpa 0x%04X\n", 770 ndev->name, (nsr & NSR_SPEED) ? 10 : 100, 771 (ncr & NCR_FDX) ? "full" : "half", lpa); 772 } else { 773 dev_info(db->dev, "%s: link down\n", ndev->name); 774 } 775 } 776 777 static void 778 dm9000_poll_work(struct work_struct *w) 779 { 780 struct delayed_work *dw = to_delayed_work(w); 781 struct board_info *db = container_of(dw, struct board_info, phy_poll); 782 struct net_device *ndev = db->ndev; 783 784 if (db->flags & DM9000_PLATF_SIMPLE_PHY && 785 !(db->flags & DM9000_PLATF_EXT_PHY)) { 786 unsigned nsr = dm9000_read_locked(db, DM9000_NSR); 787 unsigned old_carrier = netif_carrier_ok(ndev) ? 1 : 0; 788 unsigned new_carrier; 789 790 new_carrier = (nsr & NSR_LINKST) ? 1 : 0; 791 792 if (old_carrier != new_carrier) { 793 if (netif_msg_link(db)) 794 dm9000_show_carrier(db, new_carrier, nsr); 795 796 if (!new_carrier) 797 netif_carrier_off(ndev); 798 else 799 netif_carrier_on(ndev); 800 } 801 } else 802 mii_check_media(&db->mii, netif_msg_link(db), 0); 803 804 if (netif_running(ndev)) 805 dm9000_schedule_poll(db); 806 } 807 808 /* dm9000_release_board 809 * 810 * release a board, and any mapped resources 811 */ 812 813 static void 814 dm9000_release_board(struct platform_device *pdev, struct board_info *db) 815 { 816 /* unmap our resources */ 817 818 iounmap(db->io_addr); 819 iounmap(db->io_data); 820 821 /* release the resources */ 822 823 if (db->data_req) 824 release_resource(db->data_req); 825 kfree(db->data_req); 826 827 if (db->addr_req) 828 release_resource(db->addr_req); 829 kfree(db->addr_req); 830 } 831 832 static unsigned char dm9000_type_to_char(enum dm9000_type type) 833 { 834 switch (type) { 835 case TYPE_DM9000E: return 'e'; 836 case TYPE_DM9000A: return 'a'; 837 case TYPE_DM9000B: return 'b'; 838 } 839 840 return '?'; 841 } 842 843 /* 844 * Set DM9000 multicast address 845 */ 846 static void 847 dm9000_hash_table_unlocked(struct net_device *dev) 848 { 849 struct board_info *db = netdev_priv(dev); 850 struct netdev_hw_addr *ha; 851 int i, oft; 852 u32 hash_val; 853 u16 hash_table[4] = { 0, 0, 0, 0x8000 }; /* broadcast address */ 854 u8 rcr = RCR_DIS_LONG | RCR_DIS_CRC | RCR_RXEN; 855 856 dm9000_dbg(db, 1, "entering %s\n", __func__); 857 858 for (i = 0, oft = DM9000_PAR; i < 6; i++, oft++) 859 iow(db, oft, dev->dev_addr[i]); 860 861 if (dev->flags & IFF_PROMISC) 862 rcr |= RCR_PRMSC; 863 864 if (dev->flags & IFF_ALLMULTI) 865 rcr |= RCR_ALL; 866 867 /* the multicast address in Hash Table : 64 bits */ 868 netdev_for_each_mc_addr(ha, dev) { 869 hash_val = ether_crc_le(6, ha->addr) & 0x3f; 870 hash_table[hash_val / 16] |= (u16) 1 << (hash_val % 16); 871 } 872 873 /* Write the hash table to MAC MD table */ 874 for (i = 0, oft = DM9000_MAR; i < 4; i++) { 875 iow(db, oft++, hash_table[i]); 876 iow(db, oft++, hash_table[i] >> 8); 877 } 878 879 iow(db, DM9000_RCR, rcr); 880 } 881 882 static void 883 dm9000_hash_table(struct net_device *dev) 884 { 885 struct board_info *db = netdev_priv(dev); 886 unsigned long flags; 887 888 spin_lock_irqsave(&db->lock, flags); 889 dm9000_hash_table_unlocked(dev); 890 spin_unlock_irqrestore(&db->lock, flags); 891 } 892 893 static void 894 dm9000_mask_interrupts(struct board_info *db) 895 { 896 iow(db, DM9000_IMR, IMR_PAR); 897 } 898 899 static void 900 dm9000_unmask_interrupts(struct board_info *db) 901 { 902 iow(db, DM9000_IMR, db->imr_all); 903 } 904 905 /* 906 * Initialize dm9000 board 907 */ 908 static void 909 dm9000_init_dm9000(struct net_device *dev) 910 { 911 struct board_info *db = netdev_priv(dev); 912 unsigned int imr; 913 unsigned int ncr; 914 915 dm9000_dbg(db, 1, "entering %s\n", __func__); 916 917 dm9000_reset(db); 918 dm9000_mask_interrupts(db); 919 920 /* I/O mode */ 921 db->io_mode = ior(db, DM9000_ISR) >> 6; /* ISR bit7:6 keeps I/O mode */ 922 923 /* Checksum mode */ 924 if (dev->hw_features & NETIF_F_RXCSUM) 925 iow(db, DM9000_RCSR, 926 (dev->features & NETIF_F_RXCSUM) ? RCSR_CSUM : 0); 927 928 iow(db, DM9000_GPCR, GPCR_GEP_CNTL); /* Let GPIO0 output */ 929 iow(db, DM9000_GPR, 0); 930 931 /* If we are dealing with DM9000B, some extra steps are required: a 932 * manual phy reset, and setting init params. 933 */ 934 if (db->type == TYPE_DM9000B) { 935 dm9000_phy_write(dev, 0, MII_BMCR, BMCR_RESET); 936 dm9000_phy_write(dev, 0, MII_DM_DSPCR, DSPCR_INIT_PARAM); 937 } 938 939 ncr = (db->flags & DM9000_PLATF_EXT_PHY) ? NCR_EXT_PHY : 0; 940 941 /* if wol is needed, then always set NCR_WAKEEN otherwise we end 942 * up dumping the wake events if we disable this. There is already 943 * a wake-mask in DM9000_WCR */ 944 if (db->wake_supported) 945 ncr |= NCR_WAKEEN; 946 947 iow(db, DM9000_NCR, ncr); 948 949 /* Program operating register */ 950 iow(db, DM9000_TCR, 0); /* TX Polling clear */ 951 iow(db, DM9000_BPTR, 0x3f); /* Less 3Kb, 200us */ 952 iow(db, DM9000_FCR, 0xff); /* Flow Control */ 953 iow(db, DM9000_SMCR, 0); /* Special Mode */ 954 /* clear TX status */ 955 iow(db, DM9000_NSR, NSR_WAKEST | NSR_TX2END | NSR_TX1END); 956 iow(db, DM9000_ISR, ISR_CLR_STATUS); /* Clear interrupt status */ 957 958 /* Set address filter table */ 959 dm9000_hash_table_unlocked(dev); 960 961 imr = IMR_PAR | IMR_PTM | IMR_PRM; 962 if (db->type != TYPE_DM9000E) 963 imr |= IMR_LNKCHNG; 964 965 db->imr_all = imr; 966 967 /* Init Driver variable */ 968 db->tx_pkt_cnt = 0; 969 db->queue_pkt_len = 0; 970 dev->trans_start = jiffies; 971 } 972 973 /* Our watchdog timed out. Called by the networking layer */ 974 static void dm9000_timeout(struct net_device *dev) 975 { 976 struct board_info *db = netdev_priv(dev); 977 u8 reg_save; 978 unsigned long flags; 979 980 /* Save previous register address */ 981 spin_lock_irqsave(&db->lock, flags); 982 db->in_timeout = 1; 983 reg_save = readb(db->io_addr); 984 985 netif_stop_queue(dev); 986 dm9000_init_dm9000(dev); 987 dm9000_unmask_interrupts(db); 988 /* We can accept TX packets again */ 989 dev->trans_start = jiffies; /* prevent tx timeout */ 990 netif_wake_queue(dev); 991 992 /* Restore previous register address */ 993 writeb(reg_save, db->io_addr); 994 db->in_timeout = 0; 995 spin_unlock_irqrestore(&db->lock, flags); 996 } 997 998 static void dm9000_send_packet(struct net_device *dev, 999 int ip_summed, 1000 u16 pkt_len) 1001 { 1002 struct board_info *dm = to_dm9000_board(dev); 1003 1004 /* The DM9000 is not smart enough to leave fragmented packets alone. */ 1005 if (dm->ip_summed != ip_summed) { 1006 if (ip_summed == CHECKSUM_NONE) 1007 iow(dm, DM9000_TCCR, 0); 1008 else 1009 iow(dm, DM9000_TCCR, TCCR_IP | TCCR_UDP | TCCR_TCP); 1010 dm->ip_summed = ip_summed; 1011 } 1012 1013 /* Set TX length to DM9000 */ 1014 iow(dm, DM9000_TXPLL, pkt_len); 1015 iow(dm, DM9000_TXPLH, pkt_len >> 8); 1016 1017 /* Issue TX polling command */ 1018 iow(dm, DM9000_TCR, TCR_TXREQ); /* Cleared after TX complete */ 1019 } 1020 1021 /* 1022 * Hardware start transmission. 1023 * Send a packet to media from the upper layer. 1024 */ 1025 static int 1026 dm9000_start_xmit(struct sk_buff *skb, struct net_device *dev) 1027 { 1028 unsigned long flags; 1029 struct board_info *db = netdev_priv(dev); 1030 1031 dm9000_dbg(db, 3, "%s:\n", __func__); 1032 1033 if (db->tx_pkt_cnt > 1) 1034 return NETDEV_TX_BUSY; 1035 1036 spin_lock_irqsave(&db->lock, flags); 1037 1038 /* Move data to DM9000 TX RAM */ 1039 writeb(DM9000_MWCMD, db->io_addr); 1040 1041 (db->outblk)(db->io_data, skb->data, skb->len); 1042 dev->stats.tx_bytes += skb->len; 1043 1044 db->tx_pkt_cnt++; 1045 /* TX control: First packet immediately send, second packet queue */ 1046 if (db->tx_pkt_cnt == 1) { 1047 dm9000_send_packet(dev, skb->ip_summed, skb->len); 1048 } else { 1049 /* Second packet */ 1050 db->queue_pkt_len = skb->len; 1051 db->queue_ip_summed = skb->ip_summed; 1052 netif_stop_queue(dev); 1053 } 1054 1055 spin_unlock_irqrestore(&db->lock, flags); 1056 1057 /* free this SKB */ 1058 dev_consume_skb_any(skb); 1059 1060 return NETDEV_TX_OK; 1061 } 1062 1063 /* 1064 * DM9000 interrupt handler 1065 * receive the packet to upper layer, free the transmitted packet 1066 */ 1067 1068 static void dm9000_tx_done(struct net_device *dev, struct board_info *db) 1069 { 1070 int tx_status = ior(db, DM9000_NSR); /* Got TX status */ 1071 1072 if (tx_status & (NSR_TX2END | NSR_TX1END)) { 1073 /* One packet sent complete */ 1074 db->tx_pkt_cnt--; 1075 dev->stats.tx_packets++; 1076 1077 if (netif_msg_tx_done(db)) 1078 dev_dbg(db->dev, "tx done, NSR %02x\n", tx_status); 1079 1080 /* Queue packet check & send */ 1081 if (db->tx_pkt_cnt > 0) 1082 dm9000_send_packet(dev, db->queue_ip_summed, 1083 db->queue_pkt_len); 1084 netif_wake_queue(dev); 1085 } 1086 } 1087 1088 struct dm9000_rxhdr { 1089 u8 RxPktReady; 1090 u8 RxStatus; 1091 __le16 RxLen; 1092 } __packed; 1093 1094 /* 1095 * Received a packet and pass to upper layer 1096 */ 1097 static void 1098 dm9000_rx(struct net_device *dev) 1099 { 1100 struct board_info *db = netdev_priv(dev); 1101 struct dm9000_rxhdr rxhdr; 1102 struct sk_buff *skb; 1103 u8 rxbyte, *rdptr; 1104 bool GoodPacket; 1105 int RxLen; 1106 1107 /* Check packet ready or not */ 1108 do { 1109 ior(db, DM9000_MRCMDX); /* Dummy read */ 1110 1111 /* Get most updated data */ 1112 rxbyte = readb(db->io_data); 1113 1114 /* Status check: this byte must be 0 or 1 */ 1115 if (rxbyte & DM9000_PKT_ERR) { 1116 dev_warn(db->dev, "status check fail: %d\n", rxbyte); 1117 iow(db, DM9000_RCR, 0x00); /* Stop Device */ 1118 return; 1119 } 1120 1121 if (!(rxbyte & DM9000_PKT_RDY)) 1122 return; 1123 1124 /* A packet ready now & Get status/length */ 1125 GoodPacket = true; 1126 writeb(DM9000_MRCMD, db->io_addr); 1127 1128 (db->inblk)(db->io_data, &rxhdr, sizeof(rxhdr)); 1129 1130 RxLen = le16_to_cpu(rxhdr.RxLen); 1131 1132 if (netif_msg_rx_status(db)) 1133 dev_dbg(db->dev, "RX: status %02x, length %04x\n", 1134 rxhdr.RxStatus, RxLen); 1135 1136 /* Packet Status check */ 1137 if (RxLen < 0x40) { 1138 GoodPacket = false; 1139 if (netif_msg_rx_err(db)) 1140 dev_dbg(db->dev, "RX: Bad Packet (runt)\n"); 1141 } 1142 1143 if (RxLen > DM9000_PKT_MAX) { 1144 dev_dbg(db->dev, "RST: RX Len:%x\n", RxLen); 1145 } 1146 1147 /* rxhdr.RxStatus is identical to RSR register. */ 1148 if (rxhdr.RxStatus & (RSR_FOE | RSR_CE | RSR_AE | 1149 RSR_PLE | RSR_RWTO | 1150 RSR_LCS | RSR_RF)) { 1151 GoodPacket = false; 1152 if (rxhdr.RxStatus & RSR_FOE) { 1153 if (netif_msg_rx_err(db)) 1154 dev_dbg(db->dev, "fifo error\n"); 1155 dev->stats.rx_fifo_errors++; 1156 } 1157 if (rxhdr.RxStatus & RSR_CE) { 1158 if (netif_msg_rx_err(db)) 1159 dev_dbg(db->dev, "crc error\n"); 1160 dev->stats.rx_crc_errors++; 1161 } 1162 if (rxhdr.RxStatus & RSR_RF) { 1163 if (netif_msg_rx_err(db)) 1164 dev_dbg(db->dev, "length error\n"); 1165 dev->stats.rx_length_errors++; 1166 } 1167 } 1168 1169 /* Move data from DM9000 */ 1170 if (GoodPacket && 1171 ((skb = netdev_alloc_skb(dev, RxLen + 4)) != NULL)) { 1172 skb_reserve(skb, 2); 1173 rdptr = (u8 *) skb_put(skb, RxLen - 4); 1174 1175 /* Read received packet from RX SRAM */ 1176 1177 (db->inblk)(db->io_data, rdptr, RxLen); 1178 dev->stats.rx_bytes += RxLen; 1179 1180 /* Pass to upper layer */ 1181 skb->protocol = eth_type_trans(skb, dev); 1182 if (dev->features & NETIF_F_RXCSUM) { 1183 if ((((rxbyte & 0x1c) << 3) & rxbyte) == 0) 1184 skb->ip_summed = CHECKSUM_UNNECESSARY; 1185 else 1186 skb_checksum_none_assert(skb); 1187 } 1188 netif_rx(skb); 1189 dev->stats.rx_packets++; 1190 1191 } else { 1192 /* need to dump the packet's data */ 1193 1194 (db->dumpblk)(db->io_data, RxLen); 1195 } 1196 } while (rxbyte & DM9000_PKT_RDY); 1197 } 1198 1199 static irqreturn_t dm9000_interrupt(int irq, void *dev_id) 1200 { 1201 struct net_device *dev = dev_id; 1202 struct board_info *db = netdev_priv(dev); 1203 int int_status; 1204 unsigned long flags; 1205 u8 reg_save; 1206 1207 dm9000_dbg(db, 3, "entering %s\n", __func__); 1208 1209 /* A real interrupt coming */ 1210 1211 /* holders of db->lock must always block IRQs */ 1212 spin_lock_irqsave(&db->lock, flags); 1213 1214 /* Save previous register address */ 1215 reg_save = readb(db->io_addr); 1216 1217 dm9000_mask_interrupts(db); 1218 /* Got DM9000 interrupt status */ 1219 int_status = ior(db, DM9000_ISR); /* Got ISR */ 1220 iow(db, DM9000_ISR, int_status); /* Clear ISR status */ 1221 1222 if (netif_msg_intr(db)) 1223 dev_dbg(db->dev, "interrupt status %02x\n", int_status); 1224 1225 /* Received the coming packet */ 1226 if (int_status & ISR_PRS) 1227 dm9000_rx(dev); 1228 1229 /* Transmit Interrupt check */ 1230 if (int_status & ISR_PTS) 1231 dm9000_tx_done(dev, db); 1232 1233 if (db->type != TYPE_DM9000E) { 1234 if (int_status & ISR_LNKCHNG) { 1235 /* fire a link-change request */ 1236 schedule_delayed_work(&db->phy_poll, 1); 1237 } 1238 } 1239 1240 dm9000_unmask_interrupts(db); 1241 /* Restore previous register address */ 1242 writeb(reg_save, db->io_addr); 1243 1244 spin_unlock_irqrestore(&db->lock, flags); 1245 1246 return IRQ_HANDLED; 1247 } 1248 1249 static irqreturn_t dm9000_wol_interrupt(int irq, void *dev_id) 1250 { 1251 struct net_device *dev = dev_id; 1252 struct board_info *db = netdev_priv(dev); 1253 unsigned long flags; 1254 unsigned nsr, wcr; 1255 1256 spin_lock_irqsave(&db->lock, flags); 1257 1258 nsr = ior(db, DM9000_NSR); 1259 wcr = ior(db, DM9000_WCR); 1260 1261 dev_dbg(db->dev, "%s: NSR=0x%02x, WCR=0x%02x\n", __func__, nsr, wcr); 1262 1263 if (nsr & NSR_WAKEST) { 1264 /* clear, so we can avoid */ 1265 iow(db, DM9000_NSR, NSR_WAKEST); 1266 1267 if (wcr & WCR_LINKST) 1268 dev_info(db->dev, "wake by link status change\n"); 1269 if (wcr & WCR_SAMPLEST) 1270 dev_info(db->dev, "wake by sample packet\n"); 1271 if (wcr & WCR_MAGICST) 1272 dev_info(db->dev, "wake by magic packet\n"); 1273 if (!(wcr & (WCR_LINKST | WCR_SAMPLEST | WCR_MAGICST))) 1274 dev_err(db->dev, "wake signalled with no reason? " 1275 "NSR=0x%02x, WSR=0x%02x\n", nsr, wcr); 1276 } 1277 1278 spin_unlock_irqrestore(&db->lock, flags); 1279 1280 return (nsr & NSR_WAKEST) ? IRQ_HANDLED : IRQ_NONE; 1281 } 1282 1283 #ifdef CONFIG_NET_POLL_CONTROLLER 1284 /* 1285 *Used by netconsole 1286 */ 1287 static void dm9000_poll_controller(struct net_device *dev) 1288 { 1289 disable_irq(dev->irq); 1290 dm9000_interrupt(dev->irq, dev); 1291 enable_irq(dev->irq); 1292 } 1293 #endif 1294 1295 /* 1296 * Open the interface. 1297 * The interface is opened whenever "ifconfig" actives it. 1298 */ 1299 static int 1300 dm9000_open(struct net_device *dev) 1301 { 1302 struct board_info *db = netdev_priv(dev); 1303 unsigned long irqflags = db->irq_res->flags & IRQF_TRIGGER_MASK; 1304 1305 if (netif_msg_ifup(db)) 1306 dev_dbg(db->dev, "enabling %s\n", dev->name); 1307 1308 /* If there is no IRQ type specified, default to something that 1309 * may work, and tell the user that this is a problem */ 1310 1311 if (irqflags == IRQF_TRIGGER_NONE) 1312 irqflags = irq_get_trigger_type(dev->irq); 1313 1314 if (irqflags == IRQF_TRIGGER_NONE) 1315 dev_warn(db->dev, "WARNING: no IRQ resource flags set.\n"); 1316 1317 irqflags |= IRQF_SHARED; 1318 1319 /* GPIO0 on pre-activate PHY, Reg 1F is not set by reset */ 1320 iow(db, DM9000_GPR, 0); /* REG_1F bit0 activate phyxcer */ 1321 mdelay(1); /* delay needs by DM9000B */ 1322 1323 /* Initialize DM9000 board */ 1324 dm9000_init_dm9000(dev); 1325 1326 if (request_irq(dev->irq, dm9000_interrupt, irqflags, dev->name, dev)) 1327 return -EAGAIN; 1328 /* Now that we have an interrupt handler hooked up we can unmask 1329 * our interrupts 1330 */ 1331 dm9000_unmask_interrupts(db); 1332 1333 /* Init driver variable */ 1334 db->dbug_cnt = 0; 1335 1336 mii_check_media(&db->mii, netif_msg_link(db), 1); 1337 netif_start_queue(dev); 1338 1339 /* Poll initial link status */ 1340 schedule_delayed_work(&db->phy_poll, 1); 1341 1342 return 0; 1343 } 1344 1345 static void 1346 dm9000_shutdown(struct net_device *dev) 1347 { 1348 struct board_info *db = netdev_priv(dev); 1349 1350 /* RESET device */ 1351 dm9000_phy_write(dev, 0, MII_BMCR, BMCR_RESET); /* PHY RESET */ 1352 iow(db, DM9000_GPR, 0x01); /* Power-Down PHY */ 1353 dm9000_mask_interrupts(db); 1354 iow(db, DM9000_RCR, 0x00); /* Disable RX */ 1355 } 1356 1357 /* 1358 * Stop the interface. 1359 * The interface is stopped when it is brought. 1360 */ 1361 static int 1362 dm9000_stop(struct net_device *ndev) 1363 { 1364 struct board_info *db = netdev_priv(ndev); 1365 1366 if (netif_msg_ifdown(db)) 1367 dev_dbg(db->dev, "shutting down %s\n", ndev->name); 1368 1369 cancel_delayed_work_sync(&db->phy_poll); 1370 1371 netif_stop_queue(ndev); 1372 netif_carrier_off(ndev); 1373 1374 /* free interrupt */ 1375 free_irq(ndev->irq, ndev); 1376 1377 dm9000_shutdown(ndev); 1378 1379 return 0; 1380 } 1381 1382 static const struct net_device_ops dm9000_netdev_ops = { 1383 .ndo_open = dm9000_open, 1384 .ndo_stop = dm9000_stop, 1385 .ndo_start_xmit = dm9000_start_xmit, 1386 .ndo_tx_timeout = dm9000_timeout, 1387 .ndo_set_rx_mode = dm9000_hash_table, 1388 .ndo_do_ioctl = dm9000_ioctl, 1389 .ndo_change_mtu = eth_change_mtu, 1390 .ndo_set_features = dm9000_set_features, 1391 .ndo_validate_addr = eth_validate_addr, 1392 .ndo_set_mac_address = eth_mac_addr, 1393 #ifdef CONFIG_NET_POLL_CONTROLLER 1394 .ndo_poll_controller = dm9000_poll_controller, 1395 #endif 1396 }; 1397 1398 static struct dm9000_plat_data *dm9000_parse_dt(struct device *dev) 1399 { 1400 struct dm9000_plat_data *pdata; 1401 struct device_node *np = dev->of_node; 1402 const void *mac_addr; 1403 1404 if (!IS_ENABLED(CONFIG_OF) || !np) 1405 return ERR_PTR(-ENXIO); 1406 1407 pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL); 1408 if (!pdata) 1409 return ERR_PTR(-ENOMEM); 1410 1411 if (of_find_property(np, "davicom,ext-phy", NULL)) 1412 pdata->flags |= DM9000_PLATF_EXT_PHY; 1413 if (of_find_property(np, "davicom,no-eeprom", NULL)) 1414 pdata->flags |= DM9000_PLATF_NO_EEPROM; 1415 1416 mac_addr = of_get_mac_address(np); 1417 if (mac_addr) 1418 memcpy(pdata->dev_addr, mac_addr, sizeof(pdata->dev_addr)); 1419 1420 return pdata; 1421 } 1422 1423 /* 1424 * Search DM9000 board, allocate space and register it 1425 */ 1426 static int 1427 dm9000_probe(struct platform_device *pdev) 1428 { 1429 struct dm9000_plat_data *pdata = dev_get_platdata(&pdev->dev); 1430 struct board_info *db; /* Point a board information structure */ 1431 struct net_device *ndev; 1432 struct device *dev = &pdev->dev; 1433 const unsigned char *mac_src; 1434 int ret = 0; 1435 int iosize; 1436 int i; 1437 u32 id_val; 1438 int reset_gpios; 1439 enum of_gpio_flags flags; 1440 struct regulator *power; 1441 1442 power = devm_regulator_get(dev, "vcc"); 1443 if (IS_ERR(power)) { 1444 if (PTR_ERR(power) == -EPROBE_DEFER) 1445 return -EPROBE_DEFER; 1446 dev_dbg(dev, "no regulator provided\n"); 1447 } else { 1448 ret = regulator_enable(power); 1449 if (ret != 0) { 1450 dev_err(dev, 1451 "Failed to enable power regulator: %d\n", ret); 1452 return ret; 1453 } 1454 dev_dbg(dev, "regulator enabled\n"); 1455 } 1456 1457 reset_gpios = of_get_named_gpio_flags(dev->of_node, "reset-gpios", 0, 1458 &flags); 1459 if (gpio_is_valid(reset_gpios)) { 1460 ret = devm_gpio_request_one(dev, reset_gpios, flags, 1461 "dm9000_reset"); 1462 if (ret) { 1463 dev_err(dev, "failed to request reset gpio %d: %d\n", 1464 reset_gpios, ret); 1465 return -ENODEV; 1466 } 1467 1468 /* According to manual PWRST# Low Period Min 1ms */ 1469 msleep(2); 1470 gpio_set_value(reset_gpios, 1); 1471 /* Needs 3ms to read eeprom when PWRST is deasserted */ 1472 msleep(4); 1473 } 1474 1475 if (!pdata) { 1476 pdata = dm9000_parse_dt(&pdev->dev); 1477 if (IS_ERR(pdata)) 1478 return PTR_ERR(pdata); 1479 } 1480 1481 /* Init network device */ 1482 ndev = alloc_etherdev(sizeof(struct board_info)); 1483 if (!ndev) 1484 return -ENOMEM; 1485 1486 SET_NETDEV_DEV(ndev, &pdev->dev); 1487 1488 dev_dbg(&pdev->dev, "dm9000_probe()\n"); 1489 1490 /* setup board info structure */ 1491 db = netdev_priv(ndev); 1492 1493 db->dev = &pdev->dev; 1494 db->ndev = ndev; 1495 1496 spin_lock_init(&db->lock); 1497 mutex_init(&db->addr_lock); 1498 1499 INIT_DELAYED_WORK(&db->phy_poll, dm9000_poll_work); 1500 1501 db->addr_res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1502 db->data_res = platform_get_resource(pdev, IORESOURCE_MEM, 1); 1503 db->irq_res = platform_get_resource(pdev, IORESOURCE_IRQ, 0); 1504 1505 if (db->addr_res == NULL || db->data_res == NULL || 1506 db->irq_res == NULL) { 1507 dev_err(db->dev, "insufficient resources\n"); 1508 ret = -ENOENT; 1509 goto out; 1510 } 1511 1512 db->irq_wake = platform_get_irq(pdev, 1); 1513 if (db->irq_wake >= 0) { 1514 dev_dbg(db->dev, "wakeup irq %d\n", db->irq_wake); 1515 1516 ret = request_irq(db->irq_wake, dm9000_wol_interrupt, 1517 IRQF_SHARED, dev_name(db->dev), ndev); 1518 if (ret) { 1519 dev_err(db->dev, "cannot get wakeup irq (%d)\n", ret); 1520 } else { 1521 1522 /* test to see if irq is really wakeup capable */ 1523 ret = irq_set_irq_wake(db->irq_wake, 1); 1524 if (ret) { 1525 dev_err(db->dev, "irq %d cannot set wakeup (%d)\n", 1526 db->irq_wake, ret); 1527 ret = 0; 1528 } else { 1529 irq_set_irq_wake(db->irq_wake, 0); 1530 db->wake_supported = 1; 1531 } 1532 } 1533 } 1534 1535 iosize = resource_size(db->addr_res); 1536 db->addr_req = request_mem_region(db->addr_res->start, iosize, 1537 pdev->name); 1538 1539 if (db->addr_req == NULL) { 1540 dev_err(db->dev, "cannot claim address reg area\n"); 1541 ret = -EIO; 1542 goto out; 1543 } 1544 1545 db->io_addr = ioremap(db->addr_res->start, iosize); 1546 1547 if (db->io_addr == NULL) { 1548 dev_err(db->dev, "failed to ioremap address reg\n"); 1549 ret = -EINVAL; 1550 goto out; 1551 } 1552 1553 iosize = resource_size(db->data_res); 1554 db->data_req = request_mem_region(db->data_res->start, iosize, 1555 pdev->name); 1556 1557 if (db->data_req == NULL) { 1558 dev_err(db->dev, "cannot claim data reg area\n"); 1559 ret = -EIO; 1560 goto out; 1561 } 1562 1563 db->io_data = ioremap(db->data_res->start, iosize); 1564 1565 if (db->io_data == NULL) { 1566 dev_err(db->dev, "failed to ioremap data reg\n"); 1567 ret = -EINVAL; 1568 goto out; 1569 } 1570 1571 /* fill in parameters for net-dev structure */ 1572 ndev->base_addr = (unsigned long)db->io_addr; 1573 ndev->irq = db->irq_res->start; 1574 1575 /* ensure at least we have a default set of IO routines */ 1576 dm9000_set_io(db, iosize); 1577 1578 /* check to see if anything is being over-ridden */ 1579 if (pdata != NULL) { 1580 /* check to see if the driver wants to over-ride the 1581 * default IO width */ 1582 1583 if (pdata->flags & DM9000_PLATF_8BITONLY) 1584 dm9000_set_io(db, 1); 1585 1586 if (pdata->flags & DM9000_PLATF_16BITONLY) 1587 dm9000_set_io(db, 2); 1588 1589 if (pdata->flags & DM9000_PLATF_32BITONLY) 1590 dm9000_set_io(db, 4); 1591 1592 /* check to see if there are any IO routine 1593 * over-rides */ 1594 1595 if (pdata->inblk != NULL) 1596 db->inblk = pdata->inblk; 1597 1598 if (pdata->outblk != NULL) 1599 db->outblk = pdata->outblk; 1600 1601 if (pdata->dumpblk != NULL) 1602 db->dumpblk = pdata->dumpblk; 1603 1604 db->flags = pdata->flags; 1605 } 1606 1607 #ifdef CONFIG_DM9000_FORCE_SIMPLE_PHY_POLL 1608 db->flags |= DM9000_PLATF_SIMPLE_PHY; 1609 #endif 1610 1611 dm9000_reset(db); 1612 1613 /* try multiple times, DM9000 sometimes gets the read wrong */ 1614 for (i = 0; i < 8; i++) { 1615 id_val = ior(db, DM9000_VIDL); 1616 id_val |= (u32)ior(db, DM9000_VIDH) << 8; 1617 id_val |= (u32)ior(db, DM9000_PIDL) << 16; 1618 id_val |= (u32)ior(db, DM9000_PIDH) << 24; 1619 1620 if (id_val == DM9000_ID) 1621 break; 1622 dev_err(db->dev, "read wrong id 0x%08x\n", id_val); 1623 } 1624 1625 if (id_val != DM9000_ID) { 1626 dev_err(db->dev, "wrong id: 0x%08x\n", id_val); 1627 ret = -ENODEV; 1628 goto out; 1629 } 1630 1631 /* Identify what type of DM9000 we are working on */ 1632 1633 id_val = ior(db, DM9000_CHIPR); 1634 dev_dbg(db->dev, "dm9000 revision 0x%02x\n", id_val); 1635 1636 switch (id_val) { 1637 case CHIPR_DM9000A: 1638 db->type = TYPE_DM9000A; 1639 break; 1640 case CHIPR_DM9000B: 1641 db->type = TYPE_DM9000B; 1642 break; 1643 default: 1644 dev_dbg(db->dev, "ID %02x => defaulting to DM9000E\n", id_val); 1645 db->type = TYPE_DM9000E; 1646 } 1647 1648 /* dm9000a/b are capable of hardware checksum offload */ 1649 if (db->type == TYPE_DM9000A || db->type == TYPE_DM9000B) { 1650 ndev->hw_features = NETIF_F_RXCSUM | NETIF_F_IP_CSUM; 1651 ndev->features |= ndev->hw_features; 1652 } 1653 1654 /* from this point we assume that we have found a DM9000 */ 1655 1656 ndev->netdev_ops = &dm9000_netdev_ops; 1657 ndev->watchdog_timeo = msecs_to_jiffies(watchdog); 1658 ndev->ethtool_ops = &dm9000_ethtool_ops; 1659 1660 db->msg_enable = NETIF_MSG_LINK; 1661 db->mii.phy_id_mask = 0x1f; 1662 db->mii.reg_num_mask = 0x1f; 1663 db->mii.force_media = 0; 1664 db->mii.full_duplex = 0; 1665 db->mii.dev = ndev; 1666 db->mii.mdio_read = dm9000_phy_read; 1667 db->mii.mdio_write = dm9000_phy_write; 1668 1669 mac_src = "eeprom"; 1670 1671 /* try reading the node address from the attached EEPROM */ 1672 for (i = 0; i < 6; i += 2) 1673 dm9000_read_eeprom(db, i / 2, ndev->dev_addr+i); 1674 1675 if (!is_valid_ether_addr(ndev->dev_addr) && pdata != NULL) { 1676 mac_src = "platform data"; 1677 memcpy(ndev->dev_addr, pdata->dev_addr, ETH_ALEN); 1678 } 1679 1680 if (!is_valid_ether_addr(ndev->dev_addr)) { 1681 /* try reading from mac */ 1682 1683 mac_src = "chip"; 1684 for (i = 0; i < 6; i++) 1685 ndev->dev_addr[i] = ior(db, i+DM9000_PAR); 1686 } 1687 1688 if (!is_valid_ether_addr(ndev->dev_addr)) { 1689 dev_warn(db->dev, "%s: Invalid ethernet MAC address. Please " 1690 "set using ifconfig\n", ndev->name); 1691 1692 eth_hw_addr_random(ndev); 1693 mac_src = "random"; 1694 } 1695 1696 1697 platform_set_drvdata(pdev, ndev); 1698 ret = register_netdev(ndev); 1699 1700 if (ret == 0) 1701 printk(KERN_INFO "%s: dm9000%c at %p,%p IRQ %d MAC: %pM (%s)\n", 1702 ndev->name, dm9000_type_to_char(db->type), 1703 db->io_addr, db->io_data, ndev->irq, 1704 ndev->dev_addr, mac_src); 1705 return 0; 1706 1707 out: 1708 dev_err(db->dev, "not found (%d).\n", ret); 1709 1710 dm9000_release_board(pdev, db); 1711 free_netdev(ndev); 1712 1713 return ret; 1714 } 1715 1716 static int 1717 dm9000_drv_suspend(struct device *dev) 1718 { 1719 struct platform_device *pdev = to_platform_device(dev); 1720 struct net_device *ndev = platform_get_drvdata(pdev); 1721 struct board_info *db; 1722 1723 if (ndev) { 1724 db = netdev_priv(ndev); 1725 db->in_suspend = 1; 1726 1727 if (!netif_running(ndev)) 1728 return 0; 1729 1730 netif_device_detach(ndev); 1731 1732 /* only shutdown if not using WoL */ 1733 if (!db->wake_state) 1734 dm9000_shutdown(ndev); 1735 } 1736 return 0; 1737 } 1738 1739 static int 1740 dm9000_drv_resume(struct device *dev) 1741 { 1742 struct platform_device *pdev = to_platform_device(dev); 1743 struct net_device *ndev = platform_get_drvdata(pdev); 1744 struct board_info *db = netdev_priv(ndev); 1745 1746 if (ndev) { 1747 if (netif_running(ndev)) { 1748 /* reset if we were not in wake mode to ensure if 1749 * the device was powered off it is in a known state */ 1750 if (!db->wake_state) { 1751 dm9000_init_dm9000(ndev); 1752 dm9000_unmask_interrupts(db); 1753 } 1754 1755 netif_device_attach(ndev); 1756 } 1757 1758 db->in_suspend = 0; 1759 } 1760 return 0; 1761 } 1762 1763 static const struct dev_pm_ops dm9000_drv_pm_ops = { 1764 .suspend = dm9000_drv_suspend, 1765 .resume = dm9000_drv_resume, 1766 }; 1767 1768 static int 1769 dm9000_drv_remove(struct platform_device *pdev) 1770 { 1771 struct net_device *ndev = platform_get_drvdata(pdev); 1772 1773 unregister_netdev(ndev); 1774 dm9000_release_board(pdev, netdev_priv(ndev)); 1775 free_netdev(ndev); /* free device structure */ 1776 1777 dev_dbg(&pdev->dev, "released and freed device\n"); 1778 return 0; 1779 } 1780 1781 #ifdef CONFIG_OF 1782 static const struct of_device_id dm9000_of_matches[] = { 1783 { .compatible = "davicom,dm9000", }, 1784 { /* sentinel */ } 1785 }; 1786 MODULE_DEVICE_TABLE(of, dm9000_of_matches); 1787 #endif 1788 1789 static struct platform_driver dm9000_driver = { 1790 .driver = { 1791 .name = "dm9000", 1792 .pm = &dm9000_drv_pm_ops, 1793 .of_match_table = of_match_ptr(dm9000_of_matches), 1794 }, 1795 .probe = dm9000_probe, 1796 .remove = dm9000_drv_remove, 1797 }; 1798 1799 module_platform_driver(dm9000_driver); 1800 1801 MODULE_AUTHOR("Sascha Hauer, Ben Dooks"); 1802 MODULE_DESCRIPTION("Davicom DM9000 network driver"); 1803 MODULE_LICENSE("GPL"); 1804 MODULE_ALIAS("platform:dm9000"); 1805