1 /* 2 * Davicom DM9000 Fast Ethernet driver for Linux. 3 * Copyright (C) 1997 Sten Wang 4 * 5 * This program is free software; you can redistribute it and/or 6 * modify it under the terms of the GNU General Public License 7 * as published by the Free Software Foundation; either version 2 8 * of the License, or (at your option) any later version. 9 * 10 * This program is distributed in the hope that it will be useful, 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 * GNU General Public License for more details. 14 * 15 * (C) Copyright 1997-1998 DAVICOM Semiconductor,Inc. All Rights Reserved. 16 * 17 * Additional updates, Copyright: 18 * Ben Dooks <ben@simtec.co.uk> 19 * Sascha Hauer <s.hauer@pengutronix.de> 20 */ 21 22 #include <linux/module.h> 23 #include <linux/ioport.h> 24 #include <linux/netdevice.h> 25 #include <linux/etherdevice.h> 26 #include <linux/init.h> 27 #include <linux/interrupt.h> 28 #include <linux/skbuff.h> 29 #include <linux/spinlock.h> 30 #include <linux/crc32.h> 31 #include <linux/mii.h> 32 #include <linux/ethtool.h> 33 #include <linux/dm9000.h> 34 #include <linux/delay.h> 35 #include <linux/platform_device.h> 36 #include <linux/irq.h> 37 #include <linux/slab.h> 38 39 #include <asm/delay.h> 40 #include <asm/irq.h> 41 #include <asm/io.h> 42 43 #include "dm9000.h" 44 45 /* Board/System/Debug information/definition ---------------- */ 46 47 #define DM9000_PHY 0x40 /* PHY address 0x01 */ 48 49 #define CARDNAME "dm9000" 50 #define DRV_VERSION "1.31" 51 52 /* 53 * Transmit timeout, default 5 seconds. 54 */ 55 static int watchdog = 5000; 56 module_param(watchdog, int, 0400); 57 MODULE_PARM_DESC(watchdog, "transmit timeout in milliseconds"); 58 59 /* 60 * Debug messages level 61 */ 62 static int debug; 63 module_param(debug, int, 0644); 64 MODULE_PARM_DESC(debug, "dm9000 debug level (0-4)"); 65 66 /* DM9000 register address locking. 67 * 68 * The DM9000 uses an address register to control where data written 69 * to the data register goes. This means that the address register 70 * must be preserved over interrupts or similar calls. 71 * 72 * During interrupt and other critical calls, a spinlock is used to 73 * protect the system, but the calls themselves save the address 74 * in the address register in case they are interrupting another 75 * access to the device. 76 * 77 * For general accesses a lock is provided so that calls which are 78 * allowed to sleep are serialised so that the address register does 79 * not need to be saved. This lock also serves to serialise access 80 * to the EEPROM and PHY access registers which are shared between 81 * these two devices. 82 */ 83 84 /* The driver supports the original DM9000E, and now the two newer 85 * devices, DM9000A and DM9000B. 86 */ 87 88 enum dm9000_type { 89 TYPE_DM9000E, /* original DM9000 */ 90 TYPE_DM9000A, 91 TYPE_DM9000B 92 }; 93 94 /* Structure/enum declaration ------------------------------- */ 95 typedef struct board_info { 96 97 void __iomem *io_addr; /* Register I/O base address */ 98 void __iomem *io_data; /* Data I/O address */ 99 u16 irq; /* IRQ */ 100 101 u16 tx_pkt_cnt; 102 u16 queue_pkt_len; 103 u16 queue_start_addr; 104 u16 queue_ip_summed; 105 u16 dbug_cnt; 106 u8 io_mode; /* 0:word, 2:byte */ 107 u8 phy_addr; 108 u8 imr_all; 109 110 unsigned int flags; 111 unsigned int in_suspend :1; 112 unsigned int wake_supported :1; 113 114 enum dm9000_type type; 115 116 void (*inblk)(void __iomem *port, void *data, int length); 117 void (*outblk)(void __iomem *port, void *data, int length); 118 void (*dumpblk)(void __iomem *port, int length); 119 120 struct device *dev; /* parent device */ 121 122 struct resource *addr_res; /* resources found */ 123 struct resource *data_res; 124 struct resource *addr_req; /* resources requested */ 125 struct resource *data_req; 126 struct resource *irq_res; 127 128 int irq_wake; 129 130 struct mutex addr_lock; /* phy and eeprom access lock */ 131 132 struct delayed_work phy_poll; 133 struct net_device *ndev; 134 135 spinlock_t lock; 136 137 struct mii_if_info mii; 138 u32 msg_enable; 139 u32 wake_state; 140 141 int ip_summed; 142 } board_info_t; 143 144 /* debug code */ 145 146 #define dm9000_dbg(db, lev, msg...) do { \ 147 if ((lev) < debug) { \ 148 dev_dbg(db->dev, msg); \ 149 } \ 150 } while (0) 151 152 static inline board_info_t *to_dm9000_board(struct net_device *dev) 153 { 154 return netdev_priv(dev); 155 } 156 157 /* DM9000 network board routine ---------------------------- */ 158 159 static void 160 dm9000_reset(board_info_t * db) 161 { 162 dev_dbg(db->dev, "resetting device\n"); 163 164 /* RESET device */ 165 writeb(DM9000_NCR, db->io_addr); 166 udelay(200); 167 writeb(NCR_RST, db->io_data); 168 udelay(200); 169 } 170 171 /* 172 * Read a byte from I/O port 173 */ 174 static u8 175 ior(board_info_t * db, int reg) 176 { 177 writeb(reg, db->io_addr); 178 return readb(db->io_data); 179 } 180 181 /* 182 * Write a byte to I/O port 183 */ 184 185 static void 186 iow(board_info_t * db, int reg, int value) 187 { 188 writeb(reg, db->io_addr); 189 writeb(value, db->io_data); 190 } 191 192 /* routines for sending block to chip */ 193 194 static void dm9000_outblk_8bit(void __iomem *reg, void *data, int count) 195 { 196 writesb(reg, data, count); 197 } 198 199 static void dm9000_outblk_16bit(void __iomem *reg, void *data, int count) 200 { 201 writesw(reg, data, (count+1) >> 1); 202 } 203 204 static void dm9000_outblk_32bit(void __iomem *reg, void *data, int count) 205 { 206 writesl(reg, data, (count+3) >> 2); 207 } 208 209 /* input block from chip to memory */ 210 211 static void dm9000_inblk_8bit(void __iomem *reg, void *data, int count) 212 { 213 readsb(reg, data, count); 214 } 215 216 217 static void dm9000_inblk_16bit(void __iomem *reg, void *data, int count) 218 { 219 readsw(reg, data, (count+1) >> 1); 220 } 221 222 static void dm9000_inblk_32bit(void __iomem *reg, void *data, int count) 223 { 224 readsl(reg, data, (count+3) >> 2); 225 } 226 227 /* dump block from chip to null */ 228 229 static void dm9000_dumpblk_8bit(void __iomem *reg, int count) 230 { 231 int i; 232 int tmp; 233 234 for (i = 0; i < count; i++) 235 tmp = readb(reg); 236 } 237 238 static void dm9000_dumpblk_16bit(void __iomem *reg, int count) 239 { 240 int i; 241 int tmp; 242 243 count = (count + 1) >> 1; 244 245 for (i = 0; i < count; i++) 246 tmp = readw(reg); 247 } 248 249 static void dm9000_dumpblk_32bit(void __iomem *reg, int count) 250 { 251 int i; 252 int tmp; 253 254 count = (count + 3) >> 2; 255 256 for (i = 0; i < count; i++) 257 tmp = readl(reg); 258 } 259 260 /* dm9000_set_io 261 * 262 * select the specified set of io routines to use with the 263 * device 264 */ 265 266 static void dm9000_set_io(struct board_info *db, int byte_width) 267 { 268 /* use the size of the data resource to work out what IO 269 * routines we want to use 270 */ 271 272 switch (byte_width) { 273 case 1: 274 db->dumpblk = dm9000_dumpblk_8bit; 275 db->outblk = dm9000_outblk_8bit; 276 db->inblk = dm9000_inblk_8bit; 277 break; 278 279 280 case 3: 281 dev_dbg(db->dev, ": 3 byte IO, falling back to 16bit\n"); 282 case 2: 283 db->dumpblk = dm9000_dumpblk_16bit; 284 db->outblk = dm9000_outblk_16bit; 285 db->inblk = dm9000_inblk_16bit; 286 break; 287 288 case 4: 289 default: 290 db->dumpblk = dm9000_dumpblk_32bit; 291 db->outblk = dm9000_outblk_32bit; 292 db->inblk = dm9000_inblk_32bit; 293 break; 294 } 295 } 296 297 static void dm9000_schedule_poll(board_info_t *db) 298 { 299 if (db->type == TYPE_DM9000E) 300 schedule_delayed_work(&db->phy_poll, HZ * 2); 301 } 302 303 static int dm9000_ioctl(struct net_device *dev, struct ifreq *req, int cmd) 304 { 305 board_info_t *dm = to_dm9000_board(dev); 306 307 if (!netif_running(dev)) 308 return -EINVAL; 309 310 return generic_mii_ioctl(&dm->mii, if_mii(req), cmd, NULL); 311 } 312 313 static unsigned int 314 dm9000_read_locked(board_info_t *db, int reg) 315 { 316 unsigned long flags; 317 unsigned int ret; 318 319 spin_lock_irqsave(&db->lock, flags); 320 ret = ior(db, reg); 321 spin_unlock_irqrestore(&db->lock, flags); 322 323 return ret; 324 } 325 326 static int dm9000_wait_eeprom(board_info_t *db) 327 { 328 unsigned int status; 329 int timeout = 8; /* wait max 8msec */ 330 331 /* The DM9000 data sheets say we should be able to 332 * poll the ERRE bit in EPCR to wait for the EEPROM 333 * operation. From testing several chips, this bit 334 * does not seem to work. 335 * 336 * We attempt to use the bit, but fall back to the 337 * timeout (which is why we do not return an error 338 * on expiry) to say that the EEPROM operation has 339 * completed. 340 */ 341 342 while (1) { 343 status = dm9000_read_locked(db, DM9000_EPCR); 344 345 if ((status & EPCR_ERRE) == 0) 346 break; 347 348 msleep(1); 349 350 if (timeout-- < 0) { 351 dev_dbg(db->dev, "timeout waiting EEPROM\n"); 352 break; 353 } 354 } 355 356 return 0; 357 } 358 359 /* 360 * Read a word data from EEPROM 361 */ 362 static void 363 dm9000_read_eeprom(board_info_t *db, int offset, u8 *to) 364 { 365 unsigned long flags; 366 367 if (db->flags & DM9000_PLATF_NO_EEPROM) { 368 to[0] = 0xff; 369 to[1] = 0xff; 370 return; 371 } 372 373 mutex_lock(&db->addr_lock); 374 375 spin_lock_irqsave(&db->lock, flags); 376 377 iow(db, DM9000_EPAR, offset); 378 iow(db, DM9000_EPCR, EPCR_ERPRR); 379 380 spin_unlock_irqrestore(&db->lock, flags); 381 382 dm9000_wait_eeprom(db); 383 384 /* delay for at-least 150uS */ 385 msleep(1); 386 387 spin_lock_irqsave(&db->lock, flags); 388 389 iow(db, DM9000_EPCR, 0x0); 390 391 to[0] = ior(db, DM9000_EPDRL); 392 to[1] = ior(db, DM9000_EPDRH); 393 394 spin_unlock_irqrestore(&db->lock, flags); 395 396 mutex_unlock(&db->addr_lock); 397 } 398 399 /* 400 * Write a word data to SROM 401 */ 402 static void 403 dm9000_write_eeprom(board_info_t *db, int offset, u8 *data) 404 { 405 unsigned long flags; 406 407 if (db->flags & DM9000_PLATF_NO_EEPROM) 408 return; 409 410 mutex_lock(&db->addr_lock); 411 412 spin_lock_irqsave(&db->lock, flags); 413 iow(db, DM9000_EPAR, offset); 414 iow(db, DM9000_EPDRH, data[1]); 415 iow(db, DM9000_EPDRL, data[0]); 416 iow(db, DM9000_EPCR, EPCR_WEP | EPCR_ERPRW); 417 spin_unlock_irqrestore(&db->lock, flags); 418 419 dm9000_wait_eeprom(db); 420 421 mdelay(1); /* wait at least 150uS to clear */ 422 423 spin_lock_irqsave(&db->lock, flags); 424 iow(db, DM9000_EPCR, 0); 425 spin_unlock_irqrestore(&db->lock, flags); 426 427 mutex_unlock(&db->addr_lock); 428 } 429 430 /* ethtool ops */ 431 432 static void dm9000_get_drvinfo(struct net_device *dev, 433 struct ethtool_drvinfo *info) 434 { 435 board_info_t *dm = to_dm9000_board(dev); 436 437 strcpy(info->driver, CARDNAME); 438 strcpy(info->version, DRV_VERSION); 439 strcpy(info->bus_info, to_platform_device(dm->dev)->name); 440 } 441 442 static u32 dm9000_get_msglevel(struct net_device *dev) 443 { 444 board_info_t *dm = to_dm9000_board(dev); 445 446 return dm->msg_enable; 447 } 448 449 static void dm9000_set_msglevel(struct net_device *dev, u32 value) 450 { 451 board_info_t *dm = to_dm9000_board(dev); 452 453 dm->msg_enable = value; 454 } 455 456 static int dm9000_get_settings(struct net_device *dev, struct ethtool_cmd *cmd) 457 { 458 board_info_t *dm = to_dm9000_board(dev); 459 460 mii_ethtool_gset(&dm->mii, cmd); 461 return 0; 462 } 463 464 static int dm9000_set_settings(struct net_device *dev, struct ethtool_cmd *cmd) 465 { 466 board_info_t *dm = to_dm9000_board(dev); 467 468 return mii_ethtool_sset(&dm->mii, cmd); 469 } 470 471 static int dm9000_nway_reset(struct net_device *dev) 472 { 473 board_info_t *dm = to_dm9000_board(dev); 474 return mii_nway_restart(&dm->mii); 475 } 476 477 static int dm9000_set_features(struct net_device *dev, 478 netdev_features_t features) 479 { 480 board_info_t *dm = to_dm9000_board(dev); 481 netdev_features_t changed = dev->features ^ features; 482 unsigned long flags; 483 484 if (!(changed & NETIF_F_RXCSUM)) 485 return 0; 486 487 spin_lock_irqsave(&dm->lock, flags); 488 iow(dm, DM9000_RCSR, (features & NETIF_F_RXCSUM) ? RCSR_CSUM : 0); 489 spin_unlock_irqrestore(&dm->lock, flags); 490 491 return 0; 492 } 493 494 static u32 dm9000_get_link(struct net_device *dev) 495 { 496 board_info_t *dm = to_dm9000_board(dev); 497 u32 ret; 498 499 if (dm->flags & DM9000_PLATF_EXT_PHY) 500 ret = mii_link_ok(&dm->mii); 501 else 502 ret = dm9000_read_locked(dm, DM9000_NSR) & NSR_LINKST ? 1 : 0; 503 504 return ret; 505 } 506 507 #define DM_EEPROM_MAGIC (0x444D394B) 508 509 static int dm9000_get_eeprom_len(struct net_device *dev) 510 { 511 return 128; 512 } 513 514 static int dm9000_get_eeprom(struct net_device *dev, 515 struct ethtool_eeprom *ee, u8 *data) 516 { 517 board_info_t *dm = to_dm9000_board(dev); 518 int offset = ee->offset; 519 int len = ee->len; 520 int i; 521 522 /* EEPROM access is aligned to two bytes */ 523 524 if ((len & 1) != 0 || (offset & 1) != 0) 525 return -EINVAL; 526 527 if (dm->flags & DM9000_PLATF_NO_EEPROM) 528 return -ENOENT; 529 530 ee->magic = DM_EEPROM_MAGIC; 531 532 for (i = 0; i < len; i += 2) 533 dm9000_read_eeprom(dm, (offset + i) / 2, data + i); 534 535 return 0; 536 } 537 538 static int dm9000_set_eeprom(struct net_device *dev, 539 struct ethtool_eeprom *ee, u8 *data) 540 { 541 board_info_t *dm = to_dm9000_board(dev); 542 int offset = ee->offset; 543 int len = ee->len; 544 int done; 545 546 /* EEPROM access is aligned to two bytes */ 547 548 if (dm->flags & DM9000_PLATF_NO_EEPROM) 549 return -ENOENT; 550 551 if (ee->magic != DM_EEPROM_MAGIC) 552 return -EINVAL; 553 554 while (len > 0) { 555 if (len & 1 || offset & 1) { 556 int which = offset & 1; 557 u8 tmp[2]; 558 559 dm9000_read_eeprom(dm, offset / 2, tmp); 560 tmp[which] = *data; 561 dm9000_write_eeprom(dm, offset / 2, tmp); 562 563 done = 1; 564 } else { 565 dm9000_write_eeprom(dm, offset / 2, data); 566 done = 2; 567 } 568 569 data += done; 570 offset += done; 571 len -= done; 572 } 573 574 return 0; 575 } 576 577 static void dm9000_get_wol(struct net_device *dev, struct ethtool_wolinfo *w) 578 { 579 board_info_t *dm = to_dm9000_board(dev); 580 581 memset(w, 0, sizeof(struct ethtool_wolinfo)); 582 583 /* note, we could probably support wake-phy too */ 584 w->supported = dm->wake_supported ? WAKE_MAGIC : 0; 585 w->wolopts = dm->wake_state; 586 } 587 588 static int dm9000_set_wol(struct net_device *dev, struct ethtool_wolinfo *w) 589 { 590 board_info_t *dm = to_dm9000_board(dev); 591 unsigned long flags; 592 u32 opts = w->wolopts; 593 u32 wcr = 0; 594 595 if (!dm->wake_supported) 596 return -EOPNOTSUPP; 597 598 if (opts & ~WAKE_MAGIC) 599 return -EINVAL; 600 601 if (opts & WAKE_MAGIC) 602 wcr |= WCR_MAGICEN; 603 604 mutex_lock(&dm->addr_lock); 605 606 spin_lock_irqsave(&dm->lock, flags); 607 iow(dm, DM9000_WCR, wcr); 608 spin_unlock_irqrestore(&dm->lock, flags); 609 610 mutex_unlock(&dm->addr_lock); 611 612 if (dm->wake_state != opts) { 613 /* change in wol state, update IRQ state */ 614 615 if (!dm->wake_state) 616 irq_set_irq_wake(dm->irq_wake, 1); 617 else if (dm->wake_state && !opts) 618 irq_set_irq_wake(dm->irq_wake, 0); 619 } 620 621 dm->wake_state = opts; 622 return 0; 623 } 624 625 static const struct ethtool_ops dm9000_ethtool_ops = { 626 .get_drvinfo = dm9000_get_drvinfo, 627 .get_settings = dm9000_get_settings, 628 .set_settings = dm9000_set_settings, 629 .get_msglevel = dm9000_get_msglevel, 630 .set_msglevel = dm9000_set_msglevel, 631 .nway_reset = dm9000_nway_reset, 632 .get_link = dm9000_get_link, 633 .get_wol = dm9000_get_wol, 634 .set_wol = dm9000_set_wol, 635 .get_eeprom_len = dm9000_get_eeprom_len, 636 .get_eeprom = dm9000_get_eeprom, 637 .set_eeprom = dm9000_set_eeprom, 638 }; 639 640 static void dm9000_show_carrier(board_info_t *db, 641 unsigned carrier, unsigned nsr) 642 { 643 struct net_device *ndev = db->ndev; 644 unsigned ncr = dm9000_read_locked(db, DM9000_NCR); 645 646 if (carrier) 647 dev_info(db->dev, "%s: link up, %dMbps, %s-duplex, no LPA\n", 648 ndev->name, (nsr & NSR_SPEED) ? 10 : 100, 649 (ncr & NCR_FDX) ? "full" : "half"); 650 else 651 dev_info(db->dev, "%s: link down\n", ndev->name); 652 } 653 654 static void 655 dm9000_poll_work(struct work_struct *w) 656 { 657 struct delayed_work *dw = to_delayed_work(w); 658 board_info_t *db = container_of(dw, board_info_t, phy_poll); 659 struct net_device *ndev = db->ndev; 660 661 if (db->flags & DM9000_PLATF_SIMPLE_PHY && 662 !(db->flags & DM9000_PLATF_EXT_PHY)) { 663 unsigned nsr = dm9000_read_locked(db, DM9000_NSR); 664 unsigned old_carrier = netif_carrier_ok(ndev) ? 1 : 0; 665 unsigned new_carrier; 666 667 new_carrier = (nsr & NSR_LINKST) ? 1 : 0; 668 669 if (old_carrier != new_carrier) { 670 if (netif_msg_link(db)) 671 dm9000_show_carrier(db, new_carrier, nsr); 672 673 if (!new_carrier) 674 netif_carrier_off(ndev); 675 else 676 netif_carrier_on(ndev); 677 } 678 } else 679 mii_check_media(&db->mii, netif_msg_link(db), 0); 680 681 if (netif_running(ndev)) 682 dm9000_schedule_poll(db); 683 } 684 685 /* dm9000_release_board 686 * 687 * release a board, and any mapped resources 688 */ 689 690 static void 691 dm9000_release_board(struct platform_device *pdev, struct board_info *db) 692 { 693 /* unmap our resources */ 694 695 iounmap(db->io_addr); 696 iounmap(db->io_data); 697 698 /* release the resources */ 699 700 release_resource(db->data_req); 701 kfree(db->data_req); 702 703 release_resource(db->addr_req); 704 kfree(db->addr_req); 705 } 706 707 static unsigned char dm9000_type_to_char(enum dm9000_type type) 708 { 709 switch (type) { 710 case TYPE_DM9000E: return 'e'; 711 case TYPE_DM9000A: return 'a'; 712 case TYPE_DM9000B: return 'b'; 713 } 714 715 return '?'; 716 } 717 718 /* 719 * Set DM9000 multicast address 720 */ 721 static void 722 dm9000_hash_table_unlocked(struct net_device *dev) 723 { 724 board_info_t *db = netdev_priv(dev); 725 struct netdev_hw_addr *ha; 726 int i, oft; 727 u32 hash_val; 728 u16 hash_table[4]; 729 u8 rcr = RCR_DIS_LONG | RCR_DIS_CRC | RCR_RXEN; 730 731 dm9000_dbg(db, 1, "entering %s\n", __func__); 732 733 for (i = 0, oft = DM9000_PAR; i < 6; i++, oft++) 734 iow(db, oft, dev->dev_addr[i]); 735 736 /* Clear Hash Table */ 737 for (i = 0; i < 4; i++) 738 hash_table[i] = 0x0; 739 740 /* broadcast address */ 741 hash_table[3] = 0x8000; 742 743 if (dev->flags & IFF_PROMISC) 744 rcr |= RCR_PRMSC; 745 746 if (dev->flags & IFF_ALLMULTI) 747 rcr |= RCR_ALL; 748 749 /* the multicast address in Hash Table : 64 bits */ 750 netdev_for_each_mc_addr(ha, dev) { 751 hash_val = ether_crc_le(6, ha->addr) & 0x3f; 752 hash_table[hash_val / 16] |= (u16) 1 << (hash_val % 16); 753 } 754 755 /* Write the hash table to MAC MD table */ 756 for (i = 0, oft = DM9000_MAR; i < 4; i++) { 757 iow(db, oft++, hash_table[i]); 758 iow(db, oft++, hash_table[i] >> 8); 759 } 760 761 iow(db, DM9000_RCR, rcr); 762 } 763 764 static void 765 dm9000_hash_table(struct net_device *dev) 766 { 767 board_info_t *db = netdev_priv(dev); 768 unsigned long flags; 769 770 spin_lock_irqsave(&db->lock, flags); 771 dm9000_hash_table_unlocked(dev); 772 spin_unlock_irqrestore(&db->lock, flags); 773 } 774 775 /* 776 * Initialize dm9000 board 777 */ 778 static void 779 dm9000_init_dm9000(struct net_device *dev) 780 { 781 board_info_t *db = netdev_priv(dev); 782 unsigned int imr; 783 unsigned int ncr; 784 785 dm9000_dbg(db, 1, "entering %s\n", __func__); 786 787 /* I/O mode */ 788 db->io_mode = ior(db, DM9000_ISR) >> 6; /* ISR bit7:6 keeps I/O mode */ 789 790 /* Checksum mode */ 791 if (dev->hw_features & NETIF_F_RXCSUM) 792 iow(db, DM9000_RCSR, 793 (dev->features & NETIF_F_RXCSUM) ? RCSR_CSUM : 0); 794 795 iow(db, DM9000_GPCR, GPCR_GEP_CNTL); /* Let GPIO0 output */ 796 797 ncr = (db->flags & DM9000_PLATF_EXT_PHY) ? NCR_EXT_PHY : 0; 798 799 /* if wol is needed, then always set NCR_WAKEEN otherwise we end 800 * up dumping the wake events if we disable this. There is already 801 * a wake-mask in DM9000_WCR */ 802 if (db->wake_supported) 803 ncr |= NCR_WAKEEN; 804 805 iow(db, DM9000_NCR, ncr); 806 807 /* Program operating register */ 808 iow(db, DM9000_TCR, 0); /* TX Polling clear */ 809 iow(db, DM9000_BPTR, 0x3f); /* Less 3Kb, 200us */ 810 iow(db, DM9000_FCR, 0xff); /* Flow Control */ 811 iow(db, DM9000_SMCR, 0); /* Special Mode */ 812 /* clear TX status */ 813 iow(db, DM9000_NSR, NSR_WAKEST | NSR_TX2END | NSR_TX1END); 814 iow(db, DM9000_ISR, ISR_CLR_STATUS); /* Clear interrupt status */ 815 816 /* Set address filter table */ 817 dm9000_hash_table_unlocked(dev); 818 819 imr = IMR_PAR | IMR_PTM | IMR_PRM; 820 if (db->type != TYPE_DM9000E) 821 imr |= IMR_LNKCHNG; 822 823 db->imr_all = imr; 824 825 /* Enable TX/RX interrupt mask */ 826 iow(db, DM9000_IMR, imr); 827 828 /* Init Driver variable */ 829 db->tx_pkt_cnt = 0; 830 db->queue_pkt_len = 0; 831 dev->trans_start = jiffies; 832 } 833 834 /* Our watchdog timed out. Called by the networking layer */ 835 static void dm9000_timeout(struct net_device *dev) 836 { 837 board_info_t *db = netdev_priv(dev); 838 u8 reg_save; 839 unsigned long flags; 840 841 /* Save previous register address */ 842 spin_lock_irqsave(&db->lock, flags); 843 reg_save = readb(db->io_addr); 844 845 netif_stop_queue(dev); 846 dm9000_reset(db); 847 dm9000_init_dm9000(dev); 848 /* We can accept TX packets again */ 849 dev->trans_start = jiffies; /* prevent tx timeout */ 850 netif_wake_queue(dev); 851 852 /* Restore previous register address */ 853 writeb(reg_save, db->io_addr); 854 spin_unlock_irqrestore(&db->lock, flags); 855 } 856 857 static void dm9000_send_packet(struct net_device *dev, 858 int ip_summed, 859 u16 pkt_len) 860 { 861 board_info_t *dm = to_dm9000_board(dev); 862 863 /* The DM9000 is not smart enough to leave fragmented packets alone. */ 864 if (dm->ip_summed != ip_summed) { 865 if (ip_summed == CHECKSUM_NONE) 866 iow(dm, DM9000_TCCR, 0); 867 else 868 iow(dm, DM9000_TCCR, TCCR_IP | TCCR_UDP | TCCR_TCP); 869 dm->ip_summed = ip_summed; 870 } 871 872 /* Set TX length to DM9000 */ 873 iow(dm, DM9000_TXPLL, pkt_len); 874 iow(dm, DM9000_TXPLH, pkt_len >> 8); 875 876 /* Issue TX polling command */ 877 iow(dm, DM9000_TCR, TCR_TXREQ); /* Cleared after TX complete */ 878 } 879 880 /* 881 * Hardware start transmission. 882 * Send a packet to media from the upper layer. 883 */ 884 static int 885 dm9000_start_xmit(struct sk_buff *skb, struct net_device *dev) 886 { 887 unsigned long flags; 888 board_info_t *db = netdev_priv(dev); 889 890 dm9000_dbg(db, 3, "%s:\n", __func__); 891 892 if (db->tx_pkt_cnt > 1) 893 return NETDEV_TX_BUSY; 894 895 spin_lock_irqsave(&db->lock, flags); 896 897 /* Move data to DM9000 TX RAM */ 898 writeb(DM9000_MWCMD, db->io_addr); 899 900 (db->outblk)(db->io_data, skb->data, skb->len); 901 dev->stats.tx_bytes += skb->len; 902 903 db->tx_pkt_cnt++; 904 /* TX control: First packet immediately send, second packet queue */ 905 if (db->tx_pkt_cnt == 1) { 906 dm9000_send_packet(dev, skb->ip_summed, skb->len); 907 } else { 908 /* Second packet */ 909 db->queue_pkt_len = skb->len; 910 db->queue_ip_summed = skb->ip_summed; 911 netif_stop_queue(dev); 912 } 913 914 spin_unlock_irqrestore(&db->lock, flags); 915 916 /* free this SKB */ 917 dev_kfree_skb(skb); 918 919 return NETDEV_TX_OK; 920 } 921 922 /* 923 * DM9000 interrupt handler 924 * receive the packet to upper layer, free the transmitted packet 925 */ 926 927 static void dm9000_tx_done(struct net_device *dev, board_info_t *db) 928 { 929 int tx_status = ior(db, DM9000_NSR); /* Got TX status */ 930 931 if (tx_status & (NSR_TX2END | NSR_TX1END)) { 932 /* One packet sent complete */ 933 db->tx_pkt_cnt--; 934 dev->stats.tx_packets++; 935 936 if (netif_msg_tx_done(db)) 937 dev_dbg(db->dev, "tx done, NSR %02x\n", tx_status); 938 939 /* Queue packet check & send */ 940 if (db->tx_pkt_cnt > 0) 941 dm9000_send_packet(dev, db->queue_ip_summed, 942 db->queue_pkt_len); 943 netif_wake_queue(dev); 944 } 945 } 946 947 struct dm9000_rxhdr { 948 u8 RxPktReady; 949 u8 RxStatus; 950 __le16 RxLen; 951 } __packed; 952 953 /* 954 * Received a packet and pass to upper layer 955 */ 956 static void 957 dm9000_rx(struct net_device *dev) 958 { 959 board_info_t *db = netdev_priv(dev); 960 struct dm9000_rxhdr rxhdr; 961 struct sk_buff *skb; 962 u8 rxbyte, *rdptr; 963 bool GoodPacket; 964 int RxLen; 965 966 /* Check packet ready or not */ 967 do { 968 ior(db, DM9000_MRCMDX); /* Dummy read */ 969 970 /* Get most updated data */ 971 rxbyte = readb(db->io_data); 972 973 /* Status check: this byte must be 0 or 1 */ 974 if (rxbyte & DM9000_PKT_ERR) { 975 dev_warn(db->dev, "status check fail: %d\n", rxbyte); 976 iow(db, DM9000_RCR, 0x00); /* Stop Device */ 977 iow(db, DM9000_ISR, IMR_PAR); /* Stop INT request */ 978 return; 979 } 980 981 if (!(rxbyte & DM9000_PKT_RDY)) 982 return; 983 984 /* A packet ready now & Get status/length */ 985 GoodPacket = true; 986 writeb(DM9000_MRCMD, db->io_addr); 987 988 (db->inblk)(db->io_data, &rxhdr, sizeof(rxhdr)); 989 990 RxLen = le16_to_cpu(rxhdr.RxLen); 991 992 if (netif_msg_rx_status(db)) 993 dev_dbg(db->dev, "RX: status %02x, length %04x\n", 994 rxhdr.RxStatus, RxLen); 995 996 /* Packet Status check */ 997 if (RxLen < 0x40) { 998 GoodPacket = false; 999 if (netif_msg_rx_err(db)) 1000 dev_dbg(db->dev, "RX: Bad Packet (runt)\n"); 1001 } 1002 1003 if (RxLen > DM9000_PKT_MAX) { 1004 dev_dbg(db->dev, "RST: RX Len:%x\n", RxLen); 1005 } 1006 1007 /* rxhdr.RxStatus is identical to RSR register. */ 1008 if (rxhdr.RxStatus & (RSR_FOE | RSR_CE | RSR_AE | 1009 RSR_PLE | RSR_RWTO | 1010 RSR_LCS | RSR_RF)) { 1011 GoodPacket = false; 1012 if (rxhdr.RxStatus & RSR_FOE) { 1013 if (netif_msg_rx_err(db)) 1014 dev_dbg(db->dev, "fifo error\n"); 1015 dev->stats.rx_fifo_errors++; 1016 } 1017 if (rxhdr.RxStatus & RSR_CE) { 1018 if (netif_msg_rx_err(db)) 1019 dev_dbg(db->dev, "crc error\n"); 1020 dev->stats.rx_crc_errors++; 1021 } 1022 if (rxhdr.RxStatus & RSR_RF) { 1023 if (netif_msg_rx_err(db)) 1024 dev_dbg(db->dev, "length error\n"); 1025 dev->stats.rx_length_errors++; 1026 } 1027 } 1028 1029 /* Move data from DM9000 */ 1030 if (GoodPacket && 1031 ((skb = netdev_alloc_skb(dev, RxLen + 4)) != NULL)) { 1032 skb_reserve(skb, 2); 1033 rdptr = (u8 *) skb_put(skb, RxLen - 4); 1034 1035 /* Read received packet from RX SRAM */ 1036 1037 (db->inblk)(db->io_data, rdptr, RxLen); 1038 dev->stats.rx_bytes += RxLen; 1039 1040 /* Pass to upper layer */ 1041 skb->protocol = eth_type_trans(skb, dev); 1042 if (dev->features & NETIF_F_RXCSUM) { 1043 if ((((rxbyte & 0x1c) << 3) & rxbyte) == 0) 1044 skb->ip_summed = CHECKSUM_UNNECESSARY; 1045 else 1046 skb_checksum_none_assert(skb); 1047 } 1048 netif_rx(skb); 1049 dev->stats.rx_packets++; 1050 1051 } else { 1052 /* need to dump the packet's data */ 1053 1054 (db->dumpblk)(db->io_data, RxLen); 1055 } 1056 } while (rxbyte & DM9000_PKT_RDY); 1057 } 1058 1059 static irqreturn_t dm9000_interrupt(int irq, void *dev_id) 1060 { 1061 struct net_device *dev = dev_id; 1062 board_info_t *db = netdev_priv(dev); 1063 int int_status; 1064 unsigned long flags; 1065 u8 reg_save; 1066 1067 dm9000_dbg(db, 3, "entering %s\n", __func__); 1068 1069 /* A real interrupt coming */ 1070 1071 /* holders of db->lock must always block IRQs */ 1072 spin_lock_irqsave(&db->lock, flags); 1073 1074 /* Save previous register address */ 1075 reg_save = readb(db->io_addr); 1076 1077 /* Disable all interrupts */ 1078 iow(db, DM9000_IMR, IMR_PAR); 1079 1080 /* Got DM9000 interrupt status */ 1081 int_status = ior(db, DM9000_ISR); /* Got ISR */ 1082 iow(db, DM9000_ISR, int_status); /* Clear ISR status */ 1083 1084 if (netif_msg_intr(db)) 1085 dev_dbg(db->dev, "interrupt status %02x\n", int_status); 1086 1087 /* Received the coming packet */ 1088 if (int_status & ISR_PRS) 1089 dm9000_rx(dev); 1090 1091 /* Trnasmit Interrupt check */ 1092 if (int_status & ISR_PTS) 1093 dm9000_tx_done(dev, db); 1094 1095 if (db->type != TYPE_DM9000E) { 1096 if (int_status & ISR_LNKCHNG) { 1097 /* fire a link-change request */ 1098 schedule_delayed_work(&db->phy_poll, 1); 1099 } 1100 } 1101 1102 /* Re-enable interrupt mask */ 1103 iow(db, DM9000_IMR, db->imr_all); 1104 1105 /* Restore previous register address */ 1106 writeb(reg_save, db->io_addr); 1107 1108 spin_unlock_irqrestore(&db->lock, flags); 1109 1110 return IRQ_HANDLED; 1111 } 1112 1113 static irqreturn_t dm9000_wol_interrupt(int irq, void *dev_id) 1114 { 1115 struct net_device *dev = dev_id; 1116 board_info_t *db = netdev_priv(dev); 1117 unsigned long flags; 1118 unsigned nsr, wcr; 1119 1120 spin_lock_irqsave(&db->lock, flags); 1121 1122 nsr = ior(db, DM9000_NSR); 1123 wcr = ior(db, DM9000_WCR); 1124 1125 dev_dbg(db->dev, "%s: NSR=0x%02x, WCR=0x%02x\n", __func__, nsr, wcr); 1126 1127 if (nsr & NSR_WAKEST) { 1128 /* clear, so we can avoid */ 1129 iow(db, DM9000_NSR, NSR_WAKEST); 1130 1131 if (wcr & WCR_LINKST) 1132 dev_info(db->dev, "wake by link status change\n"); 1133 if (wcr & WCR_SAMPLEST) 1134 dev_info(db->dev, "wake by sample packet\n"); 1135 if (wcr & WCR_MAGICST ) 1136 dev_info(db->dev, "wake by magic packet\n"); 1137 if (!(wcr & (WCR_LINKST | WCR_SAMPLEST | WCR_MAGICST))) 1138 dev_err(db->dev, "wake signalled with no reason? " 1139 "NSR=0x%02x, WSR=0x%02x\n", nsr, wcr); 1140 1141 } 1142 1143 spin_unlock_irqrestore(&db->lock, flags); 1144 1145 return (nsr & NSR_WAKEST) ? IRQ_HANDLED : IRQ_NONE; 1146 } 1147 1148 #ifdef CONFIG_NET_POLL_CONTROLLER 1149 /* 1150 *Used by netconsole 1151 */ 1152 static void dm9000_poll_controller(struct net_device *dev) 1153 { 1154 disable_irq(dev->irq); 1155 dm9000_interrupt(dev->irq, dev); 1156 enable_irq(dev->irq); 1157 } 1158 #endif 1159 1160 /* 1161 * Open the interface. 1162 * The interface is opened whenever "ifconfig" actives it. 1163 */ 1164 static int 1165 dm9000_open(struct net_device *dev) 1166 { 1167 board_info_t *db = netdev_priv(dev); 1168 unsigned long irqflags = db->irq_res->flags & IRQF_TRIGGER_MASK; 1169 1170 if (netif_msg_ifup(db)) 1171 dev_dbg(db->dev, "enabling %s\n", dev->name); 1172 1173 /* If there is no IRQ type specified, default to something that 1174 * may work, and tell the user that this is a problem */ 1175 1176 if (irqflags == IRQF_TRIGGER_NONE) 1177 dev_warn(db->dev, "WARNING: no IRQ resource flags set.\n"); 1178 1179 irqflags |= IRQF_SHARED; 1180 1181 /* GPIO0 on pre-activate PHY, Reg 1F is not set by reset */ 1182 iow(db, DM9000_GPR, 0); /* REG_1F bit0 activate phyxcer */ 1183 mdelay(1); /* delay needs by DM9000B */ 1184 1185 /* Initialize DM9000 board */ 1186 dm9000_reset(db); 1187 dm9000_init_dm9000(dev); 1188 1189 if (request_irq(dev->irq, dm9000_interrupt, irqflags, dev->name, dev)) 1190 return -EAGAIN; 1191 1192 /* Init driver variable */ 1193 db->dbug_cnt = 0; 1194 1195 mii_check_media(&db->mii, netif_msg_link(db), 1); 1196 netif_start_queue(dev); 1197 1198 dm9000_schedule_poll(db); 1199 1200 return 0; 1201 } 1202 1203 /* 1204 * Sleep, either by using msleep() or if we are suspending, then 1205 * use mdelay() to sleep. 1206 */ 1207 static void dm9000_msleep(board_info_t *db, unsigned int ms) 1208 { 1209 if (db->in_suspend) 1210 mdelay(ms); 1211 else 1212 msleep(ms); 1213 } 1214 1215 /* 1216 * Read a word from phyxcer 1217 */ 1218 static int 1219 dm9000_phy_read(struct net_device *dev, int phy_reg_unused, int reg) 1220 { 1221 board_info_t *db = netdev_priv(dev); 1222 unsigned long flags; 1223 unsigned int reg_save; 1224 int ret; 1225 1226 mutex_lock(&db->addr_lock); 1227 1228 spin_lock_irqsave(&db->lock,flags); 1229 1230 /* Save previous register address */ 1231 reg_save = readb(db->io_addr); 1232 1233 /* Fill the phyxcer register into REG_0C */ 1234 iow(db, DM9000_EPAR, DM9000_PHY | reg); 1235 1236 iow(db, DM9000_EPCR, EPCR_ERPRR | EPCR_EPOS); /* Issue phyxcer read command */ 1237 1238 writeb(reg_save, db->io_addr); 1239 spin_unlock_irqrestore(&db->lock,flags); 1240 1241 dm9000_msleep(db, 1); /* Wait read complete */ 1242 1243 spin_lock_irqsave(&db->lock,flags); 1244 reg_save = readb(db->io_addr); 1245 1246 iow(db, DM9000_EPCR, 0x0); /* Clear phyxcer read command */ 1247 1248 /* The read data keeps on REG_0D & REG_0E */ 1249 ret = (ior(db, DM9000_EPDRH) << 8) | ior(db, DM9000_EPDRL); 1250 1251 /* restore the previous address */ 1252 writeb(reg_save, db->io_addr); 1253 spin_unlock_irqrestore(&db->lock,flags); 1254 1255 mutex_unlock(&db->addr_lock); 1256 1257 dm9000_dbg(db, 5, "phy_read[%02x] -> %04x\n", reg, ret); 1258 return ret; 1259 } 1260 1261 /* 1262 * Write a word to phyxcer 1263 */ 1264 static void 1265 dm9000_phy_write(struct net_device *dev, 1266 int phyaddr_unused, int reg, int value) 1267 { 1268 board_info_t *db = netdev_priv(dev); 1269 unsigned long flags; 1270 unsigned long reg_save; 1271 1272 dm9000_dbg(db, 5, "phy_write[%02x] = %04x\n", reg, value); 1273 mutex_lock(&db->addr_lock); 1274 1275 spin_lock_irqsave(&db->lock,flags); 1276 1277 /* Save previous register address */ 1278 reg_save = readb(db->io_addr); 1279 1280 /* Fill the phyxcer register into REG_0C */ 1281 iow(db, DM9000_EPAR, DM9000_PHY | reg); 1282 1283 /* Fill the written data into REG_0D & REG_0E */ 1284 iow(db, DM9000_EPDRL, value); 1285 iow(db, DM9000_EPDRH, value >> 8); 1286 1287 iow(db, DM9000_EPCR, EPCR_EPOS | EPCR_ERPRW); /* Issue phyxcer write command */ 1288 1289 writeb(reg_save, db->io_addr); 1290 spin_unlock_irqrestore(&db->lock, flags); 1291 1292 dm9000_msleep(db, 1); /* Wait write complete */ 1293 1294 spin_lock_irqsave(&db->lock,flags); 1295 reg_save = readb(db->io_addr); 1296 1297 iow(db, DM9000_EPCR, 0x0); /* Clear phyxcer write command */ 1298 1299 /* restore the previous address */ 1300 writeb(reg_save, db->io_addr); 1301 1302 spin_unlock_irqrestore(&db->lock, flags); 1303 mutex_unlock(&db->addr_lock); 1304 } 1305 1306 static void 1307 dm9000_shutdown(struct net_device *dev) 1308 { 1309 board_info_t *db = netdev_priv(dev); 1310 1311 /* RESET device */ 1312 dm9000_phy_write(dev, 0, MII_BMCR, BMCR_RESET); /* PHY RESET */ 1313 iow(db, DM9000_GPR, 0x01); /* Power-Down PHY */ 1314 iow(db, DM9000_IMR, IMR_PAR); /* Disable all interrupt */ 1315 iow(db, DM9000_RCR, 0x00); /* Disable RX */ 1316 } 1317 1318 /* 1319 * Stop the interface. 1320 * The interface is stopped when it is brought. 1321 */ 1322 static int 1323 dm9000_stop(struct net_device *ndev) 1324 { 1325 board_info_t *db = netdev_priv(ndev); 1326 1327 if (netif_msg_ifdown(db)) 1328 dev_dbg(db->dev, "shutting down %s\n", ndev->name); 1329 1330 cancel_delayed_work_sync(&db->phy_poll); 1331 1332 netif_stop_queue(ndev); 1333 netif_carrier_off(ndev); 1334 1335 /* free interrupt */ 1336 free_irq(ndev->irq, ndev); 1337 1338 dm9000_shutdown(ndev); 1339 1340 return 0; 1341 } 1342 1343 static const struct net_device_ops dm9000_netdev_ops = { 1344 .ndo_open = dm9000_open, 1345 .ndo_stop = dm9000_stop, 1346 .ndo_start_xmit = dm9000_start_xmit, 1347 .ndo_tx_timeout = dm9000_timeout, 1348 .ndo_set_rx_mode = dm9000_hash_table, 1349 .ndo_do_ioctl = dm9000_ioctl, 1350 .ndo_change_mtu = eth_change_mtu, 1351 .ndo_set_features = dm9000_set_features, 1352 .ndo_validate_addr = eth_validate_addr, 1353 .ndo_set_mac_address = eth_mac_addr, 1354 #ifdef CONFIG_NET_POLL_CONTROLLER 1355 .ndo_poll_controller = dm9000_poll_controller, 1356 #endif 1357 }; 1358 1359 /* 1360 * Search DM9000 board, allocate space and register it 1361 */ 1362 static int __devinit 1363 dm9000_probe(struct platform_device *pdev) 1364 { 1365 struct dm9000_plat_data *pdata = pdev->dev.platform_data; 1366 struct board_info *db; /* Point a board information structure */ 1367 struct net_device *ndev; 1368 const unsigned char *mac_src; 1369 int ret = 0; 1370 int iosize; 1371 int i; 1372 u32 id_val; 1373 1374 /* Init network device */ 1375 ndev = alloc_etherdev(sizeof(struct board_info)); 1376 if (!ndev) 1377 return -ENOMEM; 1378 1379 SET_NETDEV_DEV(ndev, &pdev->dev); 1380 1381 dev_dbg(&pdev->dev, "dm9000_probe()\n"); 1382 1383 /* setup board info structure */ 1384 db = netdev_priv(ndev); 1385 1386 db->dev = &pdev->dev; 1387 db->ndev = ndev; 1388 1389 spin_lock_init(&db->lock); 1390 mutex_init(&db->addr_lock); 1391 1392 INIT_DELAYED_WORK(&db->phy_poll, dm9000_poll_work); 1393 1394 db->addr_res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1395 db->data_res = platform_get_resource(pdev, IORESOURCE_MEM, 1); 1396 db->irq_res = platform_get_resource(pdev, IORESOURCE_IRQ, 0); 1397 1398 if (db->addr_res == NULL || db->data_res == NULL || 1399 db->irq_res == NULL) { 1400 dev_err(db->dev, "insufficient resources\n"); 1401 ret = -ENOENT; 1402 goto out; 1403 } 1404 1405 db->irq_wake = platform_get_irq(pdev, 1); 1406 if (db->irq_wake >= 0) { 1407 dev_dbg(db->dev, "wakeup irq %d\n", db->irq_wake); 1408 1409 ret = request_irq(db->irq_wake, dm9000_wol_interrupt, 1410 IRQF_SHARED, dev_name(db->dev), ndev); 1411 if (ret) { 1412 dev_err(db->dev, "cannot get wakeup irq (%d)\n", ret); 1413 } else { 1414 1415 /* test to see if irq is really wakeup capable */ 1416 ret = irq_set_irq_wake(db->irq_wake, 1); 1417 if (ret) { 1418 dev_err(db->dev, "irq %d cannot set wakeup (%d)\n", 1419 db->irq_wake, ret); 1420 ret = 0; 1421 } else { 1422 irq_set_irq_wake(db->irq_wake, 0); 1423 db->wake_supported = 1; 1424 } 1425 } 1426 } 1427 1428 iosize = resource_size(db->addr_res); 1429 db->addr_req = request_mem_region(db->addr_res->start, iosize, 1430 pdev->name); 1431 1432 if (db->addr_req == NULL) { 1433 dev_err(db->dev, "cannot claim address reg area\n"); 1434 ret = -EIO; 1435 goto out; 1436 } 1437 1438 db->io_addr = ioremap(db->addr_res->start, iosize); 1439 1440 if (db->io_addr == NULL) { 1441 dev_err(db->dev, "failed to ioremap address reg\n"); 1442 ret = -EINVAL; 1443 goto out; 1444 } 1445 1446 iosize = resource_size(db->data_res); 1447 db->data_req = request_mem_region(db->data_res->start, iosize, 1448 pdev->name); 1449 1450 if (db->data_req == NULL) { 1451 dev_err(db->dev, "cannot claim data reg area\n"); 1452 ret = -EIO; 1453 goto out; 1454 } 1455 1456 db->io_data = ioremap(db->data_res->start, iosize); 1457 1458 if (db->io_data == NULL) { 1459 dev_err(db->dev, "failed to ioremap data reg\n"); 1460 ret = -EINVAL; 1461 goto out; 1462 } 1463 1464 /* fill in parameters for net-dev structure */ 1465 ndev->base_addr = (unsigned long)db->io_addr; 1466 ndev->irq = db->irq_res->start; 1467 1468 /* ensure at least we have a default set of IO routines */ 1469 dm9000_set_io(db, iosize); 1470 1471 /* check to see if anything is being over-ridden */ 1472 if (pdata != NULL) { 1473 /* check to see if the driver wants to over-ride the 1474 * default IO width */ 1475 1476 if (pdata->flags & DM9000_PLATF_8BITONLY) 1477 dm9000_set_io(db, 1); 1478 1479 if (pdata->flags & DM9000_PLATF_16BITONLY) 1480 dm9000_set_io(db, 2); 1481 1482 if (pdata->flags & DM9000_PLATF_32BITONLY) 1483 dm9000_set_io(db, 4); 1484 1485 /* check to see if there are any IO routine 1486 * over-rides */ 1487 1488 if (pdata->inblk != NULL) 1489 db->inblk = pdata->inblk; 1490 1491 if (pdata->outblk != NULL) 1492 db->outblk = pdata->outblk; 1493 1494 if (pdata->dumpblk != NULL) 1495 db->dumpblk = pdata->dumpblk; 1496 1497 db->flags = pdata->flags; 1498 } 1499 1500 #ifdef CONFIG_DM9000_FORCE_SIMPLE_PHY_POLL 1501 db->flags |= DM9000_PLATF_SIMPLE_PHY; 1502 #endif 1503 1504 dm9000_reset(db); 1505 1506 /* try multiple times, DM9000 sometimes gets the read wrong */ 1507 for (i = 0; i < 8; i++) { 1508 id_val = ior(db, DM9000_VIDL); 1509 id_val |= (u32)ior(db, DM9000_VIDH) << 8; 1510 id_val |= (u32)ior(db, DM9000_PIDL) << 16; 1511 id_val |= (u32)ior(db, DM9000_PIDH) << 24; 1512 1513 if (id_val == DM9000_ID) 1514 break; 1515 dev_err(db->dev, "read wrong id 0x%08x\n", id_val); 1516 } 1517 1518 if (id_val != DM9000_ID) { 1519 dev_err(db->dev, "wrong id: 0x%08x\n", id_val); 1520 ret = -ENODEV; 1521 goto out; 1522 } 1523 1524 /* Identify what type of DM9000 we are working on */ 1525 1526 id_val = ior(db, DM9000_CHIPR); 1527 dev_dbg(db->dev, "dm9000 revision 0x%02x\n", id_val); 1528 1529 switch (id_val) { 1530 case CHIPR_DM9000A: 1531 db->type = TYPE_DM9000A; 1532 break; 1533 case CHIPR_DM9000B: 1534 db->type = TYPE_DM9000B; 1535 break; 1536 default: 1537 dev_dbg(db->dev, "ID %02x => defaulting to DM9000E\n", id_val); 1538 db->type = TYPE_DM9000E; 1539 } 1540 1541 /* dm9000a/b are capable of hardware checksum offload */ 1542 if (db->type == TYPE_DM9000A || db->type == TYPE_DM9000B) { 1543 ndev->hw_features = NETIF_F_RXCSUM | NETIF_F_IP_CSUM; 1544 ndev->features |= ndev->hw_features; 1545 } 1546 1547 /* from this point we assume that we have found a DM9000 */ 1548 1549 /* driver system function */ 1550 ether_setup(ndev); 1551 1552 ndev->netdev_ops = &dm9000_netdev_ops; 1553 ndev->watchdog_timeo = msecs_to_jiffies(watchdog); 1554 ndev->ethtool_ops = &dm9000_ethtool_ops; 1555 1556 db->msg_enable = NETIF_MSG_LINK; 1557 db->mii.phy_id_mask = 0x1f; 1558 db->mii.reg_num_mask = 0x1f; 1559 db->mii.force_media = 0; 1560 db->mii.full_duplex = 0; 1561 db->mii.dev = ndev; 1562 db->mii.mdio_read = dm9000_phy_read; 1563 db->mii.mdio_write = dm9000_phy_write; 1564 1565 mac_src = "eeprom"; 1566 1567 /* try reading the node address from the attached EEPROM */ 1568 for (i = 0; i < 6; i += 2) 1569 dm9000_read_eeprom(db, i / 2, ndev->dev_addr+i); 1570 1571 if (!is_valid_ether_addr(ndev->dev_addr) && pdata != NULL) { 1572 mac_src = "platform data"; 1573 memcpy(ndev->dev_addr, pdata->dev_addr, 6); 1574 } 1575 1576 if (!is_valid_ether_addr(ndev->dev_addr)) { 1577 /* try reading from mac */ 1578 1579 mac_src = "chip"; 1580 for (i = 0; i < 6; i++) 1581 ndev->dev_addr[i] = ior(db, i+DM9000_PAR); 1582 } 1583 1584 if (!is_valid_ether_addr(ndev->dev_addr)) { 1585 dev_warn(db->dev, "%s: Invalid ethernet MAC address. Please " 1586 "set using ifconfig\n", ndev->name); 1587 1588 eth_hw_addr_random(ndev); 1589 mac_src = "random"; 1590 } 1591 1592 1593 platform_set_drvdata(pdev, ndev); 1594 ret = register_netdev(ndev); 1595 1596 if (ret == 0) 1597 printk(KERN_INFO "%s: dm9000%c at %p,%p IRQ %d MAC: %pM (%s)\n", 1598 ndev->name, dm9000_type_to_char(db->type), 1599 db->io_addr, db->io_data, ndev->irq, 1600 ndev->dev_addr, mac_src); 1601 return 0; 1602 1603 out: 1604 dev_err(db->dev, "not found (%d).\n", ret); 1605 1606 dm9000_release_board(pdev, db); 1607 free_netdev(ndev); 1608 1609 return ret; 1610 } 1611 1612 static int 1613 dm9000_drv_suspend(struct device *dev) 1614 { 1615 struct platform_device *pdev = to_platform_device(dev); 1616 struct net_device *ndev = platform_get_drvdata(pdev); 1617 board_info_t *db; 1618 1619 if (ndev) { 1620 db = netdev_priv(ndev); 1621 db->in_suspend = 1; 1622 1623 if (!netif_running(ndev)) 1624 return 0; 1625 1626 netif_device_detach(ndev); 1627 1628 /* only shutdown if not using WoL */ 1629 if (!db->wake_state) 1630 dm9000_shutdown(ndev); 1631 } 1632 return 0; 1633 } 1634 1635 static int 1636 dm9000_drv_resume(struct device *dev) 1637 { 1638 struct platform_device *pdev = to_platform_device(dev); 1639 struct net_device *ndev = platform_get_drvdata(pdev); 1640 board_info_t *db = netdev_priv(ndev); 1641 1642 if (ndev) { 1643 if (netif_running(ndev)) { 1644 /* reset if we were not in wake mode to ensure if 1645 * the device was powered off it is in a known state */ 1646 if (!db->wake_state) { 1647 dm9000_reset(db); 1648 dm9000_init_dm9000(ndev); 1649 } 1650 1651 netif_device_attach(ndev); 1652 } 1653 1654 db->in_suspend = 0; 1655 } 1656 return 0; 1657 } 1658 1659 static const struct dev_pm_ops dm9000_drv_pm_ops = { 1660 .suspend = dm9000_drv_suspend, 1661 .resume = dm9000_drv_resume, 1662 }; 1663 1664 static int __devexit 1665 dm9000_drv_remove(struct platform_device *pdev) 1666 { 1667 struct net_device *ndev = platform_get_drvdata(pdev); 1668 1669 platform_set_drvdata(pdev, NULL); 1670 1671 unregister_netdev(ndev); 1672 dm9000_release_board(pdev, netdev_priv(ndev)); 1673 free_netdev(ndev); /* free device structure */ 1674 1675 dev_dbg(&pdev->dev, "released and freed device\n"); 1676 return 0; 1677 } 1678 1679 static struct platform_driver dm9000_driver = { 1680 .driver = { 1681 .name = "dm9000", 1682 .owner = THIS_MODULE, 1683 .pm = &dm9000_drv_pm_ops, 1684 }, 1685 .probe = dm9000_probe, 1686 .remove = __devexit_p(dm9000_drv_remove), 1687 }; 1688 1689 static int __init 1690 dm9000_init(void) 1691 { 1692 printk(KERN_INFO "%s Ethernet Driver, V%s\n", CARDNAME, DRV_VERSION); 1693 1694 return platform_driver_register(&dm9000_driver); 1695 } 1696 1697 static void __exit 1698 dm9000_cleanup(void) 1699 { 1700 platform_driver_unregister(&dm9000_driver); 1701 } 1702 1703 module_init(dm9000_init); 1704 module_exit(dm9000_cleanup); 1705 1706 MODULE_AUTHOR("Sascha Hauer, Ben Dooks"); 1707 MODULE_DESCRIPTION("Davicom DM9000 network driver"); 1708 MODULE_LICENSE("GPL"); 1709 MODULE_ALIAS("platform:dm9000"); 1710