1 /*
2  *      Davicom DM9000 Fast Ethernet driver for Linux.
3  * 	Copyright (C) 1997  Sten Wang
4  *
5  * 	This program is free software; you can redistribute it and/or
6  * 	modify it under the terms of the GNU General Public License
7  * 	as published by the Free Software Foundation; either version 2
8  * 	of the License, or (at your option) any later version.
9  *
10  * 	This program is distributed in the hope that it will be useful,
11  * 	but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * 	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * 	GNU General Public License for more details.
14  *
15  * (C) Copyright 1997-1998 DAVICOM Semiconductor,Inc. All Rights Reserved.
16  *
17  * Additional updates, Copyright:
18  *	Ben Dooks <ben@simtec.co.uk>
19  *	Sascha Hauer <s.hauer@pengutronix.de>
20  */
21 
22 #include <linux/module.h>
23 #include <linux/ioport.h>
24 #include <linux/netdevice.h>
25 #include <linux/etherdevice.h>
26 #include <linux/init.h>
27 #include <linux/interrupt.h>
28 #include <linux/skbuff.h>
29 #include <linux/spinlock.h>
30 #include <linux/crc32.h>
31 #include <linux/mii.h>
32 #include <linux/of.h>
33 #include <linux/of_net.h>
34 #include <linux/ethtool.h>
35 #include <linux/dm9000.h>
36 #include <linux/delay.h>
37 #include <linux/platform_device.h>
38 #include <linux/irq.h>
39 #include <linux/slab.h>
40 
41 #include <asm/delay.h>
42 #include <asm/irq.h>
43 #include <asm/io.h>
44 
45 #include "dm9000.h"
46 
47 /* Board/System/Debug information/definition ---------------- */
48 
49 #define DM9000_PHY		0x40	/* PHY address 0x01 */
50 
51 #define CARDNAME	"dm9000"
52 #define DRV_VERSION	"1.31"
53 
54 /*
55  * Transmit timeout, default 5 seconds.
56  */
57 static int watchdog = 5000;
58 module_param(watchdog, int, 0400);
59 MODULE_PARM_DESC(watchdog, "transmit timeout in milliseconds");
60 
61 /*
62  * Debug messages level
63  */
64 static int debug;
65 module_param(debug, int, 0644);
66 MODULE_PARM_DESC(debug, "dm9000 debug level (0-4)");
67 
68 /* DM9000 register address locking.
69  *
70  * The DM9000 uses an address register to control where data written
71  * to the data register goes. This means that the address register
72  * must be preserved over interrupts or similar calls.
73  *
74  * During interrupt and other critical calls, a spinlock is used to
75  * protect the system, but the calls themselves save the address
76  * in the address register in case they are interrupting another
77  * access to the device.
78  *
79  * For general accesses a lock is provided so that calls which are
80  * allowed to sleep are serialised so that the address register does
81  * not need to be saved. This lock also serves to serialise access
82  * to the EEPROM and PHY access registers which are shared between
83  * these two devices.
84  */
85 
86 /* The driver supports the original DM9000E, and now the two newer
87  * devices, DM9000A and DM9000B.
88  */
89 
90 enum dm9000_type {
91 	TYPE_DM9000E,	/* original DM9000 */
92 	TYPE_DM9000A,
93 	TYPE_DM9000B
94 };
95 
96 /* Structure/enum declaration ------------------------------- */
97 typedef struct board_info {
98 
99 	void __iomem	*io_addr;	/* Register I/O base address */
100 	void __iomem	*io_data;	/* Data I/O address */
101 	u16		 irq;		/* IRQ */
102 
103 	u16		tx_pkt_cnt;
104 	u16		queue_pkt_len;
105 	u16		queue_start_addr;
106 	u16		queue_ip_summed;
107 	u16		dbug_cnt;
108 	u8		io_mode;		/* 0:word, 2:byte */
109 	u8		phy_addr;
110 	u8		imr_all;
111 
112 	unsigned int	flags;
113 	unsigned int	in_suspend :1;
114 	unsigned int	wake_supported :1;
115 
116 	enum dm9000_type type;
117 
118 	void (*inblk)(void __iomem *port, void *data, int length);
119 	void (*outblk)(void __iomem *port, void *data, int length);
120 	void (*dumpblk)(void __iomem *port, int length);
121 
122 	struct device	*dev;	     /* parent device */
123 
124 	struct resource	*addr_res;   /* resources found */
125 	struct resource *data_res;
126 	struct resource	*addr_req;   /* resources requested */
127 	struct resource *data_req;
128 	struct resource *irq_res;
129 
130 	int		 irq_wake;
131 
132 	struct mutex	 addr_lock;	/* phy and eeprom access lock */
133 
134 	struct delayed_work phy_poll;
135 	struct net_device  *ndev;
136 
137 	spinlock_t	lock;
138 
139 	struct mii_if_info mii;
140 	u32		msg_enable;
141 	u32		wake_state;
142 
143 	int		ip_summed;
144 } board_info_t;
145 
146 /* debug code */
147 
148 #define dm9000_dbg(db, lev, msg...) do {		\
149 	if ((lev) < debug) {				\
150 		dev_dbg(db->dev, msg);			\
151 	}						\
152 } while (0)
153 
154 static inline board_info_t *to_dm9000_board(struct net_device *dev)
155 {
156 	return netdev_priv(dev);
157 }
158 
159 /* DM9000 network board routine ---------------------------- */
160 
161 static void
162 dm9000_reset(board_info_t * db)
163 {
164 	dev_dbg(db->dev, "resetting device\n");
165 
166 	/* RESET device */
167 	writeb(DM9000_NCR, db->io_addr);
168 	udelay(200);
169 	writeb(NCR_RST, db->io_data);
170 	udelay(200);
171 }
172 
173 /*
174  *   Read a byte from I/O port
175  */
176 static u8
177 ior(board_info_t * db, int reg)
178 {
179 	writeb(reg, db->io_addr);
180 	return readb(db->io_data);
181 }
182 
183 /*
184  *   Write a byte to I/O port
185  */
186 
187 static void
188 iow(board_info_t * db, int reg, int value)
189 {
190 	writeb(reg, db->io_addr);
191 	writeb(value, db->io_data);
192 }
193 
194 /* routines for sending block to chip */
195 
196 static void dm9000_outblk_8bit(void __iomem *reg, void *data, int count)
197 {
198 	iowrite8_rep(reg, data, count);
199 }
200 
201 static void dm9000_outblk_16bit(void __iomem *reg, void *data, int count)
202 {
203 	iowrite16_rep(reg, data, (count+1) >> 1);
204 }
205 
206 static void dm9000_outblk_32bit(void __iomem *reg, void *data, int count)
207 {
208 	iowrite32_rep(reg, data, (count+3) >> 2);
209 }
210 
211 /* input block from chip to memory */
212 
213 static void dm9000_inblk_8bit(void __iomem *reg, void *data, int count)
214 {
215 	ioread8_rep(reg, data, count);
216 }
217 
218 
219 static void dm9000_inblk_16bit(void __iomem *reg, void *data, int count)
220 {
221 	ioread16_rep(reg, data, (count+1) >> 1);
222 }
223 
224 static void dm9000_inblk_32bit(void __iomem *reg, void *data, int count)
225 {
226 	ioread32_rep(reg, data, (count+3) >> 2);
227 }
228 
229 /* dump block from chip to null */
230 
231 static void dm9000_dumpblk_8bit(void __iomem *reg, int count)
232 {
233 	int i;
234 	int tmp;
235 
236 	for (i = 0; i < count; i++)
237 		tmp = readb(reg);
238 }
239 
240 static void dm9000_dumpblk_16bit(void __iomem *reg, int count)
241 {
242 	int i;
243 	int tmp;
244 
245 	count = (count + 1) >> 1;
246 
247 	for (i = 0; i < count; i++)
248 		tmp = readw(reg);
249 }
250 
251 static void dm9000_dumpblk_32bit(void __iomem *reg, int count)
252 {
253 	int i;
254 	int tmp;
255 
256 	count = (count + 3) >> 2;
257 
258 	for (i = 0; i < count; i++)
259 		tmp = readl(reg);
260 }
261 
262 /*
263  * Sleep, either by using msleep() or if we are suspending, then
264  * use mdelay() to sleep.
265  */
266 static void dm9000_msleep(board_info_t *db, unsigned int ms)
267 {
268 	if (db->in_suspend)
269 		mdelay(ms);
270 	else
271 		msleep(ms);
272 }
273 
274 /* Read a word from phyxcer */
275 static int
276 dm9000_phy_read(struct net_device *dev, int phy_reg_unused, int reg)
277 {
278 	board_info_t *db = netdev_priv(dev);
279 	unsigned long flags;
280 	unsigned int reg_save;
281 	int ret;
282 
283 	mutex_lock(&db->addr_lock);
284 
285 	spin_lock_irqsave(&db->lock, flags);
286 
287 	/* Save previous register address */
288 	reg_save = readb(db->io_addr);
289 
290 	/* Fill the phyxcer register into REG_0C */
291 	iow(db, DM9000_EPAR, DM9000_PHY | reg);
292 
293 	/* Issue phyxcer read command */
294 	iow(db, DM9000_EPCR, EPCR_ERPRR | EPCR_EPOS);
295 
296 	writeb(reg_save, db->io_addr);
297 	spin_unlock_irqrestore(&db->lock, flags);
298 
299 	dm9000_msleep(db, 1);		/* Wait read complete */
300 
301 	spin_lock_irqsave(&db->lock, flags);
302 	reg_save = readb(db->io_addr);
303 
304 	iow(db, DM9000_EPCR, 0x0);	/* Clear phyxcer read command */
305 
306 	/* The read data keeps on REG_0D & REG_0E */
307 	ret = (ior(db, DM9000_EPDRH) << 8) | ior(db, DM9000_EPDRL);
308 
309 	/* restore the previous address */
310 	writeb(reg_save, db->io_addr);
311 	spin_unlock_irqrestore(&db->lock, flags);
312 
313 	mutex_unlock(&db->addr_lock);
314 
315 	dm9000_dbg(db, 5, "phy_read[%02x] -> %04x\n", reg, ret);
316 	return ret;
317 }
318 
319 /* Write a word to phyxcer */
320 static void
321 dm9000_phy_write(struct net_device *dev,
322 		 int phyaddr_unused, int reg, int value)
323 {
324 	board_info_t *db = netdev_priv(dev);
325 	unsigned long flags;
326 	unsigned long reg_save;
327 
328 	dm9000_dbg(db, 5, "phy_write[%02x] = %04x\n", reg, value);
329 	mutex_lock(&db->addr_lock);
330 
331 	spin_lock_irqsave(&db->lock, flags);
332 
333 	/* Save previous register address */
334 	reg_save = readb(db->io_addr);
335 
336 	/* Fill the phyxcer register into REG_0C */
337 	iow(db, DM9000_EPAR, DM9000_PHY | reg);
338 
339 	/* Fill the written data into REG_0D & REG_0E */
340 	iow(db, DM9000_EPDRL, value);
341 	iow(db, DM9000_EPDRH, value >> 8);
342 
343 	/* Issue phyxcer write command */
344 	iow(db, DM9000_EPCR, EPCR_EPOS | EPCR_ERPRW);
345 
346 	writeb(reg_save, db->io_addr);
347 	spin_unlock_irqrestore(&db->lock, flags);
348 
349 	dm9000_msleep(db, 1);		/* Wait write complete */
350 
351 	spin_lock_irqsave(&db->lock, flags);
352 	reg_save = readb(db->io_addr);
353 
354 	iow(db, DM9000_EPCR, 0x0);	/* Clear phyxcer write command */
355 
356 	/* restore the previous address */
357 	writeb(reg_save, db->io_addr);
358 
359 	spin_unlock_irqrestore(&db->lock, flags);
360 	mutex_unlock(&db->addr_lock);
361 }
362 
363 /* dm9000_set_io
364  *
365  * select the specified set of io routines to use with the
366  * device
367  */
368 
369 static void dm9000_set_io(struct board_info *db, int byte_width)
370 {
371 	/* use the size of the data resource to work out what IO
372 	 * routines we want to use
373 	 */
374 
375 	switch (byte_width) {
376 	case 1:
377 		db->dumpblk = dm9000_dumpblk_8bit;
378 		db->outblk  = dm9000_outblk_8bit;
379 		db->inblk   = dm9000_inblk_8bit;
380 		break;
381 
382 
383 	case 3:
384 		dev_dbg(db->dev, ": 3 byte IO, falling back to 16bit\n");
385 	case 2:
386 		db->dumpblk = dm9000_dumpblk_16bit;
387 		db->outblk  = dm9000_outblk_16bit;
388 		db->inblk   = dm9000_inblk_16bit;
389 		break;
390 
391 	case 4:
392 	default:
393 		db->dumpblk = dm9000_dumpblk_32bit;
394 		db->outblk  = dm9000_outblk_32bit;
395 		db->inblk   = dm9000_inblk_32bit;
396 		break;
397 	}
398 }
399 
400 static void dm9000_schedule_poll(board_info_t *db)
401 {
402 	if (db->type == TYPE_DM9000E)
403 		schedule_delayed_work(&db->phy_poll, HZ * 2);
404 }
405 
406 static int dm9000_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
407 {
408 	board_info_t *dm = to_dm9000_board(dev);
409 
410 	if (!netif_running(dev))
411 		return -EINVAL;
412 
413 	return generic_mii_ioctl(&dm->mii, if_mii(req), cmd, NULL);
414 }
415 
416 static unsigned int
417 dm9000_read_locked(board_info_t *db, int reg)
418 {
419 	unsigned long flags;
420 	unsigned int ret;
421 
422 	spin_lock_irqsave(&db->lock, flags);
423 	ret = ior(db, reg);
424 	spin_unlock_irqrestore(&db->lock, flags);
425 
426 	return ret;
427 }
428 
429 static int dm9000_wait_eeprom(board_info_t *db)
430 {
431 	unsigned int status;
432 	int timeout = 8;	/* wait max 8msec */
433 
434 	/* The DM9000 data sheets say we should be able to
435 	 * poll the ERRE bit in EPCR to wait for the EEPROM
436 	 * operation. From testing several chips, this bit
437 	 * does not seem to work.
438 	 *
439 	 * We attempt to use the bit, but fall back to the
440 	 * timeout (which is why we do not return an error
441 	 * on expiry) to say that the EEPROM operation has
442 	 * completed.
443 	 */
444 
445 	while (1) {
446 		status = dm9000_read_locked(db, DM9000_EPCR);
447 
448 		if ((status & EPCR_ERRE) == 0)
449 			break;
450 
451 		msleep(1);
452 
453 		if (timeout-- < 0) {
454 			dev_dbg(db->dev, "timeout waiting EEPROM\n");
455 			break;
456 		}
457 	}
458 
459 	return 0;
460 }
461 
462 /*
463  *  Read a word data from EEPROM
464  */
465 static void
466 dm9000_read_eeprom(board_info_t *db, int offset, u8 *to)
467 {
468 	unsigned long flags;
469 
470 	if (db->flags & DM9000_PLATF_NO_EEPROM) {
471 		to[0] = 0xff;
472 		to[1] = 0xff;
473 		return;
474 	}
475 
476 	mutex_lock(&db->addr_lock);
477 
478 	spin_lock_irqsave(&db->lock, flags);
479 
480 	iow(db, DM9000_EPAR, offset);
481 	iow(db, DM9000_EPCR, EPCR_ERPRR);
482 
483 	spin_unlock_irqrestore(&db->lock, flags);
484 
485 	dm9000_wait_eeprom(db);
486 
487 	/* delay for at-least 150uS */
488 	msleep(1);
489 
490 	spin_lock_irqsave(&db->lock, flags);
491 
492 	iow(db, DM9000_EPCR, 0x0);
493 
494 	to[0] = ior(db, DM9000_EPDRL);
495 	to[1] = ior(db, DM9000_EPDRH);
496 
497 	spin_unlock_irqrestore(&db->lock, flags);
498 
499 	mutex_unlock(&db->addr_lock);
500 }
501 
502 /*
503  * Write a word data to SROM
504  */
505 static void
506 dm9000_write_eeprom(board_info_t *db, int offset, u8 *data)
507 {
508 	unsigned long flags;
509 
510 	if (db->flags & DM9000_PLATF_NO_EEPROM)
511 		return;
512 
513 	mutex_lock(&db->addr_lock);
514 
515 	spin_lock_irqsave(&db->lock, flags);
516 	iow(db, DM9000_EPAR, offset);
517 	iow(db, DM9000_EPDRH, data[1]);
518 	iow(db, DM9000_EPDRL, data[0]);
519 	iow(db, DM9000_EPCR, EPCR_WEP | EPCR_ERPRW);
520 	spin_unlock_irqrestore(&db->lock, flags);
521 
522 	dm9000_wait_eeprom(db);
523 
524 	mdelay(1);	/* wait at least 150uS to clear */
525 
526 	spin_lock_irqsave(&db->lock, flags);
527 	iow(db, DM9000_EPCR, 0);
528 	spin_unlock_irqrestore(&db->lock, flags);
529 
530 	mutex_unlock(&db->addr_lock);
531 }
532 
533 /* ethtool ops */
534 
535 static void dm9000_get_drvinfo(struct net_device *dev,
536 			       struct ethtool_drvinfo *info)
537 {
538 	board_info_t *dm = to_dm9000_board(dev);
539 
540 	strlcpy(info->driver, CARDNAME, sizeof(info->driver));
541 	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
542 	strlcpy(info->bus_info, to_platform_device(dm->dev)->name,
543 		sizeof(info->bus_info));
544 }
545 
546 static u32 dm9000_get_msglevel(struct net_device *dev)
547 {
548 	board_info_t *dm = to_dm9000_board(dev);
549 
550 	return dm->msg_enable;
551 }
552 
553 static void dm9000_set_msglevel(struct net_device *dev, u32 value)
554 {
555 	board_info_t *dm = to_dm9000_board(dev);
556 
557 	dm->msg_enable = value;
558 }
559 
560 static int dm9000_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
561 {
562 	board_info_t *dm = to_dm9000_board(dev);
563 
564 	mii_ethtool_gset(&dm->mii, cmd);
565 	return 0;
566 }
567 
568 static int dm9000_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
569 {
570 	board_info_t *dm = to_dm9000_board(dev);
571 
572 	return mii_ethtool_sset(&dm->mii, cmd);
573 }
574 
575 static int dm9000_nway_reset(struct net_device *dev)
576 {
577 	board_info_t *dm = to_dm9000_board(dev);
578 	return mii_nway_restart(&dm->mii);
579 }
580 
581 static int dm9000_set_features(struct net_device *dev,
582 	netdev_features_t features)
583 {
584 	board_info_t *dm = to_dm9000_board(dev);
585 	netdev_features_t changed = dev->features ^ features;
586 	unsigned long flags;
587 
588 	if (!(changed & NETIF_F_RXCSUM))
589 		return 0;
590 
591 	spin_lock_irqsave(&dm->lock, flags);
592 	iow(dm, DM9000_RCSR, (features & NETIF_F_RXCSUM) ? RCSR_CSUM : 0);
593 	spin_unlock_irqrestore(&dm->lock, flags);
594 
595 	return 0;
596 }
597 
598 static u32 dm9000_get_link(struct net_device *dev)
599 {
600 	board_info_t *dm = to_dm9000_board(dev);
601 	u32 ret;
602 
603 	if (dm->flags & DM9000_PLATF_EXT_PHY)
604 		ret = mii_link_ok(&dm->mii);
605 	else
606 		ret = dm9000_read_locked(dm, DM9000_NSR) & NSR_LINKST ? 1 : 0;
607 
608 	return ret;
609 }
610 
611 #define DM_EEPROM_MAGIC		(0x444D394B)
612 
613 static int dm9000_get_eeprom_len(struct net_device *dev)
614 {
615 	return 128;
616 }
617 
618 static int dm9000_get_eeprom(struct net_device *dev,
619 			     struct ethtool_eeprom *ee, u8 *data)
620 {
621 	board_info_t *dm = to_dm9000_board(dev);
622 	int offset = ee->offset;
623 	int len = ee->len;
624 	int i;
625 
626 	/* EEPROM access is aligned to two bytes */
627 
628 	if ((len & 1) != 0 || (offset & 1) != 0)
629 		return -EINVAL;
630 
631 	if (dm->flags & DM9000_PLATF_NO_EEPROM)
632 		return -ENOENT;
633 
634 	ee->magic = DM_EEPROM_MAGIC;
635 
636 	for (i = 0; i < len; i += 2)
637 		dm9000_read_eeprom(dm, (offset + i) / 2, data + i);
638 
639 	return 0;
640 }
641 
642 static int dm9000_set_eeprom(struct net_device *dev,
643 			     struct ethtool_eeprom *ee, u8 *data)
644 {
645 	board_info_t *dm = to_dm9000_board(dev);
646 	int offset = ee->offset;
647 	int len = ee->len;
648 	int done;
649 
650 	/* EEPROM access is aligned to two bytes */
651 
652 	if (dm->flags & DM9000_PLATF_NO_EEPROM)
653 		return -ENOENT;
654 
655 	if (ee->magic != DM_EEPROM_MAGIC)
656 		return -EINVAL;
657 
658 	while (len > 0) {
659 		if (len & 1 || offset & 1) {
660 			int which = offset & 1;
661 			u8 tmp[2];
662 
663 			dm9000_read_eeprom(dm, offset / 2, tmp);
664 			tmp[which] = *data;
665 			dm9000_write_eeprom(dm, offset / 2, tmp);
666 
667 			done = 1;
668 		} else {
669 			dm9000_write_eeprom(dm, offset / 2, data);
670 			done = 2;
671 		}
672 
673 		data += done;
674 		offset += done;
675 		len -= done;
676 	}
677 
678 	return 0;
679 }
680 
681 static void dm9000_get_wol(struct net_device *dev, struct ethtool_wolinfo *w)
682 {
683 	board_info_t *dm = to_dm9000_board(dev);
684 
685 	memset(w, 0, sizeof(struct ethtool_wolinfo));
686 
687 	/* note, we could probably support wake-phy too */
688 	w->supported = dm->wake_supported ? WAKE_MAGIC : 0;
689 	w->wolopts = dm->wake_state;
690 }
691 
692 static int dm9000_set_wol(struct net_device *dev, struct ethtool_wolinfo *w)
693 {
694 	board_info_t *dm = to_dm9000_board(dev);
695 	unsigned long flags;
696 	u32 opts = w->wolopts;
697 	u32 wcr = 0;
698 
699 	if (!dm->wake_supported)
700 		return -EOPNOTSUPP;
701 
702 	if (opts & ~WAKE_MAGIC)
703 		return -EINVAL;
704 
705 	if (opts & WAKE_MAGIC)
706 		wcr |= WCR_MAGICEN;
707 
708 	mutex_lock(&dm->addr_lock);
709 
710 	spin_lock_irqsave(&dm->lock, flags);
711 	iow(dm, DM9000_WCR, wcr);
712 	spin_unlock_irqrestore(&dm->lock, flags);
713 
714 	mutex_unlock(&dm->addr_lock);
715 
716 	if (dm->wake_state != opts) {
717 		/* change in wol state, update IRQ state */
718 
719 		if (!dm->wake_state)
720 			irq_set_irq_wake(dm->irq_wake, 1);
721 		else if (dm->wake_state && !opts)
722 			irq_set_irq_wake(dm->irq_wake, 0);
723 	}
724 
725 	dm->wake_state = opts;
726 	return 0;
727 }
728 
729 static const struct ethtool_ops dm9000_ethtool_ops = {
730 	.get_drvinfo		= dm9000_get_drvinfo,
731 	.get_settings		= dm9000_get_settings,
732 	.set_settings		= dm9000_set_settings,
733 	.get_msglevel		= dm9000_get_msglevel,
734 	.set_msglevel		= dm9000_set_msglevel,
735 	.nway_reset		= dm9000_nway_reset,
736 	.get_link		= dm9000_get_link,
737 	.get_wol		= dm9000_get_wol,
738 	.set_wol		= dm9000_set_wol,
739  	.get_eeprom_len		= dm9000_get_eeprom_len,
740  	.get_eeprom		= dm9000_get_eeprom,
741  	.set_eeprom		= dm9000_set_eeprom,
742 };
743 
744 static void dm9000_show_carrier(board_info_t *db,
745 				unsigned carrier, unsigned nsr)
746 {
747 	struct net_device *ndev = db->ndev;
748 	unsigned ncr = dm9000_read_locked(db, DM9000_NCR);
749 
750 	if (carrier)
751 		dev_info(db->dev, "%s: link up, %dMbps, %s-duplex, no LPA\n",
752 			 ndev->name, (nsr & NSR_SPEED) ? 10 : 100,
753 			 (ncr & NCR_FDX) ? "full" : "half");
754 	else
755 		dev_info(db->dev, "%s: link down\n", ndev->name);
756 }
757 
758 static void
759 dm9000_poll_work(struct work_struct *w)
760 {
761 	struct delayed_work *dw = to_delayed_work(w);
762 	board_info_t *db = container_of(dw, board_info_t, phy_poll);
763 	struct net_device *ndev = db->ndev;
764 
765 	if (db->flags & DM9000_PLATF_SIMPLE_PHY &&
766 	    !(db->flags & DM9000_PLATF_EXT_PHY)) {
767 		unsigned nsr = dm9000_read_locked(db, DM9000_NSR);
768 		unsigned old_carrier = netif_carrier_ok(ndev) ? 1 : 0;
769 		unsigned new_carrier;
770 
771 		new_carrier = (nsr & NSR_LINKST) ? 1 : 0;
772 
773 		if (old_carrier != new_carrier) {
774 			if (netif_msg_link(db))
775 				dm9000_show_carrier(db, new_carrier, nsr);
776 
777 			if (!new_carrier)
778 				netif_carrier_off(ndev);
779 			else
780 				netif_carrier_on(ndev);
781 		}
782 	} else
783 		mii_check_media(&db->mii, netif_msg_link(db), 0);
784 
785 	if (netif_running(ndev))
786 		dm9000_schedule_poll(db);
787 }
788 
789 /* dm9000_release_board
790  *
791  * release a board, and any mapped resources
792  */
793 
794 static void
795 dm9000_release_board(struct platform_device *pdev, struct board_info *db)
796 {
797 	/* unmap our resources */
798 
799 	iounmap(db->io_addr);
800 	iounmap(db->io_data);
801 
802 	/* release the resources */
803 
804 	release_resource(db->data_req);
805 	kfree(db->data_req);
806 
807 	release_resource(db->addr_req);
808 	kfree(db->addr_req);
809 }
810 
811 static unsigned char dm9000_type_to_char(enum dm9000_type type)
812 {
813 	switch (type) {
814 	case TYPE_DM9000E: return 'e';
815 	case TYPE_DM9000A: return 'a';
816 	case TYPE_DM9000B: return 'b';
817 	}
818 
819 	return '?';
820 }
821 
822 /*
823  *  Set DM9000 multicast address
824  */
825 static void
826 dm9000_hash_table_unlocked(struct net_device *dev)
827 {
828 	board_info_t *db = netdev_priv(dev);
829 	struct netdev_hw_addr *ha;
830 	int i, oft;
831 	u32 hash_val;
832 	u16 hash_table[4] = { 0, 0, 0, 0x8000 }; /* broadcast address */
833 	u8 rcr = RCR_DIS_LONG | RCR_DIS_CRC | RCR_RXEN;
834 
835 	dm9000_dbg(db, 1, "entering %s\n", __func__);
836 
837 	for (i = 0, oft = DM9000_PAR; i < 6; i++, oft++)
838 		iow(db, oft, dev->dev_addr[i]);
839 
840 	if (dev->flags & IFF_PROMISC)
841 		rcr |= RCR_PRMSC;
842 
843 	if (dev->flags & IFF_ALLMULTI)
844 		rcr |= RCR_ALL;
845 
846 	/* the multicast address in Hash Table : 64 bits */
847 	netdev_for_each_mc_addr(ha, dev) {
848 		hash_val = ether_crc_le(6, ha->addr) & 0x3f;
849 		hash_table[hash_val / 16] |= (u16) 1 << (hash_val % 16);
850 	}
851 
852 	/* Write the hash table to MAC MD table */
853 	for (i = 0, oft = DM9000_MAR; i < 4; i++) {
854 		iow(db, oft++, hash_table[i]);
855 		iow(db, oft++, hash_table[i] >> 8);
856 	}
857 
858 	iow(db, DM9000_RCR, rcr);
859 }
860 
861 static void
862 dm9000_hash_table(struct net_device *dev)
863 {
864 	board_info_t *db = netdev_priv(dev);
865 	unsigned long flags;
866 
867 	spin_lock_irqsave(&db->lock, flags);
868 	dm9000_hash_table_unlocked(dev);
869 	spin_unlock_irqrestore(&db->lock, flags);
870 }
871 
872 /*
873  * Initialize dm9000 board
874  */
875 static void
876 dm9000_init_dm9000(struct net_device *dev)
877 {
878 	board_info_t *db = netdev_priv(dev);
879 	unsigned int imr;
880 	unsigned int ncr;
881 
882 	dm9000_dbg(db, 1, "entering %s\n", __func__);
883 
884 	/* I/O mode */
885 	db->io_mode = ior(db, DM9000_ISR) >> 6;	/* ISR bit7:6 keeps I/O mode */
886 
887 	/* Checksum mode */
888 	if (dev->hw_features & NETIF_F_RXCSUM)
889 		iow(db, DM9000_RCSR,
890 			(dev->features & NETIF_F_RXCSUM) ? RCSR_CSUM : 0);
891 
892 	iow(db, DM9000_GPCR, GPCR_GEP_CNTL);	/* Let GPIO0 output */
893 
894 	dm9000_phy_write(dev, 0, MII_BMCR, BMCR_RESET); /* PHY RESET */
895 	dm9000_phy_write(dev, 0, MII_DM_DSPCR, DSPCR_INIT_PARAM); /* Init */
896 
897 	ncr = (db->flags & DM9000_PLATF_EXT_PHY) ? NCR_EXT_PHY : 0;
898 
899 	/* if wol is needed, then always set NCR_WAKEEN otherwise we end
900 	 * up dumping the wake events if we disable this. There is already
901 	 * a wake-mask in DM9000_WCR */
902 	if (db->wake_supported)
903 		ncr |= NCR_WAKEEN;
904 
905 	iow(db, DM9000_NCR, ncr);
906 
907 	/* Program operating register */
908 	iow(db, DM9000_TCR, 0);	        /* TX Polling clear */
909 	iow(db, DM9000_BPTR, 0x3f);	/* Less 3Kb, 200us */
910 	iow(db, DM9000_FCR, 0xff);	/* Flow Control */
911 	iow(db, DM9000_SMCR, 0);        /* Special Mode */
912 	/* clear TX status */
913 	iow(db, DM9000_NSR, NSR_WAKEST | NSR_TX2END | NSR_TX1END);
914 	iow(db, DM9000_ISR, ISR_CLR_STATUS); /* Clear interrupt status */
915 
916 	/* Set address filter table */
917 	dm9000_hash_table_unlocked(dev);
918 
919 	imr = IMR_PAR | IMR_PTM | IMR_PRM;
920 	if (db->type != TYPE_DM9000E)
921 		imr |= IMR_LNKCHNG;
922 
923 	db->imr_all = imr;
924 
925 	/* Enable TX/RX interrupt mask */
926 	iow(db, DM9000_IMR, imr);
927 
928 	/* Init Driver variable */
929 	db->tx_pkt_cnt = 0;
930 	db->queue_pkt_len = 0;
931 	dev->trans_start = jiffies;
932 }
933 
934 /* Our watchdog timed out. Called by the networking layer */
935 static void dm9000_timeout(struct net_device *dev)
936 {
937 	board_info_t *db = netdev_priv(dev);
938 	u8 reg_save;
939 	unsigned long flags;
940 
941 	/* Save previous register address */
942 	spin_lock_irqsave(&db->lock, flags);
943 	reg_save = readb(db->io_addr);
944 
945 	netif_stop_queue(dev);
946 	dm9000_reset(db);
947 	dm9000_init_dm9000(dev);
948 	/* We can accept TX packets again */
949 	dev->trans_start = jiffies; /* prevent tx timeout */
950 	netif_wake_queue(dev);
951 
952 	/* Restore previous register address */
953 	writeb(reg_save, db->io_addr);
954 	spin_unlock_irqrestore(&db->lock, flags);
955 }
956 
957 static void dm9000_send_packet(struct net_device *dev,
958 			       int ip_summed,
959 			       u16 pkt_len)
960 {
961 	board_info_t *dm = to_dm9000_board(dev);
962 
963 	/* The DM9000 is not smart enough to leave fragmented packets alone. */
964 	if (dm->ip_summed != ip_summed) {
965 		if (ip_summed == CHECKSUM_NONE)
966 			iow(dm, DM9000_TCCR, 0);
967 		else
968 			iow(dm, DM9000_TCCR, TCCR_IP | TCCR_UDP | TCCR_TCP);
969 		dm->ip_summed = ip_summed;
970 	}
971 
972 	/* Set TX length to DM9000 */
973 	iow(dm, DM9000_TXPLL, pkt_len);
974 	iow(dm, DM9000_TXPLH, pkt_len >> 8);
975 
976 	/* Issue TX polling command */
977 	iow(dm, DM9000_TCR, TCR_TXREQ);	/* Cleared after TX complete */
978 }
979 
980 /*
981  *  Hardware start transmission.
982  *  Send a packet to media from the upper layer.
983  */
984 static int
985 dm9000_start_xmit(struct sk_buff *skb, struct net_device *dev)
986 {
987 	unsigned long flags;
988 	board_info_t *db = netdev_priv(dev);
989 
990 	dm9000_dbg(db, 3, "%s:\n", __func__);
991 
992 	if (db->tx_pkt_cnt > 1)
993 		return NETDEV_TX_BUSY;
994 
995 	spin_lock_irqsave(&db->lock, flags);
996 
997 	/* Move data to DM9000 TX RAM */
998 	writeb(DM9000_MWCMD, db->io_addr);
999 
1000 	(db->outblk)(db->io_data, skb->data, skb->len);
1001 	dev->stats.tx_bytes += skb->len;
1002 
1003 	db->tx_pkt_cnt++;
1004 	/* TX control: First packet immediately send, second packet queue */
1005 	if (db->tx_pkt_cnt == 1) {
1006 		dm9000_send_packet(dev, skb->ip_summed, skb->len);
1007 	} else {
1008 		/* Second packet */
1009 		db->queue_pkt_len = skb->len;
1010 		db->queue_ip_summed = skb->ip_summed;
1011 		netif_stop_queue(dev);
1012 	}
1013 
1014 	spin_unlock_irqrestore(&db->lock, flags);
1015 
1016 	/* free this SKB */
1017 	dev_kfree_skb(skb);
1018 
1019 	return NETDEV_TX_OK;
1020 }
1021 
1022 /*
1023  * DM9000 interrupt handler
1024  * receive the packet to upper layer, free the transmitted packet
1025  */
1026 
1027 static void dm9000_tx_done(struct net_device *dev, board_info_t *db)
1028 {
1029 	int tx_status = ior(db, DM9000_NSR);	/* Got TX status */
1030 
1031 	if (tx_status & (NSR_TX2END | NSR_TX1END)) {
1032 		/* One packet sent complete */
1033 		db->tx_pkt_cnt--;
1034 		dev->stats.tx_packets++;
1035 
1036 		if (netif_msg_tx_done(db))
1037 			dev_dbg(db->dev, "tx done, NSR %02x\n", tx_status);
1038 
1039 		/* Queue packet check & send */
1040 		if (db->tx_pkt_cnt > 0)
1041 			dm9000_send_packet(dev, db->queue_ip_summed,
1042 					   db->queue_pkt_len);
1043 		netif_wake_queue(dev);
1044 	}
1045 }
1046 
1047 struct dm9000_rxhdr {
1048 	u8	RxPktReady;
1049 	u8	RxStatus;
1050 	__le16	RxLen;
1051 } __packed;
1052 
1053 /*
1054  *  Received a packet and pass to upper layer
1055  */
1056 static void
1057 dm9000_rx(struct net_device *dev)
1058 {
1059 	board_info_t *db = netdev_priv(dev);
1060 	struct dm9000_rxhdr rxhdr;
1061 	struct sk_buff *skb;
1062 	u8 rxbyte, *rdptr;
1063 	bool GoodPacket;
1064 	int RxLen;
1065 
1066 	/* Check packet ready or not */
1067 	do {
1068 		ior(db, DM9000_MRCMDX);	/* Dummy read */
1069 
1070 		/* Get most updated data */
1071 		rxbyte = readb(db->io_data);
1072 
1073 		/* Status check: this byte must be 0 or 1 */
1074 		if (rxbyte & DM9000_PKT_ERR) {
1075 			dev_warn(db->dev, "status check fail: %d\n", rxbyte);
1076 			iow(db, DM9000_RCR, 0x00);	/* Stop Device */
1077 			iow(db, DM9000_ISR, IMR_PAR);	/* Stop INT request */
1078 			return;
1079 		}
1080 
1081 		if (!(rxbyte & DM9000_PKT_RDY))
1082 			return;
1083 
1084 		/* A packet ready now  & Get status/length */
1085 		GoodPacket = true;
1086 		writeb(DM9000_MRCMD, db->io_addr);
1087 
1088 		(db->inblk)(db->io_data, &rxhdr, sizeof(rxhdr));
1089 
1090 		RxLen = le16_to_cpu(rxhdr.RxLen);
1091 
1092 		if (netif_msg_rx_status(db))
1093 			dev_dbg(db->dev, "RX: status %02x, length %04x\n",
1094 				rxhdr.RxStatus, RxLen);
1095 
1096 		/* Packet Status check */
1097 		if (RxLen < 0x40) {
1098 			GoodPacket = false;
1099 			if (netif_msg_rx_err(db))
1100 				dev_dbg(db->dev, "RX: Bad Packet (runt)\n");
1101 		}
1102 
1103 		if (RxLen > DM9000_PKT_MAX) {
1104 			dev_dbg(db->dev, "RST: RX Len:%x\n", RxLen);
1105 		}
1106 
1107 		/* rxhdr.RxStatus is identical to RSR register. */
1108 		if (rxhdr.RxStatus & (RSR_FOE | RSR_CE | RSR_AE |
1109 				      RSR_PLE | RSR_RWTO |
1110 				      RSR_LCS | RSR_RF)) {
1111 			GoodPacket = false;
1112 			if (rxhdr.RxStatus & RSR_FOE) {
1113 				if (netif_msg_rx_err(db))
1114 					dev_dbg(db->dev, "fifo error\n");
1115 				dev->stats.rx_fifo_errors++;
1116 			}
1117 			if (rxhdr.RxStatus & RSR_CE) {
1118 				if (netif_msg_rx_err(db))
1119 					dev_dbg(db->dev, "crc error\n");
1120 				dev->stats.rx_crc_errors++;
1121 			}
1122 			if (rxhdr.RxStatus & RSR_RF) {
1123 				if (netif_msg_rx_err(db))
1124 					dev_dbg(db->dev, "length error\n");
1125 				dev->stats.rx_length_errors++;
1126 			}
1127 		}
1128 
1129 		/* Move data from DM9000 */
1130 		if (GoodPacket &&
1131 		    ((skb = netdev_alloc_skb(dev, RxLen + 4)) != NULL)) {
1132 			skb_reserve(skb, 2);
1133 			rdptr = (u8 *) skb_put(skb, RxLen - 4);
1134 
1135 			/* Read received packet from RX SRAM */
1136 
1137 			(db->inblk)(db->io_data, rdptr, RxLen);
1138 			dev->stats.rx_bytes += RxLen;
1139 
1140 			/* Pass to upper layer */
1141 			skb->protocol = eth_type_trans(skb, dev);
1142 			if (dev->features & NETIF_F_RXCSUM) {
1143 				if ((((rxbyte & 0x1c) << 3) & rxbyte) == 0)
1144 					skb->ip_summed = CHECKSUM_UNNECESSARY;
1145 				else
1146 					skb_checksum_none_assert(skb);
1147 			}
1148 			netif_rx(skb);
1149 			dev->stats.rx_packets++;
1150 
1151 		} else {
1152 			/* need to dump the packet's data */
1153 
1154 			(db->dumpblk)(db->io_data, RxLen);
1155 		}
1156 	} while (rxbyte & DM9000_PKT_RDY);
1157 }
1158 
1159 static irqreturn_t dm9000_interrupt(int irq, void *dev_id)
1160 {
1161 	struct net_device *dev = dev_id;
1162 	board_info_t *db = netdev_priv(dev);
1163 	int int_status;
1164 	unsigned long flags;
1165 	u8 reg_save;
1166 
1167 	dm9000_dbg(db, 3, "entering %s\n", __func__);
1168 
1169 	/* A real interrupt coming */
1170 
1171 	/* holders of db->lock must always block IRQs */
1172 	spin_lock_irqsave(&db->lock, flags);
1173 
1174 	/* Save previous register address */
1175 	reg_save = readb(db->io_addr);
1176 
1177 	/* Disable all interrupts */
1178 	iow(db, DM9000_IMR, IMR_PAR);
1179 
1180 	/* Got DM9000 interrupt status */
1181 	int_status = ior(db, DM9000_ISR);	/* Got ISR */
1182 	iow(db, DM9000_ISR, int_status);	/* Clear ISR status */
1183 
1184 	if (netif_msg_intr(db))
1185 		dev_dbg(db->dev, "interrupt status %02x\n", int_status);
1186 
1187 	/* Received the coming packet */
1188 	if (int_status & ISR_PRS)
1189 		dm9000_rx(dev);
1190 
1191 	/* Trnasmit Interrupt check */
1192 	if (int_status & ISR_PTS)
1193 		dm9000_tx_done(dev, db);
1194 
1195 	if (db->type != TYPE_DM9000E) {
1196 		if (int_status & ISR_LNKCHNG) {
1197 			/* fire a link-change request */
1198 			schedule_delayed_work(&db->phy_poll, 1);
1199 		}
1200 	}
1201 
1202 	/* Re-enable interrupt mask */
1203 	iow(db, DM9000_IMR, db->imr_all);
1204 
1205 	/* Restore previous register address */
1206 	writeb(reg_save, db->io_addr);
1207 
1208 	spin_unlock_irqrestore(&db->lock, flags);
1209 
1210 	return IRQ_HANDLED;
1211 }
1212 
1213 static irqreturn_t dm9000_wol_interrupt(int irq, void *dev_id)
1214 {
1215 	struct net_device *dev = dev_id;
1216 	board_info_t *db = netdev_priv(dev);
1217 	unsigned long flags;
1218 	unsigned nsr, wcr;
1219 
1220 	spin_lock_irqsave(&db->lock, flags);
1221 
1222 	nsr = ior(db, DM9000_NSR);
1223 	wcr = ior(db, DM9000_WCR);
1224 
1225 	dev_dbg(db->dev, "%s: NSR=0x%02x, WCR=0x%02x\n", __func__, nsr, wcr);
1226 
1227 	if (nsr & NSR_WAKEST) {
1228 		/* clear, so we can avoid */
1229 		iow(db, DM9000_NSR, NSR_WAKEST);
1230 
1231 		if (wcr & WCR_LINKST)
1232 			dev_info(db->dev, "wake by link status change\n");
1233 		if (wcr & WCR_SAMPLEST)
1234 			dev_info(db->dev, "wake by sample packet\n");
1235 		if (wcr & WCR_MAGICST )
1236 			dev_info(db->dev, "wake by magic packet\n");
1237 		if (!(wcr & (WCR_LINKST | WCR_SAMPLEST | WCR_MAGICST)))
1238 			dev_err(db->dev, "wake signalled with no reason? "
1239 				"NSR=0x%02x, WSR=0x%02x\n", nsr, wcr);
1240 
1241 	}
1242 
1243 	spin_unlock_irqrestore(&db->lock, flags);
1244 
1245 	return (nsr & NSR_WAKEST) ? IRQ_HANDLED : IRQ_NONE;
1246 }
1247 
1248 #ifdef CONFIG_NET_POLL_CONTROLLER
1249 /*
1250  *Used by netconsole
1251  */
1252 static void dm9000_poll_controller(struct net_device *dev)
1253 {
1254 	disable_irq(dev->irq);
1255 	dm9000_interrupt(dev->irq, dev);
1256 	enable_irq(dev->irq);
1257 }
1258 #endif
1259 
1260 /*
1261  *  Open the interface.
1262  *  The interface is opened whenever "ifconfig" actives it.
1263  */
1264 static int
1265 dm9000_open(struct net_device *dev)
1266 {
1267 	board_info_t *db = netdev_priv(dev);
1268 	unsigned long irqflags = db->irq_res->flags & IRQF_TRIGGER_MASK;
1269 
1270 	if (netif_msg_ifup(db))
1271 		dev_dbg(db->dev, "enabling %s\n", dev->name);
1272 
1273 	/* If there is no IRQ type specified, default to something that
1274 	 * may work, and tell the user that this is a problem */
1275 
1276 	if (irqflags == IRQF_TRIGGER_NONE)
1277 		dev_warn(db->dev, "WARNING: no IRQ resource flags set.\n");
1278 
1279 	irqflags |= IRQF_SHARED;
1280 
1281 	/* GPIO0 on pre-activate PHY, Reg 1F is not set by reset */
1282 	iow(db, DM9000_GPR, 0);	/* REG_1F bit0 activate phyxcer */
1283 	mdelay(1); /* delay needs by DM9000B */
1284 
1285 	/* Initialize DM9000 board */
1286 	dm9000_reset(db);
1287 	dm9000_init_dm9000(dev);
1288 
1289 	if (request_irq(dev->irq, dm9000_interrupt, irqflags, dev->name, dev))
1290 		return -EAGAIN;
1291 
1292 	/* Init driver variable */
1293 	db->dbug_cnt = 0;
1294 
1295 	mii_check_media(&db->mii, netif_msg_link(db), 1);
1296 	netif_start_queue(dev);
1297 
1298 	dm9000_schedule_poll(db);
1299 
1300 	return 0;
1301 }
1302 
1303 static void
1304 dm9000_shutdown(struct net_device *dev)
1305 {
1306 	board_info_t *db = netdev_priv(dev);
1307 
1308 	/* RESET device */
1309 	dm9000_phy_write(dev, 0, MII_BMCR, BMCR_RESET);	/* PHY RESET */
1310 	iow(db, DM9000_GPR, 0x01);	/* Power-Down PHY */
1311 	iow(db, DM9000_IMR, IMR_PAR);	/* Disable all interrupt */
1312 	iow(db, DM9000_RCR, 0x00);	/* Disable RX */
1313 }
1314 
1315 /*
1316  * Stop the interface.
1317  * The interface is stopped when it is brought.
1318  */
1319 static int
1320 dm9000_stop(struct net_device *ndev)
1321 {
1322 	board_info_t *db = netdev_priv(ndev);
1323 
1324 	if (netif_msg_ifdown(db))
1325 		dev_dbg(db->dev, "shutting down %s\n", ndev->name);
1326 
1327 	cancel_delayed_work_sync(&db->phy_poll);
1328 
1329 	netif_stop_queue(ndev);
1330 	netif_carrier_off(ndev);
1331 
1332 	/* free interrupt */
1333 	free_irq(ndev->irq, ndev);
1334 
1335 	dm9000_shutdown(ndev);
1336 
1337 	return 0;
1338 }
1339 
1340 static const struct net_device_ops dm9000_netdev_ops = {
1341 	.ndo_open		= dm9000_open,
1342 	.ndo_stop		= dm9000_stop,
1343 	.ndo_start_xmit		= dm9000_start_xmit,
1344 	.ndo_tx_timeout		= dm9000_timeout,
1345 	.ndo_set_rx_mode	= dm9000_hash_table,
1346 	.ndo_do_ioctl		= dm9000_ioctl,
1347 	.ndo_change_mtu		= eth_change_mtu,
1348 	.ndo_set_features	= dm9000_set_features,
1349 	.ndo_validate_addr	= eth_validate_addr,
1350 	.ndo_set_mac_address	= eth_mac_addr,
1351 #ifdef CONFIG_NET_POLL_CONTROLLER
1352 	.ndo_poll_controller	= dm9000_poll_controller,
1353 #endif
1354 };
1355 
1356 static struct dm9000_plat_data *dm9000_parse_dt(struct device *dev)
1357 {
1358 	struct dm9000_plat_data *pdata;
1359 	struct device_node *np = dev->of_node;
1360 	const void *mac_addr;
1361 
1362 	if (!IS_ENABLED(CONFIG_OF) || !np)
1363 		return NULL;
1364 
1365 	pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
1366 	if (!pdata)
1367 		return ERR_PTR(-ENOMEM);
1368 
1369 	if (of_find_property(np, "davicom,ext-phy", NULL))
1370 		pdata->flags |= DM9000_PLATF_EXT_PHY;
1371 	if (of_find_property(np, "davicom,no-eeprom", NULL))
1372 		pdata->flags |= DM9000_PLATF_NO_EEPROM;
1373 
1374 	mac_addr = of_get_mac_address(np);
1375 	if (mac_addr)
1376 		memcpy(pdata->dev_addr, mac_addr, sizeof(pdata->dev_addr));
1377 
1378 	return pdata;
1379 }
1380 
1381 /*
1382  * Search DM9000 board, allocate space and register it
1383  */
1384 static int
1385 dm9000_probe(struct platform_device *pdev)
1386 {
1387 	struct dm9000_plat_data *pdata = dev_get_platdata(&pdev->dev);
1388 	struct board_info *db;	/* Point a board information structure */
1389 	struct net_device *ndev;
1390 	const unsigned char *mac_src;
1391 	int ret = 0;
1392 	int iosize;
1393 	int i;
1394 	u32 id_val;
1395 
1396 	if (!pdata) {
1397 		pdata = dm9000_parse_dt(&pdev->dev);
1398 		if (IS_ERR(pdata))
1399 			return PTR_ERR(pdata);
1400 	}
1401 
1402 	/* Init network device */
1403 	ndev = alloc_etherdev(sizeof(struct board_info));
1404 	if (!ndev)
1405 		return -ENOMEM;
1406 
1407 	SET_NETDEV_DEV(ndev, &pdev->dev);
1408 
1409 	dev_dbg(&pdev->dev, "dm9000_probe()\n");
1410 
1411 	/* setup board info structure */
1412 	db = netdev_priv(ndev);
1413 
1414 	db->dev = &pdev->dev;
1415 	db->ndev = ndev;
1416 
1417 	spin_lock_init(&db->lock);
1418 	mutex_init(&db->addr_lock);
1419 
1420 	INIT_DELAYED_WORK(&db->phy_poll, dm9000_poll_work);
1421 
1422 	db->addr_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1423 	db->data_res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1424 	db->irq_res  = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
1425 
1426 	if (db->addr_res == NULL || db->data_res == NULL ||
1427 	    db->irq_res == NULL) {
1428 		dev_err(db->dev, "insufficient resources\n");
1429 		ret = -ENOENT;
1430 		goto out;
1431 	}
1432 
1433 	db->irq_wake = platform_get_irq(pdev, 1);
1434 	if (db->irq_wake >= 0) {
1435 		dev_dbg(db->dev, "wakeup irq %d\n", db->irq_wake);
1436 
1437 		ret = request_irq(db->irq_wake, dm9000_wol_interrupt,
1438 				  IRQF_SHARED, dev_name(db->dev), ndev);
1439 		if (ret) {
1440 			dev_err(db->dev, "cannot get wakeup irq (%d)\n", ret);
1441 		} else {
1442 
1443 			/* test to see if irq is really wakeup capable */
1444 			ret = irq_set_irq_wake(db->irq_wake, 1);
1445 			if (ret) {
1446 				dev_err(db->dev, "irq %d cannot set wakeup (%d)\n",
1447 					db->irq_wake, ret);
1448 				ret = 0;
1449 			} else {
1450 				irq_set_irq_wake(db->irq_wake, 0);
1451 				db->wake_supported = 1;
1452 			}
1453 		}
1454 	}
1455 
1456 	iosize = resource_size(db->addr_res);
1457 	db->addr_req = request_mem_region(db->addr_res->start, iosize,
1458 					  pdev->name);
1459 
1460 	if (db->addr_req == NULL) {
1461 		dev_err(db->dev, "cannot claim address reg area\n");
1462 		ret = -EIO;
1463 		goto out;
1464 	}
1465 
1466 	db->io_addr = ioremap(db->addr_res->start, iosize);
1467 
1468 	if (db->io_addr == NULL) {
1469 		dev_err(db->dev, "failed to ioremap address reg\n");
1470 		ret = -EINVAL;
1471 		goto out;
1472 	}
1473 
1474 	iosize = resource_size(db->data_res);
1475 	db->data_req = request_mem_region(db->data_res->start, iosize,
1476 					  pdev->name);
1477 
1478 	if (db->data_req == NULL) {
1479 		dev_err(db->dev, "cannot claim data reg area\n");
1480 		ret = -EIO;
1481 		goto out;
1482 	}
1483 
1484 	db->io_data = ioremap(db->data_res->start, iosize);
1485 
1486 	if (db->io_data == NULL) {
1487 		dev_err(db->dev, "failed to ioremap data reg\n");
1488 		ret = -EINVAL;
1489 		goto out;
1490 	}
1491 
1492 	/* fill in parameters for net-dev structure */
1493 	ndev->base_addr = (unsigned long)db->io_addr;
1494 	ndev->irq	= db->irq_res->start;
1495 
1496 	/* ensure at least we have a default set of IO routines */
1497 	dm9000_set_io(db, iosize);
1498 
1499 	/* check to see if anything is being over-ridden */
1500 	if (pdata != NULL) {
1501 		/* check to see if the driver wants to over-ride the
1502 		 * default IO width */
1503 
1504 		if (pdata->flags & DM9000_PLATF_8BITONLY)
1505 			dm9000_set_io(db, 1);
1506 
1507 		if (pdata->flags & DM9000_PLATF_16BITONLY)
1508 			dm9000_set_io(db, 2);
1509 
1510 		if (pdata->flags & DM9000_PLATF_32BITONLY)
1511 			dm9000_set_io(db, 4);
1512 
1513 		/* check to see if there are any IO routine
1514 		 * over-rides */
1515 
1516 		if (pdata->inblk != NULL)
1517 			db->inblk = pdata->inblk;
1518 
1519 		if (pdata->outblk != NULL)
1520 			db->outblk = pdata->outblk;
1521 
1522 		if (pdata->dumpblk != NULL)
1523 			db->dumpblk = pdata->dumpblk;
1524 
1525 		db->flags = pdata->flags;
1526 	}
1527 
1528 #ifdef CONFIG_DM9000_FORCE_SIMPLE_PHY_POLL
1529 	db->flags |= DM9000_PLATF_SIMPLE_PHY;
1530 #endif
1531 
1532 	/* Fixing bug on dm9000_probe, takeover dm9000_reset(db),
1533 	 * Need 'NCR_MAC_LBK' bit to indeed stable our DM9000 fifo
1534 	 * while probe stage.
1535 	 */
1536 
1537 	iow(db, DM9000_NCR, NCR_MAC_LBK | NCR_RST);
1538 
1539 	/* try multiple times, DM9000 sometimes gets the read wrong */
1540 	for (i = 0; i < 8; i++) {
1541 		id_val  = ior(db, DM9000_VIDL);
1542 		id_val |= (u32)ior(db, DM9000_VIDH) << 8;
1543 		id_val |= (u32)ior(db, DM9000_PIDL) << 16;
1544 		id_val |= (u32)ior(db, DM9000_PIDH) << 24;
1545 
1546 		if (id_val == DM9000_ID)
1547 			break;
1548 		dev_err(db->dev, "read wrong id 0x%08x\n", id_val);
1549 	}
1550 
1551 	if (id_val != DM9000_ID) {
1552 		dev_err(db->dev, "wrong id: 0x%08x\n", id_val);
1553 		ret = -ENODEV;
1554 		goto out;
1555 	}
1556 
1557 	/* Identify what type of DM9000 we are working on */
1558 
1559 	id_val = ior(db, DM9000_CHIPR);
1560 	dev_dbg(db->dev, "dm9000 revision 0x%02x\n", id_val);
1561 
1562 	switch (id_val) {
1563 	case CHIPR_DM9000A:
1564 		db->type = TYPE_DM9000A;
1565 		break;
1566 	case CHIPR_DM9000B:
1567 		db->type = TYPE_DM9000B;
1568 		break;
1569 	default:
1570 		dev_dbg(db->dev, "ID %02x => defaulting to DM9000E\n", id_val);
1571 		db->type = TYPE_DM9000E;
1572 	}
1573 
1574 	/* dm9000a/b are capable of hardware checksum offload */
1575 	if (db->type == TYPE_DM9000A || db->type == TYPE_DM9000B) {
1576 		ndev->hw_features = NETIF_F_RXCSUM | NETIF_F_IP_CSUM;
1577 		ndev->features |= ndev->hw_features;
1578 	}
1579 
1580 	/* from this point we assume that we have found a DM9000 */
1581 
1582 	/* driver system function */
1583 	ether_setup(ndev);
1584 
1585 	ndev->netdev_ops	= &dm9000_netdev_ops;
1586 	ndev->watchdog_timeo	= msecs_to_jiffies(watchdog);
1587 	ndev->ethtool_ops	= &dm9000_ethtool_ops;
1588 
1589 	db->msg_enable       = NETIF_MSG_LINK;
1590 	db->mii.phy_id_mask  = 0x1f;
1591 	db->mii.reg_num_mask = 0x1f;
1592 	db->mii.force_media  = 0;
1593 	db->mii.full_duplex  = 0;
1594 	db->mii.dev	     = ndev;
1595 	db->mii.mdio_read    = dm9000_phy_read;
1596 	db->mii.mdio_write   = dm9000_phy_write;
1597 
1598 	mac_src = "eeprom";
1599 
1600 	/* try reading the node address from the attached EEPROM */
1601 	for (i = 0; i < 6; i += 2)
1602 		dm9000_read_eeprom(db, i / 2, ndev->dev_addr+i);
1603 
1604 	if (!is_valid_ether_addr(ndev->dev_addr) && pdata != NULL) {
1605 		mac_src = "platform data";
1606 		memcpy(ndev->dev_addr, pdata->dev_addr, 6);
1607 	}
1608 
1609 	if (!is_valid_ether_addr(ndev->dev_addr)) {
1610 		/* try reading from mac */
1611 
1612 		mac_src = "chip";
1613 		for (i = 0; i < 6; i++)
1614 			ndev->dev_addr[i] = ior(db, i+DM9000_PAR);
1615 	}
1616 
1617 	if (!is_valid_ether_addr(ndev->dev_addr)) {
1618 		dev_warn(db->dev, "%s: Invalid ethernet MAC address. Please "
1619 			 "set using ifconfig\n", ndev->name);
1620 
1621 		eth_hw_addr_random(ndev);
1622 		mac_src = "random";
1623 	}
1624 
1625 
1626 	platform_set_drvdata(pdev, ndev);
1627 	ret = register_netdev(ndev);
1628 
1629 	if (ret == 0)
1630 		printk(KERN_INFO "%s: dm9000%c at %p,%p IRQ %d MAC: %pM (%s)\n",
1631 		       ndev->name, dm9000_type_to_char(db->type),
1632 		       db->io_addr, db->io_data, ndev->irq,
1633 		       ndev->dev_addr, mac_src);
1634 	return 0;
1635 
1636 out:
1637 	dev_err(db->dev, "not found (%d).\n", ret);
1638 
1639 	dm9000_release_board(pdev, db);
1640 	free_netdev(ndev);
1641 
1642 	return ret;
1643 }
1644 
1645 static int
1646 dm9000_drv_suspend(struct device *dev)
1647 {
1648 	struct platform_device *pdev = to_platform_device(dev);
1649 	struct net_device *ndev = platform_get_drvdata(pdev);
1650 	board_info_t *db;
1651 
1652 	if (ndev) {
1653 		db = netdev_priv(ndev);
1654 		db->in_suspend = 1;
1655 
1656 		if (!netif_running(ndev))
1657 			return 0;
1658 
1659 		netif_device_detach(ndev);
1660 
1661 		/* only shutdown if not using WoL */
1662 		if (!db->wake_state)
1663 			dm9000_shutdown(ndev);
1664 	}
1665 	return 0;
1666 }
1667 
1668 static int
1669 dm9000_drv_resume(struct device *dev)
1670 {
1671 	struct platform_device *pdev = to_platform_device(dev);
1672 	struct net_device *ndev = platform_get_drvdata(pdev);
1673 	board_info_t *db = netdev_priv(ndev);
1674 
1675 	if (ndev) {
1676 		if (netif_running(ndev)) {
1677 			/* reset if we were not in wake mode to ensure if
1678 			 * the device was powered off it is in a known state */
1679 			if (!db->wake_state) {
1680 				dm9000_reset(db);
1681 				dm9000_init_dm9000(ndev);
1682 			}
1683 
1684 			netif_device_attach(ndev);
1685 		}
1686 
1687 		db->in_suspend = 0;
1688 	}
1689 	return 0;
1690 }
1691 
1692 static const struct dev_pm_ops dm9000_drv_pm_ops = {
1693 	.suspend	= dm9000_drv_suspend,
1694 	.resume		= dm9000_drv_resume,
1695 };
1696 
1697 static int
1698 dm9000_drv_remove(struct platform_device *pdev)
1699 {
1700 	struct net_device *ndev = platform_get_drvdata(pdev);
1701 
1702 	unregister_netdev(ndev);
1703 	dm9000_release_board(pdev, netdev_priv(ndev));
1704 	free_netdev(ndev);		/* free device structure */
1705 
1706 	dev_dbg(&pdev->dev, "released and freed device\n");
1707 	return 0;
1708 }
1709 
1710 #ifdef CONFIG_OF
1711 static const struct of_device_id dm9000_of_matches[] = {
1712 	{ .compatible = "davicom,dm9000", },
1713 	{ /* sentinel */ }
1714 };
1715 MODULE_DEVICE_TABLE(of, dm9000_of_matches);
1716 #endif
1717 
1718 static struct platform_driver dm9000_driver = {
1719 	.driver	= {
1720 		.name    = "dm9000",
1721 		.owner	 = THIS_MODULE,
1722 		.pm	 = &dm9000_drv_pm_ops,
1723 		.of_match_table = of_match_ptr(dm9000_of_matches),
1724 	},
1725 	.probe   = dm9000_probe,
1726 	.remove  = dm9000_drv_remove,
1727 };
1728 
1729 module_platform_driver(dm9000_driver);
1730 
1731 MODULE_AUTHOR("Sascha Hauer, Ben Dooks");
1732 MODULE_DESCRIPTION("Davicom DM9000 network driver");
1733 MODULE_LICENSE("GPL");
1734 MODULE_ALIAS("platform:dm9000");
1735