1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Davicom DM9000 Fast Ethernet driver for Linux. 4 * Copyright (C) 1997 Sten Wang 5 * 6 * (C) Copyright 1997-1998 DAVICOM Semiconductor,Inc. All Rights Reserved. 7 * 8 * Additional updates, Copyright: 9 * Ben Dooks <ben@simtec.co.uk> 10 * Sascha Hauer <s.hauer@pengutronix.de> 11 */ 12 13 #include <linux/module.h> 14 #include <linux/ioport.h> 15 #include <linux/netdevice.h> 16 #include <linux/etherdevice.h> 17 #include <linux/interrupt.h> 18 #include <linux/skbuff.h> 19 #include <linux/spinlock.h> 20 #include <linux/crc32.h> 21 #include <linux/mii.h> 22 #include <linux/of.h> 23 #include <linux/of_net.h> 24 #include <linux/ethtool.h> 25 #include <linux/dm9000.h> 26 #include <linux/delay.h> 27 #include <linux/platform_device.h> 28 #include <linux/irq.h> 29 #include <linux/slab.h> 30 #include <linux/regulator/consumer.h> 31 #include <linux/gpio/consumer.h> 32 33 #include <asm/delay.h> 34 #include <asm/irq.h> 35 #include <asm/io.h> 36 37 #include "dm9000.h" 38 39 /* Board/System/Debug information/definition ---------------- */ 40 41 #define DM9000_PHY 0x40 /* PHY address 0x01 */ 42 43 #define CARDNAME "dm9000" 44 45 /* 46 * Transmit timeout, default 5 seconds. 47 */ 48 static int watchdog = 5000; 49 module_param(watchdog, int, 0400); 50 MODULE_PARM_DESC(watchdog, "transmit timeout in milliseconds"); 51 52 /* 53 * Debug messages level 54 */ 55 static int debug; 56 module_param(debug, int, 0644); 57 MODULE_PARM_DESC(debug, "dm9000 debug level (0-6)"); 58 59 /* DM9000 register address locking. 60 * 61 * The DM9000 uses an address register to control where data written 62 * to the data register goes. This means that the address register 63 * must be preserved over interrupts or similar calls. 64 * 65 * During interrupt and other critical calls, a spinlock is used to 66 * protect the system, but the calls themselves save the address 67 * in the address register in case they are interrupting another 68 * access to the device. 69 * 70 * For general accesses a lock is provided so that calls which are 71 * allowed to sleep are serialised so that the address register does 72 * not need to be saved. This lock also serves to serialise access 73 * to the EEPROM and PHY access registers which are shared between 74 * these two devices. 75 */ 76 77 /* The driver supports the original DM9000E, and now the two newer 78 * devices, DM9000A and DM9000B. 79 */ 80 81 enum dm9000_type { 82 TYPE_DM9000E, /* original DM9000 */ 83 TYPE_DM9000A, 84 TYPE_DM9000B 85 }; 86 87 /* Structure/enum declaration ------------------------------- */ 88 struct board_info { 89 90 void __iomem *io_addr; /* Register I/O base address */ 91 void __iomem *io_data; /* Data I/O address */ 92 u16 irq; /* IRQ */ 93 94 u16 tx_pkt_cnt; 95 u16 queue_pkt_len; 96 u16 queue_start_addr; 97 u16 queue_ip_summed; 98 u16 dbug_cnt; 99 u8 io_mode; /* 0:word, 2:byte */ 100 u8 phy_addr; 101 u8 imr_all; 102 103 unsigned int flags; 104 unsigned int in_timeout:1; 105 unsigned int in_suspend:1; 106 unsigned int wake_supported:1; 107 108 enum dm9000_type type; 109 110 void (*inblk)(void __iomem *port, void *data, int length); 111 void (*outblk)(void __iomem *port, void *data, int length); 112 void (*dumpblk)(void __iomem *port, int length); 113 114 struct device *dev; /* parent device */ 115 116 struct resource *addr_res; /* resources found */ 117 struct resource *data_res; 118 struct resource *addr_req; /* resources requested */ 119 struct resource *data_req; 120 121 int irq_wake; 122 123 struct mutex addr_lock; /* phy and eeprom access lock */ 124 125 struct delayed_work phy_poll; 126 struct net_device *ndev; 127 128 spinlock_t lock; 129 130 struct mii_if_info mii; 131 u32 msg_enable; 132 u32 wake_state; 133 134 int ip_summed; 135 136 struct regulator *power_supply; 137 }; 138 139 /* debug code */ 140 141 #define dm9000_dbg(db, lev, msg...) do { \ 142 if ((lev) < debug) { \ 143 dev_dbg(db->dev, msg); \ 144 } \ 145 } while (0) 146 147 static inline struct board_info *to_dm9000_board(struct net_device *dev) 148 { 149 return netdev_priv(dev); 150 } 151 152 /* DM9000 network board routine ---------------------------- */ 153 154 /* 155 * Read a byte from I/O port 156 */ 157 static u8 158 ior(struct board_info *db, int reg) 159 { 160 writeb(reg, db->io_addr); 161 return readb(db->io_data); 162 } 163 164 /* 165 * Write a byte to I/O port 166 */ 167 168 static void 169 iow(struct board_info *db, int reg, int value) 170 { 171 writeb(reg, db->io_addr); 172 writeb(value, db->io_data); 173 } 174 175 static void 176 dm9000_reset(struct board_info *db) 177 { 178 dev_dbg(db->dev, "resetting device\n"); 179 180 /* Reset DM9000, see DM9000 Application Notes V1.22 Jun 11, 2004 page 29 181 * The essential point is that we have to do a double reset, and the 182 * instruction is to set LBK into MAC internal loopback mode. 183 */ 184 iow(db, DM9000_NCR, NCR_RST | NCR_MAC_LBK); 185 udelay(100); /* Application note says at least 20 us */ 186 if (ior(db, DM9000_NCR) & 1) 187 dev_err(db->dev, "dm9000 did not respond to first reset\n"); 188 189 iow(db, DM9000_NCR, 0); 190 iow(db, DM9000_NCR, NCR_RST | NCR_MAC_LBK); 191 udelay(100); 192 if (ior(db, DM9000_NCR) & 1) 193 dev_err(db->dev, "dm9000 did not respond to second reset\n"); 194 } 195 196 /* routines for sending block to chip */ 197 198 static void dm9000_outblk_8bit(void __iomem *reg, void *data, int count) 199 { 200 iowrite8_rep(reg, data, count); 201 } 202 203 static void dm9000_outblk_16bit(void __iomem *reg, void *data, int count) 204 { 205 iowrite16_rep(reg, data, (count+1) >> 1); 206 } 207 208 static void dm9000_outblk_32bit(void __iomem *reg, void *data, int count) 209 { 210 iowrite32_rep(reg, data, (count+3) >> 2); 211 } 212 213 /* input block from chip to memory */ 214 215 static void dm9000_inblk_8bit(void __iomem *reg, void *data, int count) 216 { 217 ioread8_rep(reg, data, count); 218 } 219 220 221 static void dm9000_inblk_16bit(void __iomem *reg, void *data, int count) 222 { 223 ioread16_rep(reg, data, (count+1) >> 1); 224 } 225 226 static void dm9000_inblk_32bit(void __iomem *reg, void *data, int count) 227 { 228 ioread32_rep(reg, data, (count+3) >> 2); 229 } 230 231 /* dump block from chip to null */ 232 233 static void dm9000_dumpblk_8bit(void __iomem *reg, int count) 234 { 235 int i; 236 237 for (i = 0; i < count; i++) 238 readb(reg); 239 } 240 241 static void dm9000_dumpblk_16bit(void __iomem *reg, int count) 242 { 243 int i; 244 245 count = (count + 1) >> 1; 246 247 for (i = 0; i < count; i++) 248 readw(reg); 249 } 250 251 static void dm9000_dumpblk_32bit(void __iomem *reg, int count) 252 { 253 int i; 254 255 count = (count + 3) >> 2; 256 257 for (i = 0; i < count; i++) 258 readl(reg); 259 } 260 261 /* 262 * Sleep, either by using msleep() or if we are suspending, then 263 * use mdelay() to sleep. 264 */ 265 static void dm9000_msleep(struct board_info *db, unsigned int ms) 266 { 267 if (db->in_suspend || db->in_timeout) 268 mdelay(ms); 269 else 270 msleep(ms); 271 } 272 273 /* Read a word from phyxcer */ 274 static int 275 dm9000_phy_read(struct net_device *dev, int phy_reg_unused, int reg) 276 { 277 struct board_info *db = netdev_priv(dev); 278 unsigned long flags; 279 unsigned int reg_save; 280 int ret; 281 282 mutex_lock(&db->addr_lock); 283 284 spin_lock_irqsave(&db->lock, flags); 285 286 /* Save previous register address */ 287 reg_save = readb(db->io_addr); 288 289 /* Fill the phyxcer register into REG_0C */ 290 iow(db, DM9000_EPAR, DM9000_PHY | reg); 291 292 /* Issue phyxcer read command */ 293 iow(db, DM9000_EPCR, EPCR_ERPRR | EPCR_EPOS); 294 295 writeb(reg_save, db->io_addr); 296 spin_unlock_irqrestore(&db->lock, flags); 297 298 dm9000_msleep(db, 1); /* Wait read complete */ 299 300 spin_lock_irqsave(&db->lock, flags); 301 reg_save = readb(db->io_addr); 302 303 iow(db, DM9000_EPCR, 0x0); /* Clear phyxcer read command */ 304 305 /* The read data keeps on REG_0D & REG_0E */ 306 ret = (ior(db, DM9000_EPDRH) << 8) | ior(db, DM9000_EPDRL); 307 308 /* restore the previous address */ 309 writeb(reg_save, db->io_addr); 310 spin_unlock_irqrestore(&db->lock, flags); 311 312 mutex_unlock(&db->addr_lock); 313 314 dm9000_dbg(db, 5, "phy_read[%02x] -> %04x\n", reg, ret); 315 return ret; 316 } 317 318 /* Write a word to phyxcer */ 319 static void 320 dm9000_phy_write(struct net_device *dev, 321 int phyaddr_unused, int reg, int value) 322 { 323 struct board_info *db = netdev_priv(dev); 324 unsigned long flags; 325 unsigned long reg_save; 326 327 dm9000_dbg(db, 5, "phy_write[%02x] = %04x\n", reg, value); 328 if (!db->in_timeout) 329 mutex_lock(&db->addr_lock); 330 331 spin_lock_irqsave(&db->lock, flags); 332 333 /* Save previous register address */ 334 reg_save = readb(db->io_addr); 335 336 /* Fill the phyxcer register into REG_0C */ 337 iow(db, DM9000_EPAR, DM9000_PHY | reg); 338 339 /* Fill the written data into REG_0D & REG_0E */ 340 iow(db, DM9000_EPDRL, value); 341 iow(db, DM9000_EPDRH, value >> 8); 342 343 /* Issue phyxcer write command */ 344 iow(db, DM9000_EPCR, EPCR_EPOS | EPCR_ERPRW); 345 346 writeb(reg_save, db->io_addr); 347 spin_unlock_irqrestore(&db->lock, flags); 348 349 dm9000_msleep(db, 1); /* Wait write complete */ 350 351 spin_lock_irqsave(&db->lock, flags); 352 reg_save = readb(db->io_addr); 353 354 iow(db, DM9000_EPCR, 0x0); /* Clear phyxcer write command */ 355 356 /* restore the previous address */ 357 writeb(reg_save, db->io_addr); 358 359 spin_unlock_irqrestore(&db->lock, flags); 360 if (!db->in_timeout) 361 mutex_unlock(&db->addr_lock); 362 } 363 364 /* dm9000_set_io 365 * 366 * select the specified set of io routines to use with the 367 * device 368 */ 369 370 static void dm9000_set_io(struct board_info *db, int byte_width) 371 { 372 /* use the size of the data resource to work out what IO 373 * routines we want to use 374 */ 375 376 switch (byte_width) { 377 case 1: 378 db->dumpblk = dm9000_dumpblk_8bit; 379 db->outblk = dm9000_outblk_8bit; 380 db->inblk = dm9000_inblk_8bit; 381 break; 382 383 384 case 3: 385 dev_dbg(db->dev, ": 3 byte IO, falling back to 16bit\n"); 386 fallthrough; 387 case 2: 388 db->dumpblk = dm9000_dumpblk_16bit; 389 db->outblk = dm9000_outblk_16bit; 390 db->inblk = dm9000_inblk_16bit; 391 break; 392 393 case 4: 394 default: 395 db->dumpblk = dm9000_dumpblk_32bit; 396 db->outblk = dm9000_outblk_32bit; 397 db->inblk = dm9000_inblk_32bit; 398 break; 399 } 400 } 401 402 static void dm9000_schedule_poll(struct board_info *db) 403 { 404 if (db->type == TYPE_DM9000E) 405 schedule_delayed_work(&db->phy_poll, HZ * 2); 406 } 407 408 static int dm9000_ioctl(struct net_device *dev, struct ifreq *req, int cmd) 409 { 410 struct board_info *dm = to_dm9000_board(dev); 411 412 if (!netif_running(dev)) 413 return -EINVAL; 414 415 return generic_mii_ioctl(&dm->mii, if_mii(req), cmd, NULL); 416 } 417 418 static unsigned int 419 dm9000_read_locked(struct board_info *db, int reg) 420 { 421 unsigned long flags; 422 unsigned int ret; 423 424 spin_lock_irqsave(&db->lock, flags); 425 ret = ior(db, reg); 426 spin_unlock_irqrestore(&db->lock, flags); 427 428 return ret; 429 } 430 431 static int dm9000_wait_eeprom(struct board_info *db) 432 { 433 unsigned int status; 434 int timeout = 8; /* wait max 8msec */ 435 436 /* The DM9000 data sheets say we should be able to 437 * poll the ERRE bit in EPCR to wait for the EEPROM 438 * operation. From testing several chips, this bit 439 * does not seem to work. 440 * 441 * We attempt to use the bit, but fall back to the 442 * timeout (which is why we do not return an error 443 * on expiry) to say that the EEPROM operation has 444 * completed. 445 */ 446 447 while (1) { 448 status = dm9000_read_locked(db, DM9000_EPCR); 449 450 if ((status & EPCR_ERRE) == 0) 451 break; 452 453 msleep(1); 454 455 if (timeout-- < 0) { 456 dev_dbg(db->dev, "timeout waiting EEPROM\n"); 457 break; 458 } 459 } 460 461 return 0; 462 } 463 464 /* 465 * Read a word data from EEPROM 466 */ 467 static void 468 dm9000_read_eeprom(struct board_info *db, int offset, u8 *to) 469 { 470 unsigned long flags; 471 472 if (db->flags & DM9000_PLATF_NO_EEPROM) { 473 to[0] = 0xff; 474 to[1] = 0xff; 475 return; 476 } 477 478 mutex_lock(&db->addr_lock); 479 480 spin_lock_irqsave(&db->lock, flags); 481 482 iow(db, DM9000_EPAR, offset); 483 iow(db, DM9000_EPCR, EPCR_ERPRR); 484 485 spin_unlock_irqrestore(&db->lock, flags); 486 487 dm9000_wait_eeprom(db); 488 489 /* delay for at-least 150uS */ 490 msleep(1); 491 492 spin_lock_irqsave(&db->lock, flags); 493 494 iow(db, DM9000_EPCR, 0x0); 495 496 to[0] = ior(db, DM9000_EPDRL); 497 to[1] = ior(db, DM9000_EPDRH); 498 499 spin_unlock_irqrestore(&db->lock, flags); 500 501 mutex_unlock(&db->addr_lock); 502 } 503 504 /* 505 * Write a word data to SROM 506 */ 507 static void 508 dm9000_write_eeprom(struct board_info *db, int offset, u8 *data) 509 { 510 unsigned long flags; 511 512 if (db->flags & DM9000_PLATF_NO_EEPROM) 513 return; 514 515 mutex_lock(&db->addr_lock); 516 517 spin_lock_irqsave(&db->lock, flags); 518 iow(db, DM9000_EPAR, offset); 519 iow(db, DM9000_EPDRH, data[1]); 520 iow(db, DM9000_EPDRL, data[0]); 521 iow(db, DM9000_EPCR, EPCR_WEP | EPCR_ERPRW); 522 spin_unlock_irqrestore(&db->lock, flags); 523 524 dm9000_wait_eeprom(db); 525 526 mdelay(1); /* wait at least 150uS to clear */ 527 528 spin_lock_irqsave(&db->lock, flags); 529 iow(db, DM9000_EPCR, 0); 530 spin_unlock_irqrestore(&db->lock, flags); 531 532 mutex_unlock(&db->addr_lock); 533 } 534 535 /* ethtool ops */ 536 537 static void dm9000_get_drvinfo(struct net_device *dev, 538 struct ethtool_drvinfo *info) 539 { 540 struct board_info *dm = to_dm9000_board(dev); 541 542 strscpy(info->driver, CARDNAME, sizeof(info->driver)); 543 strscpy(info->bus_info, to_platform_device(dm->dev)->name, 544 sizeof(info->bus_info)); 545 } 546 547 static u32 dm9000_get_msglevel(struct net_device *dev) 548 { 549 struct board_info *dm = to_dm9000_board(dev); 550 551 return dm->msg_enable; 552 } 553 554 static void dm9000_set_msglevel(struct net_device *dev, u32 value) 555 { 556 struct board_info *dm = to_dm9000_board(dev); 557 558 dm->msg_enable = value; 559 } 560 561 static int dm9000_get_link_ksettings(struct net_device *dev, 562 struct ethtool_link_ksettings *cmd) 563 { 564 struct board_info *dm = to_dm9000_board(dev); 565 566 mii_ethtool_get_link_ksettings(&dm->mii, cmd); 567 return 0; 568 } 569 570 static int dm9000_set_link_ksettings(struct net_device *dev, 571 const struct ethtool_link_ksettings *cmd) 572 { 573 struct board_info *dm = to_dm9000_board(dev); 574 575 return mii_ethtool_set_link_ksettings(&dm->mii, cmd); 576 } 577 578 static int dm9000_nway_reset(struct net_device *dev) 579 { 580 struct board_info *dm = to_dm9000_board(dev); 581 return mii_nway_restart(&dm->mii); 582 } 583 584 static int dm9000_set_features(struct net_device *dev, 585 netdev_features_t features) 586 { 587 struct board_info *dm = to_dm9000_board(dev); 588 netdev_features_t changed = dev->features ^ features; 589 unsigned long flags; 590 591 if (!(changed & NETIF_F_RXCSUM)) 592 return 0; 593 594 spin_lock_irqsave(&dm->lock, flags); 595 iow(dm, DM9000_RCSR, (features & NETIF_F_RXCSUM) ? RCSR_CSUM : 0); 596 spin_unlock_irqrestore(&dm->lock, flags); 597 598 return 0; 599 } 600 601 static u32 dm9000_get_link(struct net_device *dev) 602 { 603 struct board_info *dm = to_dm9000_board(dev); 604 u32 ret; 605 606 if (dm->flags & DM9000_PLATF_EXT_PHY) 607 ret = mii_link_ok(&dm->mii); 608 else 609 ret = dm9000_read_locked(dm, DM9000_NSR) & NSR_LINKST ? 1 : 0; 610 611 return ret; 612 } 613 614 #define DM_EEPROM_MAGIC (0x444D394B) 615 616 static int dm9000_get_eeprom_len(struct net_device *dev) 617 { 618 return 128; 619 } 620 621 static int dm9000_get_eeprom(struct net_device *dev, 622 struct ethtool_eeprom *ee, u8 *data) 623 { 624 struct board_info *dm = to_dm9000_board(dev); 625 int offset = ee->offset; 626 int len = ee->len; 627 int i; 628 629 /* EEPROM access is aligned to two bytes */ 630 631 if ((len & 1) != 0 || (offset & 1) != 0) 632 return -EINVAL; 633 634 if (dm->flags & DM9000_PLATF_NO_EEPROM) 635 return -ENOENT; 636 637 ee->magic = DM_EEPROM_MAGIC; 638 639 for (i = 0; i < len; i += 2) 640 dm9000_read_eeprom(dm, (offset + i) / 2, data + i); 641 642 return 0; 643 } 644 645 static int dm9000_set_eeprom(struct net_device *dev, 646 struct ethtool_eeprom *ee, u8 *data) 647 { 648 struct board_info *dm = to_dm9000_board(dev); 649 int offset = ee->offset; 650 int len = ee->len; 651 int done; 652 653 /* EEPROM access is aligned to two bytes */ 654 655 if (dm->flags & DM9000_PLATF_NO_EEPROM) 656 return -ENOENT; 657 658 if (ee->magic != DM_EEPROM_MAGIC) 659 return -EINVAL; 660 661 while (len > 0) { 662 if (len & 1 || offset & 1) { 663 int which = offset & 1; 664 u8 tmp[2]; 665 666 dm9000_read_eeprom(dm, offset / 2, tmp); 667 tmp[which] = *data; 668 dm9000_write_eeprom(dm, offset / 2, tmp); 669 670 done = 1; 671 } else { 672 dm9000_write_eeprom(dm, offset / 2, data); 673 done = 2; 674 } 675 676 data += done; 677 offset += done; 678 len -= done; 679 } 680 681 return 0; 682 } 683 684 static void dm9000_get_wol(struct net_device *dev, struct ethtool_wolinfo *w) 685 { 686 struct board_info *dm = to_dm9000_board(dev); 687 688 memset(w, 0, sizeof(struct ethtool_wolinfo)); 689 690 /* note, we could probably support wake-phy too */ 691 w->supported = dm->wake_supported ? WAKE_MAGIC : 0; 692 w->wolopts = dm->wake_state; 693 } 694 695 static int dm9000_set_wol(struct net_device *dev, struct ethtool_wolinfo *w) 696 { 697 struct board_info *dm = to_dm9000_board(dev); 698 unsigned long flags; 699 u32 opts = w->wolopts; 700 u32 wcr = 0; 701 702 if (!dm->wake_supported) 703 return -EOPNOTSUPP; 704 705 if (opts & ~WAKE_MAGIC) 706 return -EINVAL; 707 708 if (opts & WAKE_MAGIC) 709 wcr |= WCR_MAGICEN; 710 711 mutex_lock(&dm->addr_lock); 712 713 spin_lock_irqsave(&dm->lock, flags); 714 iow(dm, DM9000_WCR, wcr); 715 spin_unlock_irqrestore(&dm->lock, flags); 716 717 mutex_unlock(&dm->addr_lock); 718 719 if (dm->wake_state != opts) { 720 /* change in wol state, update IRQ state */ 721 722 if (!dm->wake_state) 723 irq_set_irq_wake(dm->irq_wake, 1); 724 else if (dm->wake_state && !opts) 725 irq_set_irq_wake(dm->irq_wake, 0); 726 } 727 728 dm->wake_state = opts; 729 return 0; 730 } 731 732 static const struct ethtool_ops dm9000_ethtool_ops = { 733 .get_drvinfo = dm9000_get_drvinfo, 734 .get_msglevel = dm9000_get_msglevel, 735 .set_msglevel = dm9000_set_msglevel, 736 .nway_reset = dm9000_nway_reset, 737 .get_link = dm9000_get_link, 738 .get_wol = dm9000_get_wol, 739 .set_wol = dm9000_set_wol, 740 .get_eeprom_len = dm9000_get_eeprom_len, 741 .get_eeprom = dm9000_get_eeprom, 742 .set_eeprom = dm9000_set_eeprom, 743 .get_link_ksettings = dm9000_get_link_ksettings, 744 .set_link_ksettings = dm9000_set_link_ksettings, 745 }; 746 747 static void dm9000_show_carrier(struct board_info *db, 748 unsigned carrier, unsigned nsr) 749 { 750 int lpa; 751 struct net_device *ndev = db->ndev; 752 struct mii_if_info *mii = &db->mii; 753 unsigned ncr = dm9000_read_locked(db, DM9000_NCR); 754 755 if (carrier) { 756 lpa = mii->mdio_read(mii->dev, mii->phy_id, MII_LPA); 757 dev_info(db->dev, 758 "%s: link up, %dMbps, %s-duplex, lpa 0x%04X\n", 759 ndev->name, (nsr & NSR_SPEED) ? 10 : 100, 760 (ncr & NCR_FDX) ? "full" : "half", lpa); 761 } else { 762 dev_info(db->dev, "%s: link down\n", ndev->name); 763 } 764 } 765 766 static void 767 dm9000_poll_work(struct work_struct *w) 768 { 769 struct delayed_work *dw = to_delayed_work(w); 770 struct board_info *db = container_of(dw, struct board_info, phy_poll); 771 struct net_device *ndev = db->ndev; 772 773 if (db->flags & DM9000_PLATF_SIMPLE_PHY && 774 !(db->flags & DM9000_PLATF_EXT_PHY)) { 775 unsigned nsr = dm9000_read_locked(db, DM9000_NSR); 776 unsigned old_carrier = netif_carrier_ok(ndev) ? 1 : 0; 777 unsigned new_carrier; 778 779 new_carrier = (nsr & NSR_LINKST) ? 1 : 0; 780 781 if (old_carrier != new_carrier) { 782 if (netif_msg_link(db)) 783 dm9000_show_carrier(db, new_carrier, nsr); 784 785 if (!new_carrier) 786 netif_carrier_off(ndev); 787 else 788 netif_carrier_on(ndev); 789 } 790 } else 791 mii_check_media(&db->mii, netif_msg_link(db), 0); 792 793 if (netif_running(ndev)) 794 dm9000_schedule_poll(db); 795 } 796 797 /* dm9000_release_board 798 * 799 * release a board, and any mapped resources 800 */ 801 802 static void 803 dm9000_release_board(struct platform_device *pdev, struct board_info *db) 804 { 805 /* unmap our resources */ 806 807 iounmap(db->io_addr); 808 iounmap(db->io_data); 809 810 /* release the resources */ 811 812 if (db->data_req) 813 release_resource(db->data_req); 814 kfree(db->data_req); 815 816 if (db->addr_req) 817 release_resource(db->addr_req); 818 kfree(db->addr_req); 819 } 820 821 static unsigned char dm9000_type_to_char(enum dm9000_type type) 822 { 823 switch (type) { 824 case TYPE_DM9000E: return 'e'; 825 case TYPE_DM9000A: return 'a'; 826 case TYPE_DM9000B: return 'b'; 827 } 828 829 return '?'; 830 } 831 832 /* 833 * Set DM9000 multicast address 834 */ 835 static void 836 dm9000_hash_table_unlocked(struct net_device *dev) 837 { 838 struct board_info *db = netdev_priv(dev); 839 struct netdev_hw_addr *ha; 840 int i, oft; 841 u32 hash_val; 842 u16 hash_table[4] = { 0, 0, 0, 0x8000 }; /* broadcast address */ 843 u8 rcr = RCR_DIS_LONG | RCR_DIS_CRC | RCR_RXEN; 844 845 dm9000_dbg(db, 1, "entering %s\n", __func__); 846 847 for (i = 0, oft = DM9000_PAR; i < 6; i++, oft++) 848 iow(db, oft, dev->dev_addr[i]); 849 850 if (dev->flags & IFF_PROMISC) 851 rcr |= RCR_PRMSC; 852 853 if (dev->flags & IFF_ALLMULTI) 854 rcr |= RCR_ALL; 855 856 /* the multicast address in Hash Table : 64 bits */ 857 netdev_for_each_mc_addr(ha, dev) { 858 hash_val = ether_crc_le(6, ha->addr) & 0x3f; 859 hash_table[hash_val / 16] |= (u16) 1 << (hash_val % 16); 860 } 861 862 /* Write the hash table to MAC MD table */ 863 for (i = 0, oft = DM9000_MAR; i < 4; i++) { 864 iow(db, oft++, hash_table[i]); 865 iow(db, oft++, hash_table[i] >> 8); 866 } 867 868 iow(db, DM9000_RCR, rcr); 869 } 870 871 static void 872 dm9000_hash_table(struct net_device *dev) 873 { 874 struct board_info *db = netdev_priv(dev); 875 unsigned long flags; 876 877 spin_lock_irqsave(&db->lock, flags); 878 dm9000_hash_table_unlocked(dev); 879 spin_unlock_irqrestore(&db->lock, flags); 880 } 881 882 static void 883 dm9000_mask_interrupts(struct board_info *db) 884 { 885 iow(db, DM9000_IMR, IMR_PAR); 886 } 887 888 static void 889 dm9000_unmask_interrupts(struct board_info *db) 890 { 891 iow(db, DM9000_IMR, db->imr_all); 892 } 893 894 /* 895 * Initialize dm9000 board 896 */ 897 static void 898 dm9000_init_dm9000(struct net_device *dev) 899 { 900 struct board_info *db = netdev_priv(dev); 901 unsigned int imr; 902 unsigned int ncr; 903 904 dm9000_dbg(db, 1, "entering %s\n", __func__); 905 906 dm9000_reset(db); 907 dm9000_mask_interrupts(db); 908 909 /* I/O mode */ 910 db->io_mode = ior(db, DM9000_ISR) >> 6; /* ISR bit7:6 keeps I/O mode */ 911 912 /* Checksum mode */ 913 if (dev->hw_features & NETIF_F_RXCSUM) 914 iow(db, DM9000_RCSR, 915 (dev->features & NETIF_F_RXCSUM) ? RCSR_CSUM : 0); 916 917 iow(db, DM9000_GPCR, GPCR_GEP_CNTL); /* Let GPIO0 output */ 918 iow(db, DM9000_GPR, 0); 919 920 /* If we are dealing with DM9000B, some extra steps are required: a 921 * manual phy reset, and setting init params. 922 */ 923 if (db->type == TYPE_DM9000B) { 924 dm9000_phy_write(dev, 0, MII_BMCR, BMCR_RESET); 925 dm9000_phy_write(dev, 0, MII_DM_DSPCR, DSPCR_INIT_PARAM); 926 } 927 928 ncr = (db->flags & DM9000_PLATF_EXT_PHY) ? NCR_EXT_PHY : 0; 929 930 /* if wol is needed, then always set NCR_WAKEEN otherwise we end 931 * up dumping the wake events if we disable this. There is already 932 * a wake-mask in DM9000_WCR */ 933 if (db->wake_supported) 934 ncr |= NCR_WAKEEN; 935 936 iow(db, DM9000_NCR, ncr); 937 938 /* Program operating register */ 939 iow(db, DM9000_TCR, 0); /* TX Polling clear */ 940 iow(db, DM9000_BPTR, 0x3f); /* Less 3Kb, 200us */ 941 iow(db, DM9000_FCR, 0xff); /* Flow Control */ 942 iow(db, DM9000_SMCR, 0); /* Special Mode */ 943 /* clear TX status */ 944 iow(db, DM9000_NSR, NSR_WAKEST | NSR_TX2END | NSR_TX1END); 945 iow(db, DM9000_ISR, ISR_CLR_STATUS); /* Clear interrupt status */ 946 947 /* Set address filter table */ 948 dm9000_hash_table_unlocked(dev); 949 950 imr = IMR_PAR | IMR_PTM | IMR_PRM; 951 if (db->type != TYPE_DM9000E) 952 imr |= IMR_LNKCHNG; 953 954 db->imr_all = imr; 955 956 /* Init Driver variable */ 957 db->tx_pkt_cnt = 0; 958 db->queue_pkt_len = 0; 959 netif_trans_update(dev); 960 } 961 962 /* Our watchdog timed out. Called by the networking layer */ 963 static void dm9000_timeout(struct net_device *dev, unsigned int txqueue) 964 { 965 struct board_info *db = netdev_priv(dev); 966 u8 reg_save; 967 unsigned long flags; 968 969 /* Save previous register address */ 970 spin_lock_irqsave(&db->lock, flags); 971 db->in_timeout = 1; 972 reg_save = readb(db->io_addr); 973 974 netif_stop_queue(dev); 975 dm9000_init_dm9000(dev); 976 dm9000_unmask_interrupts(db); 977 /* We can accept TX packets again */ 978 netif_trans_update(dev); /* prevent tx timeout */ 979 netif_wake_queue(dev); 980 981 /* Restore previous register address */ 982 writeb(reg_save, db->io_addr); 983 db->in_timeout = 0; 984 spin_unlock_irqrestore(&db->lock, flags); 985 } 986 987 static void dm9000_send_packet(struct net_device *dev, 988 int ip_summed, 989 u16 pkt_len) 990 { 991 struct board_info *dm = to_dm9000_board(dev); 992 993 /* The DM9000 is not smart enough to leave fragmented packets alone. */ 994 if (dm->ip_summed != ip_summed) { 995 if (ip_summed == CHECKSUM_NONE) 996 iow(dm, DM9000_TCCR, 0); 997 else 998 iow(dm, DM9000_TCCR, TCCR_IP | TCCR_UDP | TCCR_TCP); 999 dm->ip_summed = ip_summed; 1000 } 1001 1002 /* Set TX length to DM9000 */ 1003 iow(dm, DM9000_TXPLL, pkt_len); 1004 iow(dm, DM9000_TXPLH, pkt_len >> 8); 1005 1006 /* Issue TX polling command */ 1007 iow(dm, DM9000_TCR, TCR_TXREQ); /* Cleared after TX complete */ 1008 } 1009 1010 /* 1011 * Hardware start transmission. 1012 * Send a packet to media from the upper layer. 1013 */ 1014 static netdev_tx_t 1015 dm9000_start_xmit(struct sk_buff *skb, struct net_device *dev) 1016 { 1017 unsigned long flags; 1018 struct board_info *db = netdev_priv(dev); 1019 1020 dm9000_dbg(db, 3, "%s:\n", __func__); 1021 1022 if (db->tx_pkt_cnt > 1) 1023 return NETDEV_TX_BUSY; 1024 1025 spin_lock_irqsave(&db->lock, flags); 1026 1027 /* Move data to DM9000 TX RAM */ 1028 writeb(DM9000_MWCMD, db->io_addr); 1029 1030 (db->outblk)(db->io_data, skb->data, skb->len); 1031 dev->stats.tx_bytes += skb->len; 1032 1033 db->tx_pkt_cnt++; 1034 /* TX control: First packet immediately send, second packet queue */ 1035 if (db->tx_pkt_cnt == 1) { 1036 dm9000_send_packet(dev, skb->ip_summed, skb->len); 1037 } else { 1038 /* Second packet */ 1039 db->queue_pkt_len = skb->len; 1040 db->queue_ip_summed = skb->ip_summed; 1041 netif_stop_queue(dev); 1042 } 1043 1044 spin_unlock_irqrestore(&db->lock, flags); 1045 1046 /* free this SKB */ 1047 dev_consume_skb_any(skb); 1048 1049 return NETDEV_TX_OK; 1050 } 1051 1052 /* 1053 * DM9000 interrupt handler 1054 * receive the packet to upper layer, free the transmitted packet 1055 */ 1056 1057 static void dm9000_tx_done(struct net_device *dev, struct board_info *db) 1058 { 1059 int tx_status = ior(db, DM9000_NSR); /* Got TX status */ 1060 1061 if (tx_status & (NSR_TX2END | NSR_TX1END)) { 1062 /* One packet sent complete */ 1063 db->tx_pkt_cnt--; 1064 dev->stats.tx_packets++; 1065 1066 if (netif_msg_tx_done(db)) 1067 dev_dbg(db->dev, "tx done, NSR %02x\n", tx_status); 1068 1069 /* Queue packet check & send */ 1070 if (db->tx_pkt_cnt > 0) 1071 dm9000_send_packet(dev, db->queue_ip_summed, 1072 db->queue_pkt_len); 1073 netif_wake_queue(dev); 1074 } 1075 } 1076 1077 struct dm9000_rxhdr { 1078 u8 RxPktReady; 1079 u8 RxStatus; 1080 __le16 RxLen; 1081 } __packed; 1082 1083 /* 1084 * Received a packet and pass to upper layer 1085 */ 1086 static void 1087 dm9000_rx(struct net_device *dev) 1088 { 1089 struct board_info *db = netdev_priv(dev); 1090 struct dm9000_rxhdr rxhdr; 1091 struct sk_buff *skb; 1092 u8 rxbyte, *rdptr; 1093 bool GoodPacket; 1094 int RxLen; 1095 1096 /* Check packet ready or not */ 1097 do { 1098 ior(db, DM9000_MRCMDX); /* Dummy read */ 1099 1100 /* Get most updated data */ 1101 rxbyte = readb(db->io_data); 1102 1103 /* Status check: this byte must be 0 or 1 */ 1104 if (rxbyte & DM9000_PKT_ERR) { 1105 dev_warn(db->dev, "status check fail: %d\n", rxbyte); 1106 iow(db, DM9000_RCR, 0x00); /* Stop Device */ 1107 return; 1108 } 1109 1110 if (!(rxbyte & DM9000_PKT_RDY)) 1111 return; 1112 1113 /* A packet ready now & Get status/length */ 1114 GoodPacket = true; 1115 writeb(DM9000_MRCMD, db->io_addr); 1116 1117 (db->inblk)(db->io_data, &rxhdr, sizeof(rxhdr)); 1118 1119 RxLen = le16_to_cpu(rxhdr.RxLen); 1120 1121 if (netif_msg_rx_status(db)) 1122 dev_dbg(db->dev, "RX: status %02x, length %04x\n", 1123 rxhdr.RxStatus, RxLen); 1124 1125 /* Packet Status check */ 1126 if (RxLen < 0x40) { 1127 GoodPacket = false; 1128 if (netif_msg_rx_err(db)) 1129 dev_dbg(db->dev, "RX: Bad Packet (runt)\n"); 1130 } 1131 1132 if (RxLen > DM9000_PKT_MAX) { 1133 dev_dbg(db->dev, "RST: RX Len:%x\n", RxLen); 1134 } 1135 1136 /* rxhdr.RxStatus is identical to RSR register. */ 1137 if (rxhdr.RxStatus & (RSR_FOE | RSR_CE | RSR_AE | 1138 RSR_PLE | RSR_RWTO | 1139 RSR_LCS | RSR_RF)) { 1140 GoodPacket = false; 1141 if (rxhdr.RxStatus & RSR_FOE) { 1142 if (netif_msg_rx_err(db)) 1143 dev_dbg(db->dev, "fifo error\n"); 1144 dev->stats.rx_fifo_errors++; 1145 } 1146 if (rxhdr.RxStatus & RSR_CE) { 1147 if (netif_msg_rx_err(db)) 1148 dev_dbg(db->dev, "crc error\n"); 1149 dev->stats.rx_crc_errors++; 1150 } 1151 if (rxhdr.RxStatus & RSR_RF) { 1152 if (netif_msg_rx_err(db)) 1153 dev_dbg(db->dev, "length error\n"); 1154 dev->stats.rx_length_errors++; 1155 } 1156 } 1157 1158 /* Move data from DM9000 */ 1159 if (GoodPacket && 1160 ((skb = netdev_alloc_skb(dev, RxLen + 4)) != NULL)) { 1161 skb_reserve(skb, 2); 1162 rdptr = skb_put(skb, RxLen - 4); 1163 1164 /* Read received packet from RX SRAM */ 1165 1166 (db->inblk)(db->io_data, rdptr, RxLen); 1167 dev->stats.rx_bytes += RxLen; 1168 1169 /* Pass to upper layer */ 1170 skb->protocol = eth_type_trans(skb, dev); 1171 if (dev->features & NETIF_F_RXCSUM) { 1172 if ((((rxbyte & 0x1c) << 3) & rxbyte) == 0) 1173 skb->ip_summed = CHECKSUM_UNNECESSARY; 1174 else 1175 skb_checksum_none_assert(skb); 1176 } 1177 netif_rx(skb); 1178 dev->stats.rx_packets++; 1179 1180 } else { 1181 /* need to dump the packet's data */ 1182 1183 (db->dumpblk)(db->io_data, RxLen); 1184 } 1185 } while (rxbyte & DM9000_PKT_RDY); 1186 } 1187 1188 static irqreturn_t dm9000_interrupt(int irq, void *dev_id) 1189 { 1190 struct net_device *dev = dev_id; 1191 struct board_info *db = netdev_priv(dev); 1192 int int_status; 1193 unsigned long flags; 1194 u8 reg_save; 1195 1196 dm9000_dbg(db, 3, "entering %s\n", __func__); 1197 1198 /* A real interrupt coming */ 1199 1200 /* holders of db->lock must always block IRQs */ 1201 spin_lock_irqsave(&db->lock, flags); 1202 1203 /* Save previous register address */ 1204 reg_save = readb(db->io_addr); 1205 1206 dm9000_mask_interrupts(db); 1207 /* Got DM9000 interrupt status */ 1208 int_status = ior(db, DM9000_ISR); /* Got ISR */ 1209 iow(db, DM9000_ISR, int_status); /* Clear ISR status */ 1210 1211 if (netif_msg_intr(db)) 1212 dev_dbg(db->dev, "interrupt status %02x\n", int_status); 1213 1214 /* Received the coming packet */ 1215 if (int_status & ISR_PRS) 1216 dm9000_rx(dev); 1217 1218 /* Transmit Interrupt check */ 1219 if (int_status & ISR_PTS) 1220 dm9000_tx_done(dev, db); 1221 1222 if (db->type != TYPE_DM9000E) { 1223 if (int_status & ISR_LNKCHNG) { 1224 /* fire a link-change request */ 1225 schedule_delayed_work(&db->phy_poll, 1); 1226 } 1227 } 1228 1229 dm9000_unmask_interrupts(db); 1230 /* Restore previous register address */ 1231 writeb(reg_save, db->io_addr); 1232 1233 spin_unlock_irqrestore(&db->lock, flags); 1234 1235 return IRQ_HANDLED; 1236 } 1237 1238 static irqreturn_t dm9000_wol_interrupt(int irq, void *dev_id) 1239 { 1240 struct net_device *dev = dev_id; 1241 struct board_info *db = netdev_priv(dev); 1242 unsigned long flags; 1243 unsigned nsr, wcr; 1244 1245 spin_lock_irqsave(&db->lock, flags); 1246 1247 nsr = ior(db, DM9000_NSR); 1248 wcr = ior(db, DM9000_WCR); 1249 1250 dev_dbg(db->dev, "%s: NSR=0x%02x, WCR=0x%02x\n", __func__, nsr, wcr); 1251 1252 if (nsr & NSR_WAKEST) { 1253 /* clear, so we can avoid */ 1254 iow(db, DM9000_NSR, NSR_WAKEST); 1255 1256 if (wcr & WCR_LINKST) 1257 dev_info(db->dev, "wake by link status change\n"); 1258 if (wcr & WCR_SAMPLEST) 1259 dev_info(db->dev, "wake by sample packet\n"); 1260 if (wcr & WCR_MAGICST) 1261 dev_info(db->dev, "wake by magic packet\n"); 1262 if (!(wcr & (WCR_LINKST | WCR_SAMPLEST | WCR_MAGICST))) 1263 dev_err(db->dev, "wake signalled with no reason? " 1264 "NSR=0x%02x, WSR=0x%02x\n", nsr, wcr); 1265 } 1266 1267 spin_unlock_irqrestore(&db->lock, flags); 1268 1269 return (nsr & NSR_WAKEST) ? IRQ_HANDLED : IRQ_NONE; 1270 } 1271 1272 #ifdef CONFIG_NET_POLL_CONTROLLER 1273 /* 1274 *Used by netconsole 1275 */ 1276 static void dm9000_poll_controller(struct net_device *dev) 1277 { 1278 disable_irq(dev->irq); 1279 dm9000_interrupt(dev->irq, dev); 1280 enable_irq(dev->irq); 1281 } 1282 #endif 1283 1284 /* 1285 * Open the interface. 1286 * The interface is opened whenever "ifconfig" actives it. 1287 */ 1288 static int 1289 dm9000_open(struct net_device *dev) 1290 { 1291 struct board_info *db = netdev_priv(dev); 1292 unsigned int irq_flags = irq_get_trigger_type(dev->irq); 1293 1294 if (netif_msg_ifup(db)) 1295 dev_dbg(db->dev, "enabling %s\n", dev->name); 1296 1297 /* If there is no IRQ type specified, tell the user that this is a 1298 * problem 1299 */ 1300 if (irq_flags == IRQF_TRIGGER_NONE) 1301 dev_warn(db->dev, "WARNING: no IRQ resource flags set.\n"); 1302 1303 irq_flags |= IRQF_SHARED; 1304 1305 /* GPIO0 on pre-activate PHY, Reg 1F is not set by reset */ 1306 iow(db, DM9000_GPR, 0); /* REG_1F bit0 activate phyxcer */ 1307 mdelay(1); /* delay needs by DM9000B */ 1308 1309 /* Initialize DM9000 board */ 1310 dm9000_init_dm9000(dev); 1311 1312 if (request_irq(dev->irq, dm9000_interrupt, irq_flags, dev->name, dev)) 1313 return -EAGAIN; 1314 /* Now that we have an interrupt handler hooked up we can unmask 1315 * our interrupts 1316 */ 1317 dm9000_unmask_interrupts(db); 1318 1319 /* Init driver variable */ 1320 db->dbug_cnt = 0; 1321 1322 mii_check_media(&db->mii, netif_msg_link(db), 1); 1323 netif_start_queue(dev); 1324 1325 /* Poll initial link status */ 1326 schedule_delayed_work(&db->phy_poll, 1); 1327 1328 return 0; 1329 } 1330 1331 static void 1332 dm9000_shutdown(struct net_device *dev) 1333 { 1334 struct board_info *db = netdev_priv(dev); 1335 1336 /* RESET device */ 1337 dm9000_phy_write(dev, 0, MII_BMCR, BMCR_RESET); /* PHY RESET */ 1338 iow(db, DM9000_GPR, 0x01); /* Power-Down PHY */ 1339 dm9000_mask_interrupts(db); 1340 iow(db, DM9000_RCR, 0x00); /* Disable RX */ 1341 } 1342 1343 /* 1344 * Stop the interface. 1345 * The interface is stopped when it is brought. 1346 */ 1347 static int 1348 dm9000_stop(struct net_device *ndev) 1349 { 1350 struct board_info *db = netdev_priv(ndev); 1351 1352 if (netif_msg_ifdown(db)) 1353 dev_dbg(db->dev, "shutting down %s\n", ndev->name); 1354 1355 cancel_delayed_work_sync(&db->phy_poll); 1356 1357 netif_stop_queue(ndev); 1358 netif_carrier_off(ndev); 1359 1360 /* free interrupt */ 1361 free_irq(ndev->irq, ndev); 1362 1363 dm9000_shutdown(ndev); 1364 1365 return 0; 1366 } 1367 1368 static const struct net_device_ops dm9000_netdev_ops = { 1369 .ndo_open = dm9000_open, 1370 .ndo_stop = dm9000_stop, 1371 .ndo_start_xmit = dm9000_start_xmit, 1372 .ndo_tx_timeout = dm9000_timeout, 1373 .ndo_set_rx_mode = dm9000_hash_table, 1374 .ndo_eth_ioctl = dm9000_ioctl, 1375 .ndo_set_features = dm9000_set_features, 1376 .ndo_validate_addr = eth_validate_addr, 1377 .ndo_set_mac_address = eth_mac_addr, 1378 #ifdef CONFIG_NET_POLL_CONTROLLER 1379 .ndo_poll_controller = dm9000_poll_controller, 1380 #endif 1381 }; 1382 1383 static struct dm9000_plat_data *dm9000_parse_dt(struct device *dev) 1384 { 1385 struct dm9000_plat_data *pdata; 1386 struct device_node *np = dev->of_node; 1387 int ret; 1388 1389 if (!IS_ENABLED(CONFIG_OF) || !np) 1390 return ERR_PTR(-ENXIO); 1391 1392 pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL); 1393 if (!pdata) 1394 return ERR_PTR(-ENOMEM); 1395 1396 if (of_property_read_bool(np, "davicom,ext-phy")) 1397 pdata->flags |= DM9000_PLATF_EXT_PHY; 1398 if (of_property_read_bool(np, "davicom,no-eeprom")) 1399 pdata->flags |= DM9000_PLATF_NO_EEPROM; 1400 1401 ret = of_get_mac_address(np, pdata->dev_addr); 1402 if (ret == -EPROBE_DEFER) 1403 return ERR_PTR(ret); 1404 1405 return pdata; 1406 } 1407 1408 /* 1409 * Search DM9000 board, allocate space and register it 1410 */ 1411 static int 1412 dm9000_probe(struct platform_device *pdev) 1413 { 1414 struct dm9000_plat_data *pdata = dev_get_platdata(&pdev->dev); 1415 struct board_info *db; /* Point a board information structure */ 1416 struct net_device *ndev; 1417 struct device *dev = &pdev->dev; 1418 const unsigned char *mac_src; 1419 int ret = 0; 1420 int iosize; 1421 int i; 1422 u32 id_val; 1423 struct gpio_desc *reset_gpio; 1424 struct regulator *power; 1425 bool inv_mac_addr = false; 1426 u8 addr[ETH_ALEN]; 1427 1428 power = devm_regulator_get(dev, "vcc"); 1429 if (IS_ERR(power)) { 1430 if (PTR_ERR(power) == -EPROBE_DEFER) 1431 return -EPROBE_DEFER; 1432 dev_dbg(dev, "no regulator provided\n"); 1433 } else { 1434 ret = regulator_enable(power); 1435 if (ret != 0) { 1436 dev_err(dev, 1437 "Failed to enable power regulator: %d\n", ret); 1438 return ret; 1439 } 1440 dev_dbg(dev, "regulator enabled\n"); 1441 } 1442 1443 reset_gpio = devm_gpiod_get_optional(dev, "reset", GPIOD_OUT_HIGH); 1444 ret = PTR_ERR_OR_ZERO(reset_gpio); 1445 if (ret) { 1446 dev_err(dev, "failed to request reset gpio: %d\n", ret); 1447 goto out_regulator_disable; 1448 } 1449 1450 if (reset_gpio) { 1451 ret = gpiod_set_consumer_name(reset_gpio, "dm9000_reset"); 1452 if (ret) { 1453 dev_err(dev, "failed to set reset gpio name: %d\n", 1454 ret); 1455 goto out_regulator_disable; 1456 } 1457 1458 /* According to manual PWRST# Low Period Min 1ms */ 1459 msleep(2); 1460 gpiod_set_value_cansleep(reset_gpio, 0); 1461 /* Needs 3ms to read eeprom when PWRST is deasserted */ 1462 msleep(4); 1463 } 1464 1465 if (!pdata) { 1466 pdata = dm9000_parse_dt(&pdev->dev); 1467 if (IS_ERR(pdata)) { 1468 ret = PTR_ERR(pdata); 1469 goto out_regulator_disable; 1470 } 1471 } 1472 1473 /* Init network device */ 1474 ndev = alloc_etherdev(sizeof(struct board_info)); 1475 if (!ndev) { 1476 ret = -ENOMEM; 1477 goto out_regulator_disable; 1478 } 1479 1480 SET_NETDEV_DEV(ndev, &pdev->dev); 1481 1482 dev_dbg(&pdev->dev, "dm9000_probe()\n"); 1483 1484 /* setup board info structure */ 1485 db = netdev_priv(ndev); 1486 1487 db->dev = &pdev->dev; 1488 db->ndev = ndev; 1489 if (!IS_ERR(power)) 1490 db->power_supply = power; 1491 1492 spin_lock_init(&db->lock); 1493 mutex_init(&db->addr_lock); 1494 1495 INIT_DELAYED_WORK(&db->phy_poll, dm9000_poll_work); 1496 1497 db->addr_res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1498 db->data_res = platform_get_resource(pdev, IORESOURCE_MEM, 1); 1499 1500 if (!db->addr_res || !db->data_res) { 1501 dev_err(db->dev, "insufficient resources addr=%p data=%p\n", 1502 db->addr_res, db->data_res); 1503 ret = -ENOENT; 1504 goto out; 1505 } 1506 1507 ndev->irq = platform_get_irq(pdev, 0); 1508 if (ndev->irq < 0) { 1509 ret = ndev->irq; 1510 goto out; 1511 } 1512 1513 db->irq_wake = platform_get_irq_optional(pdev, 1); 1514 if (db->irq_wake >= 0) { 1515 dev_dbg(db->dev, "wakeup irq %d\n", db->irq_wake); 1516 1517 ret = request_irq(db->irq_wake, dm9000_wol_interrupt, 1518 IRQF_SHARED, dev_name(db->dev), ndev); 1519 if (ret) { 1520 dev_err(db->dev, "cannot get wakeup irq (%d)\n", ret); 1521 } else { 1522 1523 /* test to see if irq is really wakeup capable */ 1524 ret = irq_set_irq_wake(db->irq_wake, 1); 1525 if (ret) { 1526 dev_err(db->dev, "irq %d cannot set wakeup (%d)\n", 1527 db->irq_wake, ret); 1528 } else { 1529 irq_set_irq_wake(db->irq_wake, 0); 1530 db->wake_supported = 1; 1531 } 1532 } 1533 } 1534 1535 iosize = resource_size(db->addr_res); 1536 db->addr_req = request_mem_region(db->addr_res->start, iosize, 1537 pdev->name); 1538 1539 if (db->addr_req == NULL) { 1540 dev_err(db->dev, "cannot claim address reg area\n"); 1541 ret = -EIO; 1542 goto out; 1543 } 1544 1545 db->io_addr = ioremap(db->addr_res->start, iosize); 1546 1547 if (db->io_addr == NULL) { 1548 dev_err(db->dev, "failed to ioremap address reg\n"); 1549 ret = -EINVAL; 1550 goto out; 1551 } 1552 1553 iosize = resource_size(db->data_res); 1554 db->data_req = request_mem_region(db->data_res->start, iosize, 1555 pdev->name); 1556 1557 if (db->data_req == NULL) { 1558 dev_err(db->dev, "cannot claim data reg area\n"); 1559 ret = -EIO; 1560 goto out; 1561 } 1562 1563 db->io_data = ioremap(db->data_res->start, iosize); 1564 1565 if (db->io_data == NULL) { 1566 dev_err(db->dev, "failed to ioremap data reg\n"); 1567 ret = -EINVAL; 1568 goto out; 1569 } 1570 1571 /* fill in parameters for net-dev structure */ 1572 ndev->base_addr = (unsigned long)db->io_addr; 1573 1574 /* ensure at least we have a default set of IO routines */ 1575 dm9000_set_io(db, iosize); 1576 1577 /* check to see if anything is being over-ridden */ 1578 if (pdata != NULL) { 1579 /* check to see if the driver wants to over-ride the 1580 * default IO width */ 1581 1582 if (pdata->flags & DM9000_PLATF_8BITONLY) 1583 dm9000_set_io(db, 1); 1584 1585 if (pdata->flags & DM9000_PLATF_16BITONLY) 1586 dm9000_set_io(db, 2); 1587 1588 if (pdata->flags & DM9000_PLATF_32BITONLY) 1589 dm9000_set_io(db, 4); 1590 1591 /* check to see if there are any IO routine 1592 * over-rides */ 1593 1594 if (pdata->inblk != NULL) 1595 db->inblk = pdata->inblk; 1596 1597 if (pdata->outblk != NULL) 1598 db->outblk = pdata->outblk; 1599 1600 if (pdata->dumpblk != NULL) 1601 db->dumpblk = pdata->dumpblk; 1602 1603 db->flags = pdata->flags; 1604 } 1605 1606 #ifdef CONFIG_DM9000_FORCE_SIMPLE_PHY_POLL 1607 db->flags |= DM9000_PLATF_SIMPLE_PHY; 1608 #endif 1609 1610 dm9000_reset(db); 1611 1612 /* try multiple times, DM9000 sometimes gets the read wrong */ 1613 for (i = 0; i < 8; i++) { 1614 id_val = ior(db, DM9000_VIDL); 1615 id_val |= (u32)ior(db, DM9000_VIDH) << 8; 1616 id_val |= (u32)ior(db, DM9000_PIDL) << 16; 1617 id_val |= (u32)ior(db, DM9000_PIDH) << 24; 1618 1619 if (id_val == DM9000_ID) 1620 break; 1621 dev_err(db->dev, "read wrong id 0x%08x\n", id_val); 1622 } 1623 1624 if (id_val != DM9000_ID) { 1625 dev_err(db->dev, "wrong id: 0x%08x\n", id_val); 1626 ret = -ENODEV; 1627 goto out; 1628 } 1629 1630 /* Identify what type of DM9000 we are working on */ 1631 1632 id_val = ior(db, DM9000_CHIPR); 1633 dev_dbg(db->dev, "dm9000 revision 0x%02x\n", id_val); 1634 1635 switch (id_val) { 1636 case CHIPR_DM9000A: 1637 db->type = TYPE_DM9000A; 1638 break; 1639 case CHIPR_DM9000B: 1640 db->type = TYPE_DM9000B; 1641 break; 1642 default: 1643 dev_dbg(db->dev, "ID %02x => defaulting to DM9000E\n", id_val); 1644 db->type = TYPE_DM9000E; 1645 } 1646 1647 /* dm9000a/b are capable of hardware checksum offload */ 1648 if (db->type == TYPE_DM9000A || db->type == TYPE_DM9000B) { 1649 ndev->hw_features = NETIF_F_RXCSUM | NETIF_F_IP_CSUM; 1650 ndev->features |= ndev->hw_features; 1651 } 1652 1653 /* from this point we assume that we have found a DM9000 */ 1654 1655 ndev->netdev_ops = &dm9000_netdev_ops; 1656 ndev->watchdog_timeo = msecs_to_jiffies(watchdog); 1657 ndev->ethtool_ops = &dm9000_ethtool_ops; 1658 1659 db->msg_enable = NETIF_MSG_LINK; 1660 db->mii.phy_id_mask = 0x1f; 1661 db->mii.reg_num_mask = 0x1f; 1662 db->mii.force_media = 0; 1663 db->mii.full_duplex = 0; 1664 db->mii.dev = ndev; 1665 db->mii.mdio_read = dm9000_phy_read; 1666 db->mii.mdio_write = dm9000_phy_write; 1667 1668 mac_src = "eeprom"; 1669 1670 /* try reading the node address from the attached EEPROM */ 1671 for (i = 0; i < 6; i += 2) 1672 dm9000_read_eeprom(db, i / 2, addr + i); 1673 eth_hw_addr_set(ndev, addr); 1674 1675 if (!is_valid_ether_addr(ndev->dev_addr) && pdata != NULL) { 1676 mac_src = "platform data"; 1677 eth_hw_addr_set(ndev, pdata->dev_addr); 1678 } 1679 1680 if (!is_valid_ether_addr(ndev->dev_addr)) { 1681 /* try reading from mac */ 1682 1683 mac_src = "chip"; 1684 for (i = 0; i < 6; i++) 1685 addr[i] = ior(db, i + DM9000_PAR); 1686 eth_hw_addr_set(ndev, pdata->dev_addr); 1687 } 1688 1689 if (!is_valid_ether_addr(ndev->dev_addr)) { 1690 inv_mac_addr = true; 1691 eth_hw_addr_random(ndev); 1692 mac_src = "random"; 1693 } 1694 1695 1696 platform_set_drvdata(pdev, ndev); 1697 ret = register_netdev(ndev); 1698 1699 if (ret == 0) { 1700 if (inv_mac_addr) 1701 dev_warn(db->dev, "%s: Invalid ethernet MAC address. Please set using ip\n", 1702 ndev->name); 1703 printk(KERN_INFO "%s: dm9000%c at %p,%p IRQ %d MAC: %pM (%s)\n", 1704 ndev->name, dm9000_type_to_char(db->type), 1705 db->io_addr, db->io_data, ndev->irq, 1706 ndev->dev_addr, mac_src); 1707 } 1708 return 0; 1709 1710 out: 1711 dev_err(db->dev, "not found (%d).\n", ret); 1712 1713 dm9000_release_board(pdev, db); 1714 free_netdev(ndev); 1715 1716 out_regulator_disable: 1717 if (!IS_ERR(power)) 1718 regulator_disable(power); 1719 1720 return ret; 1721 } 1722 1723 static int 1724 dm9000_drv_suspend(struct device *dev) 1725 { 1726 struct net_device *ndev = dev_get_drvdata(dev); 1727 struct board_info *db; 1728 1729 if (ndev) { 1730 db = netdev_priv(ndev); 1731 db->in_suspend = 1; 1732 1733 if (!netif_running(ndev)) 1734 return 0; 1735 1736 netif_device_detach(ndev); 1737 1738 /* only shutdown if not using WoL */ 1739 if (!db->wake_state) 1740 dm9000_shutdown(ndev); 1741 } 1742 return 0; 1743 } 1744 1745 static int 1746 dm9000_drv_resume(struct device *dev) 1747 { 1748 struct net_device *ndev = dev_get_drvdata(dev); 1749 struct board_info *db = netdev_priv(ndev); 1750 1751 if (ndev) { 1752 if (netif_running(ndev)) { 1753 /* reset if we were not in wake mode to ensure if 1754 * the device was powered off it is in a known state */ 1755 if (!db->wake_state) { 1756 dm9000_init_dm9000(ndev); 1757 dm9000_unmask_interrupts(db); 1758 } 1759 1760 netif_device_attach(ndev); 1761 } 1762 1763 db->in_suspend = 0; 1764 } 1765 return 0; 1766 } 1767 1768 static const struct dev_pm_ops dm9000_drv_pm_ops = { 1769 .suspend = dm9000_drv_suspend, 1770 .resume = dm9000_drv_resume, 1771 }; 1772 1773 static int 1774 dm9000_drv_remove(struct platform_device *pdev) 1775 { 1776 struct net_device *ndev = platform_get_drvdata(pdev); 1777 struct board_info *dm = to_dm9000_board(ndev); 1778 1779 unregister_netdev(ndev); 1780 dm9000_release_board(pdev, dm); 1781 free_netdev(ndev); /* free device structure */ 1782 if (dm->power_supply) 1783 regulator_disable(dm->power_supply); 1784 1785 dev_dbg(&pdev->dev, "released and freed device\n"); 1786 return 0; 1787 } 1788 1789 #ifdef CONFIG_OF 1790 static const struct of_device_id dm9000_of_matches[] = { 1791 { .compatible = "davicom,dm9000", }, 1792 { /* sentinel */ } 1793 }; 1794 MODULE_DEVICE_TABLE(of, dm9000_of_matches); 1795 #endif 1796 1797 static struct platform_driver dm9000_driver = { 1798 .driver = { 1799 .name = "dm9000", 1800 .pm = &dm9000_drv_pm_ops, 1801 .of_match_table = of_match_ptr(dm9000_of_matches), 1802 }, 1803 .probe = dm9000_probe, 1804 .remove = dm9000_drv_remove, 1805 }; 1806 1807 module_platform_driver(dm9000_driver); 1808 1809 MODULE_AUTHOR("Sascha Hauer, Ben Dooks"); 1810 MODULE_DESCRIPTION("Davicom DM9000 network driver"); 1811 MODULE_LICENSE("GPL"); 1812 MODULE_ALIAS("platform:dm9000"); 1813