1 /*
2  *      Davicom DM9000 Fast Ethernet driver for Linux.
3  * 	Copyright (C) 1997  Sten Wang
4  *
5  * 	This program is free software; you can redistribute it and/or
6  * 	modify it under the terms of the GNU General Public License
7  * 	as published by the Free Software Foundation; either version 2
8  * 	of the License, or (at your option) any later version.
9  *
10  * 	This program is distributed in the hope that it will be useful,
11  * 	but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * 	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * 	GNU General Public License for more details.
14  *
15  * (C) Copyright 1997-1998 DAVICOM Semiconductor,Inc. All Rights Reserved.
16  *
17  * Additional updates, Copyright:
18  *	Ben Dooks <ben@simtec.co.uk>
19  *	Sascha Hauer <s.hauer@pengutronix.de>
20  */
21 
22 #include <linux/module.h>
23 #include <linux/ioport.h>
24 #include <linux/netdevice.h>
25 #include <linux/etherdevice.h>
26 #include <linux/interrupt.h>
27 #include <linux/skbuff.h>
28 #include <linux/spinlock.h>
29 #include <linux/crc32.h>
30 #include <linux/mii.h>
31 #include <linux/of.h>
32 #include <linux/of_net.h>
33 #include <linux/ethtool.h>
34 #include <linux/dm9000.h>
35 #include <linux/delay.h>
36 #include <linux/platform_device.h>
37 #include <linux/irq.h>
38 #include <linux/slab.h>
39 
40 #include <asm/delay.h>
41 #include <asm/irq.h>
42 #include <asm/io.h>
43 
44 #include "dm9000.h"
45 
46 /* Board/System/Debug information/definition ---------------- */
47 
48 #define DM9000_PHY		0x40	/* PHY address 0x01 */
49 
50 #define CARDNAME	"dm9000"
51 #define DRV_VERSION	"1.31"
52 
53 /*
54  * Transmit timeout, default 5 seconds.
55  */
56 static int watchdog = 5000;
57 module_param(watchdog, int, 0400);
58 MODULE_PARM_DESC(watchdog, "transmit timeout in milliseconds");
59 
60 /*
61  * Debug messages level
62  */
63 static int debug;
64 module_param(debug, int, 0644);
65 MODULE_PARM_DESC(debug, "dm9000 debug level (0-4)");
66 
67 /* DM9000 register address locking.
68  *
69  * The DM9000 uses an address register to control where data written
70  * to the data register goes. This means that the address register
71  * must be preserved over interrupts or similar calls.
72  *
73  * During interrupt and other critical calls, a spinlock is used to
74  * protect the system, but the calls themselves save the address
75  * in the address register in case they are interrupting another
76  * access to the device.
77  *
78  * For general accesses a lock is provided so that calls which are
79  * allowed to sleep are serialised so that the address register does
80  * not need to be saved. This lock also serves to serialise access
81  * to the EEPROM and PHY access registers which are shared between
82  * these two devices.
83  */
84 
85 /* The driver supports the original DM9000E, and now the two newer
86  * devices, DM9000A and DM9000B.
87  */
88 
89 enum dm9000_type {
90 	TYPE_DM9000E,	/* original DM9000 */
91 	TYPE_DM9000A,
92 	TYPE_DM9000B
93 };
94 
95 /* Structure/enum declaration ------------------------------- */
96 typedef struct board_info {
97 
98 	void __iomem	*io_addr;	/* Register I/O base address */
99 	void __iomem	*io_data;	/* Data I/O address */
100 	u16		 irq;		/* IRQ */
101 
102 	u16		tx_pkt_cnt;
103 	u16		queue_pkt_len;
104 	u16		queue_start_addr;
105 	u16		queue_ip_summed;
106 	u16		dbug_cnt;
107 	u8		io_mode;		/* 0:word, 2:byte */
108 	u8		phy_addr;
109 	u8		imr_all;
110 
111 	unsigned int	flags;
112 	unsigned int	in_suspend:1;
113 	unsigned int	wake_supported:1;
114 
115 	enum dm9000_type type;
116 
117 	void (*inblk)(void __iomem *port, void *data, int length);
118 	void (*outblk)(void __iomem *port, void *data, int length);
119 	void (*dumpblk)(void __iomem *port, int length);
120 
121 	struct device	*dev;	     /* parent device */
122 
123 	struct resource	*addr_res;   /* resources found */
124 	struct resource *data_res;
125 	struct resource	*addr_req;   /* resources requested */
126 	struct resource *data_req;
127 	struct resource *irq_res;
128 
129 	int		 irq_wake;
130 
131 	struct mutex	 addr_lock;	/* phy and eeprom access lock */
132 
133 	struct delayed_work phy_poll;
134 	struct net_device  *ndev;
135 
136 	spinlock_t	lock;
137 
138 	struct mii_if_info mii;
139 	u32		msg_enable;
140 	u32		wake_state;
141 
142 	int		ip_summed;
143 } board_info_t;
144 
145 /* debug code */
146 
147 #define dm9000_dbg(db, lev, msg...) do {		\
148 	if ((lev) < debug) {				\
149 		dev_dbg(db->dev, msg);			\
150 	}						\
151 } while (0)
152 
153 static inline board_info_t *to_dm9000_board(struct net_device *dev)
154 {
155 	return netdev_priv(dev);
156 }
157 
158 /* DM9000 network board routine ---------------------------- */
159 
160 /*
161  *   Read a byte from I/O port
162  */
163 static u8
164 ior(board_info_t *db, int reg)
165 {
166 	writeb(reg, db->io_addr);
167 	return readb(db->io_data);
168 }
169 
170 /*
171  *   Write a byte to I/O port
172  */
173 
174 static void
175 iow(board_info_t *db, int reg, int value)
176 {
177 	writeb(reg, db->io_addr);
178 	writeb(value, db->io_data);
179 }
180 
181 static void
182 dm9000_reset(board_info_t *db)
183 {
184 	dev_dbg(db->dev, "resetting device\n");
185 
186 	/* Reset DM9000, see DM9000 Application Notes V1.22 Jun 11, 2004 page 29
187 	 * The essential point is that we have to do a double reset, and the
188 	 * instruction is to set LBK into MAC internal loopback mode.
189 	 */
190 	iow(db, DM9000_NCR, 0x03);
191 	udelay(100); /* Application note says at least 20 us */
192 	if (ior(db, DM9000_NCR) & 1)
193 		dev_err(db->dev, "dm9000 did not respond to first reset\n");
194 
195 	iow(db, DM9000_NCR, 0);
196 	iow(db, DM9000_NCR, 0x03);
197 	udelay(100);
198 	if (ior(db, DM9000_NCR) & 1)
199 		dev_err(db->dev, "dm9000 did not respond to second reset\n");
200 }
201 
202 /* routines for sending block to chip */
203 
204 static void dm9000_outblk_8bit(void __iomem *reg, void *data, int count)
205 {
206 	iowrite8_rep(reg, data, count);
207 }
208 
209 static void dm9000_outblk_16bit(void __iomem *reg, void *data, int count)
210 {
211 	iowrite16_rep(reg, data, (count+1) >> 1);
212 }
213 
214 static void dm9000_outblk_32bit(void __iomem *reg, void *data, int count)
215 {
216 	iowrite32_rep(reg, data, (count+3) >> 2);
217 }
218 
219 /* input block from chip to memory */
220 
221 static void dm9000_inblk_8bit(void __iomem *reg, void *data, int count)
222 {
223 	ioread8_rep(reg, data, count);
224 }
225 
226 
227 static void dm9000_inblk_16bit(void __iomem *reg, void *data, int count)
228 {
229 	ioread16_rep(reg, data, (count+1) >> 1);
230 }
231 
232 static void dm9000_inblk_32bit(void __iomem *reg, void *data, int count)
233 {
234 	ioread32_rep(reg, data, (count+3) >> 2);
235 }
236 
237 /* dump block from chip to null */
238 
239 static void dm9000_dumpblk_8bit(void __iomem *reg, int count)
240 {
241 	int i;
242 	int tmp;
243 
244 	for (i = 0; i < count; i++)
245 		tmp = readb(reg);
246 }
247 
248 static void dm9000_dumpblk_16bit(void __iomem *reg, int count)
249 {
250 	int i;
251 	int tmp;
252 
253 	count = (count + 1) >> 1;
254 
255 	for (i = 0; i < count; i++)
256 		tmp = readw(reg);
257 }
258 
259 static void dm9000_dumpblk_32bit(void __iomem *reg, int count)
260 {
261 	int i;
262 	int tmp;
263 
264 	count = (count + 3) >> 2;
265 
266 	for (i = 0; i < count; i++)
267 		tmp = readl(reg);
268 }
269 
270 /*
271  * Sleep, either by using msleep() or if we are suspending, then
272  * use mdelay() to sleep.
273  */
274 static void dm9000_msleep(board_info_t *db, unsigned int ms)
275 {
276 	if (db->in_suspend)
277 		mdelay(ms);
278 	else
279 		msleep(ms);
280 }
281 
282 /* Read a word from phyxcer */
283 static int
284 dm9000_phy_read(struct net_device *dev, int phy_reg_unused, int reg)
285 {
286 	board_info_t *db = netdev_priv(dev);
287 	unsigned long flags;
288 	unsigned int reg_save;
289 	int ret;
290 
291 	mutex_lock(&db->addr_lock);
292 
293 	spin_lock_irqsave(&db->lock, flags);
294 
295 	/* Save previous register address */
296 	reg_save = readb(db->io_addr);
297 
298 	/* Fill the phyxcer register into REG_0C */
299 	iow(db, DM9000_EPAR, DM9000_PHY | reg);
300 
301 	/* Issue phyxcer read command */
302 	iow(db, DM9000_EPCR, EPCR_ERPRR | EPCR_EPOS);
303 
304 	writeb(reg_save, db->io_addr);
305 	spin_unlock_irqrestore(&db->lock, flags);
306 
307 	dm9000_msleep(db, 1);		/* Wait read complete */
308 
309 	spin_lock_irqsave(&db->lock, flags);
310 	reg_save = readb(db->io_addr);
311 
312 	iow(db, DM9000_EPCR, 0x0);	/* Clear phyxcer read command */
313 
314 	/* The read data keeps on REG_0D & REG_0E */
315 	ret = (ior(db, DM9000_EPDRH) << 8) | ior(db, DM9000_EPDRL);
316 
317 	/* restore the previous address */
318 	writeb(reg_save, db->io_addr);
319 	spin_unlock_irqrestore(&db->lock, flags);
320 
321 	mutex_unlock(&db->addr_lock);
322 
323 	dm9000_dbg(db, 5, "phy_read[%02x] -> %04x\n", reg, ret);
324 	return ret;
325 }
326 
327 /* Write a word to phyxcer */
328 static void
329 dm9000_phy_write(struct net_device *dev,
330 		 int phyaddr_unused, int reg, int value)
331 {
332 	board_info_t *db = netdev_priv(dev);
333 	unsigned long flags;
334 	unsigned long reg_save;
335 
336 	dm9000_dbg(db, 5, "phy_write[%02x] = %04x\n", reg, value);
337 	mutex_lock(&db->addr_lock);
338 
339 	spin_lock_irqsave(&db->lock, flags);
340 
341 	/* Save previous register address */
342 	reg_save = readb(db->io_addr);
343 
344 	/* Fill the phyxcer register into REG_0C */
345 	iow(db, DM9000_EPAR, DM9000_PHY | reg);
346 
347 	/* Fill the written data into REG_0D & REG_0E */
348 	iow(db, DM9000_EPDRL, value);
349 	iow(db, DM9000_EPDRH, value >> 8);
350 
351 	/* Issue phyxcer write command */
352 	iow(db, DM9000_EPCR, EPCR_EPOS | EPCR_ERPRW);
353 
354 	writeb(reg_save, db->io_addr);
355 	spin_unlock_irqrestore(&db->lock, flags);
356 
357 	dm9000_msleep(db, 1);		/* Wait write complete */
358 
359 	spin_lock_irqsave(&db->lock, flags);
360 	reg_save = readb(db->io_addr);
361 
362 	iow(db, DM9000_EPCR, 0x0);	/* Clear phyxcer write command */
363 
364 	/* restore the previous address */
365 	writeb(reg_save, db->io_addr);
366 
367 	spin_unlock_irqrestore(&db->lock, flags);
368 	mutex_unlock(&db->addr_lock);
369 }
370 
371 /* dm9000_set_io
372  *
373  * select the specified set of io routines to use with the
374  * device
375  */
376 
377 static void dm9000_set_io(struct board_info *db, int byte_width)
378 {
379 	/* use the size of the data resource to work out what IO
380 	 * routines we want to use
381 	 */
382 
383 	switch (byte_width) {
384 	case 1:
385 		db->dumpblk = dm9000_dumpblk_8bit;
386 		db->outblk  = dm9000_outblk_8bit;
387 		db->inblk   = dm9000_inblk_8bit;
388 		break;
389 
390 
391 	case 3:
392 		dev_dbg(db->dev, ": 3 byte IO, falling back to 16bit\n");
393 	case 2:
394 		db->dumpblk = dm9000_dumpblk_16bit;
395 		db->outblk  = dm9000_outblk_16bit;
396 		db->inblk   = dm9000_inblk_16bit;
397 		break;
398 
399 	case 4:
400 	default:
401 		db->dumpblk = dm9000_dumpblk_32bit;
402 		db->outblk  = dm9000_outblk_32bit;
403 		db->inblk   = dm9000_inblk_32bit;
404 		break;
405 	}
406 }
407 
408 static void dm9000_schedule_poll(board_info_t *db)
409 {
410 	if (db->type == TYPE_DM9000E)
411 		schedule_delayed_work(&db->phy_poll, HZ * 2);
412 }
413 
414 static int dm9000_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
415 {
416 	board_info_t *dm = to_dm9000_board(dev);
417 
418 	if (!netif_running(dev))
419 		return -EINVAL;
420 
421 	return generic_mii_ioctl(&dm->mii, if_mii(req), cmd, NULL);
422 }
423 
424 static unsigned int
425 dm9000_read_locked(board_info_t *db, int reg)
426 {
427 	unsigned long flags;
428 	unsigned int ret;
429 
430 	spin_lock_irqsave(&db->lock, flags);
431 	ret = ior(db, reg);
432 	spin_unlock_irqrestore(&db->lock, flags);
433 
434 	return ret;
435 }
436 
437 static int dm9000_wait_eeprom(board_info_t *db)
438 {
439 	unsigned int status;
440 	int timeout = 8;	/* wait max 8msec */
441 
442 	/* The DM9000 data sheets say we should be able to
443 	 * poll the ERRE bit in EPCR to wait for the EEPROM
444 	 * operation. From testing several chips, this bit
445 	 * does not seem to work.
446 	 *
447 	 * We attempt to use the bit, but fall back to the
448 	 * timeout (which is why we do not return an error
449 	 * on expiry) to say that the EEPROM operation has
450 	 * completed.
451 	 */
452 
453 	while (1) {
454 		status = dm9000_read_locked(db, DM9000_EPCR);
455 
456 		if ((status & EPCR_ERRE) == 0)
457 			break;
458 
459 		msleep(1);
460 
461 		if (timeout-- < 0) {
462 			dev_dbg(db->dev, "timeout waiting EEPROM\n");
463 			break;
464 		}
465 	}
466 
467 	return 0;
468 }
469 
470 /*
471  *  Read a word data from EEPROM
472  */
473 static void
474 dm9000_read_eeprom(board_info_t *db, int offset, u8 *to)
475 {
476 	unsigned long flags;
477 
478 	if (db->flags & DM9000_PLATF_NO_EEPROM) {
479 		to[0] = 0xff;
480 		to[1] = 0xff;
481 		return;
482 	}
483 
484 	mutex_lock(&db->addr_lock);
485 
486 	spin_lock_irqsave(&db->lock, flags);
487 
488 	iow(db, DM9000_EPAR, offset);
489 	iow(db, DM9000_EPCR, EPCR_ERPRR);
490 
491 	spin_unlock_irqrestore(&db->lock, flags);
492 
493 	dm9000_wait_eeprom(db);
494 
495 	/* delay for at-least 150uS */
496 	msleep(1);
497 
498 	spin_lock_irqsave(&db->lock, flags);
499 
500 	iow(db, DM9000_EPCR, 0x0);
501 
502 	to[0] = ior(db, DM9000_EPDRL);
503 	to[1] = ior(db, DM9000_EPDRH);
504 
505 	spin_unlock_irqrestore(&db->lock, flags);
506 
507 	mutex_unlock(&db->addr_lock);
508 }
509 
510 /*
511  * Write a word data to SROM
512  */
513 static void
514 dm9000_write_eeprom(board_info_t *db, int offset, u8 *data)
515 {
516 	unsigned long flags;
517 
518 	if (db->flags & DM9000_PLATF_NO_EEPROM)
519 		return;
520 
521 	mutex_lock(&db->addr_lock);
522 
523 	spin_lock_irqsave(&db->lock, flags);
524 	iow(db, DM9000_EPAR, offset);
525 	iow(db, DM9000_EPDRH, data[1]);
526 	iow(db, DM9000_EPDRL, data[0]);
527 	iow(db, DM9000_EPCR, EPCR_WEP | EPCR_ERPRW);
528 	spin_unlock_irqrestore(&db->lock, flags);
529 
530 	dm9000_wait_eeprom(db);
531 
532 	mdelay(1);	/* wait at least 150uS to clear */
533 
534 	spin_lock_irqsave(&db->lock, flags);
535 	iow(db, DM9000_EPCR, 0);
536 	spin_unlock_irqrestore(&db->lock, flags);
537 
538 	mutex_unlock(&db->addr_lock);
539 }
540 
541 /* ethtool ops */
542 
543 static void dm9000_get_drvinfo(struct net_device *dev,
544 			       struct ethtool_drvinfo *info)
545 {
546 	board_info_t *dm = to_dm9000_board(dev);
547 
548 	strlcpy(info->driver, CARDNAME, sizeof(info->driver));
549 	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
550 	strlcpy(info->bus_info, to_platform_device(dm->dev)->name,
551 		sizeof(info->bus_info));
552 }
553 
554 static u32 dm9000_get_msglevel(struct net_device *dev)
555 {
556 	board_info_t *dm = to_dm9000_board(dev);
557 
558 	return dm->msg_enable;
559 }
560 
561 static void dm9000_set_msglevel(struct net_device *dev, u32 value)
562 {
563 	board_info_t *dm = to_dm9000_board(dev);
564 
565 	dm->msg_enable = value;
566 }
567 
568 static int dm9000_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
569 {
570 	board_info_t *dm = to_dm9000_board(dev);
571 
572 	mii_ethtool_gset(&dm->mii, cmd);
573 	return 0;
574 }
575 
576 static int dm9000_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
577 {
578 	board_info_t *dm = to_dm9000_board(dev);
579 
580 	return mii_ethtool_sset(&dm->mii, cmd);
581 }
582 
583 static int dm9000_nway_reset(struct net_device *dev)
584 {
585 	board_info_t *dm = to_dm9000_board(dev);
586 	return mii_nway_restart(&dm->mii);
587 }
588 
589 static int dm9000_set_features(struct net_device *dev,
590 	netdev_features_t features)
591 {
592 	board_info_t *dm = to_dm9000_board(dev);
593 	netdev_features_t changed = dev->features ^ features;
594 	unsigned long flags;
595 
596 	if (!(changed & NETIF_F_RXCSUM))
597 		return 0;
598 
599 	spin_lock_irqsave(&dm->lock, flags);
600 	iow(dm, DM9000_RCSR, (features & NETIF_F_RXCSUM) ? RCSR_CSUM : 0);
601 	spin_unlock_irqrestore(&dm->lock, flags);
602 
603 	return 0;
604 }
605 
606 static u32 dm9000_get_link(struct net_device *dev)
607 {
608 	board_info_t *dm = to_dm9000_board(dev);
609 	u32 ret;
610 
611 	if (dm->flags & DM9000_PLATF_EXT_PHY)
612 		ret = mii_link_ok(&dm->mii);
613 	else
614 		ret = dm9000_read_locked(dm, DM9000_NSR) & NSR_LINKST ? 1 : 0;
615 
616 	return ret;
617 }
618 
619 #define DM_EEPROM_MAGIC		(0x444D394B)
620 
621 static int dm9000_get_eeprom_len(struct net_device *dev)
622 {
623 	return 128;
624 }
625 
626 static int dm9000_get_eeprom(struct net_device *dev,
627 			     struct ethtool_eeprom *ee, u8 *data)
628 {
629 	board_info_t *dm = to_dm9000_board(dev);
630 	int offset = ee->offset;
631 	int len = ee->len;
632 	int i;
633 
634 	/* EEPROM access is aligned to two bytes */
635 
636 	if ((len & 1) != 0 || (offset & 1) != 0)
637 		return -EINVAL;
638 
639 	if (dm->flags & DM9000_PLATF_NO_EEPROM)
640 		return -ENOENT;
641 
642 	ee->magic = DM_EEPROM_MAGIC;
643 
644 	for (i = 0; i < len; i += 2)
645 		dm9000_read_eeprom(dm, (offset + i) / 2, data + i);
646 
647 	return 0;
648 }
649 
650 static int dm9000_set_eeprom(struct net_device *dev,
651 			     struct ethtool_eeprom *ee, u8 *data)
652 {
653 	board_info_t *dm = to_dm9000_board(dev);
654 	int offset = ee->offset;
655 	int len = ee->len;
656 	int done;
657 
658 	/* EEPROM access is aligned to two bytes */
659 
660 	if (dm->flags & DM9000_PLATF_NO_EEPROM)
661 		return -ENOENT;
662 
663 	if (ee->magic != DM_EEPROM_MAGIC)
664 		return -EINVAL;
665 
666 	while (len > 0) {
667 		if (len & 1 || offset & 1) {
668 			int which = offset & 1;
669 			u8 tmp[2];
670 
671 			dm9000_read_eeprom(dm, offset / 2, tmp);
672 			tmp[which] = *data;
673 			dm9000_write_eeprom(dm, offset / 2, tmp);
674 
675 			done = 1;
676 		} else {
677 			dm9000_write_eeprom(dm, offset / 2, data);
678 			done = 2;
679 		}
680 
681 		data += done;
682 		offset += done;
683 		len -= done;
684 	}
685 
686 	return 0;
687 }
688 
689 static void dm9000_get_wol(struct net_device *dev, struct ethtool_wolinfo *w)
690 {
691 	board_info_t *dm = to_dm9000_board(dev);
692 
693 	memset(w, 0, sizeof(struct ethtool_wolinfo));
694 
695 	/* note, we could probably support wake-phy too */
696 	w->supported = dm->wake_supported ? WAKE_MAGIC : 0;
697 	w->wolopts = dm->wake_state;
698 }
699 
700 static int dm9000_set_wol(struct net_device *dev, struct ethtool_wolinfo *w)
701 {
702 	board_info_t *dm = to_dm9000_board(dev);
703 	unsigned long flags;
704 	u32 opts = w->wolopts;
705 	u32 wcr = 0;
706 
707 	if (!dm->wake_supported)
708 		return -EOPNOTSUPP;
709 
710 	if (opts & ~WAKE_MAGIC)
711 		return -EINVAL;
712 
713 	if (opts & WAKE_MAGIC)
714 		wcr |= WCR_MAGICEN;
715 
716 	mutex_lock(&dm->addr_lock);
717 
718 	spin_lock_irqsave(&dm->lock, flags);
719 	iow(dm, DM9000_WCR, wcr);
720 	spin_unlock_irqrestore(&dm->lock, flags);
721 
722 	mutex_unlock(&dm->addr_lock);
723 
724 	if (dm->wake_state != opts) {
725 		/* change in wol state, update IRQ state */
726 
727 		if (!dm->wake_state)
728 			irq_set_irq_wake(dm->irq_wake, 1);
729 		else if (dm->wake_state && !opts)
730 			irq_set_irq_wake(dm->irq_wake, 0);
731 	}
732 
733 	dm->wake_state = opts;
734 	return 0;
735 }
736 
737 static const struct ethtool_ops dm9000_ethtool_ops = {
738 	.get_drvinfo		= dm9000_get_drvinfo,
739 	.get_settings		= dm9000_get_settings,
740 	.set_settings		= dm9000_set_settings,
741 	.get_msglevel		= dm9000_get_msglevel,
742 	.set_msglevel		= dm9000_set_msglevel,
743 	.nway_reset		= dm9000_nway_reset,
744 	.get_link		= dm9000_get_link,
745 	.get_wol		= dm9000_get_wol,
746 	.set_wol		= dm9000_set_wol,
747 	.get_eeprom_len		= dm9000_get_eeprom_len,
748 	.get_eeprom		= dm9000_get_eeprom,
749 	.set_eeprom		= dm9000_set_eeprom,
750 };
751 
752 static void dm9000_show_carrier(board_info_t *db,
753 				unsigned carrier, unsigned nsr)
754 {
755 	int lpa;
756 	struct net_device *ndev = db->ndev;
757 	struct mii_if_info *mii = &db->mii;
758 	unsigned ncr = dm9000_read_locked(db, DM9000_NCR);
759 
760 	if (carrier) {
761 		lpa = mii->mdio_read(mii->dev, mii->phy_id, MII_LPA);
762 		dev_info(db->dev,
763 			 "%s: link up, %dMbps, %s-duplex, lpa 0x%04X\n",
764 			 ndev->name, (nsr & NSR_SPEED) ? 10 : 100,
765 			 (ncr & NCR_FDX) ? "full" : "half", lpa);
766 	} else {
767 		dev_info(db->dev, "%s: link down\n", ndev->name);
768 	}
769 }
770 
771 static void
772 dm9000_poll_work(struct work_struct *w)
773 {
774 	struct delayed_work *dw = to_delayed_work(w);
775 	board_info_t *db = container_of(dw, board_info_t, phy_poll);
776 	struct net_device *ndev = db->ndev;
777 
778 	if (db->flags & DM9000_PLATF_SIMPLE_PHY &&
779 	    !(db->flags & DM9000_PLATF_EXT_PHY)) {
780 		unsigned nsr = dm9000_read_locked(db, DM9000_NSR);
781 		unsigned old_carrier = netif_carrier_ok(ndev) ? 1 : 0;
782 		unsigned new_carrier;
783 
784 		new_carrier = (nsr & NSR_LINKST) ? 1 : 0;
785 
786 		if (old_carrier != new_carrier) {
787 			if (netif_msg_link(db))
788 				dm9000_show_carrier(db, new_carrier, nsr);
789 
790 			if (!new_carrier)
791 				netif_carrier_off(ndev);
792 			else
793 				netif_carrier_on(ndev);
794 		}
795 	} else
796 		mii_check_media(&db->mii, netif_msg_link(db), 0);
797 
798 	if (netif_running(ndev))
799 		dm9000_schedule_poll(db);
800 }
801 
802 /* dm9000_release_board
803  *
804  * release a board, and any mapped resources
805  */
806 
807 static void
808 dm9000_release_board(struct platform_device *pdev, struct board_info *db)
809 {
810 	/* unmap our resources */
811 
812 	iounmap(db->io_addr);
813 	iounmap(db->io_data);
814 
815 	/* release the resources */
816 
817 	release_resource(db->data_req);
818 	kfree(db->data_req);
819 
820 	release_resource(db->addr_req);
821 	kfree(db->addr_req);
822 }
823 
824 static unsigned char dm9000_type_to_char(enum dm9000_type type)
825 {
826 	switch (type) {
827 	case TYPE_DM9000E: return 'e';
828 	case TYPE_DM9000A: return 'a';
829 	case TYPE_DM9000B: return 'b';
830 	}
831 
832 	return '?';
833 }
834 
835 /*
836  *  Set DM9000 multicast address
837  */
838 static void
839 dm9000_hash_table_unlocked(struct net_device *dev)
840 {
841 	board_info_t *db = netdev_priv(dev);
842 	struct netdev_hw_addr *ha;
843 	int i, oft;
844 	u32 hash_val;
845 	u16 hash_table[4] = { 0, 0, 0, 0x8000 }; /* broadcast address */
846 	u8 rcr = RCR_DIS_LONG | RCR_DIS_CRC | RCR_RXEN;
847 
848 	dm9000_dbg(db, 1, "entering %s\n", __func__);
849 
850 	for (i = 0, oft = DM9000_PAR; i < 6; i++, oft++)
851 		iow(db, oft, dev->dev_addr[i]);
852 
853 	if (dev->flags & IFF_PROMISC)
854 		rcr |= RCR_PRMSC;
855 
856 	if (dev->flags & IFF_ALLMULTI)
857 		rcr |= RCR_ALL;
858 
859 	/* the multicast address in Hash Table : 64 bits */
860 	netdev_for_each_mc_addr(ha, dev) {
861 		hash_val = ether_crc_le(6, ha->addr) & 0x3f;
862 		hash_table[hash_val / 16] |= (u16) 1 << (hash_val % 16);
863 	}
864 
865 	/* Write the hash table to MAC MD table */
866 	for (i = 0, oft = DM9000_MAR; i < 4; i++) {
867 		iow(db, oft++, hash_table[i]);
868 		iow(db, oft++, hash_table[i] >> 8);
869 	}
870 
871 	iow(db, DM9000_RCR, rcr);
872 }
873 
874 static void
875 dm9000_hash_table(struct net_device *dev)
876 {
877 	board_info_t *db = netdev_priv(dev);
878 	unsigned long flags;
879 
880 	spin_lock_irqsave(&db->lock, flags);
881 	dm9000_hash_table_unlocked(dev);
882 	spin_unlock_irqrestore(&db->lock, flags);
883 }
884 
885 /*
886  * Initialize dm9000 board
887  */
888 static void
889 dm9000_init_dm9000(struct net_device *dev)
890 {
891 	board_info_t *db = netdev_priv(dev);
892 	unsigned int imr;
893 	unsigned int ncr;
894 
895 	dm9000_dbg(db, 1, "entering %s\n", __func__);
896 
897 	/* I/O mode */
898 	db->io_mode = ior(db, DM9000_ISR) >> 6;	/* ISR bit7:6 keeps I/O mode */
899 
900 	/* Checksum mode */
901 	if (dev->hw_features & NETIF_F_RXCSUM)
902 		iow(db, DM9000_RCSR,
903 			(dev->features & NETIF_F_RXCSUM) ? RCSR_CSUM : 0);
904 
905 	iow(db, DM9000_GPCR, GPCR_GEP_CNTL);	/* Let GPIO0 output */
906 	iow(db, DM9000_GPR, 0);
907 
908 	/* If we are dealing with DM9000B, some extra steps are required: a
909 	 * manual phy reset, and setting init params.
910 	 */
911 	if (db->type == TYPE_DM9000B) {
912 		dm9000_phy_write(dev, 0, MII_BMCR, BMCR_RESET);
913 		dm9000_phy_write(dev, 0, MII_DM_DSPCR, DSPCR_INIT_PARAM);
914 	}
915 
916 	ncr = (db->flags & DM9000_PLATF_EXT_PHY) ? NCR_EXT_PHY : 0;
917 
918 	/* if wol is needed, then always set NCR_WAKEEN otherwise we end
919 	 * up dumping the wake events if we disable this. There is already
920 	 * a wake-mask in DM9000_WCR */
921 	if (db->wake_supported)
922 		ncr |= NCR_WAKEEN;
923 
924 	iow(db, DM9000_NCR, ncr);
925 
926 	/* Program operating register */
927 	iow(db, DM9000_TCR, 0);	        /* TX Polling clear */
928 	iow(db, DM9000_BPTR, 0x3f);	/* Less 3Kb, 200us */
929 	iow(db, DM9000_FCR, 0xff);	/* Flow Control */
930 	iow(db, DM9000_SMCR, 0);        /* Special Mode */
931 	/* clear TX status */
932 	iow(db, DM9000_NSR, NSR_WAKEST | NSR_TX2END | NSR_TX1END);
933 	iow(db, DM9000_ISR, ISR_CLR_STATUS); /* Clear interrupt status */
934 
935 	/* Set address filter table */
936 	dm9000_hash_table_unlocked(dev);
937 
938 	imr = IMR_PAR | IMR_PTM | IMR_PRM;
939 	if (db->type != TYPE_DM9000E)
940 		imr |= IMR_LNKCHNG;
941 
942 	db->imr_all = imr;
943 
944 	/* Enable TX/RX interrupt mask */
945 	iow(db, DM9000_IMR, imr);
946 
947 	/* Init Driver variable */
948 	db->tx_pkt_cnt = 0;
949 	db->queue_pkt_len = 0;
950 	dev->trans_start = jiffies;
951 }
952 
953 /* Our watchdog timed out. Called by the networking layer */
954 static void dm9000_timeout(struct net_device *dev)
955 {
956 	board_info_t *db = netdev_priv(dev);
957 	u8 reg_save;
958 	unsigned long flags;
959 
960 	/* Save previous register address */
961 	spin_lock_irqsave(&db->lock, flags);
962 	reg_save = readb(db->io_addr);
963 
964 	netif_stop_queue(dev);
965 	dm9000_reset(db);
966 	dm9000_init_dm9000(dev);
967 	/* We can accept TX packets again */
968 	dev->trans_start = jiffies; /* prevent tx timeout */
969 	netif_wake_queue(dev);
970 
971 	/* Restore previous register address */
972 	writeb(reg_save, db->io_addr);
973 	spin_unlock_irqrestore(&db->lock, flags);
974 }
975 
976 static void dm9000_send_packet(struct net_device *dev,
977 			       int ip_summed,
978 			       u16 pkt_len)
979 {
980 	board_info_t *dm = to_dm9000_board(dev);
981 
982 	/* The DM9000 is not smart enough to leave fragmented packets alone. */
983 	if (dm->ip_summed != ip_summed) {
984 		if (ip_summed == CHECKSUM_NONE)
985 			iow(dm, DM9000_TCCR, 0);
986 		else
987 			iow(dm, DM9000_TCCR, TCCR_IP | TCCR_UDP | TCCR_TCP);
988 		dm->ip_summed = ip_summed;
989 	}
990 
991 	/* Set TX length to DM9000 */
992 	iow(dm, DM9000_TXPLL, pkt_len);
993 	iow(dm, DM9000_TXPLH, pkt_len >> 8);
994 
995 	/* Issue TX polling command */
996 	iow(dm, DM9000_TCR, TCR_TXREQ);	/* Cleared after TX complete */
997 }
998 
999 /*
1000  *  Hardware start transmission.
1001  *  Send a packet to media from the upper layer.
1002  */
1003 static int
1004 dm9000_start_xmit(struct sk_buff *skb, struct net_device *dev)
1005 {
1006 	unsigned long flags;
1007 	board_info_t *db = netdev_priv(dev);
1008 
1009 	dm9000_dbg(db, 3, "%s:\n", __func__);
1010 
1011 	if (db->tx_pkt_cnt > 1)
1012 		return NETDEV_TX_BUSY;
1013 
1014 	spin_lock_irqsave(&db->lock, flags);
1015 
1016 	/* Move data to DM9000 TX RAM */
1017 	writeb(DM9000_MWCMD, db->io_addr);
1018 
1019 	(db->outblk)(db->io_data, skb->data, skb->len);
1020 	dev->stats.tx_bytes += skb->len;
1021 
1022 	db->tx_pkt_cnt++;
1023 	/* TX control: First packet immediately send, second packet queue */
1024 	if (db->tx_pkt_cnt == 1) {
1025 		dm9000_send_packet(dev, skb->ip_summed, skb->len);
1026 	} else {
1027 		/* Second packet */
1028 		db->queue_pkt_len = skb->len;
1029 		db->queue_ip_summed = skb->ip_summed;
1030 		netif_stop_queue(dev);
1031 	}
1032 
1033 	spin_unlock_irqrestore(&db->lock, flags);
1034 
1035 	/* free this SKB */
1036 	dev_kfree_skb(skb);
1037 
1038 	return NETDEV_TX_OK;
1039 }
1040 
1041 /*
1042  * DM9000 interrupt handler
1043  * receive the packet to upper layer, free the transmitted packet
1044  */
1045 
1046 static void dm9000_tx_done(struct net_device *dev, board_info_t *db)
1047 {
1048 	int tx_status = ior(db, DM9000_NSR);	/* Got TX status */
1049 
1050 	if (tx_status & (NSR_TX2END | NSR_TX1END)) {
1051 		/* One packet sent complete */
1052 		db->tx_pkt_cnt--;
1053 		dev->stats.tx_packets++;
1054 
1055 		if (netif_msg_tx_done(db))
1056 			dev_dbg(db->dev, "tx done, NSR %02x\n", tx_status);
1057 
1058 		/* Queue packet check & send */
1059 		if (db->tx_pkt_cnt > 0)
1060 			dm9000_send_packet(dev, db->queue_ip_summed,
1061 					   db->queue_pkt_len);
1062 		netif_wake_queue(dev);
1063 	}
1064 }
1065 
1066 struct dm9000_rxhdr {
1067 	u8	RxPktReady;
1068 	u8	RxStatus;
1069 	__le16	RxLen;
1070 } __packed;
1071 
1072 /*
1073  *  Received a packet and pass to upper layer
1074  */
1075 static void
1076 dm9000_rx(struct net_device *dev)
1077 {
1078 	board_info_t *db = netdev_priv(dev);
1079 	struct dm9000_rxhdr rxhdr;
1080 	struct sk_buff *skb;
1081 	u8 rxbyte, *rdptr;
1082 	bool GoodPacket;
1083 	int RxLen;
1084 
1085 	/* Check packet ready or not */
1086 	do {
1087 		ior(db, DM9000_MRCMDX);	/* Dummy read */
1088 
1089 		/* Get most updated data */
1090 		rxbyte = readb(db->io_data);
1091 
1092 		/* Status check: this byte must be 0 or 1 */
1093 		if (rxbyte & DM9000_PKT_ERR) {
1094 			dev_warn(db->dev, "status check fail: %d\n", rxbyte);
1095 			iow(db, DM9000_RCR, 0x00);	/* Stop Device */
1096 			iow(db, DM9000_ISR, IMR_PAR);	/* Stop INT request */
1097 			return;
1098 		}
1099 
1100 		if (!(rxbyte & DM9000_PKT_RDY))
1101 			return;
1102 
1103 		/* A packet ready now  & Get status/length */
1104 		GoodPacket = true;
1105 		writeb(DM9000_MRCMD, db->io_addr);
1106 
1107 		(db->inblk)(db->io_data, &rxhdr, sizeof(rxhdr));
1108 
1109 		RxLen = le16_to_cpu(rxhdr.RxLen);
1110 
1111 		if (netif_msg_rx_status(db))
1112 			dev_dbg(db->dev, "RX: status %02x, length %04x\n",
1113 				rxhdr.RxStatus, RxLen);
1114 
1115 		/* Packet Status check */
1116 		if (RxLen < 0x40) {
1117 			GoodPacket = false;
1118 			if (netif_msg_rx_err(db))
1119 				dev_dbg(db->dev, "RX: Bad Packet (runt)\n");
1120 		}
1121 
1122 		if (RxLen > DM9000_PKT_MAX) {
1123 			dev_dbg(db->dev, "RST: RX Len:%x\n", RxLen);
1124 		}
1125 
1126 		/* rxhdr.RxStatus is identical to RSR register. */
1127 		if (rxhdr.RxStatus & (RSR_FOE | RSR_CE | RSR_AE |
1128 				      RSR_PLE | RSR_RWTO |
1129 				      RSR_LCS | RSR_RF)) {
1130 			GoodPacket = false;
1131 			if (rxhdr.RxStatus & RSR_FOE) {
1132 				if (netif_msg_rx_err(db))
1133 					dev_dbg(db->dev, "fifo error\n");
1134 				dev->stats.rx_fifo_errors++;
1135 			}
1136 			if (rxhdr.RxStatus & RSR_CE) {
1137 				if (netif_msg_rx_err(db))
1138 					dev_dbg(db->dev, "crc error\n");
1139 				dev->stats.rx_crc_errors++;
1140 			}
1141 			if (rxhdr.RxStatus & RSR_RF) {
1142 				if (netif_msg_rx_err(db))
1143 					dev_dbg(db->dev, "length error\n");
1144 				dev->stats.rx_length_errors++;
1145 			}
1146 		}
1147 
1148 		/* Move data from DM9000 */
1149 		if (GoodPacket &&
1150 		    ((skb = netdev_alloc_skb(dev, RxLen + 4)) != NULL)) {
1151 			skb_reserve(skb, 2);
1152 			rdptr = (u8 *) skb_put(skb, RxLen - 4);
1153 
1154 			/* Read received packet from RX SRAM */
1155 
1156 			(db->inblk)(db->io_data, rdptr, RxLen);
1157 			dev->stats.rx_bytes += RxLen;
1158 
1159 			/* Pass to upper layer */
1160 			skb->protocol = eth_type_trans(skb, dev);
1161 			if (dev->features & NETIF_F_RXCSUM) {
1162 				if ((((rxbyte & 0x1c) << 3) & rxbyte) == 0)
1163 					skb->ip_summed = CHECKSUM_UNNECESSARY;
1164 				else
1165 					skb_checksum_none_assert(skb);
1166 			}
1167 			netif_rx(skb);
1168 			dev->stats.rx_packets++;
1169 
1170 		} else {
1171 			/* need to dump the packet's data */
1172 
1173 			(db->dumpblk)(db->io_data, RxLen);
1174 		}
1175 	} while (rxbyte & DM9000_PKT_RDY);
1176 }
1177 
1178 static irqreturn_t dm9000_interrupt(int irq, void *dev_id)
1179 {
1180 	struct net_device *dev = dev_id;
1181 	board_info_t *db = netdev_priv(dev);
1182 	int int_status;
1183 	unsigned long flags;
1184 	u8 reg_save;
1185 
1186 	dm9000_dbg(db, 3, "entering %s\n", __func__);
1187 
1188 	/* A real interrupt coming */
1189 
1190 	/* holders of db->lock must always block IRQs */
1191 	spin_lock_irqsave(&db->lock, flags);
1192 
1193 	/* Save previous register address */
1194 	reg_save = readb(db->io_addr);
1195 
1196 	/* Disable all interrupts */
1197 	iow(db, DM9000_IMR, IMR_PAR);
1198 
1199 	/* Got DM9000 interrupt status */
1200 	int_status = ior(db, DM9000_ISR);	/* Got ISR */
1201 	iow(db, DM9000_ISR, int_status);	/* Clear ISR status */
1202 
1203 	if (netif_msg_intr(db))
1204 		dev_dbg(db->dev, "interrupt status %02x\n", int_status);
1205 
1206 	/* Received the coming packet */
1207 	if (int_status & ISR_PRS)
1208 		dm9000_rx(dev);
1209 
1210 	/* Trnasmit Interrupt check */
1211 	if (int_status & ISR_PTS)
1212 		dm9000_tx_done(dev, db);
1213 
1214 	if (db->type != TYPE_DM9000E) {
1215 		if (int_status & ISR_LNKCHNG) {
1216 			/* fire a link-change request */
1217 			schedule_delayed_work(&db->phy_poll, 1);
1218 		}
1219 	}
1220 
1221 	/* Re-enable interrupt mask */
1222 	iow(db, DM9000_IMR, db->imr_all);
1223 
1224 	/* Restore previous register address */
1225 	writeb(reg_save, db->io_addr);
1226 
1227 	spin_unlock_irqrestore(&db->lock, flags);
1228 
1229 	return IRQ_HANDLED;
1230 }
1231 
1232 static irqreturn_t dm9000_wol_interrupt(int irq, void *dev_id)
1233 {
1234 	struct net_device *dev = dev_id;
1235 	board_info_t *db = netdev_priv(dev);
1236 	unsigned long flags;
1237 	unsigned nsr, wcr;
1238 
1239 	spin_lock_irqsave(&db->lock, flags);
1240 
1241 	nsr = ior(db, DM9000_NSR);
1242 	wcr = ior(db, DM9000_WCR);
1243 
1244 	dev_dbg(db->dev, "%s: NSR=0x%02x, WCR=0x%02x\n", __func__, nsr, wcr);
1245 
1246 	if (nsr & NSR_WAKEST) {
1247 		/* clear, so we can avoid */
1248 		iow(db, DM9000_NSR, NSR_WAKEST);
1249 
1250 		if (wcr & WCR_LINKST)
1251 			dev_info(db->dev, "wake by link status change\n");
1252 		if (wcr & WCR_SAMPLEST)
1253 			dev_info(db->dev, "wake by sample packet\n");
1254 		if (wcr & WCR_MAGICST)
1255 			dev_info(db->dev, "wake by magic packet\n");
1256 		if (!(wcr & (WCR_LINKST | WCR_SAMPLEST | WCR_MAGICST)))
1257 			dev_err(db->dev, "wake signalled with no reason? "
1258 				"NSR=0x%02x, WSR=0x%02x\n", nsr, wcr);
1259 	}
1260 
1261 	spin_unlock_irqrestore(&db->lock, flags);
1262 
1263 	return (nsr & NSR_WAKEST) ? IRQ_HANDLED : IRQ_NONE;
1264 }
1265 
1266 #ifdef CONFIG_NET_POLL_CONTROLLER
1267 /*
1268  *Used by netconsole
1269  */
1270 static void dm9000_poll_controller(struct net_device *dev)
1271 {
1272 	disable_irq(dev->irq);
1273 	dm9000_interrupt(dev->irq, dev);
1274 	enable_irq(dev->irq);
1275 }
1276 #endif
1277 
1278 /*
1279  *  Open the interface.
1280  *  The interface is opened whenever "ifconfig" actives it.
1281  */
1282 static int
1283 dm9000_open(struct net_device *dev)
1284 {
1285 	board_info_t *db = netdev_priv(dev);
1286 	unsigned long irqflags = db->irq_res->flags & IRQF_TRIGGER_MASK;
1287 
1288 	if (netif_msg_ifup(db))
1289 		dev_dbg(db->dev, "enabling %s\n", dev->name);
1290 
1291 	/* If there is no IRQ type specified, default to something that
1292 	 * may work, and tell the user that this is a problem */
1293 
1294 	if (irqflags == IRQF_TRIGGER_NONE)
1295 		dev_warn(db->dev, "WARNING: no IRQ resource flags set.\n");
1296 
1297 	irqflags |= IRQF_SHARED;
1298 
1299 	/* GPIO0 on pre-activate PHY, Reg 1F is not set by reset */
1300 	iow(db, DM9000_GPR, 0);	/* REG_1F bit0 activate phyxcer */
1301 	mdelay(1); /* delay needs by DM9000B */
1302 
1303 	/* Initialize DM9000 board */
1304 	dm9000_reset(db);
1305 	dm9000_init_dm9000(dev);
1306 
1307 	if (request_irq(dev->irq, dm9000_interrupt, irqflags, dev->name, dev))
1308 		return -EAGAIN;
1309 
1310 	/* Init driver variable */
1311 	db->dbug_cnt = 0;
1312 
1313 	mii_check_media(&db->mii, netif_msg_link(db), 1);
1314 	netif_start_queue(dev);
1315 
1316 	dm9000_schedule_poll(db);
1317 
1318 	return 0;
1319 }
1320 
1321 static void
1322 dm9000_shutdown(struct net_device *dev)
1323 {
1324 	board_info_t *db = netdev_priv(dev);
1325 
1326 	/* RESET device */
1327 	dm9000_phy_write(dev, 0, MII_BMCR, BMCR_RESET);	/* PHY RESET */
1328 	iow(db, DM9000_GPR, 0x01);	/* Power-Down PHY */
1329 	iow(db, DM9000_IMR, IMR_PAR);	/* Disable all interrupt */
1330 	iow(db, DM9000_RCR, 0x00);	/* Disable RX */
1331 }
1332 
1333 /*
1334  * Stop the interface.
1335  * The interface is stopped when it is brought.
1336  */
1337 static int
1338 dm9000_stop(struct net_device *ndev)
1339 {
1340 	board_info_t *db = netdev_priv(ndev);
1341 
1342 	if (netif_msg_ifdown(db))
1343 		dev_dbg(db->dev, "shutting down %s\n", ndev->name);
1344 
1345 	cancel_delayed_work_sync(&db->phy_poll);
1346 
1347 	netif_stop_queue(ndev);
1348 	netif_carrier_off(ndev);
1349 
1350 	/* free interrupt */
1351 	free_irq(ndev->irq, ndev);
1352 
1353 	dm9000_shutdown(ndev);
1354 
1355 	return 0;
1356 }
1357 
1358 static const struct net_device_ops dm9000_netdev_ops = {
1359 	.ndo_open		= dm9000_open,
1360 	.ndo_stop		= dm9000_stop,
1361 	.ndo_start_xmit		= dm9000_start_xmit,
1362 	.ndo_tx_timeout		= dm9000_timeout,
1363 	.ndo_set_rx_mode	= dm9000_hash_table,
1364 	.ndo_do_ioctl		= dm9000_ioctl,
1365 	.ndo_change_mtu		= eth_change_mtu,
1366 	.ndo_set_features	= dm9000_set_features,
1367 	.ndo_validate_addr	= eth_validate_addr,
1368 	.ndo_set_mac_address	= eth_mac_addr,
1369 #ifdef CONFIG_NET_POLL_CONTROLLER
1370 	.ndo_poll_controller	= dm9000_poll_controller,
1371 #endif
1372 };
1373 
1374 static struct dm9000_plat_data *dm9000_parse_dt(struct device *dev)
1375 {
1376 	struct dm9000_plat_data *pdata;
1377 	struct device_node *np = dev->of_node;
1378 	const void *mac_addr;
1379 
1380 	if (!IS_ENABLED(CONFIG_OF) || !np)
1381 		return NULL;
1382 
1383 	pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
1384 	if (!pdata)
1385 		return ERR_PTR(-ENOMEM);
1386 
1387 	if (of_find_property(np, "davicom,ext-phy", NULL))
1388 		pdata->flags |= DM9000_PLATF_EXT_PHY;
1389 	if (of_find_property(np, "davicom,no-eeprom", NULL))
1390 		pdata->flags |= DM9000_PLATF_NO_EEPROM;
1391 
1392 	mac_addr = of_get_mac_address(np);
1393 	if (mac_addr)
1394 		memcpy(pdata->dev_addr, mac_addr, sizeof(pdata->dev_addr));
1395 
1396 	return pdata;
1397 }
1398 
1399 /*
1400  * Search DM9000 board, allocate space and register it
1401  */
1402 static int
1403 dm9000_probe(struct platform_device *pdev)
1404 {
1405 	struct dm9000_plat_data *pdata = dev_get_platdata(&pdev->dev);
1406 	struct board_info *db;	/* Point a board information structure */
1407 	struct net_device *ndev;
1408 	const unsigned char *mac_src;
1409 	int ret = 0;
1410 	int iosize;
1411 	int i;
1412 	u32 id_val;
1413 
1414 	if (!pdata) {
1415 		pdata = dm9000_parse_dt(&pdev->dev);
1416 		if (IS_ERR(pdata))
1417 			return PTR_ERR(pdata);
1418 	}
1419 
1420 	/* Init network device */
1421 	ndev = alloc_etherdev(sizeof(struct board_info));
1422 	if (!ndev)
1423 		return -ENOMEM;
1424 
1425 	SET_NETDEV_DEV(ndev, &pdev->dev);
1426 
1427 	dev_dbg(&pdev->dev, "dm9000_probe()\n");
1428 
1429 	/* setup board info structure */
1430 	db = netdev_priv(ndev);
1431 
1432 	db->dev = &pdev->dev;
1433 	db->ndev = ndev;
1434 
1435 	spin_lock_init(&db->lock);
1436 	mutex_init(&db->addr_lock);
1437 
1438 	INIT_DELAYED_WORK(&db->phy_poll, dm9000_poll_work);
1439 
1440 	db->addr_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1441 	db->data_res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1442 	db->irq_res  = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
1443 
1444 	if (db->addr_res == NULL || db->data_res == NULL ||
1445 	    db->irq_res == NULL) {
1446 		dev_err(db->dev, "insufficient resources\n");
1447 		ret = -ENOENT;
1448 		goto out;
1449 	}
1450 
1451 	db->irq_wake = platform_get_irq(pdev, 1);
1452 	if (db->irq_wake >= 0) {
1453 		dev_dbg(db->dev, "wakeup irq %d\n", db->irq_wake);
1454 
1455 		ret = request_irq(db->irq_wake, dm9000_wol_interrupt,
1456 				  IRQF_SHARED, dev_name(db->dev), ndev);
1457 		if (ret) {
1458 			dev_err(db->dev, "cannot get wakeup irq (%d)\n", ret);
1459 		} else {
1460 
1461 			/* test to see if irq is really wakeup capable */
1462 			ret = irq_set_irq_wake(db->irq_wake, 1);
1463 			if (ret) {
1464 				dev_err(db->dev, "irq %d cannot set wakeup (%d)\n",
1465 					db->irq_wake, ret);
1466 				ret = 0;
1467 			} else {
1468 				irq_set_irq_wake(db->irq_wake, 0);
1469 				db->wake_supported = 1;
1470 			}
1471 		}
1472 	}
1473 
1474 	iosize = resource_size(db->addr_res);
1475 	db->addr_req = request_mem_region(db->addr_res->start, iosize,
1476 					  pdev->name);
1477 
1478 	if (db->addr_req == NULL) {
1479 		dev_err(db->dev, "cannot claim address reg area\n");
1480 		ret = -EIO;
1481 		goto out;
1482 	}
1483 
1484 	db->io_addr = ioremap(db->addr_res->start, iosize);
1485 
1486 	if (db->io_addr == NULL) {
1487 		dev_err(db->dev, "failed to ioremap address reg\n");
1488 		ret = -EINVAL;
1489 		goto out;
1490 	}
1491 
1492 	iosize = resource_size(db->data_res);
1493 	db->data_req = request_mem_region(db->data_res->start, iosize,
1494 					  pdev->name);
1495 
1496 	if (db->data_req == NULL) {
1497 		dev_err(db->dev, "cannot claim data reg area\n");
1498 		ret = -EIO;
1499 		goto out;
1500 	}
1501 
1502 	db->io_data = ioremap(db->data_res->start, iosize);
1503 
1504 	if (db->io_data == NULL) {
1505 		dev_err(db->dev, "failed to ioremap data reg\n");
1506 		ret = -EINVAL;
1507 		goto out;
1508 	}
1509 
1510 	/* fill in parameters for net-dev structure */
1511 	ndev->base_addr = (unsigned long)db->io_addr;
1512 	ndev->irq	= db->irq_res->start;
1513 
1514 	/* ensure at least we have a default set of IO routines */
1515 	dm9000_set_io(db, iosize);
1516 
1517 	/* check to see if anything is being over-ridden */
1518 	if (pdata != NULL) {
1519 		/* check to see if the driver wants to over-ride the
1520 		 * default IO width */
1521 
1522 		if (pdata->flags & DM9000_PLATF_8BITONLY)
1523 			dm9000_set_io(db, 1);
1524 
1525 		if (pdata->flags & DM9000_PLATF_16BITONLY)
1526 			dm9000_set_io(db, 2);
1527 
1528 		if (pdata->flags & DM9000_PLATF_32BITONLY)
1529 			dm9000_set_io(db, 4);
1530 
1531 		/* check to see if there are any IO routine
1532 		 * over-rides */
1533 
1534 		if (pdata->inblk != NULL)
1535 			db->inblk = pdata->inblk;
1536 
1537 		if (pdata->outblk != NULL)
1538 			db->outblk = pdata->outblk;
1539 
1540 		if (pdata->dumpblk != NULL)
1541 			db->dumpblk = pdata->dumpblk;
1542 
1543 		db->flags = pdata->flags;
1544 	}
1545 
1546 #ifdef CONFIG_DM9000_FORCE_SIMPLE_PHY_POLL
1547 	db->flags |= DM9000_PLATF_SIMPLE_PHY;
1548 #endif
1549 
1550 	/* Fixing bug on dm9000_probe, takeover dm9000_reset(db),
1551 	 * Need 'NCR_MAC_LBK' bit to indeed stable our DM9000 fifo
1552 	 * while probe stage.
1553 	 */
1554 
1555 	iow(db, DM9000_NCR, NCR_MAC_LBK | NCR_RST);
1556 
1557 	/* try multiple times, DM9000 sometimes gets the read wrong */
1558 	for (i = 0; i < 8; i++) {
1559 		id_val  = ior(db, DM9000_VIDL);
1560 		id_val |= (u32)ior(db, DM9000_VIDH) << 8;
1561 		id_val |= (u32)ior(db, DM9000_PIDL) << 16;
1562 		id_val |= (u32)ior(db, DM9000_PIDH) << 24;
1563 
1564 		if (id_val == DM9000_ID)
1565 			break;
1566 		dev_err(db->dev, "read wrong id 0x%08x\n", id_val);
1567 	}
1568 
1569 	if (id_val != DM9000_ID) {
1570 		dev_err(db->dev, "wrong id: 0x%08x\n", id_val);
1571 		ret = -ENODEV;
1572 		goto out;
1573 	}
1574 
1575 	/* Identify what type of DM9000 we are working on */
1576 
1577 	id_val = ior(db, DM9000_CHIPR);
1578 	dev_dbg(db->dev, "dm9000 revision 0x%02x\n", id_val);
1579 
1580 	switch (id_val) {
1581 	case CHIPR_DM9000A:
1582 		db->type = TYPE_DM9000A;
1583 		break;
1584 	case CHIPR_DM9000B:
1585 		db->type = TYPE_DM9000B;
1586 		break;
1587 	default:
1588 		dev_dbg(db->dev, "ID %02x => defaulting to DM9000E\n", id_val);
1589 		db->type = TYPE_DM9000E;
1590 	}
1591 
1592 	/* dm9000a/b are capable of hardware checksum offload */
1593 	if (db->type == TYPE_DM9000A || db->type == TYPE_DM9000B) {
1594 		ndev->hw_features = NETIF_F_RXCSUM | NETIF_F_IP_CSUM;
1595 		ndev->features |= ndev->hw_features;
1596 	}
1597 
1598 	/* from this point we assume that we have found a DM9000 */
1599 
1600 	/* driver system function */
1601 	ether_setup(ndev);
1602 
1603 	ndev->netdev_ops	= &dm9000_netdev_ops;
1604 	ndev->watchdog_timeo	= msecs_to_jiffies(watchdog);
1605 	ndev->ethtool_ops	= &dm9000_ethtool_ops;
1606 
1607 	db->msg_enable       = NETIF_MSG_LINK;
1608 	db->mii.phy_id_mask  = 0x1f;
1609 	db->mii.reg_num_mask = 0x1f;
1610 	db->mii.force_media  = 0;
1611 	db->mii.full_duplex  = 0;
1612 	db->mii.dev	     = ndev;
1613 	db->mii.mdio_read    = dm9000_phy_read;
1614 	db->mii.mdio_write   = dm9000_phy_write;
1615 
1616 	mac_src = "eeprom";
1617 
1618 	/* try reading the node address from the attached EEPROM */
1619 	for (i = 0; i < 6; i += 2)
1620 		dm9000_read_eeprom(db, i / 2, ndev->dev_addr+i);
1621 
1622 	if (!is_valid_ether_addr(ndev->dev_addr) && pdata != NULL) {
1623 		mac_src = "platform data";
1624 		memcpy(ndev->dev_addr, pdata->dev_addr, ETH_ALEN);
1625 	}
1626 
1627 	if (!is_valid_ether_addr(ndev->dev_addr)) {
1628 		/* try reading from mac */
1629 
1630 		mac_src = "chip";
1631 		for (i = 0; i < 6; i++)
1632 			ndev->dev_addr[i] = ior(db, i+DM9000_PAR);
1633 	}
1634 
1635 	if (!is_valid_ether_addr(ndev->dev_addr)) {
1636 		dev_warn(db->dev, "%s: Invalid ethernet MAC address. Please "
1637 			 "set using ifconfig\n", ndev->name);
1638 
1639 		eth_hw_addr_random(ndev);
1640 		mac_src = "random";
1641 	}
1642 
1643 
1644 	platform_set_drvdata(pdev, ndev);
1645 	ret = register_netdev(ndev);
1646 
1647 	if (ret == 0)
1648 		printk(KERN_INFO "%s: dm9000%c at %p,%p IRQ %d MAC: %pM (%s)\n",
1649 		       ndev->name, dm9000_type_to_char(db->type),
1650 		       db->io_addr, db->io_data, ndev->irq,
1651 		       ndev->dev_addr, mac_src);
1652 	return 0;
1653 
1654 out:
1655 	dev_err(db->dev, "not found (%d).\n", ret);
1656 
1657 	dm9000_release_board(pdev, db);
1658 	free_netdev(ndev);
1659 
1660 	return ret;
1661 }
1662 
1663 static int
1664 dm9000_drv_suspend(struct device *dev)
1665 {
1666 	struct platform_device *pdev = to_platform_device(dev);
1667 	struct net_device *ndev = platform_get_drvdata(pdev);
1668 	board_info_t *db;
1669 
1670 	if (ndev) {
1671 		db = netdev_priv(ndev);
1672 		db->in_suspend = 1;
1673 
1674 		if (!netif_running(ndev))
1675 			return 0;
1676 
1677 		netif_device_detach(ndev);
1678 
1679 		/* only shutdown if not using WoL */
1680 		if (!db->wake_state)
1681 			dm9000_shutdown(ndev);
1682 	}
1683 	return 0;
1684 }
1685 
1686 static int
1687 dm9000_drv_resume(struct device *dev)
1688 {
1689 	struct platform_device *pdev = to_platform_device(dev);
1690 	struct net_device *ndev = platform_get_drvdata(pdev);
1691 	board_info_t *db = netdev_priv(ndev);
1692 
1693 	if (ndev) {
1694 		if (netif_running(ndev)) {
1695 			/* reset if we were not in wake mode to ensure if
1696 			 * the device was powered off it is in a known state */
1697 			if (!db->wake_state) {
1698 				dm9000_reset(db);
1699 				dm9000_init_dm9000(ndev);
1700 			}
1701 
1702 			netif_device_attach(ndev);
1703 		}
1704 
1705 		db->in_suspend = 0;
1706 	}
1707 	return 0;
1708 }
1709 
1710 static const struct dev_pm_ops dm9000_drv_pm_ops = {
1711 	.suspend	= dm9000_drv_suspend,
1712 	.resume		= dm9000_drv_resume,
1713 };
1714 
1715 static int
1716 dm9000_drv_remove(struct platform_device *pdev)
1717 {
1718 	struct net_device *ndev = platform_get_drvdata(pdev);
1719 
1720 	unregister_netdev(ndev);
1721 	dm9000_release_board(pdev, netdev_priv(ndev));
1722 	free_netdev(ndev);		/* free device structure */
1723 
1724 	dev_dbg(&pdev->dev, "released and freed device\n");
1725 	return 0;
1726 }
1727 
1728 #ifdef CONFIG_OF
1729 static const struct of_device_id dm9000_of_matches[] = {
1730 	{ .compatible = "davicom,dm9000", },
1731 	{ /* sentinel */ }
1732 };
1733 MODULE_DEVICE_TABLE(of, dm9000_of_matches);
1734 #endif
1735 
1736 static struct platform_driver dm9000_driver = {
1737 	.driver	= {
1738 		.name    = "dm9000",
1739 		.owner	 = THIS_MODULE,
1740 		.pm	 = &dm9000_drv_pm_ops,
1741 		.of_match_table = of_match_ptr(dm9000_of_matches),
1742 	},
1743 	.probe   = dm9000_probe,
1744 	.remove  = dm9000_drv_remove,
1745 };
1746 
1747 module_platform_driver(dm9000_driver);
1748 
1749 MODULE_AUTHOR("Sascha Hauer, Ben Dooks");
1750 MODULE_DESCRIPTION("Davicom DM9000 network driver");
1751 MODULE_LICENSE("GPL");
1752 MODULE_ALIAS("platform:dm9000");
1753