1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      Davicom DM9000 Fast Ethernet driver for Linux.
4  * 	Copyright (C) 1997  Sten Wang
5  *
6  * (C) Copyright 1997-1998 DAVICOM Semiconductor,Inc. All Rights Reserved.
7  *
8  * Additional updates, Copyright:
9  *	Ben Dooks <ben@simtec.co.uk>
10  *	Sascha Hauer <s.hauer@pengutronix.de>
11  */
12 
13 #include <linux/module.h>
14 #include <linux/ioport.h>
15 #include <linux/netdevice.h>
16 #include <linux/etherdevice.h>
17 #include <linux/interrupt.h>
18 #include <linux/skbuff.h>
19 #include <linux/spinlock.h>
20 #include <linux/crc32.h>
21 #include <linux/mii.h>
22 #include <linux/of.h>
23 #include <linux/of_net.h>
24 #include <linux/ethtool.h>
25 #include <linux/dm9000.h>
26 #include <linux/delay.h>
27 #include <linux/platform_device.h>
28 #include <linux/irq.h>
29 #include <linux/slab.h>
30 #include <linux/regulator/consumer.h>
31 #include <linux/gpio.h>
32 #include <linux/of_gpio.h>
33 
34 #include <asm/delay.h>
35 #include <asm/irq.h>
36 #include <asm/io.h>
37 
38 #include "dm9000.h"
39 
40 /* Board/System/Debug information/definition ---------------- */
41 
42 #define DM9000_PHY		0x40	/* PHY address 0x01 */
43 
44 #define CARDNAME	"dm9000"
45 
46 /*
47  * Transmit timeout, default 5 seconds.
48  */
49 static int watchdog = 5000;
50 module_param(watchdog, int, 0400);
51 MODULE_PARM_DESC(watchdog, "transmit timeout in milliseconds");
52 
53 /*
54  * Debug messages level
55  */
56 static int debug;
57 module_param(debug, int, 0644);
58 MODULE_PARM_DESC(debug, "dm9000 debug level (0-6)");
59 
60 /* DM9000 register address locking.
61  *
62  * The DM9000 uses an address register to control where data written
63  * to the data register goes. This means that the address register
64  * must be preserved over interrupts or similar calls.
65  *
66  * During interrupt and other critical calls, a spinlock is used to
67  * protect the system, but the calls themselves save the address
68  * in the address register in case they are interrupting another
69  * access to the device.
70  *
71  * For general accesses a lock is provided so that calls which are
72  * allowed to sleep are serialised so that the address register does
73  * not need to be saved. This lock also serves to serialise access
74  * to the EEPROM and PHY access registers which are shared between
75  * these two devices.
76  */
77 
78 /* The driver supports the original DM9000E, and now the two newer
79  * devices, DM9000A and DM9000B.
80  */
81 
82 enum dm9000_type {
83 	TYPE_DM9000E,	/* original DM9000 */
84 	TYPE_DM9000A,
85 	TYPE_DM9000B
86 };
87 
88 /* Structure/enum declaration ------------------------------- */
89 struct board_info {
90 
91 	void __iomem	*io_addr;	/* Register I/O base address */
92 	void __iomem	*io_data;	/* Data I/O address */
93 	u16		 irq;		/* IRQ */
94 
95 	u16		tx_pkt_cnt;
96 	u16		queue_pkt_len;
97 	u16		queue_start_addr;
98 	u16		queue_ip_summed;
99 	u16		dbug_cnt;
100 	u8		io_mode;		/* 0:word, 2:byte */
101 	u8		phy_addr;
102 	u8		imr_all;
103 
104 	unsigned int	flags;
105 	unsigned int	in_timeout:1;
106 	unsigned int	in_suspend:1;
107 	unsigned int	wake_supported:1;
108 
109 	enum dm9000_type type;
110 
111 	void (*inblk)(void __iomem *port, void *data, int length);
112 	void (*outblk)(void __iomem *port, void *data, int length);
113 	void (*dumpblk)(void __iomem *port, int length);
114 
115 	struct device	*dev;	     /* parent device */
116 
117 	struct resource	*addr_res;   /* resources found */
118 	struct resource *data_res;
119 	struct resource	*addr_req;   /* resources requested */
120 	struct resource *data_req;
121 
122 	int		 irq_wake;
123 
124 	struct mutex	 addr_lock;	/* phy and eeprom access lock */
125 
126 	struct delayed_work phy_poll;
127 	struct net_device  *ndev;
128 
129 	spinlock_t	lock;
130 
131 	struct mii_if_info mii;
132 	u32		msg_enable;
133 	u32		wake_state;
134 
135 	int		ip_summed;
136 };
137 
138 /* debug code */
139 
140 #define dm9000_dbg(db, lev, msg...) do {		\
141 	if ((lev) < debug) {				\
142 		dev_dbg(db->dev, msg);			\
143 	}						\
144 } while (0)
145 
146 static inline struct board_info *to_dm9000_board(struct net_device *dev)
147 {
148 	return netdev_priv(dev);
149 }
150 
151 /* DM9000 network board routine ---------------------------- */
152 
153 /*
154  *   Read a byte from I/O port
155  */
156 static u8
157 ior(struct board_info *db, int reg)
158 {
159 	writeb(reg, db->io_addr);
160 	return readb(db->io_data);
161 }
162 
163 /*
164  *   Write a byte to I/O port
165  */
166 
167 static void
168 iow(struct board_info *db, int reg, int value)
169 {
170 	writeb(reg, db->io_addr);
171 	writeb(value, db->io_data);
172 }
173 
174 static void
175 dm9000_reset(struct board_info *db)
176 {
177 	dev_dbg(db->dev, "resetting device\n");
178 
179 	/* Reset DM9000, see DM9000 Application Notes V1.22 Jun 11, 2004 page 29
180 	 * The essential point is that we have to do a double reset, and the
181 	 * instruction is to set LBK into MAC internal loopback mode.
182 	 */
183 	iow(db, DM9000_NCR, NCR_RST | NCR_MAC_LBK);
184 	udelay(100); /* Application note says at least 20 us */
185 	if (ior(db, DM9000_NCR) & 1)
186 		dev_err(db->dev, "dm9000 did not respond to first reset\n");
187 
188 	iow(db, DM9000_NCR, 0);
189 	iow(db, DM9000_NCR, NCR_RST | NCR_MAC_LBK);
190 	udelay(100);
191 	if (ior(db, DM9000_NCR) & 1)
192 		dev_err(db->dev, "dm9000 did not respond to second reset\n");
193 }
194 
195 /* routines for sending block to chip */
196 
197 static void dm9000_outblk_8bit(void __iomem *reg, void *data, int count)
198 {
199 	iowrite8_rep(reg, data, count);
200 }
201 
202 static void dm9000_outblk_16bit(void __iomem *reg, void *data, int count)
203 {
204 	iowrite16_rep(reg, data, (count+1) >> 1);
205 }
206 
207 static void dm9000_outblk_32bit(void __iomem *reg, void *data, int count)
208 {
209 	iowrite32_rep(reg, data, (count+3) >> 2);
210 }
211 
212 /* input block from chip to memory */
213 
214 static void dm9000_inblk_8bit(void __iomem *reg, void *data, int count)
215 {
216 	ioread8_rep(reg, data, count);
217 }
218 
219 
220 static void dm9000_inblk_16bit(void __iomem *reg, void *data, int count)
221 {
222 	ioread16_rep(reg, data, (count+1) >> 1);
223 }
224 
225 static void dm9000_inblk_32bit(void __iomem *reg, void *data, int count)
226 {
227 	ioread32_rep(reg, data, (count+3) >> 2);
228 }
229 
230 /* dump block from chip to null */
231 
232 static void dm9000_dumpblk_8bit(void __iomem *reg, int count)
233 {
234 	int i;
235 
236 	for (i = 0; i < count; i++)
237 		readb(reg);
238 }
239 
240 static void dm9000_dumpblk_16bit(void __iomem *reg, int count)
241 {
242 	int i;
243 
244 	count = (count + 1) >> 1;
245 
246 	for (i = 0; i < count; i++)
247 		readw(reg);
248 }
249 
250 static void dm9000_dumpblk_32bit(void __iomem *reg, int count)
251 {
252 	int i;
253 
254 	count = (count + 3) >> 2;
255 
256 	for (i = 0; i < count; i++)
257 		readl(reg);
258 }
259 
260 /*
261  * Sleep, either by using msleep() or if we are suspending, then
262  * use mdelay() to sleep.
263  */
264 static void dm9000_msleep(struct board_info *db, unsigned int ms)
265 {
266 	if (db->in_suspend || db->in_timeout)
267 		mdelay(ms);
268 	else
269 		msleep(ms);
270 }
271 
272 /* Read a word from phyxcer */
273 static int
274 dm9000_phy_read(struct net_device *dev, int phy_reg_unused, int reg)
275 {
276 	struct board_info *db = netdev_priv(dev);
277 	unsigned long flags;
278 	unsigned int reg_save;
279 	int ret;
280 
281 	mutex_lock(&db->addr_lock);
282 
283 	spin_lock_irqsave(&db->lock, flags);
284 
285 	/* Save previous register address */
286 	reg_save = readb(db->io_addr);
287 
288 	/* Fill the phyxcer register into REG_0C */
289 	iow(db, DM9000_EPAR, DM9000_PHY | reg);
290 
291 	/* Issue phyxcer read command */
292 	iow(db, DM9000_EPCR, EPCR_ERPRR | EPCR_EPOS);
293 
294 	writeb(reg_save, db->io_addr);
295 	spin_unlock_irqrestore(&db->lock, flags);
296 
297 	dm9000_msleep(db, 1);		/* Wait read complete */
298 
299 	spin_lock_irqsave(&db->lock, flags);
300 	reg_save = readb(db->io_addr);
301 
302 	iow(db, DM9000_EPCR, 0x0);	/* Clear phyxcer read command */
303 
304 	/* The read data keeps on REG_0D & REG_0E */
305 	ret = (ior(db, DM9000_EPDRH) << 8) | ior(db, DM9000_EPDRL);
306 
307 	/* restore the previous address */
308 	writeb(reg_save, db->io_addr);
309 	spin_unlock_irqrestore(&db->lock, flags);
310 
311 	mutex_unlock(&db->addr_lock);
312 
313 	dm9000_dbg(db, 5, "phy_read[%02x] -> %04x\n", reg, ret);
314 	return ret;
315 }
316 
317 /* Write a word to phyxcer */
318 static void
319 dm9000_phy_write(struct net_device *dev,
320 		 int phyaddr_unused, int reg, int value)
321 {
322 	struct board_info *db = netdev_priv(dev);
323 	unsigned long flags;
324 	unsigned long reg_save;
325 
326 	dm9000_dbg(db, 5, "phy_write[%02x] = %04x\n", reg, value);
327 	if (!db->in_timeout)
328 		mutex_lock(&db->addr_lock);
329 
330 	spin_lock_irqsave(&db->lock, flags);
331 
332 	/* Save previous register address */
333 	reg_save = readb(db->io_addr);
334 
335 	/* Fill the phyxcer register into REG_0C */
336 	iow(db, DM9000_EPAR, DM9000_PHY | reg);
337 
338 	/* Fill the written data into REG_0D & REG_0E */
339 	iow(db, DM9000_EPDRL, value);
340 	iow(db, DM9000_EPDRH, value >> 8);
341 
342 	/* Issue phyxcer write command */
343 	iow(db, DM9000_EPCR, EPCR_EPOS | EPCR_ERPRW);
344 
345 	writeb(reg_save, db->io_addr);
346 	spin_unlock_irqrestore(&db->lock, flags);
347 
348 	dm9000_msleep(db, 1);		/* Wait write complete */
349 
350 	spin_lock_irqsave(&db->lock, flags);
351 	reg_save = readb(db->io_addr);
352 
353 	iow(db, DM9000_EPCR, 0x0);	/* Clear phyxcer write command */
354 
355 	/* restore the previous address */
356 	writeb(reg_save, db->io_addr);
357 
358 	spin_unlock_irqrestore(&db->lock, flags);
359 	if (!db->in_timeout)
360 		mutex_unlock(&db->addr_lock);
361 }
362 
363 /* dm9000_set_io
364  *
365  * select the specified set of io routines to use with the
366  * device
367  */
368 
369 static void dm9000_set_io(struct board_info *db, int byte_width)
370 {
371 	/* use the size of the data resource to work out what IO
372 	 * routines we want to use
373 	 */
374 
375 	switch (byte_width) {
376 	case 1:
377 		db->dumpblk = dm9000_dumpblk_8bit;
378 		db->outblk  = dm9000_outblk_8bit;
379 		db->inblk   = dm9000_inblk_8bit;
380 		break;
381 
382 
383 	case 3:
384 		dev_dbg(db->dev, ": 3 byte IO, falling back to 16bit\n");
385 		fallthrough;
386 	case 2:
387 		db->dumpblk = dm9000_dumpblk_16bit;
388 		db->outblk  = dm9000_outblk_16bit;
389 		db->inblk   = dm9000_inblk_16bit;
390 		break;
391 
392 	case 4:
393 	default:
394 		db->dumpblk = dm9000_dumpblk_32bit;
395 		db->outblk  = dm9000_outblk_32bit;
396 		db->inblk   = dm9000_inblk_32bit;
397 		break;
398 	}
399 }
400 
401 static void dm9000_schedule_poll(struct board_info *db)
402 {
403 	if (db->type == TYPE_DM9000E)
404 		schedule_delayed_work(&db->phy_poll, HZ * 2);
405 }
406 
407 static int dm9000_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
408 {
409 	struct board_info *dm = to_dm9000_board(dev);
410 
411 	if (!netif_running(dev))
412 		return -EINVAL;
413 
414 	return generic_mii_ioctl(&dm->mii, if_mii(req), cmd, NULL);
415 }
416 
417 static unsigned int
418 dm9000_read_locked(struct board_info *db, int reg)
419 {
420 	unsigned long flags;
421 	unsigned int ret;
422 
423 	spin_lock_irqsave(&db->lock, flags);
424 	ret = ior(db, reg);
425 	spin_unlock_irqrestore(&db->lock, flags);
426 
427 	return ret;
428 }
429 
430 static int dm9000_wait_eeprom(struct board_info *db)
431 {
432 	unsigned int status;
433 	int timeout = 8;	/* wait max 8msec */
434 
435 	/* The DM9000 data sheets say we should be able to
436 	 * poll the ERRE bit in EPCR to wait for the EEPROM
437 	 * operation. From testing several chips, this bit
438 	 * does not seem to work.
439 	 *
440 	 * We attempt to use the bit, but fall back to the
441 	 * timeout (which is why we do not return an error
442 	 * on expiry) to say that the EEPROM operation has
443 	 * completed.
444 	 */
445 
446 	while (1) {
447 		status = dm9000_read_locked(db, DM9000_EPCR);
448 
449 		if ((status & EPCR_ERRE) == 0)
450 			break;
451 
452 		msleep(1);
453 
454 		if (timeout-- < 0) {
455 			dev_dbg(db->dev, "timeout waiting EEPROM\n");
456 			break;
457 		}
458 	}
459 
460 	return 0;
461 }
462 
463 /*
464  *  Read a word data from EEPROM
465  */
466 static void
467 dm9000_read_eeprom(struct board_info *db, int offset, u8 *to)
468 {
469 	unsigned long flags;
470 
471 	if (db->flags & DM9000_PLATF_NO_EEPROM) {
472 		to[0] = 0xff;
473 		to[1] = 0xff;
474 		return;
475 	}
476 
477 	mutex_lock(&db->addr_lock);
478 
479 	spin_lock_irqsave(&db->lock, flags);
480 
481 	iow(db, DM9000_EPAR, offset);
482 	iow(db, DM9000_EPCR, EPCR_ERPRR);
483 
484 	spin_unlock_irqrestore(&db->lock, flags);
485 
486 	dm9000_wait_eeprom(db);
487 
488 	/* delay for at-least 150uS */
489 	msleep(1);
490 
491 	spin_lock_irqsave(&db->lock, flags);
492 
493 	iow(db, DM9000_EPCR, 0x0);
494 
495 	to[0] = ior(db, DM9000_EPDRL);
496 	to[1] = ior(db, DM9000_EPDRH);
497 
498 	spin_unlock_irqrestore(&db->lock, flags);
499 
500 	mutex_unlock(&db->addr_lock);
501 }
502 
503 /*
504  * Write a word data to SROM
505  */
506 static void
507 dm9000_write_eeprom(struct board_info *db, int offset, u8 *data)
508 {
509 	unsigned long flags;
510 
511 	if (db->flags & DM9000_PLATF_NO_EEPROM)
512 		return;
513 
514 	mutex_lock(&db->addr_lock);
515 
516 	spin_lock_irqsave(&db->lock, flags);
517 	iow(db, DM9000_EPAR, offset);
518 	iow(db, DM9000_EPDRH, data[1]);
519 	iow(db, DM9000_EPDRL, data[0]);
520 	iow(db, DM9000_EPCR, EPCR_WEP | EPCR_ERPRW);
521 	spin_unlock_irqrestore(&db->lock, flags);
522 
523 	dm9000_wait_eeprom(db);
524 
525 	mdelay(1);	/* wait at least 150uS to clear */
526 
527 	spin_lock_irqsave(&db->lock, flags);
528 	iow(db, DM9000_EPCR, 0);
529 	spin_unlock_irqrestore(&db->lock, flags);
530 
531 	mutex_unlock(&db->addr_lock);
532 }
533 
534 /* ethtool ops */
535 
536 static void dm9000_get_drvinfo(struct net_device *dev,
537 			       struct ethtool_drvinfo *info)
538 {
539 	struct board_info *dm = to_dm9000_board(dev);
540 
541 	strlcpy(info->driver, CARDNAME, sizeof(info->driver));
542 	strlcpy(info->bus_info, to_platform_device(dm->dev)->name,
543 		sizeof(info->bus_info));
544 }
545 
546 static u32 dm9000_get_msglevel(struct net_device *dev)
547 {
548 	struct board_info *dm = to_dm9000_board(dev);
549 
550 	return dm->msg_enable;
551 }
552 
553 static void dm9000_set_msglevel(struct net_device *dev, u32 value)
554 {
555 	struct board_info *dm = to_dm9000_board(dev);
556 
557 	dm->msg_enable = value;
558 }
559 
560 static int dm9000_get_link_ksettings(struct net_device *dev,
561 				     struct ethtool_link_ksettings *cmd)
562 {
563 	struct board_info *dm = to_dm9000_board(dev);
564 
565 	mii_ethtool_get_link_ksettings(&dm->mii, cmd);
566 	return 0;
567 }
568 
569 static int dm9000_set_link_ksettings(struct net_device *dev,
570 				     const struct ethtool_link_ksettings *cmd)
571 {
572 	struct board_info *dm = to_dm9000_board(dev);
573 
574 	return mii_ethtool_set_link_ksettings(&dm->mii, cmd);
575 }
576 
577 static int dm9000_nway_reset(struct net_device *dev)
578 {
579 	struct board_info *dm = to_dm9000_board(dev);
580 	return mii_nway_restart(&dm->mii);
581 }
582 
583 static int dm9000_set_features(struct net_device *dev,
584 	netdev_features_t features)
585 {
586 	struct board_info *dm = to_dm9000_board(dev);
587 	netdev_features_t changed = dev->features ^ features;
588 	unsigned long flags;
589 
590 	if (!(changed & NETIF_F_RXCSUM))
591 		return 0;
592 
593 	spin_lock_irqsave(&dm->lock, flags);
594 	iow(dm, DM9000_RCSR, (features & NETIF_F_RXCSUM) ? RCSR_CSUM : 0);
595 	spin_unlock_irqrestore(&dm->lock, flags);
596 
597 	return 0;
598 }
599 
600 static u32 dm9000_get_link(struct net_device *dev)
601 {
602 	struct board_info *dm = to_dm9000_board(dev);
603 	u32 ret;
604 
605 	if (dm->flags & DM9000_PLATF_EXT_PHY)
606 		ret = mii_link_ok(&dm->mii);
607 	else
608 		ret = dm9000_read_locked(dm, DM9000_NSR) & NSR_LINKST ? 1 : 0;
609 
610 	return ret;
611 }
612 
613 #define DM_EEPROM_MAGIC		(0x444D394B)
614 
615 static int dm9000_get_eeprom_len(struct net_device *dev)
616 {
617 	return 128;
618 }
619 
620 static int dm9000_get_eeprom(struct net_device *dev,
621 			     struct ethtool_eeprom *ee, u8 *data)
622 {
623 	struct board_info *dm = to_dm9000_board(dev);
624 	int offset = ee->offset;
625 	int len = ee->len;
626 	int i;
627 
628 	/* EEPROM access is aligned to two bytes */
629 
630 	if ((len & 1) != 0 || (offset & 1) != 0)
631 		return -EINVAL;
632 
633 	if (dm->flags & DM9000_PLATF_NO_EEPROM)
634 		return -ENOENT;
635 
636 	ee->magic = DM_EEPROM_MAGIC;
637 
638 	for (i = 0; i < len; i += 2)
639 		dm9000_read_eeprom(dm, (offset + i) / 2, data + i);
640 
641 	return 0;
642 }
643 
644 static int dm9000_set_eeprom(struct net_device *dev,
645 			     struct ethtool_eeprom *ee, u8 *data)
646 {
647 	struct board_info *dm = to_dm9000_board(dev);
648 	int offset = ee->offset;
649 	int len = ee->len;
650 	int done;
651 
652 	/* EEPROM access is aligned to two bytes */
653 
654 	if (dm->flags & DM9000_PLATF_NO_EEPROM)
655 		return -ENOENT;
656 
657 	if (ee->magic != DM_EEPROM_MAGIC)
658 		return -EINVAL;
659 
660 	while (len > 0) {
661 		if (len & 1 || offset & 1) {
662 			int which = offset & 1;
663 			u8 tmp[2];
664 
665 			dm9000_read_eeprom(dm, offset / 2, tmp);
666 			tmp[which] = *data;
667 			dm9000_write_eeprom(dm, offset / 2, tmp);
668 
669 			done = 1;
670 		} else {
671 			dm9000_write_eeprom(dm, offset / 2, data);
672 			done = 2;
673 		}
674 
675 		data += done;
676 		offset += done;
677 		len -= done;
678 	}
679 
680 	return 0;
681 }
682 
683 static void dm9000_get_wol(struct net_device *dev, struct ethtool_wolinfo *w)
684 {
685 	struct board_info *dm = to_dm9000_board(dev);
686 
687 	memset(w, 0, sizeof(struct ethtool_wolinfo));
688 
689 	/* note, we could probably support wake-phy too */
690 	w->supported = dm->wake_supported ? WAKE_MAGIC : 0;
691 	w->wolopts = dm->wake_state;
692 }
693 
694 static int dm9000_set_wol(struct net_device *dev, struct ethtool_wolinfo *w)
695 {
696 	struct board_info *dm = to_dm9000_board(dev);
697 	unsigned long flags;
698 	u32 opts = w->wolopts;
699 	u32 wcr = 0;
700 
701 	if (!dm->wake_supported)
702 		return -EOPNOTSUPP;
703 
704 	if (opts & ~WAKE_MAGIC)
705 		return -EINVAL;
706 
707 	if (opts & WAKE_MAGIC)
708 		wcr |= WCR_MAGICEN;
709 
710 	mutex_lock(&dm->addr_lock);
711 
712 	spin_lock_irqsave(&dm->lock, flags);
713 	iow(dm, DM9000_WCR, wcr);
714 	spin_unlock_irqrestore(&dm->lock, flags);
715 
716 	mutex_unlock(&dm->addr_lock);
717 
718 	if (dm->wake_state != opts) {
719 		/* change in wol state, update IRQ state */
720 
721 		if (!dm->wake_state)
722 			irq_set_irq_wake(dm->irq_wake, 1);
723 		else if (dm->wake_state && !opts)
724 			irq_set_irq_wake(dm->irq_wake, 0);
725 	}
726 
727 	dm->wake_state = opts;
728 	return 0;
729 }
730 
731 static const struct ethtool_ops dm9000_ethtool_ops = {
732 	.get_drvinfo		= dm9000_get_drvinfo,
733 	.get_msglevel		= dm9000_get_msglevel,
734 	.set_msglevel		= dm9000_set_msglevel,
735 	.nway_reset		= dm9000_nway_reset,
736 	.get_link		= dm9000_get_link,
737 	.get_wol		= dm9000_get_wol,
738 	.set_wol		= dm9000_set_wol,
739 	.get_eeprom_len		= dm9000_get_eeprom_len,
740 	.get_eeprom		= dm9000_get_eeprom,
741 	.set_eeprom		= dm9000_set_eeprom,
742 	.get_link_ksettings	= dm9000_get_link_ksettings,
743 	.set_link_ksettings	= dm9000_set_link_ksettings,
744 };
745 
746 static void dm9000_show_carrier(struct board_info *db,
747 				unsigned carrier, unsigned nsr)
748 {
749 	int lpa;
750 	struct net_device *ndev = db->ndev;
751 	struct mii_if_info *mii = &db->mii;
752 	unsigned ncr = dm9000_read_locked(db, DM9000_NCR);
753 
754 	if (carrier) {
755 		lpa = mii->mdio_read(mii->dev, mii->phy_id, MII_LPA);
756 		dev_info(db->dev,
757 			 "%s: link up, %dMbps, %s-duplex, lpa 0x%04X\n",
758 			 ndev->name, (nsr & NSR_SPEED) ? 10 : 100,
759 			 (ncr & NCR_FDX) ? "full" : "half", lpa);
760 	} else {
761 		dev_info(db->dev, "%s: link down\n", ndev->name);
762 	}
763 }
764 
765 static void
766 dm9000_poll_work(struct work_struct *w)
767 {
768 	struct delayed_work *dw = to_delayed_work(w);
769 	struct board_info *db = container_of(dw, struct board_info, phy_poll);
770 	struct net_device *ndev = db->ndev;
771 
772 	if (db->flags & DM9000_PLATF_SIMPLE_PHY &&
773 	    !(db->flags & DM9000_PLATF_EXT_PHY)) {
774 		unsigned nsr = dm9000_read_locked(db, DM9000_NSR);
775 		unsigned old_carrier = netif_carrier_ok(ndev) ? 1 : 0;
776 		unsigned new_carrier;
777 
778 		new_carrier = (nsr & NSR_LINKST) ? 1 : 0;
779 
780 		if (old_carrier != new_carrier) {
781 			if (netif_msg_link(db))
782 				dm9000_show_carrier(db, new_carrier, nsr);
783 
784 			if (!new_carrier)
785 				netif_carrier_off(ndev);
786 			else
787 				netif_carrier_on(ndev);
788 		}
789 	} else
790 		mii_check_media(&db->mii, netif_msg_link(db), 0);
791 
792 	if (netif_running(ndev))
793 		dm9000_schedule_poll(db);
794 }
795 
796 /* dm9000_release_board
797  *
798  * release a board, and any mapped resources
799  */
800 
801 static void
802 dm9000_release_board(struct platform_device *pdev, struct board_info *db)
803 {
804 	/* unmap our resources */
805 
806 	iounmap(db->io_addr);
807 	iounmap(db->io_data);
808 
809 	/* release the resources */
810 
811 	if (db->data_req)
812 		release_resource(db->data_req);
813 	kfree(db->data_req);
814 
815 	if (db->addr_req)
816 		release_resource(db->addr_req);
817 	kfree(db->addr_req);
818 }
819 
820 static unsigned char dm9000_type_to_char(enum dm9000_type type)
821 {
822 	switch (type) {
823 	case TYPE_DM9000E: return 'e';
824 	case TYPE_DM9000A: return 'a';
825 	case TYPE_DM9000B: return 'b';
826 	}
827 
828 	return '?';
829 }
830 
831 /*
832  *  Set DM9000 multicast address
833  */
834 static void
835 dm9000_hash_table_unlocked(struct net_device *dev)
836 {
837 	struct board_info *db = netdev_priv(dev);
838 	struct netdev_hw_addr *ha;
839 	int i, oft;
840 	u32 hash_val;
841 	u16 hash_table[4] = { 0, 0, 0, 0x8000 }; /* broadcast address */
842 	u8 rcr = RCR_DIS_LONG | RCR_DIS_CRC | RCR_RXEN;
843 
844 	dm9000_dbg(db, 1, "entering %s\n", __func__);
845 
846 	for (i = 0, oft = DM9000_PAR; i < 6; i++, oft++)
847 		iow(db, oft, dev->dev_addr[i]);
848 
849 	if (dev->flags & IFF_PROMISC)
850 		rcr |= RCR_PRMSC;
851 
852 	if (dev->flags & IFF_ALLMULTI)
853 		rcr |= RCR_ALL;
854 
855 	/* the multicast address in Hash Table : 64 bits */
856 	netdev_for_each_mc_addr(ha, dev) {
857 		hash_val = ether_crc_le(6, ha->addr) & 0x3f;
858 		hash_table[hash_val / 16] |= (u16) 1 << (hash_val % 16);
859 	}
860 
861 	/* Write the hash table to MAC MD table */
862 	for (i = 0, oft = DM9000_MAR; i < 4; i++) {
863 		iow(db, oft++, hash_table[i]);
864 		iow(db, oft++, hash_table[i] >> 8);
865 	}
866 
867 	iow(db, DM9000_RCR, rcr);
868 }
869 
870 static void
871 dm9000_hash_table(struct net_device *dev)
872 {
873 	struct board_info *db = netdev_priv(dev);
874 	unsigned long flags;
875 
876 	spin_lock_irqsave(&db->lock, flags);
877 	dm9000_hash_table_unlocked(dev);
878 	spin_unlock_irqrestore(&db->lock, flags);
879 }
880 
881 static void
882 dm9000_mask_interrupts(struct board_info *db)
883 {
884 	iow(db, DM9000_IMR, IMR_PAR);
885 }
886 
887 static void
888 dm9000_unmask_interrupts(struct board_info *db)
889 {
890 	iow(db, DM9000_IMR, db->imr_all);
891 }
892 
893 /*
894  * Initialize dm9000 board
895  */
896 static void
897 dm9000_init_dm9000(struct net_device *dev)
898 {
899 	struct board_info *db = netdev_priv(dev);
900 	unsigned int imr;
901 	unsigned int ncr;
902 
903 	dm9000_dbg(db, 1, "entering %s\n", __func__);
904 
905 	dm9000_reset(db);
906 	dm9000_mask_interrupts(db);
907 
908 	/* I/O mode */
909 	db->io_mode = ior(db, DM9000_ISR) >> 6;	/* ISR bit7:6 keeps I/O mode */
910 
911 	/* Checksum mode */
912 	if (dev->hw_features & NETIF_F_RXCSUM)
913 		iow(db, DM9000_RCSR,
914 			(dev->features & NETIF_F_RXCSUM) ? RCSR_CSUM : 0);
915 
916 	iow(db, DM9000_GPCR, GPCR_GEP_CNTL);	/* Let GPIO0 output */
917 	iow(db, DM9000_GPR, 0);
918 
919 	/* If we are dealing with DM9000B, some extra steps are required: a
920 	 * manual phy reset, and setting init params.
921 	 */
922 	if (db->type == TYPE_DM9000B) {
923 		dm9000_phy_write(dev, 0, MII_BMCR, BMCR_RESET);
924 		dm9000_phy_write(dev, 0, MII_DM_DSPCR, DSPCR_INIT_PARAM);
925 	}
926 
927 	ncr = (db->flags & DM9000_PLATF_EXT_PHY) ? NCR_EXT_PHY : 0;
928 
929 	/* if wol is needed, then always set NCR_WAKEEN otherwise we end
930 	 * up dumping the wake events if we disable this. There is already
931 	 * a wake-mask in DM9000_WCR */
932 	if (db->wake_supported)
933 		ncr |= NCR_WAKEEN;
934 
935 	iow(db, DM9000_NCR, ncr);
936 
937 	/* Program operating register */
938 	iow(db, DM9000_TCR, 0);	        /* TX Polling clear */
939 	iow(db, DM9000_BPTR, 0x3f);	/* Less 3Kb, 200us */
940 	iow(db, DM9000_FCR, 0xff);	/* Flow Control */
941 	iow(db, DM9000_SMCR, 0);        /* Special Mode */
942 	/* clear TX status */
943 	iow(db, DM9000_NSR, NSR_WAKEST | NSR_TX2END | NSR_TX1END);
944 	iow(db, DM9000_ISR, ISR_CLR_STATUS); /* Clear interrupt status */
945 
946 	/* Set address filter table */
947 	dm9000_hash_table_unlocked(dev);
948 
949 	imr = IMR_PAR | IMR_PTM | IMR_PRM;
950 	if (db->type != TYPE_DM9000E)
951 		imr |= IMR_LNKCHNG;
952 
953 	db->imr_all = imr;
954 
955 	/* Init Driver variable */
956 	db->tx_pkt_cnt = 0;
957 	db->queue_pkt_len = 0;
958 	netif_trans_update(dev);
959 }
960 
961 /* Our watchdog timed out. Called by the networking layer */
962 static void dm9000_timeout(struct net_device *dev, unsigned int txqueue)
963 {
964 	struct board_info *db = netdev_priv(dev);
965 	u8 reg_save;
966 	unsigned long flags;
967 
968 	/* Save previous register address */
969 	spin_lock_irqsave(&db->lock, flags);
970 	db->in_timeout = 1;
971 	reg_save = readb(db->io_addr);
972 
973 	netif_stop_queue(dev);
974 	dm9000_init_dm9000(dev);
975 	dm9000_unmask_interrupts(db);
976 	/* We can accept TX packets again */
977 	netif_trans_update(dev); /* prevent tx timeout */
978 	netif_wake_queue(dev);
979 
980 	/* Restore previous register address */
981 	writeb(reg_save, db->io_addr);
982 	db->in_timeout = 0;
983 	spin_unlock_irqrestore(&db->lock, flags);
984 }
985 
986 static void dm9000_send_packet(struct net_device *dev,
987 			       int ip_summed,
988 			       u16 pkt_len)
989 {
990 	struct board_info *dm = to_dm9000_board(dev);
991 
992 	/* The DM9000 is not smart enough to leave fragmented packets alone. */
993 	if (dm->ip_summed != ip_summed) {
994 		if (ip_summed == CHECKSUM_NONE)
995 			iow(dm, DM9000_TCCR, 0);
996 		else
997 			iow(dm, DM9000_TCCR, TCCR_IP | TCCR_UDP | TCCR_TCP);
998 		dm->ip_summed = ip_summed;
999 	}
1000 
1001 	/* Set TX length to DM9000 */
1002 	iow(dm, DM9000_TXPLL, pkt_len);
1003 	iow(dm, DM9000_TXPLH, pkt_len >> 8);
1004 
1005 	/* Issue TX polling command */
1006 	iow(dm, DM9000_TCR, TCR_TXREQ);	/* Cleared after TX complete */
1007 }
1008 
1009 /*
1010  *  Hardware start transmission.
1011  *  Send a packet to media from the upper layer.
1012  */
1013 static int
1014 dm9000_start_xmit(struct sk_buff *skb, struct net_device *dev)
1015 {
1016 	unsigned long flags;
1017 	struct board_info *db = netdev_priv(dev);
1018 
1019 	dm9000_dbg(db, 3, "%s:\n", __func__);
1020 
1021 	if (db->tx_pkt_cnt > 1)
1022 		return NETDEV_TX_BUSY;
1023 
1024 	spin_lock_irqsave(&db->lock, flags);
1025 
1026 	/* Move data to DM9000 TX RAM */
1027 	writeb(DM9000_MWCMD, db->io_addr);
1028 
1029 	(db->outblk)(db->io_data, skb->data, skb->len);
1030 	dev->stats.tx_bytes += skb->len;
1031 
1032 	db->tx_pkt_cnt++;
1033 	/* TX control: First packet immediately send, second packet queue */
1034 	if (db->tx_pkt_cnt == 1) {
1035 		dm9000_send_packet(dev, skb->ip_summed, skb->len);
1036 	} else {
1037 		/* Second packet */
1038 		db->queue_pkt_len = skb->len;
1039 		db->queue_ip_summed = skb->ip_summed;
1040 		netif_stop_queue(dev);
1041 	}
1042 
1043 	spin_unlock_irqrestore(&db->lock, flags);
1044 
1045 	/* free this SKB */
1046 	dev_consume_skb_any(skb);
1047 
1048 	return NETDEV_TX_OK;
1049 }
1050 
1051 /*
1052  * DM9000 interrupt handler
1053  * receive the packet to upper layer, free the transmitted packet
1054  */
1055 
1056 static void dm9000_tx_done(struct net_device *dev, struct board_info *db)
1057 {
1058 	int tx_status = ior(db, DM9000_NSR);	/* Got TX status */
1059 
1060 	if (tx_status & (NSR_TX2END | NSR_TX1END)) {
1061 		/* One packet sent complete */
1062 		db->tx_pkt_cnt--;
1063 		dev->stats.tx_packets++;
1064 
1065 		if (netif_msg_tx_done(db))
1066 			dev_dbg(db->dev, "tx done, NSR %02x\n", tx_status);
1067 
1068 		/* Queue packet check & send */
1069 		if (db->tx_pkt_cnt > 0)
1070 			dm9000_send_packet(dev, db->queue_ip_summed,
1071 					   db->queue_pkt_len);
1072 		netif_wake_queue(dev);
1073 	}
1074 }
1075 
1076 struct dm9000_rxhdr {
1077 	u8	RxPktReady;
1078 	u8	RxStatus;
1079 	__le16	RxLen;
1080 } __packed;
1081 
1082 /*
1083  *  Received a packet and pass to upper layer
1084  */
1085 static void
1086 dm9000_rx(struct net_device *dev)
1087 {
1088 	struct board_info *db = netdev_priv(dev);
1089 	struct dm9000_rxhdr rxhdr;
1090 	struct sk_buff *skb;
1091 	u8 rxbyte, *rdptr;
1092 	bool GoodPacket;
1093 	int RxLen;
1094 
1095 	/* Check packet ready or not */
1096 	do {
1097 		ior(db, DM9000_MRCMDX);	/* Dummy read */
1098 
1099 		/* Get most updated data */
1100 		rxbyte = readb(db->io_data);
1101 
1102 		/* Status check: this byte must be 0 or 1 */
1103 		if (rxbyte & DM9000_PKT_ERR) {
1104 			dev_warn(db->dev, "status check fail: %d\n", rxbyte);
1105 			iow(db, DM9000_RCR, 0x00);	/* Stop Device */
1106 			return;
1107 		}
1108 
1109 		if (!(rxbyte & DM9000_PKT_RDY))
1110 			return;
1111 
1112 		/* A packet ready now  & Get status/length */
1113 		GoodPacket = true;
1114 		writeb(DM9000_MRCMD, db->io_addr);
1115 
1116 		(db->inblk)(db->io_data, &rxhdr, sizeof(rxhdr));
1117 
1118 		RxLen = le16_to_cpu(rxhdr.RxLen);
1119 
1120 		if (netif_msg_rx_status(db))
1121 			dev_dbg(db->dev, "RX: status %02x, length %04x\n",
1122 				rxhdr.RxStatus, RxLen);
1123 
1124 		/* Packet Status check */
1125 		if (RxLen < 0x40) {
1126 			GoodPacket = false;
1127 			if (netif_msg_rx_err(db))
1128 				dev_dbg(db->dev, "RX: Bad Packet (runt)\n");
1129 		}
1130 
1131 		if (RxLen > DM9000_PKT_MAX) {
1132 			dev_dbg(db->dev, "RST: RX Len:%x\n", RxLen);
1133 		}
1134 
1135 		/* rxhdr.RxStatus is identical to RSR register. */
1136 		if (rxhdr.RxStatus & (RSR_FOE | RSR_CE | RSR_AE |
1137 				      RSR_PLE | RSR_RWTO |
1138 				      RSR_LCS | RSR_RF)) {
1139 			GoodPacket = false;
1140 			if (rxhdr.RxStatus & RSR_FOE) {
1141 				if (netif_msg_rx_err(db))
1142 					dev_dbg(db->dev, "fifo error\n");
1143 				dev->stats.rx_fifo_errors++;
1144 			}
1145 			if (rxhdr.RxStatus & RSR_CE) {
1146 				if (netif_msg_rx_err(db))
1147 					dev_dbg(db->dev, "crc error\n");
1148 				dev->stats.rx_crc_errors++;
1149 			}
1150 			if (rxhdr.RxStatus & RSR_RF) {
1151 				if (netif_msg_rx_err(db))
1152 					dev_dbg(db->dev, "length error\n");
1153 				dev->stats.rx_length_errors++;
1154 			}
1155 		}
1156 
1157 		/* Move data from DM9000 */
1158 		if (GoodPacket &&
1159 		    ((skb = netdev_alloc_skb(dev, RxLen + 4)) != NULL)) {
1160 			skb_reserve(skb, 2);
1161 			rdptr = skb_put(skb, RxLen - 4);
1162 
1163 			/* Read received packet from RX SRAM */
1164 
1165 			(db->inblk)(db->io_data, rdptr, RxLen);
1166 			dev->stats.rx_bytes += RxLen;
1167 
1168 			/* Pass to upper layer */
1169 			skb->protocol = eth_type_trans(skb, dev);
1170 			if (dev->features & NETIF_F_RXCSUM) {
1171 				if ((((rxbyte & 0x1c) << 3) & rxbyte) == 0)
1172 					skb->ip_summed = CHECKSUM_UNNECESSARY;
1173 				else
1174 					skb_checksum_none_assert(skb);
1175 			}
1176 			netif_rx(skb);
1177 			dev->stats.rx_packets++;
1178 
1179 		} else {
1180 			/* need to dump the packet's data */
1181 
1182 			(db->dumpblk)(db->io_data, RxLen);
1183 		}
1184 	} while (rxbyte & DM9000_PKT_RDY);
1185 }
1186 
1187 static irqreturn_t dm9000_interrupt(int irq, void *dev_id)
1188 {
1189 	struct net_device *dev = dev_id;
1190 	struct board_info *db = netdev_priv(dev);
1191 	int int_status;
1192 	unsigned long flags;
1193 	u8 reg_save;
1194 
1195 	dm9000_dbg(db, 3, "entering %s\n", __func__);
1196 
1197 	/* A real interrupt coming */
1198 
1199 	/* holders of db->lock must always block IRQs */
1200 	spin_lock_irqsave(&db->lock, flags);
1201 
1202 	/* Save previous register address */
1203 	reg_save = readb(db->io_addr);
1204 
1205 	dm9000_mask_interrupts(db);
1206 	/* Got DM9000 interrupt status */
1207 	int_status = ior(db, DM9000_ISR);	/* Got ISR */
1208 	iow(db, DM9000_ISR, int_status);	/* Clear ISR status */
1209 
1210 	if (netif_msg_intr(db))
1211 		dev_dbg(db->dev, "interrupt status %02x\n", int_status);
1212 
1213 	/* Received the coming packet */
1214 	if (int_status & ISR_PRS)
1215 		dm9000_rx(dev);
1216 
1217 	/* Transmit Interrupt check */
1218 	if (int_status & ISR_PTS)
1219 		dm9000_tx_done(dev, db);
1220 
1221 	if (db->type != TYPE_DM9000E) {
1222 		if (int_status & ISR_LNKCHNG) {
1223 			/* fire a link-change request */
1224 			schedule_delayed_work(&db->phy_poll, 1);
1225 		}
1226 	}
1227 
1228 	dm9000_unmask_interrupts(db);
1229 	/* Restore previous register address */
1230 	writeb(reg_save, db->io_addr);
1231 
1232 	spin_unlock_irqrestore(&db->lock, flags);
1233 
1234 	return IRQ_HANDLED;
1235 }
1236 
1237 static irqreturn_t dm9000_wol_interrupt(int irq, void *dev_id)
1238 {
1239 	struct net_device *dev = dev_id;
1240 	struct board_info *db = netdev_priv(dev);
1241 	unsigned long flags;
1242 	unsigned nsr, wcr;
1243 
1244 	spin_lock_irqsave(&db->lock, flags);
1245 
1246 	nsr = ior(db, DM9000_NSR);
1247 	wcr = ior(db, DM9000_WCR);
1248 
1249 	dev_dbg(db->dev, "%s: NSR=0x%02x, WCR=0x%02x\n", __func__, nsr, wcr);
1250 
1251 	if (nsr & NSR_WAKEST) {
1252 		/* clear, so we can avoid */
1253 		iow(db, DM9000_NSR, NSR_WAKEST);
1254 
1255 		if (wcr & WCR_LINKST)
1256 			dev_info(db->dev, "wake by link status change\n");
1257 		if (wcr & WCR_SAMPLEST)
1258 			dev_info(db->dev, "wake by sample packet\n");
1259 		if (wcr & WCR_MAGICST)
1260 			dev_info(db->dev, "wake by magic packet\n");
1261 		if (!(wcr & (WCR_LINKST | WCR_SAMPLEST | WCR_MAGICST)))
1262 			dev_err(db->dev, "wake signalled with no reason? "
1263 				"NSR=0x%02x, WSR=0x%02x\n", nsr, wcr);
1264 	}
1265 
1266 	spin_unlock_irqrestore(&db->lock, flags);
1267 
1268 	return (nsr & NSR_WAKEST) ? IRQ_HANDLED : IRQ_NONE;
1269 }
1270 
1271 #ifdef CONFIG_NET_POLL_CONTROLLER
1272 /*
1273  *Used by netconsole
1274  */
1275 static void dm9000_poll_controller(struct net_device *dev)
1276 {
1277 	disable_irq(dev->irq);
1278 	dm9000_interrupt(dev->irq, dev);
1279 	enable_irq(dev->irq);
1280 }
1281 #endif
1282 
1283 /*
1284  *  Open the interface.
1285  *  The interface is opened whenever "ifconfig" actives it.
1286  */
1287 static int
1288 dm9000_open(struct net_device *dev)
1289 {
1290 	struct board_info *db = netdev_priv(dev);
1291 	unsigned int irq_flags = irq_get_trigger_type(dev->irq);
1292 
1293 	if (netif_msg_ifup(db))
1294 		dev_dbg(db->dev, "enabling %s\n", dev->name);
1295 
1296 	/* If there is no IRQ type specified, tell the user that this is a
1297 	 * problem
1298 	 */
1299 	if (irq_flags == IRQF_TRIGGER_NONE)
1300 		dev_warn(db->dev, "WARNING: no IRQ resource flags set.\n");
1301 
1302 	irq_flags |= IRQF_SHARED;
1303 
1304 	/* GPIO0 on pre-activate PHY, Reg 1F is not set by reset */
1305 	iow(db, DM9000_GPR, 0);	/* REG_1F bit0 activate phyxcer */
1306 	mdelay(1); /* delay needs by DM9000B */
1307 
1308 	/* Initialize DM9000 board */
1309 	dm9000_init_dm9000(dev);
1310 
1311 	if (request_irq(dev->irq, dm9000_interrupt, irq_flags, dev->name, dev))
1312 		return -EAGAIN;
1313 	/* Now that we have an interrupt handler hooked up we can unmask
1314 	 * our interrupts
1315 	 */
1316 	dm9000_unmask_interrupts(db);
1317 
1318 	/* Init driver variable */
1319 	db->dbug_cnt = 0;
1320 
1321 	mii_check_media(&db->mii, netif_msg_link(db), 1);
1322 	netif_start_queue(dev);
1323 
1324 	/* Poll initial link status */
1325 	schedule_delayed_work(&db->phy_poll, 1);
1326 
1327 	return 0;
1328 }
1329 
1330 static void
1331 dm9000_shutdown(struct net_device *dev)
1332 {
1333 	struct board_info *db = netdev_priv(dev);
1334 
1335 	/* RESET device */
1336 	dm9000_phy_write(dev, 0, MII_BMCR, BMCR_RESET);	/* PHY RESET */
1337 	iow(db, DM9000_GPR, 0x01);	/* Power-Down PHY */
1338 	dm9000_mask_interrupts(db);
1339 	iow(db, DM9000_RCR, 0x00);	/* Disable RX */
1340 }
1341 
1342 /*
1343  * Stop the interface.
1344  * The interface is stopped when it is brought.
1345  */
1346 static int
1347 dm9000_stop(struct net_device *ndev)
1348 {
1349 	struct board_info *db = netdev_priv(ndev);
1350 
1351 	if (netif_msg_ifdown(db))
1352 		dev_dbg(db->dev, "shutting down %s\n", ndev->name);
1353 
1354 	cancel_delayed_work_sync(&db->phy_poll);
1355 
1356 	netif_stop_queue(ndev);
1357 	netif_carrier_off(ndev);
1358 
1359 	/* free interrupt */
1360 	free_irq(ndev->irq, ndev);
1361 
1362 	dm9000_shutdown(ndev);
1363 
1364 	return 0;
1365 }
1366 
1367 static const struct net_device_ops dm9000_netdev_ops = {
1368 	.ndo_open		= dm9000_open,
1369 	.ndo_stop		= dm9000_stop,
1370 	.ndo_start_xmit		= dm9000_start_xmit,
1371 	.ndo_tx_timeout		= dm9000_timeout,
1372 	.ndo_set_rx_mode	= dm9000_hash_table,
1373 	.ndo_do_ioctl		= dm9000_ioctl,
1374 	.ndo_set_features	= dm9000_set_features,
1375 	.ndo_validate_addr	= eth_validate_addr,
1376 	.ndo_set_mac_address	= eth_mac_addr,
1377 #ifdef CONFIG_NET_POLL_CONTROLLER
1378 	.ndo_poll_controller	= dm9000_poll_controller,
1379 #endif
1380 };
1381 
1382 static struct dm9000_plat_data *dm9000_parse_dt(struct device *dev)
1383 {
1384 	struct dm9000_plat_data *pdata;
1385 	struct device_node *np = dev->of_node;
1386 	const void *mac_addr;
1387 
1388 	if (!IS_ENABLED(CONFIG_OF) || !np)
1389 		return ERR_PTR(-ENXIO);
1390 
1391 	pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
1392 	if (!pdata)
1393 		return ERR_PTR(-ENOMEM);
1394 
1395 	if (of_find_property(np, "davicom,ext-phy", NULL))
1396 		pdata->flags |= DM9000_PLATF_EXT_PHY;
1397 	if (of_find_property(np, "davicom,no-eeprom", NULL))
1398 		pdata->flags |= DM9000_PLATF_NO_EEPROM;
1399 
1400 	mac_addr = of_get_mac_address(np);
1401 	if (!IS_ERR(mac_addr))
1402 		ether_addr_copy(pdata->dev_addr, mac_addr);
1403 	else if (PTR_ERR(mac_addr) == -EPROBE_DEFER)
1404 		return ERR_CAST(mac_addr);
1405 
1406 	return pdata;
1407 }
1408 
1409 /*
1410  * Search DM9000 board, allocate space and register it
1411  */
1412 static int
1413 dm9000_probe(struct platform_device *pdev)
1414 {
1415 	struct dm9000_plat_data *pdata = dev_get_platdata(&pdev->dev);
1416 	struct board_info *db;	/* Point a board information structure */
1417 	struct net_device *ndev;
1418 	struct device *dev = &pdev->dev;
1419 	const unsigned char *mac_src;
1420 	int ret = 0;
1421 	int iosize;
1422 	int i;
1423 	u32 id_val;
1424 	int reset_gpios;
1425 	enum of_gpio_flags flags;
1426 	struct regulator *power;
1427 	bool inv_mac_addr = false;
1428 
1429 	power = devm_regulator_get(dev, "vcc");
1430 	if (IS_ERR(power)) {
1431 		if (PTR_ERR(power) == -EPROBE_DEFER)
1432 			return -EPROBE_DEFER;
1433 		dev_dbg(dev, "no regulator provided\n");
1434 	} else {
1435 		ret = regulator_enable(power);
1436 		if (ret != 0) {
1437 			dev_err(dev,
1438 				"Failed to enable power regulator: %d\n", ret);
1439 			return ret;
1440 		}
1441 		dev_dbg(dev, "regulator enabled\n");
1442 	}
1443 
1444 	reset_gpios = of_get_named_gpio_flags(dev->of_node, "reset-gpios", 0,
1445 					      &flags);
1446 	if (gpio_is_valid(reset_gpios)) {
1447 		ret = devm_gpio_request_one(dev, reset_gpios, flags,
1448 					    "dm9000_reset");
1449 		if (ret) {
1450 			dev_err(dev, "failed to request reset gpio %d: %d\n",
1451 				reset_gpios, ret);
1452 			return -ENODEV;
1453 		}
1454 
1455 		/* According to manual PWRST# Low Period Min 1ms */
1456 		msleep(2);
1457 		gpio_set_value(reset_gpios, 1);
1458 		/* Needs 3ms to read eeprom when PWRST is deasserted */
1459 		msleep(4);
1460 	}
1461 
1462 	if (!pdata) {
1463 		pdata = dm9000_parse_dt(&pdev->dev);
1464 		if (IS_ERR(pdata))
1465 			return PTR_ERR(pdata);
1466 	}
1467 
1468 	/* Init network device */
1469 	ndev = alloc_etherdev(sizeof(struct board_info));
1470 	if (!ndev)
1471 		return -ENOMEM;
1472 
1473 	SET_NETDEV_DEV(ndev, &pdev->dev);
1474 
1475 	dev_dbg(&pdev->dev, "dm9000_probe()\n");
1476 
1477 	/* setup board info structure */
1478 	db = netdev_priv(ndev);
1479 
1480 	db->dev = &pdev->dev;
1481 	db->ndev = ndev;
1482 
1483 	spin_lock_init(&db->lock);
1484 	mutex_init(&db->addr_lock);
1485 
1486 	INIT_DELAYED_WORK(&db->phy_poll, dm9000_poll_work);
1487 
1488 	db->addr_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1489 	db->data_res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1490 
1491 	if (!db->addr_res || !db->data_res) {
1492 		dev_err(db->dev, "insufficient resources addr=%p data=%p\n",
1493 			db->addr_res, db->data_res);
1494 		ret = -ENOENT;
1495 		goto out;
1496 	}
1497 
1498 	ndev->irq = platform_get_irq(pdev, 0);
1499 	if (ndev->irq < 0) {
1500 		ret = ndev->irq;
1501 		goto out;
1502 	}
1503 
1504 	db->irq_wake = platform_get_irq(pdev, 1);
1505 	if (db->irq_wake >= 0) {
1506 		dev_dbg(db->dev, "wakeup irq %d\n", db->irq_wake);
1507 
1508 		ret = request_irq(db->irq_wake, dm9000_wol_interrupt,
1509 				  IRQF_SHARED, dev_name(db->dev), ndev);
1510 		if (ret) {
1511 			dev_err(db->dev, "cannot get wakeup irq (%d)\n", ret);
1512 		} else {
1513 
1514 			/* test to see if irq is really wakeup capable */
1515 			ret = irq_set_irq_wake(db->irq_wake, 1);
1516 			if (ret) {
1517 				dev_err(db->dev, "irq %d cannot set wakeup (%d)\n",
1518 					db->irq_wake, ret);
1519 				ret = 0;
1520 			} else {
1521 				irq_set_irq_wake(db->irq_wake, 0);
1522 				db->wake_supported = 1;
1523 			}
1524 		}
1525 	}
1526 
1527 	iosize = resource_size(db->addr_res);
1528 	db->addr_req = request_mem_region(db->addr_res->start, iosize,
1529 					  pdev->name);
1530 
1531 	if (db->addr_req == NULL) {
1532 		dev_err(db->dev, "cannot claim address reg area\n");
1533 		ret = -EIO;
1534 		goto out;
1535 	}
1536 
1537 	db->io_addr = ioremap(db->addr_res->start, iosize);
1538 
1539 	if (db->io_addr == NULL) {
1540 		dev_err(db->dev, "failed to ioremap address reg\n");
1541 		ret = -EINVAL;
1542 		goto out;
1543 	}
1544 
1545 	iosize = resource_size(db->data_res);
1546 	db->data_req = request_mem_region(db->data_res->start, iosize,
1547 					  pdev->name);
1548 
1549 	if (db->data_req == NULL) {
1550 		dev_err(db->dev, "cannot claim data reg area\n");
1551 		ret = -EIO;
1552 		goto out;
1553 	}
1554 
1555 	db->io_data = ioremap(db->data_res->start, iosize);
1556 
1557 	if (db->io_data == NULL) {
1558 		dev_err(db->dev, "failed to ioremap data reg\n");
1559 		ret = -EINVAL;
1560 		goto out;
1561 	}
1562 
1563 	/* fill in parameters for net-dev structure */
1564 	ndev->base_addr = (unsigned long)db->io_addr;
1565 
1566 	/* ensure at least we have a default set of IO routines */
1567 	dm9000_set_io(db, iosize);
1568 
1569 	/* check to see if anything is being over-ridden */
1570 	if (pdata != NULL) {
1571 		/* check to see if the driver wants to over-ride the
1572 		 * default IO width */
1573 
1574 		if (pdata->flags & DM9000_PLATF_8BITONLY)
1575 			dm9000_set_io(db, 1);
1576 
1577 		if (pdata->flags & DM9000_PLATF_16BITONLY)
1578 			dm9000_set_io(db, 2);
1579 
1580 		if (pdata->flags & DM9000_PLATF_32BITONLY)
1581 			dm9000_set_io(db, 4);
1582 
1583 		/* check to see if there are any IO routine
1584 		 * over-rides */
1585 
1586 		if (pdata->inblk != NULL)
1587 			db->inblk = pdata->inblk;
1588 
1589 		if (pdata->outblk != NULL)
1590 			db->outblk = pdata->outblk;
1591 
1592 		if (pdata->dumpblk != NULL)
1593 			db->dumpblk = pdata->dumpblk;
1594 
1595 		db->flags = pdata->flags;
1596 	}
1597 
1598 #ifdef CONFIG_DM9000_FORCE_SIMPLE_PHY_POLL
1599 	db->flags |= DM9000_PLATF_SIMPLE_PHY;
1600 #endif
1601 
1602 	dm9000_reset(db);
1603 
1604 	/* try multiple times, DM9000 sometimes gets the read wrong */
1605 	for (i = 0; i < 8; i++) {
1606 		id_val  = ior(db, DM9000_VIDL);
1607 		id_val |= (u32)ior(db, DM9000_VIDH) << 8;
1608 		id_val |= (u32)ior(db, DM9000_PIDL) << 16;
1609 		id_val |= (u32)ior(db, DM9000_PIDH) << 24;
1610 
1611 		if (id_val == DM9000_ID)
1612 			break;
1613 		dev_err(db->dev, "read wrong id 0x%08x\n", id_val);
1614 	}
1615 
1616 	if (id_val != DM9000_ID) {
1617 		dev_err(db->dev, "wrong id: 0x%08x\n", id_val);
1618 		ret = -ENODEV;
1619 		goto out;
1620 	}
1621 
1622 	/* Identify what type of DM9000 we are working on */
1623 
1624 	id_val = ior(db, DM9000_CHIPR);
1625 	dev_dbg(db->dev, "dm9000 revision 0x%02x\n", id_val);
1626 
1627 	switch (id_val) {
1628 	case CHIPR_DM9000A:
1629 		db->type = TYPE_DM9000A;
1630 		break;
1631 	case CHIPR_DM9000B:
1632 		db->type = TYPE_DM9000B;
1633 		break;
1634 	default:
1635 		dev_dbg(db->dev, "ID %02x => defaulting to DM9000E\n", id_val);
1636 		db->type = TYPE_DM9000E;
1637 	}
1638 
1639 	/* dm9000a/b are capable of hardware checksum offload */
1640 	if (db->type == TYPE_DM9000A || db->type == TYPE_DM9000B) {
1641 		ndev->hw_features = NETIF_F_RXCSUM | NETIF_F_IP_CSUM;
1642 		ndev->features |= ndev->hw_features;
1643 	}
1644 
1645 	/* from this point we assume that we have found a DM9000 */
1646 
1647 	ndev->netdev_ops	= &dm9000_netdev_ops;
1648 	ndev->watchdog_timeo	= msecs_to_jiffies(watchdog);
1649 	ndev->ethtool_ops	= &dm9000_ethtool_ops;
1650 
1651 	db->msg_enable       = NETIF_MSG_LINK;
1652 	db->mii.phy_id_mask  = 0x1f;
1653 	db->mii.reg_num_mask = 0x1f;
1654 	db->mii.force_media  = 0;
1655 	db->mii.full_duplex  = 0;
1656 	db->mii.dev	     = ndev;
1657 	db->mii.mdio_read    = dm9000_phy_read;
1658 	db->mii.mdio_write   = dm9000_phy_write;
1659 
1660 	mac_src = "eeprom";
1661 
1662 	/* try reading the node address from the attached EEPROM */
1663 	for (i = 0; i < 6; i += 2)
1664 		dm9000_read_eeprom(db, i / 2, ndev->dev_addr+i);
1665 
1666 	if (!is_valid_ether_addr(ndev->dev_addr) && pdata != NULL) {
1667 		mac_src = "platform data";
1668 		memcpy(ndev->dev_addr, pdata->dev_addr, ETH_ALEN);
1669 	}
1670 
1671 	if (!is_valid_ether_addr(ndev->dev_addr)) {
1672 		/* try reading from mac */
1673 
1674 		mac_src = "chip";
1675 		for (i = 0; i < 6; i++)
1676 			ndev->dev_addr[i] = ior(db, i+DM9000_PAR);
1677 	}
1678 
1679 	if (!is_valid_ether_addr(ndev->dev_addr)) {
1680 		inv_mac_addr = true;
1681 		eth_hw_addr_random(ndev);
1682 		mac_src = "random";
1683 	}
1684 
1685 
1686 	platform_set_drvdata(pdev, ndev);
1687 	ret = register_netdev(ndev);
1688 
1689 	if (ret == 0) {
1690 		if (inv_mac_addr)
1691 			dev_warn(db->dev, "%s: Invalid ethernet MAC address. Please set using ip\n",
1692 				 ndev->name);
1693 		printk(KERN_INFO "%s: dm9000%c at %p,%p IRQ %d MAC: %pM (%s)\n",
1694 		       ndev->name, dm9000_type_to_char(db->type),
1695 		       db->io_addr, db->io_data, ndev->irq,
1696 		       ndev->dev_addr, mac_src);
1697 	}
1698 	return 0;
1699 
1700 out:
1701 	dev_err(db->dev, "not found (%d).\n", ret);
1702 
1703 	dm9000_release_board(pdev, db);
1704 	free_netdev(ndev);
1705 
1706 	return ret;
1707 }
1708 
1709 static int
1710 dm9000_drv_suspend(struct device *dev)
1711 {
1712 	struct net_device *ndev = dev_get_drvdata(dev);
1713 	struct board_info *db;
1714 
1715 	if (ndev) {
1716 		db = netdev_priv(ndev);
1717 		db->in_suspend = 1;
1718 
1719 		if (!netif_running(ndev))
1720 			return 0;
1721 
1722 		netif_device_detach(ndev);
1723 
1724 		/* only shutdown if not using WoL */
1725 		if (!db->wake_state)
1726 			dm9000_shutdown(ndev);
1727 	}
1728 	return 0;
1729 }
1730 
1731 static int
1732 dm9000_drv_resume(struct device *dev)
1733 {
1734 	struct net_device *ndev = dev_get_drvdata(dev);
1735 	struct board_info *db = netdev_priv(ndev);
1736 
1737 	if (ndev) {
1738 		if (netif_running(ndev)) {
1739 			/* reset if we were not in wake mode to ensure if
1740 			 * the device was powered off it is in a known state */
1741 			if (!db->wake_state) {
1742 				dm9000_init_dm9000(ndev);
1743 				dm9000_unmask_interrupts(db);
1744 			}
1745 
1746 			netif_device_attach(ndev);
1747 		}
1748 
1749 		db->in_suspend = 0;
1750 	}
1751 	return 0;
1752 }
1753 
1754 static const struct dev_pm_ops dm9000_drv_pm_ops = {
1755 	.suspend	= dm9000_drv_suspend,
1756 	.resume		= dm9000_drv_resume,
1757 };
1758 
1759 static int
1760 dm9000_drv_remove(struct platform_device *pdev)
1761 {
1762 	struct net_device *ndev = platform_get_drvdata(pdev);
1763 
1764 	unregister_netdev(ndev);
1765 	dm9000_release_board(pdev, netdev_priv(ndev));
1766 	free_netdev(ndev);		/* free device structure */
1767 
1768 	dev_dbg(&pdev->dev, "released and freed device\n");
1769 	return 0;
1770 }
1771 
1772 #ifdef CONFIG_OF
1773 static const struct of_device_id dm9000_of_matches[] = {
1774 	{ .compatible = "davicom,dm9000", },
1775 	{ /* sentinel */ }
1776 };
1777 MODULE_DEVICE_TABLE(of, dm9000_of_matches);
1778 #endif
1779 
1780 static struct platform_driver dm9000_driver = {
1781 	.driver	= {
1782 		.name    = "dm9000",
1783 		.pm	 = &dm9000_drv_pm_ops,
1784 		.of_match_table = of_match_ptr(dm9000_of_matches),
1785 	},
1786 	.probe   = dm9000_probe,
1787 	.remove  = dm9000_drv_remove,
1788 };
1789 
1790 module_platform_driver(dm9000_driver);
1791 
1792 MODULE_AUTHOR("Sascha Hauer, Ben Dooks");
1793 MODULE_DESCRIPTION("Davicom DM9000 network driver");
1794 MODULE_LICENSE("GPL");
1795 MODULE_ALIAS("platform:dm9000");
1796