xref: /openbmc/linux/drivers/net/ethernet/davicom/dm9000.c (revision 840ef8b7cc584a23c4f9d05352f4dbaf8e56e5ab)
1 /*
2  *      Davicom DM9000 Fast Ethernet driver for Linux.
3  * 	Copyright (C) 1997  Sten Wang
4  *
5  * 	This program is free software; you can redistribute it and/or
6  * 	modify it under the terms of the GNU General Public License
7  * 	as published by the Free Software Foundation; either version 2
8  * 	of the License, or (at your option) any later version.
9  *
10  * 	This program is distributed in the hope that it will be useful,
11  * 	but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * 	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * 	GNU General Public License for more details.
14  *
15  * (C) Copyright 1997-1998 DAVICOM Semiconductor,Inc. All Rights Reserved.
16  *
17  * Additional updates, Copyright:
18  *	Ben Dooks <ben@simtec.co.uk>
19  *	Sascha Hauer <s.hauer@pengutronix.de>
20  */
21 
22 #include <linux/module.h>
23 #include <linux/ioport.h>
24 #include <linux/netdevice.h>
25 #include <linux/etherdevice.h>
26 #include <linux/init.h>
27 #include <linux/interrupt.h>
28 #include <linux/skbuff.h>
29 #include <linux/spinlock.h>
30 #include <linux/crc32.h>
31 #include <linux/mii.h>
32 #include <linux/ethtool.h>
33 #include <linux/dm9000.h>
34 #include <linux/delay.h>
35 #include <linux/platform_device.h>
36 #include <linux/irq.h>
37 #include <linux/slab.h>
38 
39 #include <asm/delay.h>
40 #include <asm/irq.h>
41 #include <asm/io.h>
42 
43 #include "dm9000.h"
44 
45 /* Board/System/Debug information/definition ---------------- */
46 
47 #define DM9000_PHY		0x40	/* PHY address 0x01 */
48 
49 #define CARDNAME	"dm9000"
50 #define DRV_VERSION	"1.31"
51 
52 /*
53  * Transmit timeout, default 5 seconds.
54  */
55 static int watchdog = 5000;
56 module_param(watchdog, int, 0400);
57 MODULE_PARM_DESC(watchdog, "transmit timeout in milliseconds");
58 
59 /*
60  * Debug messages level
61  */
62 static int debug;
63 module_param(debug, int, 0644);
64 MODULE_PARM_DESC(debug, "dm9000 debug level (0-4)");
65 
66 /* DM9000 register address locking.
67  *
68  * The DM9000 uses an address register to control where data written
69  * to the data register goes. This means that the address register
70  * must be preserved over interrupts or similar calls.
71  *
72  * During interrupt and other critical calls, a spinlock is used to
73  * protect the system, but the calls themselves save the address
74  * in the address register in case they are interrupting another
75  * access to the device.
76  *
77  * For general accesses a lock is provided so that calls which are
78  * allowed to sleep are serialised so that the address register does
79  * not need to be saved. This lock also serves to serialise access
80  * to the EEPROM and PHY access registers which are shared between
81  * these two devices.
82  */
83 
84 /* The driver supports the original DM9000E, and now the two newer
85  * devices, DM9000A and DM9000B.
86  */
87 
88 enum dm9000_type {
89 	TYPE_DM9000E,	/* original DM9000 */
90 	TYPE_DM9000A,
91 	TYPE_DM9000B
92 };
93 
94 /* Structure/enum declaration ------------------------------- */
95 typedef struct board_info {
96 
97 	void __iomem	*io_addr;	/* Register I/O base address */
98 	void __iomem	*io_data;	/* Data I/O address */
99 	u16		 irq;		/* IRQ */
100 
101 	u16		tx_pkt_cnt;
102 	u16		queue_pkt_len;
103 	u16		queue_start_addr;
104 	u16		queue_ip_summed;
105 	u16		dbug_cnt;
106 	u8		io_mode;		/* 0:word, 2:byte */
107 	u8		phy_addr;
108 	u8		imr_all;
109 
110 	unsigned int	flags;
111 	unsigned int	in_suspend :1;
112 	unsigned int	wake_supported :1;
113 
114 	enum dm9000_type type;
115 
116 	void (*inblk)(void __iomem *port, void *data, int length);
117 	void (*outblk)(void __iomem *port, void *data, int length);
118 	void (*dumpblk)(void __iomem *port, int length);
119 
120 	struct device	*dev;	     /* parent device */
121 
122 	struct resource	*addr_res;   /* resources found */
123 	struct resource *data_res;
124 	struct resource	*addr_req;   /* resources requested */
125 	struct resource *data_req;
126 	struct resource *irq_res;
127 
128 	int		 irq_wake;
129 
130 	struct mutex	 addr_lock;	/* phy and eeprom access lock */
131 
132 	struct delayed_work phy_poll;
133 	struct net_device  *ndev;
134 
135 	spinlock_t	lock;
136 
137 	struct mii_if_info mii;
138 	u32		msg_enable;
139 	u32		wake_state;
140 
141 	int		ip_summed;
142 } board_info_t;
143 
144 /* debug code */
145 
146 #define dm9000_dbg(db, lev, msg...) do {		\
147 	if ((lev) < debug) {				\
148 		dev_dbg(db->dev, msg);			\
149 	}						\
150 } while (0)
151 
152 static inline board_info_t *to_dm9000_board(struct net_device *dev)
153 {
154 	return netdev_priv(dev);
155 }
156 
157 /* DM9000 network board routine ---------------------------- */
158 
159 static void
160 dm9000_reset(board_info_t * db)
161 {
162 	dev_dbg(db->dev, "resetting device\n");
163 
164 	/* RESET device */
165 	writeb(DM9000_NCR, db->io_addr);
166 	udelay(200);
167 	writeb(NCR_RST, db->io_data);
168 	udelay(200);
169 }
170 
171 /*
172  *   Read a byte from I/O port
173  */
174 static u8
175 ior(board_info_t * db, int reg)
176 {
177 	writeb(reg, db->io_addr);
178 	return readb(db->io_data);
179 }
180 
181 /*
182  *   Write a byte to I/O port
183  */
184 
185 static void
186 iow(board_info_t * db, int reg, int value)
187 {
188 	writeb(reg, db->io_addr);
189 	writeb(value, db->io_data);
190 }
191 
192 /* routines for sending block to chip */
193 
194 static void dm9000_outblk_8bit(void __iomem *reg, void *data, int count)
195 {
196 	iowrite8_rep(reg, data, count);
197 }
198 
199 static void dm9000_outblk_16bit(void __iomem *reg, void *data, int count)
200 {
201 	iowrite16_rep(reg, data, (count+1) >> 1);
202 }
203 
204 static void dm9000_outblk_32bit(void __iomem *reg, void *data, int count)
205 {
206 	iowrite32_rep(reg, data, (count+3) >> 2);
207 }
208 
209 /* input block from chip to memory */
210 
211 static void dm9000_inblk_8bit(void __iomem *reg, void *data, int count)
212 {
213 	ioread8_rep(reg, data, count);
214 }
215 
216 
217 static void dm9000_inblk_16bit(void __iomem *reg, void *data, int count)
218 {
219 	ioread16_rep(reg, data, (count+1) >> 1);
220 }
221 
222 static void dm9000_inblk_32bit(void __iomem *reg, void *data, int count)
223 {
224 	ioread32_rep(reg, data, (count+3) >> 2);
225 }
226 
227 /* dump block from chip to null */
228 
229 static void dm9000_dumpblk_8bit(void __iomem *reg, int count)
230 {
231 	int i;
232 	int tmp;
233 
234 	for (i = 0; i < count; i++)
235 		tmp = readb(reg);
236 }
237 
238 static void dm9000_dumpblk_16bit(void __iomem *reg, int count)
239 {
240 	int i;
241 	int tmp;
242 
243 	count = (count + 1) >> 1;
244 
245 	for (i = 0; i < count; i++)
246 		tmp = readw(reg);
247 }
248 
249 static void dm9000_dumpblk_32bit(void __iomem *reg, int count)
250 {
251 	int i;
252 	int tmp;
253 
254 	count = (count + 3) >> 2;
255 
256 	for (i = 0; i < count; i++)
257 		tmp = readl(reg);
258 }
259 
260 /* dm9000_set_io
261  *
262  * select the specified set of io routines to use with the
263  * device
264  */
265 
266 static void dm9000_set_io(struct board_info *db, int byte_width)
267 {
268 	/* use the size of the data resource to work out what IO
269 	 * routines we want to use
270 	 */
271 
272 	switch (byte_width) {
273 	case 1:
274 		db->dumpblk = dm9000_dumpblk_8bit;
275 		db->outblk  = dm9000_outblk_8bit;
276 		db->inblk   = dm9000_inblk_8bit;
277 		break;
278 
279 
280 	case 3:
281 		dev_dbg(db->dev, ": 3 byte IO, falling back to 16bit\n");
282 	case 2:
283 		db->dumpblk = dm9000_dumpblk_16bit;
284 		db->outblk  = dm9000_outblk_16bit;
285 		db->inblk   = dm9000_inblk_16bit;
286 		break;
287 
288 	case 4:
289 	default:
290 		db->dumpblk = dm9000_dumpblk_32bit;
291 		db->outblk  = dm9000_outblk_32bit;
292 		db->inblk   = dm9000_inblk_32bit;
293 		break;
294 	}
295 }
296 
297 static void dm9000_schedule_poll(board_info_t *db)
298 {
299 	if (db->type == TYPE_DM9000E)
300 		schedule_delayed_work(&db->phy_poll, HZ * 2);
301 }
302 
303 static int dm9000_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
304 {
305 	board_info_t *dm = to_dm9000_board(dev);
306 
307 	if (!netif_running(dev))
308 		return -EINVAL;
309 
310 	return generic_mii_ioctl(&dm->mii, if_mii(req), cmd, NULL);
311 }
312 
313 static unsigned int
314 dm9000_read_locked(board_info_t *db, int reg)
315 {
316 	unsigned long flags;
317 	unsigned int ret;
318 
319 	spin_lock_irqsave(&db->lock, flags);
320 	ret = ior(db, reg);
321 	spin_unlock_irqrestore(&db->lock, flags);
322 
323 	return ret;
324 }
325 
326 static int dm9000_wait_eeprom(board_info_t *db)
327 {
328 	unsigned int status;
329 	int timeout = 8;	/* wait max 8msec */
330 
331 	/* The DM9000 data sheets say we should be able to
332 	 * poll the ERRE bit in EPCR to wait for the EEPROM
333 	 * operation. From testing several chips, this bit
334 	 * does not seem to work.
335 	 *
336 	 * We attempt to use the bit, but fall back to the
337 	 * timeout (which is why we do not return an error
338 	 * on expiry) to say that the EEPROM operation has
339 	 * completed.
340 	 */
341 
342 	while (1) {
343 		status = dm9000_read_locked(db, DM9000_EPCR);
344 
345 		if ((status & EPCR_ERRE) == 0)
346 			break;
347 
348 		msleep(1);
349 
350 		if (timeout-- < 0) {
351 			dev_dbg(db->dev, "timeout waiting EEPROM\n");
352 			break;
353 		}
354 	}
355 
356 	return 0;
357 }
358 
359 /*
360  *  Read a word data from EEPROM
361  */
362 static void
363 dm9000_read_eeprom(board_info_t *db, int offset, u8 *to)
364 {
365 	unsigned long flags;
366 
367 	if (db->flags & DM9000_PLATF_NO_EEPROM) {
368 		to[0] = 0xff;
369 		to[1] = 0xff;
370 		return;
371 	}
372 
373 	mutex_lock(&db->addr_lock);
374 
375 	spin_lock_irqsave(&db->lock, flags);
376 
377 	iow(db, DM9000_EPAR, offset);
378 	iow(db, DM9000_EPCR, EPCR_ERPRR);
379 
380 	spin_unlock_irqrestore(&db->lock, flags);
381 
382 	dm9000_wait_eeprom(db);
383 
384 	/* delay for at-least 150uS */
385 	msleep(1);
386 
387 	spin_lock_irqsave(&db->lock, flags);
388 
389 	iow(db, DM9000_EPCR, 0x0);
390 
391 	to[0] = ior(db, DM9000_EPDRL);
392 	to[1] = ior(db, DM9000_EPDRH);
393 
394 	spin_unlock_irqrestore(&db->lock, flags);
395 
396 	mutex_unlock(&db->addr_lock);
397 }
398 
399 /*
400  * Write a word data to SROM
401  */
402 static void
403 dm9000_write_eeprom(board_info_t *db, int offset, u8 *data)
404 {
405 	unsigned long flags;
406 
407 	if (db->flags & DM9000_PLATF_NO_EEPROM)
408 		return;
409 
410 	mutex_lock(&db->addr_lock);
411 
412 	spin_lock_irqsave(&db->lock, flags);
413 	iow(db, DM9000_EPAR, offset);
414 	iow(db, DM9000_EPDRH, data[1]);
415 	iow(db, DM9000_EPDRL, data[0]);
416 	iow(db, DM9000_EPCR, EPCR_WEP | EPCR_ERPRW);
417 	spin_unlock_irqrestore(&db->lock, flags);
418 
419 	dm9000_wait_eeprom(db);
420 
421 	mdelay(1);	/* wait at least 150uS to clear */
422 
423 	spin_lock_irqsave(&db->lock, flags);
424 	iow(db, DM9000_EPCR, 0);
425 	spin_unlock_irqrestore(&db->lock, flags);
426 
427 	mutex_unlock(&db->addr_lock);
428 }
429 
430 /* ethtool ops */
431 
432 static void dm9000_get_drvinfo(struct net_device *dev,
433 			       struct ethtool_drvinfo *info)
434 {
435 	board_info_t *dm = to_dm9000_board(dev);
436 
437 	strlcpy(info->driver, CARDNAME, sizeof(info->driver));
438 	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
439 	strlcpy(info->bus_info, to_platform_device(dm->dev)->name,
440 		sizeof(info->bus_info));
441 }
442 
443 static u32 dm9000_get_msglevel(struct net_device *dev)
444 {
445 	board_info_t *dm = to_dm9000_board(dev);
446 
447 	return dm->msg_enable;
448 }
449 
450 static void dm9000_set_msglevel(struct net_device *dev, u32 value)
451 {
452 	board_info_t *dm = to_dm9000_board(dev);
453 
454 	dm->msg_enable = value;
455 }
456 
457 static int dm9000_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
458 {
459 	board_info_t *dm = to_dm9000_board(dev);
460 
461 	mii_ethtool_gset(&dm->mii, cmd);
462 	return 0;
463 }
464 
465 static int dm9000_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
466 {
467 	board_info_t *dm = to_dm9000_board(dev);
468 
469 	return mii_ethtool_sset(&dm->mii, cmd);
470 }
471 
472 static int dm9000_nway_reset(struct net_device *dev)
473 {
474 	board_info_t *dm = to_dm9000_board(dev);
475 	return mii_nway_restart(&dm->mii);
476 }
477 
478 static int dm9000_set_features(struct net_device *dev,
479 	netdev_features_t features)
480 {
481 	board_info_t *dm = to_dm9000_board(dev);
482 	netdev_features_t changed = dev->features ^ features;
483 	unsigned long flags;
484 
485 	if (!(changed & NETIF_F_RXCSUM))
486 		return 0;
487 
488 	spin_lock_irqsave(&dm->lock, flags);
489 	iow(dm, DM9000_RCSR, (features & NETIF_F_RXCSUM) ? RCSR_CSUM : 0);
490 	spin_unlock_irqrestore(&dm->lock, flags);
491 
492 	return 0;
493 }
494 
495 static u32 dm9000_get_link(struct net_device *dev)
496 {
497 	board_info_t *dm = to_dm9000_board(dev);
498 	u32 ret;
499 
500 	if (dm->flags & DM9000_PLATF_EXT_PHY)
501 		ret = mii_link_ok(&dm->mii);
502 	else
503 		ret = dm9000_read_locked(dm, DM9000_NSR) & NSR_LINKST ? 1 : 0;
504 
505 	return ret;
506 }
507 
508 #define DM_EEPROM_MAGIC		(0x444D394B)
509 
510 static int dm9000_get_eeprom_len(struct net_device *dev)
511 {
512 	return 128;
513 }
514 
515 static int dm9000_get_eeprom(struct net_device *dev,
516 			     struct ethtool_eeprom *ee, u8 *data)
517 {
518 	board_info_t *dm = to_dm9000_board(dev);
519 	int offset = ee->offset;
520 	int len = ee->len;
521 	int i;
522 
523 	/* EEPROM access is aligned to two bytes */
524 
525 	if ((len & 1) != 0 || (offset & 1) != 0)
526 		return -EINVAL;
527 
528 	if (dm->flags & DM9000_PLATF_NO_EEPROM)
529 		return -ENOENT;
530 
531 	ee->magic = DM_EEPROM_MAGIC;
532 
533 	for (i = 0; i < len; i += 2)
534 		dm9000_read_eeprom(dm, (offset + i) / 2, data + i);
535 
536 	return 0;
537 }
538 
539 static int dm9000_set_eeprom(struct net_device *dev,
540 			     struct ethtool_eeprom *ee, u8 *data)
541 {
542 	board_info_t *dm = to_dm9000_board(dev);
543 	int offset = ee->offset;
544 	int len = ee->len;
545 	int done;
546 
547 	/* EEPROM access is aligned to two bytes */
548 
549 	if (dm->flags & DM9000_PLATF_NO_EEPROM)
550 		return -ENOENT;
551 
552 	if (ee->magic != DM_EEPROM_MAGIC)
553 		return -EINVAL;
554 
555 	while (len > 0) {
556 		if (len & 1 || offset & 1) {
557 			int which = offset & 1;
558 			u8 tmp[2];
559 
560 			dm9000_read_eeprom(dm, offset / 2, tmp);
561 			tmp[which] = *data;
562 			dm9000_write_eeprom(dm, offset / 2, tmp);
563 
564 			done = 1;
565 		} else {
566 			dm9000_write_eeprom(dm, offset / 2, data);
567 			done = 2;
568 		}
569 
570 		data += done;
571 		offset += done;
572 		len -= done;
573 	}
574 
575 	return 0;
576 }
577 
578 static void dm9000_get_wol(struct net_device *dev, struct ethtool_wolinfo *w)
579 {
580 	board_info_t *dm = to_dm9000_board(dev);
581 
582 	memset(w, 0, sizeof(struct ethtool_wolinfo));
583 
584 	/* note, we could probably support wake-phy too */
585 	w->supported = dm->wake_supported ? WAKE_MAGIC : 0;
586 	w->wolopts = dm->wake_state;
587 }
588 
589 static int dm9000_set_wol(struct net_device *dev, struct ethtool_wolinfo *w)
590 {
591 	board_info_t *dm = to_dm9000_board(dev);
592 	unsigned long flags;
593 	u32 opts = w->wolopts;
594 	u32 wcr = 0;
595 
596 	if (!dm->wake_supported)
597 		return -EOPNOTSUPP;
598 
599 	if (opts & ~WAKE_MAGIC)
600 		return -EINVAL;
601 
602 	if (opts & WAKE_MAGIC)
603 		wcr |= WCR_MAGICEN;
604 
605 	mutex_lock(&dm->addr_lock);
606 
607 	spin_lock_irqsave(&dm->lock, flags);
608 	iow(dm, DM9000_WCR, wcr);
609 	spin_unlock_irqrestore(&dm->lock, flags);
610 
611 	mutex_unlock(&dm->addr_lock);
612 
613 	if (dm->wake_state != opts) {
614 		/* change in wol state, update IRQ state */
615 
616 		if (!dm->wake_state)
617 			irq_set_irq_wake(dm->irq_wake, 1);
618 		else if (dm->wake_state && !opts)
619 			irq_set_irq_wake(dm->irq_wake, 0);
620 	}
621 
622 	dm->wake_state = opts;
623 	return 0;
624 }
625 
626 static const struct ethtool_ops dm9000_ethtool_ops = {
627 	.get_drvinfo		= dm9000_get_drvinfo,
628 	.get_settings		= dm9000_get_settings,
629 	.set_settings		= dm9000_set_settings,
630 	.get_msglevel		= dm9000_get_msglevel,
631 	.set_msglevel		= dm9000_set_msglevel,
632 	.nway_reset		= dm9000_nway_reset,
633 	.get_link		= dm9000_get_link,
634 	.get_wol		= dm9000_get_wol,
635 	.set_wol		= dm9000_set_wol,
636  	.get_eeprom_len		= dm9000_get_eeprom_len,
637  	.get_eeprom		= dm9000_get_eeprom,
638  	.set_eeprom		= dm9000_set_eeprom,
639 };
640 
641 static void dm9000_show_carrier(board_info_t *db,
642 				unsigned carrier, unsigned nsr)
643 {
644 	struct net_device *ndev = db->ndev;
645 	unsigned ncr = dm9000_read_locked(db, DM9000_NCR);
646 
647 	if (carrier)
648 		dev_info(db->dev, "%s: link up, %dMbps, %s-duplex, no LPA\n",
649 			 ndev->name, (nsr & NSR_SPEED) ? 10 : 100,
650 			 (ncr & NCR_FDX) ? "full" : "half");
651 	else
652 		dev_info(db->dev, "%s: link down\n", ndev->name);
653 }
654 
655 static void
656 dm9000_poll_work(struct work_struct *w)
657 {
658 	struct delayed_work *dw = to_delayed_work(w);
659 	board_info_t *db = container_of(dw, board_info_t, phy_poll);
660 	struct net_device *ndev = db->ndev;
661 
662 	if (db->flags & DM9000_PLATF_SIMPLE_PHY &&
663 	    !(db->flags & DM9000_PLATF_EXT_PHY)) {
664 		unsigned nsr = dm9000_read_locked(db, DM9000_NSR);
665 		unsigned old_carrier = netif_carrier_ok(ndev) ? 1 : 0;
666 		unsigned new_carrier;
667 
668 		new_carrier = (nsr & NSR_LINKST) ? 1 : 0;
669 
670 		if (old_carrier != new_carrier) {
671 			if (netif_msg_link(db))
672 				dm9000_show_carrier(db, new_carrier, nsr);
673 
674 			if (!new_carrier)
675 				netif_carrier_off(ndev);
676 			else
677 				netif_carrier_on(ndev);
678 		}
679 	} else
680 		mii_check_media(&db->mii, netif_msg_link(db), 0);
681 
682 	if (netif_running(ndev))
683 		dm9000_schedule_poll(db);
684 }
685 
686 /* dm9000_release_board
687  *
688  * release a board, and any mapped resources
689  */
690 
691 static void
692 dm9000_release_board(struct platform_device *pdev, struct board_info *db)
693 {
694 	/* unmap our resources */
695 
696 	iounmap(db->io_addr);
697 	iounmap(db->io_data);
698 
699 	/* release the resources */
700 
701 	release_resource(db->data_req);
702 	kfree(db->data_req);
703 
704 	release_resource(db->addr_req);
705 	kfree(db->addr_req);
706 }
707 
708 static unsigned char dm9000_type_to_char(enum dm9000_type type)
709 {
710 	switch (type) {
711 	case TYPE_DM9000E: return 'e';
712 	case TYPE_DM9000A: return 'a';
713 	case TYPE_DM9000B: return 'b';
714 	}
715 
716 	return '?';
717 }
718 
719 /*
720  *  Set DM9000 multicast address
721  */
722 static void
723 dm9000_hash_table_unlocked(struct net_device *dev)
724 {
725 	board_info_t *db = netdev_priv(dev);
726 	struct netdev_hw_addr *ha;
727 	int i, oft;
728 	u32 hash_val;
729 	u16 hash_table[4];
730 	u8 rcr = RCR_DIS_LONG | RCR_DIS_CRC | RCR_RXEN;
731 
732 	dm9000_dbg(db, 1, "entering %s\n", __func__);
733 
734 	for (i = 0, oft = DM9000_PAR; i < 6; i++, oft++)
735 		iow(db, oft, dev->dev_addr[i]);
736 
737 	/* Clear Hash Table */
738 	for (i = 0; i < 4; i++)
739 		hash_table[i] = 0x0;
740 
741 	/* broadcast address */
742 	hash_table[3] = 0x8000;
743 
744 	if (dev->flags & IFF_PROMISC)
745 		rcr |= RCR_PRMSC;
746 
747 	if (dev->flags & IFF_ALLMULTI)
748 		rcr |= RCR_ALL;
749 
750 	/* the multicast address in Hash Table : 64 bits */
751 	netdev_for_each_mc_addr(ha, dev) {
752 		hash_val = ether_crc_le(6, ha->addr) & 0x3f;
753 		hash_table[hash_val / 16] |= (u16) 1 << (hash_val % 16);
754 	}
755 
756 	/* Write the hash table to MAC MD table */
757 	for (i = 0, oft = DM9000_MAR; i < 4; i++) {
758 		iow(db, oft++, hash_table[i]);
759 		iow(db, oft++, hash_table[i] >> 8);
760 	}
761 
762 	iow(db, DM9000_RCR, rcr);
763 }
764 
765 static void
766 dm9000_hash_table(struct net_device *dev)
767 {
768 	board_info_t *db = netdev_priv(dev);
769 	unsigned long flags;
770 
771 	spin_lock_irqsave(&db->lock, flags);
772 	dm9000_hash_table_unlocked(dev);
773 	spin_unlock_irqrestore(&db->lock, flags);
774 }
775 
776 /*
777  * Initialize dm9000 board
778  */
779 static void
780 dm9000_init_dm9000(struct net_device *dev)
781 {
782 	board_info_t *db = netdev_priv(dev);
783 	unsigned int imr;
784 	unsigned int ncr;
785 
786 	dm9000_dbg(db, 1, "entering %s\n", __func__);
787 
788 	/* I/O mode */
789 	db->io_mode = ior(db, DM9000_ISR) >> 6;	/* ISR bit7:6 keeps I/O mode */
790 
791 	/* Checksum mode */
792 	if (dev->hw_features & NETIF_F_RXCSUM)
793 		iow(db, DM9000_RCSR,
794 			(dev->features & NETIF_F_RXCSUM) ? RCSR_CSUM : 0);
795 
796 	iow(db, DM9000_GPCR, GPCR_GEP_CNTL);	/* Let GPIO0 output */
797 
798 	ncr = (db->flags & DM9000_PLATF_EXT_PHY) ? NCR_EXT_PHY : 0;
799 
800 	/* if wol is needed, then always set NCR_WAKEEN otherwise we end
801 	 * up dumping the wake events if we disable this. There is already
802 	 * a wake-mask in DM9000_WCR */
803 	if (db->wake_supported)
804 		ncr |= NCR_WAKEEN;
805 
806 	iow(db, DM9000_NCR, ncr);
807 
808 	/* Program operating register */
809 	iow(db, DM9000_TCR, 0);	        /* TX Polling clear */
810 	iow(db, DM9000_BPTR, 0x3f);	/* Less 3Kb, 200us */
811 	iow(db, DM9000_FCR, 0xff);	/* Flow Control */
812 	iow(db, DM9000_SMCR, 0);        /* Special Mode */
813 	/* clear TX status */
814 	iow(db, DM9000_NSR, NSR_WAKEST | NSR_TX2END | NSR_TX1END);
815 	iow(db, DM9000_ISR, ISR_CLR_STATUS); /* Clear interrupt status */
816 
817 	/* Set address filter table */
818 	dm9000_hash_table_unlocked(dev);
819 
820 	imr = IMR_PAR | IMR_PTM | IMR_PRM;
821 	if (db->type != TYPE_DM9000E)
822 		imr |= IMR_LNKCHNG;
823 
824 	db->imr_all = imr;
825 
826 	/* Enable TX/RX interrupt mask */
827 	iow(db, DM9000_IMR, imr);
828 
829 	/* Init Driver variable */
830 	db->tx_pkt_cnt = 0;
831 	db->queue_pkt_len = 0;
832 	dev->trans_start = jiffies;
833 }
834 
835 /* Our watchdog timed out. Called by the networking layer */
836 static void dm9000_timeout(struct net_device *dev)
837 {
838 	board_info_t *db = netdev_priv(dev);
839 	u8 reg_save;
840 	unsigned long flags;
841 
842 	/* Save previous register address */
843 	spin_lock_irqsave(&db->lock, flags);
844 	reg_save = readb(db->io_addr);
845 
846 	netif_stop_queue(dev);
847 	dm9000_reset(db);
848 	dm9000_init_dm9000(dev);
849 	/* We can accept TX packets again */
850 	dev->trans_start = jiffies; /* prevent tx timeout */
851 	netif_wake_queue(dev);
852 
853 	/* Restore previous register address */
854 	writeb(reg_save, db->io_addr);
855 	spin_unlock_irqrestore(&db->lock, flags);
856 }
857 
858 static void dm9000_send_packet(struct net_device *dev,
859 			       int ip_summed,
860 			       u16 pkt_len)
861 {
862 	board_info_t *dm = to_dm9000_board(dev);
863 
864 	/* The DM9000 is not smart enough to leave fragmented packets alone. */
865 	if (dm->ip_summed != ip_summed) {
866 		if (ip_summed == CHECKSUM_NONE)
867 			iow(dm, DM9000_TCCR, 0);
868 		else
869 			iow(dm, DM9000_TCCR, TCCR_IP | TCCR_UDP | TCCR_TCP);
870 		dm->ip_summed = ip_summed;
871 	}
872 
873 	/* Set TX length to DM9000 */
874 	iow(dm, DM9000_TXPLL, pkt_len);
875 	iow(dm, DM9000_TXPLH, pkt_len >> 8);
876 
877 	/* Issue TX polling command */
878 	iow(dm, DM9000_TCR, TCR_TXREQ);	/* Cleared after TX complete */
879 }
880 
881 /*
882  *  Hardware start transmission.
883  *  Send a packet to media from the upper layer.
884  */
885 static int
886 dm9000_start_xmit(struct sk_buff *skb, struct net_device *dev)
887 {
888 	unsigned long flags;
889 	board_info_t *db = netdev_priv(dev);
890 
891 	dm9000_dbg(db, 3, "%s:\n", __func__);
892 
893 	if (db->tx_pkt_cnt > 1)
894 		return NETDEV_TX_BUSY;
895 
896 	spin_lock_irqsave(&db->lock, flags);
897 
898 	/* Move data to DM9000 TX RAM */
899 	writeb(DM9000_MWCMD, db->io_addr);
900 
901 	(db->outblk)(db->io_data, skb->data, skb->len);
902 	dev->stats.tx_bytes += skb->len;
903 
904 	db->tx_pkt_cnt++;
905 	/* TX control: First packet immediately send, second packet queue */
906 	if (db->tx_pkt_cnt == 1) {
907 		dm9000_send_packet(dev, skb->ip_summed, skb->len);
908 	} else {
909 		/* Second packet */
910 		db->queue_pkt_len = skb->len;
911 		db->queue_ip_summed = skb->ip_summed;
912 		netif_stop_queue(dev);
913 	}
914 
915 	spin_unlock_irqrestore(&db->lock, flags);
916 
917 	/* free this SKB */
918 	dev_kfree_skb(skb);
919 
920 	return NETDEV_TX_OK;
921 }
922 
923 /*
924  * DM9000 interrupt handler
925  * receive the packet to upper layer, free the transmitted packet
926  */
927 
928 static void dm9000_tx_done(struct net_device *dev, board_info_t *db)
929 {
930 	int tx_status = ior(db, DM9000_NSR);	/* Got TX status */
931 
932 	if (tx_status & (NSR_TX2END | NSR_TX1END)) {
933 		/* One packet sent complete */
934 		db->tx_pkt_cnt--;
935 		dev->stats.tx_packets++;
936 
937 		if (netif_msg_tx_done(db))
938 			dev_dbg(db->dev, "tx done, NSR %02x\n", tx_status);
939 
940 		/* Queue packet check & send */
941 		if (db->tx_pkt_cnt > 0)
942 			dm9000_send_packet(dev, db->queue_ip_summed,
943 					   db->queue_pkt_len);
944 		netif_wake_queue(dev);
945 	}
946 }
947 
948 struct dm9000_rxhdr {
949 	u8	RxPktReady;
950 	u8	RxStatus;
951 	__le16	RxLen;
952 } __packed;
953 
954 /*
955  *  Received a packet and pass to upper layer
956  */
957 static void
958 dm9000_rx(struct net_device *dev)
959 {
960 	board_info_t *db = netdev_priv(dev);
961 	struct dm9000_rxhdr rxhdr;
962 	struct sk_buff *skb;
963 	u8 rxbyte, *rdptr;
964 	bool GoodPacket;
965 	int RxLen;
966 
967 	/* Check packet ready or not */
968 	do {
969 		ior(db, DM9000_MRCMDX);	/* Dummy read */
970 
971 		/* Get most updated data */
972 		rxbyte = readb(db->io_data);
973 
974 		/* Status check: this byte must be 0 or 1 */
975 		if (rxbyte & DM9000_PKT_ERR) {
976 			dev_warn(db->dev, "status check fail: %d\n", rxbyte);
977 			iow(db, DM9000_RCR, 0x00);	/* Stop Device */
978 			iow(db, DM9000_ISR, IMR_PAR);	/* Stop INT request */
979 			return;
980 		}
981 
982 		if (!(rxbyte & DM9000_PKT_RDY))
983 			return;
984 
985 		/* A packet ready now  & Get status/length */
986 		GoodPacket = true;
987 		writeb(DM9000_MRCMD, db->io_addr);
988 
989 		(db->inblk)(db->io_data, &rxhdr, sizeof(rxhdr));
990 
991 		RxLen = le16_to_cpu(rxhdr.RxLen);
992 
993 		if (netif_msg_rx_status(db))
994 			dev_dbg(db->dev, "RX: status %02x, length %04x\n",
995 				rxhdr.RxStatus, RxLen);
996 
997 		/* Packet Status check */
998 		if (RxLen < 0x40) {
999 			GoodPacket = false;
1000 			if (netif_msg_rx_err(db))
1001 				dev_dbg(db->dev, "RX: Bad Packet (runt)\n");
1002 		}
1003 
1004 		if (RxLen > DM9000_PKT_MAX) {
1005 			dev_dbg(db->dev, "RST: RX Len:%x\n", RxLen);
1006 		}
1007 
1008 		/* rxhdr.RxStatus is identical to RSR register. */
1009 		if (rxhdr.RxStatus & (RSR_FOE | RSR_CE | RSR_AE |
1010 				      RSR_PLE | RSR_RWTO |
1011 				      RSR_LCS | RSR_RF)) {
1012 			GoodPacket = false;
1013 			if (rxhdr.RxStatus & RSR_FOE) {
1014 				if (netif_msg_rx_err(db))
1015 					dev_dbg(db->dev, "fifo error\n");
1016 				dev->stats.rx_fifo_errors++;
1017 			}
1018 			if (rxhdr.RxStatus & RSR_CE) {
1019 				if (netif_msg_rx_err(db))
1020 					dev_dbg(db->dev, "crc error\n");
1021 				dev->stats.rx_crc_errors++;
1022 			}
1023 			if (rxhdr.RxStatus & RSR_RF) {
1024 				if (netif_msg_rx_err(db))
1025 					dev_dbg(db->dev, "length error\n");
1026 				dev->stats.rx_length_errors++;
1027 			}
1028 		}
1029 
1030 		/* Move data from DM9000 */
1031 		if (GoodPacket &&
1032 		    ((skb = netdev_alloc_skb(dev, RxLen + 4)) != NULL)) {
1033 			skb_reserve(skb, 2);
1034 			rdptr = (u8 *) skb_put(skb, RxLen - 4);
1035 
1036 			/* Read received packet from RX SRAM */
1037 
1038 			(db->inblk)(db->io_data, rdptr, RxLen);
1039 			dev->stats.rx_bytes += RxLen;
1040 
1041 			/* Pass to upper layer */
1042 			skb->protocol = eth_type_trans(skb, dev);
1043 			if (dev->features & NETIF_F_RXCSUM) {
1044 				if ((((rxbyte & 0x1c) << 3) & rxbyte) == 0)
1045 					skb->ip_summed = CHECKSUM_UNNECESSARY;
1046 				else
1047 					skb_checksum_none_assert(skb);
1048 			}
1049 			netif_rx(skb);
1050 			dev->stats.rx_packets++;
1051 
1052 		} else {
1053 			/* need to dump the packet's data */
1054 
1055 			(db->dumpblk)(db->io_data, RxLen);
1056 		}
1057 	} while (rxbyte & DM9000_PKT_RDY);
1058 }
1059 
1060 static irqreturn_t dm9000_interrupt(int irq, void *dev_id)
1061 {
1062 	struct net_device *dev = dev_id;
1063 	board_info_t *db = netdev_priv(dev);
1064 	int int_status;
1065 	unsigned long flags;
1066 	u8 reg_save;
1067 
1068 	dm9000_dbg(db, 3, "entering %s\n", __func__);
1069 
1070 	/* A real interrupt coming */
1071 
1072 	/* holders of db->lock must always block IRQs */
1073 	spin_lock_irqsave(&db->lock, flags);
1074 
1075 	/* Save previous register address */
1076 	reg_save = readb(db->io_addr);
1077 
1078 	/* Disable all interrupts */
1079 	iow(db, DM9000_IMR, IMR_PAR);
1080 
1081 	/* Got DM9000 interrupt status */
1082 	int_status = ior(db, DM9000_ISR);	/* Got ISR */
1083 	iow(db, DM9000_ISR, int_status);	/* Clear ISR status */
1084 
1085 	if (netif_msg_intr(db))
1086 		dev_dbg(db->dev, "interrupt status %02x\n", int_status);
1087 
1088 	/* Received the coming packet */
1089 	if (int_status & ISR_PRS)
1090 		dm9000_rx(dev);
1091 
1092 	/* Trnasmit Interrupt check */
1093 	if (int_status & ISR_PTS)
1094 		dm9000_tx_done(dev, db);
1095 
1096 	if (db->type != TYPE_DM9000E) {
1097 		if (int_status & ISR_LNKCHNG) {
1098 			/* fire a link-change request */
1099 			schedule_delayed_work(&db->phy_poll, 1);
1100 		}
1101 	}
1102 
1103 	/* Re-enable interrupt mask */
1104 	iow(db, DM9000_IMR, db->imr_all);
1105 
1106 	/* Restore previous register address */
1107 	writeb(reg_save, db->io_addr);
1108 
1109 	spin_unlock_irqrestore(&db->lock, flags);
1110 
1111 	return IRQ_HANDLED;
1112 }
1113 
1114 static irqreturn_t dm9000_wol_interrupt(int irq, void *dev_id)
1115 {
1116 	struct net_device *dev = dev_id;
1117 	board_info_t *db = netdev_priv(dev);
1118 	unsigned long flags;
1119 	unsigned nsr, wcr;
1120 
1121 	spin_lock_irqsave(&db->lock, flags);
1122 
1123 	nsr = ior(db, DM9000_NSR);
1124 	wcr = ior(db, DM9000_WCR);
1125 
1126 	dev_dbg(db->dev, "%s: NSR=0x%02x, WCR=0x%02x\n", __func__, nsr, wcr);
1127 
1128 	if (nsr & NSR_WAKEST) {
1129 		/* clear, so we can avoid */
1130 		iow(db, DM9000_NSR, NSR_WAKEST);
1131 
1132 		if (wcr & WCR_LINKST)
1133 			dev_info(db->dev, "wake by link status change\n");
1134 		if (wcr & WCR_SAMPLEST)
1135 			dev_info(db->dev, "wake by sample packet\n");
1136 		if (wcr & WCR_MAGICST )
1137 			dev_info(db->dev, "wake by magic packet\n");
1138 		if (!(wcr & (WCR_LINKST | WCR_SAMPLEST | WCR_MAGICST)))
1139 			dev_err(db->dev, "wake signalled with no reason? "
1140 				"NSR=0x%02x, WSR=0x%02x\n", nsr, wcr);
1141 
1142 	}
1143 
1144 	spin_unlock_irqrestore(&db->lock, flags);
1145 
1146 	return (nsr & NSR_WAKEST) ? IRQ_HANDLED : IRQ_NONE;
1147 }
1148 
1149 #ifdef CONFIG_NET_POLL_CONTROLLER
1150 /*
1151  *Used by netconsole
1152  */
1153 static void dm9000_poll_controller(struct net_device *dev)
1154 {
1155 	disable_irq(dev->irq);
1156 	dm9000_interrupt(dev->irq, dev);
1157 	enable_irq(dev->irq);
1158 }
1159 #endif
1160 
1161 /*
1162  *  Open the interface.
1163  *  The interface is opened whenever "ifconfig" actives it.
1164  */
1165 static int
1166 dm9000_open(struct net_device *dev)
1167 {
1168 	board_info_t *db = netdev_priv(dev);
1169 	unsigned long irqflags = db->irq_res->flags & IRQF_TRIGGER_MASK;
1170 
1171 	if (netif_msg_ifup(db))
1172 		dev_dbg(db->dev, "enabling %s\n", dev->name);
1173 
1174 	/* If there is no IRQ type specified, default to something that
1175 	 * may work, and tell the user that this is a problem */
1176 
1177 	if (irqflags == IRQF_TRIGGER_NONE)
1178 		dev_warn(db->dev, "WARNING: no IRQ resource flags set.\n");
1179 
1180 	irqflags |= IRQF_SHARED;
1181 
1182 	/* GPIO0 on pre-activate PHY, Reg 1F is not set by reset */
1183 	iow(db, DM9000_GPR, 0);	/* REG_1F bit0 activate phyxcer */
1184 	mdelay(1); /* delay needs by DM9000B */
1185 
1186 	/* Initialize DM9000 board */
1187 	dm9000_reset(db);
1188 	dm9000_init_dm9000(dev);
1189 
1190 	if (request_irq(dev->irq, dm9000_interrupt, irqflags, dev->name, dev))
1191 		return -EAGAIN;
1192 
1193 	/* Init driver variable */
1194 	db->dbug_cnt = 0;
1195 
1196 	mii_check_media(&db->mii, netif_msg_link(db), 1);
1197 	netif_start_queue(dev);
1198 
1199 	dm9000_schedule_poll(db);
1200 
1201 	return 0;
1202 }
1203 
1204 /*
1205  * Sleep, either by using msleep() or if we are suspending, then
1206  * use mdelay() to sleep.
1207  */
1208 static void dm9000_msleep(board_info_t *db, unsigned int ms)
1209 {
1210 	if (db->in_suspend)
1211 		mdelay(ms);
1212 	else
1213 		msleep(ms);
1214 }
1215 
1216 /*
1217  *   Read a word from phyxcer
1218  */
1219 static int
1220 dm9000_phy_read(struct net_device *dev, int phy_reg_unused, int reg)
1221 {
1222 	board_info_t *db = netdev_priv(dev);
1223 	unsigned long flags;
1224 	unsigned int reg_save;
1225 	int ret;
1226 
1227 	mutex_lock(&db->addr_lock);
1228 
1229 	spin_lock_irqsave(&db->lock,flags);
1230 
1231 	/* Save previous register address */
1232 	reg_save = readb(db->io_addr);
1233 
1234 	/* Fill the phyxcer register into REG_0C */
1235 	iow(db, DM9000_EPAR, DM9000_PHY | reg);
1236 
1237 	iow(db, DM9000_EPCR, EPCR_ERPRR | EPCR_EPOS);	/* Issue phyxcer read command */
1238 
1239 	writeb(reg_save, db->io_addr);
1240 	spin_unlock_irqrestore(&db->lock,flags);
1241 
1242 	dm9000_msleep(db, 1);		/* Wait read complete */
1243 
1244 	spin_lock_irqsave(&db->lock,flags);
1245 	reg_save = readb(db->io_addr);
1246 
1247 	iow(db, DM9000_EPCR, 0x0);	/* Clear phyxcer read command */
1248 
1249 	/* The read data keeps on REG_0D & REG_0E */
1250 	ret = (ior(db, DM9000_EPDRH) << 8) | ior(db, DM9000_EPDRL);
1251 
1252 	/* restore the previous address */
1253 	writeb(reg_save, db->io_addr);
1254 	spin_unlock_irqrestore(&db->lock,flags);
1255 
1256 	mutex_unlock(&db->addr_lock);
1257 
1258 	dm9000_dbg(db, 5, "phy_read[%02x] -> %04x\n", reg, ret);
1259 	return ret;
1260 }
1261 
1262 /*
1263  *   Write a word to phyxcer
1264  */
1265 static void
1266 dm9000_phy_write(struct net_device *dev,
1267 		 int phyaddr_unused, int reg, int value)
1268 {
1269 	board_info_t *db = netdev_priv(dev);
1270 	unsigned long flags;
1271 	unsigned long reg_save;
1272 
1273 	dm9000_dbg(db, 5, "phy_write[%02x] = %04x\n", reg, value);
1274 	mutex_lock(&db->addr_lock);
1275 
1276 	spin_lock_irqsave(&db->lock,flags);
1277 
1278 	/* Save previous register address */
1279 	reg_save = readb(db->io_addr);
1280 
1281 	/* Fill the phyxcer register into REG_0C */
1282 	iow(db, DM9000_EPAR, DM9000_PHY | reg);
1283 
1284 	/* Fill the written data into REG_0D & REG_0E */
1285 	iow(db, DM9000_EPDRL, value);
1286 	iow(db, DM9000_EPDRH, value >> 8);
1287 
1288 	iow(db, DM9000_EPCR, EPCR_EPOS | EPCR_ERPRW);	/* Issue phyxcer write command */
1289 
1290 	writeb(reg_save, db->io_addr);
1291 	spin_unlock_irqrestore(&db->lock, flags);
1292 
1293 	dm9000_msleep(db, 1);		/* Wait write complete */
1294 
1295 	spin_lock_irqsave(&db->lock,flags);
1296 	reg_save = readb(db->io_addr);
1297 
1298 	iow(db, DM9000_EPCR, 0x0);	/* Clear phyxcer write command */
1299 
1300 	/* restore the previous address */
1301 	writeb(reg_save, db->io_addr);
1302 
1303 	spin_unlock_irqrestore(&db->lock, flags);
1304 	mutex_unlock(&db->addr_lock);
1305 }
1306 
1307 static void
1308 dm9000_shutdown(struct net_device *dev)
1309 {
1310 	board_info_t *db = netdev_priv(dev);
1311 
1312 	/* RESET device */
1313 	dm9000_phy_write(dev, 0, MII_BMCR, BMCR_RESET);	/* PHY RESET */
1314 	iow(db, DM9000_GPR, 0x01);	/* Power-Down PHY */
1315 	iow(db, DM9000_IMR, IMR_PAR);	/* Disable all interrupt */
1316 	iow(db, DM9000_RCR, 0x00);	/* Disable RX */
1317 }
1318 
1319 /*
1320  * Stop the interface.
1321  * The interface is stopped when it is brought.
1322  */
1323 static int
1324 dm9000_stop(struct net_device *ndev)
1325 {
1326 	board_info_t *db = netdev_priv(ndev);
1327 
1328 	if (netif_msg_ifdown(db))
1329 		dev_dbg(db->dev, "shutting down %s\n", ndev->name);
1330 
1331 	cancel_delayed_work_sync(&db->phy_poll);
1332 
1333 	netif_stop_queue(ndev);
1334 	netif_carrier_off(ndev);
1335 
1336 	/* free interrupt */
1337 	free_irq(ndev->irq, ndev);
1338 
1339 	dm9000_shutdown(ndev);
1340 
1341 	return 0;
1342 }
1343 
1344 static const struct net_device_ops dm9000_netdev_ops = {
1345 	.ndo_open		= dm9000_open,
1346 	.ndo_stop		= dm9000_stop,
1347 	.ndo_start_xmit		= dm9000_start_xmit,
1348 	.ndo_tx_timeout		= dm9000_timeout,
1349 	.ndo_set_rx_mode	= dm9000_hash_table,
1350 	.ndo_do_ioctl		= dm9000_ioctl,
1351 	.ndo_change_mtu		= eth_change_mtu,
1352 	.ndo_set_features	= dm9000_set_features,
1353 	.ndo_validate_addr	= eth_validate_addr,
1354 	.ndo_set_mac_address	= eth_mac_addr,
1355 #ifdef CONFIG_NET_POLL_CONTROLLER
1356 	.ndo_poll_controller	= dm9000_poll_controller,
1357 #endif
1358 };
1359 
1360 /*
1361  * Search DM9000 board, allocate space and register it
1362  */
1363 static int
1364 dm9000_probe(struct platform_device *pdev)
1365 {
1366 	struct dm9000_plat_data *pdata = pdev->dev.platform_data;
1367 	struct board_info *db;	/* Point a board information structure */
1368 	struct net_device *ndev;
1369 	const unsigned char *mac_src;
1370 	int ret = 0;
1371 	int iosize;
1372 	int i;
1373 	u32 id_val;
1374 
1375 	/* Init network device */
1376 	ndev = alloc_etherdev(sizeof(struct board_info));
1377 	if (!ndev)
1378 		return -ENOMEM;
1379 
1380 	SET_NETDEV_DEV(ndev, &pdev->dev);
1381 
1382 	dev_dbg(&pdev->dev, "dm9000_probe()\n");
1383 
1384 	/* setup board info structure */
1385 	db = netdev_priv(ndev);
1386 
1387 	db->dev = &pdev->dev;
1388 	db->ndev = ndev;
1389 
1390 	spin_lock_init(&db->lock);
1391 	mutex_init(&db->addr_lock);
1392 
1393 	INIT_DELAYED_WORK(&db->phy_poll, dm9000_poll_work);
1394 
1395 	db->addr_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1396 	db->data_res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1397 	db->irq_res  = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
1398 
1399 	if (db->addr_res == NULL || db->data_res == NULL ||
1400 	    db->irq_res == NULL) {
1401 		dev_err(db->dev, "insufficient resources\n");
1402 		ret = -ENOENT;
1403 		goto out;
1404 	}
1405 
1406 	db->irq_wake = platform_get_irq(pdev, 1);
1407 	if (db->irq_wake >= 0) {
1408 		dev_dbg(db->dev, "wakeup irq %d\n", db->irq_wake);
1409 
1410 		ret = request_irq(db->irq_wake, dm9000_wol_interrupt,
1411 				  IRQF_SHARED, dev_name(db->dev), ndev);
1412 		if (ret) {
1413 			dev_err(db->dev, "cannot get wakeup irq (%d)\n", ret);
1414 		} else {
1415 
1416 			/* test to see if irq is really wakeup capable */
1417 			ret = irq_set_irq_wake(db->irq_wake, 1);
1418 			if (ret) {
1419 				dev_err(db->dev, "irq %d cannot set wakeup (%d)\n",
1420 					db->irq_wake, ret);
1421 				ret = 0;
1422 			} else {
1423 				irq_set_irq_wake(db->irq_wake, 0);
1424 				db->wake_supported = 1;
1425 			}
1426 		}
1427 	}
1428 
1429 	iosize = resource_size(db->addr_res);
1430 	db->addr_req = request_mem_region(db->addr_res->start, iosize,
1431 					  pdev->name);
1432 
1433 	if (db->addr_req == NULL) {
1434 		dev_err(db->dev, "cannot claim address reg area\n");
1435 		ret = -EIO;
1436 		goto out;
1437 	}
1438 
1439 	db->io_addr = ioremap(db->addr_res->start, iosize);
1440 
1441 	if (db->io_addr == NULL) {
1442 		dev_err(db->dev, "failed to ioremap address reg\n");
1443 		ret = -EINVAL;
1444 		goto out;
1445 	}
1446 
1447 	iosize = resource_size(db->data_res);
1448 	db->data_req = request_mem_region(db->data_res->start, iosize,
1449 					  pdev->name);
1450 
1451 	if (db->data_req == NULL) {
1452 		dev_err(db->dev, "cannot claim data reg area\n");
1453 		ret = -EIO;
1454 		goto out;
1455 	}
1456 
1457 	db->io_data = ioremap(db->data_res->start, iosize);
1458 
1459 	if (db->io_data == NULL) {
1460 		dev_err(db->dev, "failed to ioremap data reg\n");
1461 		ret = -EINVAL;
1462 		goto out;
1463 	}
1464 
1465 	/* fill in parameters for net-dev structure */
1466 	ndev->base_addr = (unsigned long)db->io_addr;
1467 	ndev->irq	= db->irq_res->start;
1468 
1469 	/* ensure at least we have a default set of IO routines */
1470 	dm9000_set_io(db, iosize);
1471 
1472 	/* check to see if anything is being over-ridden */
1473 	if (pdata != NULL) {
1474 		/* check to see if the driver wants to over-ride the
1475 		 * default IO width */
1476 
1477 		if (pdata->flags & DM9000_PLATF_8BITONLY)
1478 			dm9000_set_io(db, 1);
1479 
1480 		if (pdata->flags & DM9000_PLATF_16BITONLY)
1481 			dm9000_set_io(db, 2);
1482 
1483 		if (pdata->flags & DM9000_PLATF_32BITONLY)
1484 			dm9000_set_io(db, 4);
1485 
1486 		/* check to see if there are any IO routine
1487 		 * over-rides */
1488 
1489 		if (pdata->inblk != NULL)
1490 			db->inblk = pdata->inblk;
1491 
1492 		if (pdata->outblk != NULL)
1493 			db->outblk = pdata->outblk;
1494 
1495 		if (pdata->dumpblk != NULL)
1496 			db->dumpblk = pdata->dumpblk;
1497 
1498 		db->flags = pdata->flags;
1499 	}
1500 
1501 #ifdef CONFIG_DM9000_FORCE_SIMPLE_PHY_POLL
1502 	db->flags |= DM9000_PLATF_SIMPLE_PHY;
1503 #endif
1504 
1505 	dm9000_reset(db);
1506 
1507 	/* try multiple times, DM9000 sometimes gets the read wrong */
1508 	for (i = 0; i < 8; i++) {
1509 		id_val  = ior(db, DM9000_VIDL);
1510 		id_val |= (u32)ior(db, DM9000_VIDH) << 8;
1511 		id_val |= (u32)ior(db, DM9000_PIDL) << 16;
1512 		id_val |= (u32)ior(db, DM9000_PIDH) << 24;
1513 
1514 		if (id_val == DM9000_ID)
1515 			break;
1516 		dev_err(db->dev, "read wrong id 0x%08x\n", id_val);
1517 	}
1518 
1519 	if (id_val != DM9000_ID) {
1520 		dev_err(db->dev, "wrong id: 0x%08x\n", id_val);
1521 		ret = -ENODEV;
1522 		goto out;
1523 	}
1524 
1525 	/* Identify what type of DM9000 we are working on */
1526 
1527 	id_val = ior(db, DM9000_CHIPR);
1528 	dev_dbg(db->dev, "dm9000 revision 0x%02x\n", id_val);
1529 
1530 	switch (id_val) {
1531 	case CHIPR_DM9000A:
1532 		db->type = TYPE_DM9000A;
1533 		break;
1534 	case CHIPR_DM9000B:
1535 		db->type = TYPE_DM9000B;
1536 		break;
1537 	default:
1538 		dev_dbg(db->dev, "ID %02x => defaulting to DM9000E\n", id_val);
1539 		db->type = TYPE_DM9000E;
1540 	}
1541 
1542 	/* dm9000a/b are capable of hardware checksum offload */
1543 	if (db->type == TYPE_DM9000A || db->type == TYPE_DM9000B) {
1544 		ndev->hw_features = NETIF_F_RXCSUM | NETIF_F_IP_CSUM;
1545 		ndev->features |= ndev->hw_features;
1546 	}
1547 
1548 	/* from this point we assume that we have found a DM9000 */
1549 
1550 	/* driver system function */
1551 	ether_setup(ndev);
1552 
1553 	ndev->netdev_ops	= &dm9000_netdev_ops;
1554 	ndev->watchdog_timeo	= msecs_to_jiffies(watchdog);
1555 	ndev->ethtool_ops	= &dm9000_ethtool_ops;
1556 
1557 	db->msg_enable       = NETIF_MSG_LINK;
1558 	db->mii.phy_id_mask  = 0x1f;
1559 	db->mii.reg_num_mask = 0x1f;
1560 	db->mii.force_media  = 0;
1561 	db->mii.full_duplex  = 0;
1562 	db->mii.dev	     = ndev;
1563 	db->mii.mdio_read    = dm9000_phy_read;
1564 	db->mii.mdio_write   = dm9000_phy_write;
1565 
1566 	mac_src = "eeprom";
1567 
1568 	/* try reading the node address from the attached EEPROM */
1569 	for (i = 0; i < 6; i += 2)
1570 		dm9000_read_eeprom(db, i / 2, ndev->dev_addr+i);
1571 
1572 	if (!is_valid_ether_addr(ndev->dev_addr) && pdata != NULL) {
1573 		mac_src = "platform data";
1574 		memcpy(ndev->dev_addr, pdata->dev_addr, 6);
1575 	}
1576 
1577 	if (!is_valid_ether_addr(ndev->dev_addr)) {
1578 		/* try reading from mac */
1579 
1580 		mac_src = "chip";
1581 		for (i = 0; i < 6; i++)
1582 			ndev->dev_addr[i] = ior(db, i+DM9000_PAR);
1583 	}
1584 
1585 	if (!is_valid_ether_addr(ndev->dev_addr)) {
1586 		dev_warn(db->dev, "%s: Invalid ethernet MAC address. Please "
1587 			 "set using ifconfig\n", ndev->name);
1588 
1589 		eth_hw_addr_random(ndev);
1590 		mac_src = "random";
1591 	}
1592 
1593 
1594 	platform_set_drvdata(pdev, ndev);
1595 	ret = register_netdev(ndev);
1596 
1597 	if (ret == 0)
1598 		printk(KERN_INFO "%s: dm9000%c at %p,%p IRQ %d MAC: %pM (%s)\n",
1599 		       ndev->name, dm9000_type_to_char(db->type),
1600 		       db->io_addr, db->io_data, ndev->irq,
1601 		       ndev->dev_addr, mac_src);
1602 	return 0;
1603 
1604 out:
1605 	dev_err(db->dev, "not found (%d).\n", ret);
1606 
1607 	dm9000_release_board(pdev, db);
1608 	free_netdev(ndev);
1609 
1610 	return ret;
1611 }
1612 
1613 static int
1614 dm9000_drv_suspend(struct device *dev)
1615 {
1616 	struct platform_device *pdev = to_platform_device(dev);
1617 	struct net_device *ndev = platform_get_drvdata(pdev);
1618 	board_info_t *db;
1619 
1620 	if (ndev) {
1621 		db = netdev_priv(ndev);
1622 		db->in_suspend = 1;
1623 
1624 		if (!netif_running(ndev))
1625 			return 0;
1626 
1627 		netif_device_detach(ndev);
1628 
1629 		/* only shutdown if not using WoL */
1630 		if (!db->wake_state)
1631 			dm9000_shutdown(ndev);
1632 	}
1633 	return 0;
1634 }
1635 
1636 static int
1637 dm9000_drv_resume(struct device *dev)
1638 {
1639 	struct platform_device *pdev = to_platform_device(dev);
1640 	struct net_device *ndev = platform_get_drvdata(pdev);
1641 	board_info_t *db = netdev_priv(ndev);
1642 
1643 	if (ndev) {
1644 		if (netif_running(ndev)) {
1645 			/* reset if we were not in wake mode to ensure if
1646 			 * the device was powered off it is in a known state */
1647 			if (!db->wake_state) {
1648 				dm9000_reset(db);
1649 				dm9000_init_dm9000(ndev);
1650 			}
1651 
1652 			netif_device_attach(ndev);
1653 		}
1654 
1655 		db->in_suspend = 0;
1656 	}
1657 	return 0;
1658 }
1659 
1660 static const struct dev_pm_ops dm9000_drv_pm_ops = {
1661 	.suspend	= dm9000_drv_suspend,
1662 	.resume		= dm9000_drv_resume,
1663 };
1664 
1665 static int
1666 dm9000_drv_remove(struct platform_device *pdev)
1667 {
1668 	struct net_device *ndev = platform_get_drvdata(pdev);
1669 
1670 	platform_set_drvdata(pdev, NULL);
1671 
1672 	unregister_netdev(ndev);
1673 	dm9000_release_board(pdev, netdev_priv(ndev));
1674 	free_netdev(ndev);		/* free device structure */
1675 
1676 	dev_dbg(&pdev->dev, "released and freed device\n");
1677 	return 0;
1678 }
1679 
1680 static struct platform_driver dm9000_driver = {
1681 	.driver	= {
1682 		.name    = "dm9000",
1683 		.owner	 = THIS_MODULE,
1684 		.pm	 = &dm9000_drv_pm_ops,
1685 	},
1686 	.probe   = dm9000_probe,
1687 	.remove  = dm9000_drv_remove,
1688 };
1689 
1690 static int __init
1691 dm9000_init(void)
1692 {
1693 	printk(KERN_INFO "%s Ethernet Driver, V%s\n", CARDNAME, DRV_VERSION);
1694 
1695 	return platform_driver_register(&dm9000_driver);
1696 }
1697 
1698 static void __exit
1699 dm9000_cleanup(void)
1700 {
1701 	platform_driver_unregister(&dm9000_driver);
1702 }
1703 
1704 module_init(dm9000_init);
1705 module_exit(dm9000_cleanup);
1706 
1707 MODULE_AUTHOR("Sascha Hauer, Ben Dooks");
1708 MODULE_DESCRIPTION("Davicom DM9000 network driver");
1709 MODULE_LICENSE("GPL");
1710 MODULE_ALIAS("platform:dm9000");
1711